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Group von Neumann algebras

Definition

L(G ) := span{λg : g ∈ G}w .o.t. ⊂ B(ℓ2(G )), where λg ∈ U(ℓ2(G )) is
defined by λg (δs) = δgs for all s ∈ G .

Example

L(Zn) ∼= L∞(Tn, µ).
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Fourier expansion

Let τ : L(G ) → C be defined as τ(a) = ⟨aδe , δe⟩ for all a ∈ L(G ). Then τ
is the unique trace on L(G ).

Fact: L(G ) ↪→ ℓ2(G ) via the map a 7→ aδe . So we may write every
a ∈ L(G ) as a =

∑
g∈G agug , where ug = λg , ugδe = δg . This is the

so-called Fourier expansion of a.

Set Supp(a) = {g : ag ̸= 0}.

Fact: If H ≤ G is a subgroup, then L(H) ≤ L(G ) naturally:

L(H) = {a ∈ L(G ) : Supp(a) ⊆ H}.
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Proposition

L(G ) is a factor iff G is infinite-conjugacy-class (i.c.c.), i.e. ♯Conj(g) = ∞
for all g ̸= e, where Conj(g) := {sgs−1 : s ∈ G}.

Proof.

⇐: a ∈ Z(L(G )) ⇔ usau
∗
s = a, ∀ s ∈ G ,⇔ as−1gs = ag , ∀ s, g ∈ G .

Note that ∞ > ||a||22 =
∑

g∈G |ag |2 ≥
∑

t∈Conj(g) |at |2 = ♯Conj(g) · |ag |2.

Hence ag = 0 for all g ̸= e, i.e. a ∈ Cid .

⇒: if g ̸= e and Conj(g) = {s1gs−1
1 , · · · , sngs−1

n }, then
a :=

∑n
i=1 usigs−1

i
∈ Z(L(G )).

RK: If H ≤ G and x ∈ L(H)′ ∩ L(G ), then

Supp(x) ⊆ {g : ♯{hgh−1 : h ∈ H} < ∞}.

This observation has already been used in Dixmier’s work on MASAs.
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Conditional expectation

For any von Neumann subalgebra M ⊆ L(G ), there exists a unique trace
preserving conditional expectation E : L(G ) → M, i.e. a linear map
satisfying the following conditions:

1 E (m) = m for every m ∈ M.

2 E (x) ≥ 0 for every x ∈ L(G ) with x ≥ 0.

3 E (m1xm2) = m1E (x)m2 for every m1,m2 ∈ M and x ∈ L(G ).

The construction:

Denote by E : ℓ2(G ) ↠ L2(M, τ) the orthogonal projection, then show
that E (L(G )) ⊆ M.

Yongle Jiang (DLUT) ISR property September 30, 2023 6 / 26



Conditional expectation

For any von Neumann subalgebra M ⊆ L(G ), there exists a unique trace
preserving conditional expectation E : L(G ) → M, i.e. a linear map
satisfying the following conditions:

1 E (m) = m for every m ∈ M.

2 E (x) ≥ 0 for every x ∈ L(G ) with x ≥ 0.

3 E (m1xm2) = m1E (x)m2 for every m1,m2 ∈ M and x ∈ L(G ).

The construction:

Denote by E : ℓ2(G ) ↠ L2(M, τ) the orthogonal projection, then show
that E (L(G )) ⊆ M.

Yongle Jiang (DLUT) ISR property September 30, 2023 6 / 26



Conditional expectation

For any von Neumann subalgebra M ⊆ L(G ), there exists a unique trace
preserving conditional expectation E : L(G ) → M, i.e. a linear map
satisfying the following conditions:

1 E (m) = m for every m ∈ M.

2 E (x) ≥ 0 for every x ∈ L(G ) with x ≥ 0.

3 E (m1xm2) = m1E (x)m2 for every m1,m2 ∈ M and x ∈ L(G ).

The construction:

Denote by E : ℓ2(G ) ↠ L2(M, τ) the orthogonal projection, then show
that E (L(G )) ⊆ M.

Yongle Jiang (DLUT) ISR property September 30, 2023 6 / 26



The problem

We are interested in determining G -invariant von Neumann subalgebras
M ⊆ L(G ). Here M is G -invariant if ugMu∗g = M for all g ∈ G .

Note that if H ◁ G , then ugL(H)u∗g = L(gHg−1) = L(H), ∀ g ∈ G .

Hence, the best thing we may expect is that the converse also holds true.

Definition

We say G has the invariant von Neumann subalgebras rigidity (ISR)
property if every G -invariant von Neumann subalgebra M of L(G ) is of the
form L(H) for some normal subgroup H ◁ G .

Problem

Which group G has this ISR property?
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Some history and known works

The study of this question stems from the work of Alekseev-Brugger (’19).
Recall that

Theorem (Margulis’s normal subgroup theorem)

Let G be a lattice in a higher rank simple real Lie group with trivial center,
e.g. G = SLn(Z) for n ≥ 3. Then every non-trivial normal subgroup in G
is of finite index.

Trying to prove an analogue of this for subalgebras of L(G ),
Alekseev-Brugger proved, a priori, partial analogue:

Theorem (Alekseev-Brugger, ’19)

Let G be the same as the above. Then every non-trivial
G-invariant von Neumann subfactor of L(G ) is of finite Jones index in
L(G ).

Yongle Jiang (DLUT) ISR property September 30, 2023 8 / 26



Some history and known works

The study of this question stems from the work of Alekseev-Brugger (’19).
Recall that

Theorem (Margulis’s normal subgroup theorem)

Let G be a lattice in a higher rank simple real Lie group with trivial center,
e.g. G = SLn(Z) for n ≥ 3. Then every non-trivial normal subgroup in G
is of finite index.

Trying to prove an analogue of this for subalgebras of L(G ),
Alekseev-Brugger proved, a priori, partial analogue:

Theorem (Alekseev-Brugger, ’19)

Let G be the same as the above. Then every non-trivial
G-invariant von Neumann subfactor of L(G ) is of finite Jones index in
L(G ).

Yongle Jiang (DLUT) ISR property September 30, 2023 8 / 26



Related works

Theorem (Kalantar-Panagoupolos, ’21)

Let G be an irreducible lattice in a connected semisimple Lie group with
trivial center, no non-trivial compact factors, and such that all its simple
factors have real rank at least two. Then every G-invariant von Neumann
subalgebra is of the form L(H) for some normal subgroup H ◁ G.

For a different class of groups, Chifan-Das proved:

Theorem (Chifan-Das, ’19)

Let G be a “negatively curved” group, e.g. a non-amenable group that is
either exact and acylindrically hyperbolic or has positive first L2-Betti
number, then all G-invariant subfactors are commensurable to subalgebras
L(H) for some H ◁ G.
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Tools used

Results Tools used

Alekseev-Brugger Peterson’s character rigidity

Chifan-Das Popa’s deformation/rigidity

Kalantar-Panagoupolos
Boutonnet-Houdayer’s non-commutative

Nevo-Zimmer thm
Chifan-Das result

Remarks:

1 In Kalantar-Panagoupolos’s proof, the key step is to argue every
G -invariant vN subalgebra is automatically a subfactor.

2 In Chifan-Das’s result, if we further assume G is i.c.c., then their
proof shows every G -invariant subfactor is of the form L(H) for some
H ◁ G .
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Main results

Theorem (Amrutam-J., ’22)

The following groups satisfy the ISR property.

1 torsion-free non-amenable hyperbolic groups.

2 torsion-free groups with positive first L2-Betti number under a mild
assumption (*) used by Peterson-Thom.

3 finite products of groups in either of the above two items.

(*): every non-trivial element of ZG acts with zero kernel on ℓ2(G ).

Proposition (Amrutam-J., ’22)

1 For an infinite group G, G has ISR property implies G is i.c.c., but
the converse fails.

2 G = Z ∗ Z
2Z has ISR property.
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I.C.C. groups without ISR property

Let G = Z2 ⋊ SL(2,Z), an i.c.c. group.

Set

M = {
∑
v∈Z2

λvv : λv = λ−v , ∀ v ∈ Z2} ⊊ L(Z2) ⊊ L(G ).

Then M is G -invariant, but M ̸= L(H) for any H ◁ G .

Similar construction works for G = Z ≀ Z := (⊕ZZ)⋊ Z etc.
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Ideas behind the proof

The proof ideas are inspired by my previous joint work with Prof. Adam
Skalski on studying maximal Haagerup von Neumann subalgebras and my
work on maximal von Neumann subalgebras.

For the inclusion L(G ) ≤ M ≤ L∞(X , µ)⋊ G , M is automatically
G -invariant.
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Strategy

Let M be a G -invariant vN subalgebra and E : L(G ) → M be the c.e.

It suffices to show E (ug ) ∈ Cug for all g ∈ G . Then it follows that
M = L(H) for H = {g ∈ G : E (ug ) ̸= 0} and H ◁ G .

We think of {E (ug ) : g ∈ G} as unknowns and find equations involving
them and solve for them. Here, we use:

1 usE (ug )u
∗
s = E (usgs−1) for all s ∈ G .

2 E (ugE (uh)) = E (ug )E (uh) for all g , h ∈ G .

Next, we sketch a piece of the proof for G = F2 = ⟨a, b⟩.

From now on, we simply write g for ug .
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A piece of the proof for G = F2

Goal: show E (a) ∈ Ca.

Step 1: find the Fourier expansion of E (a).

anE (a)a−n = E (a) implies E (a) ∈ L(⟨a⟩)′ ∩ L(F2) = L(⟨a⟩).

Hence, we write
E (a) =

∑
n∈Z

λna
n.

Note that bab−1 is free from a, i.e. ⟨bab−1, a⟩ ∼= ⟨bab−1⟩ ∗ ⟨a⟩ ∼= F2, and
we have

E (bab−1) = bE (a)b−1 =
∑
n∈Z

λnba
nb−1.
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Step 2: solve for λn, i.e. show λn = 0 for all n ̸= 1.

Recall that

E (a) =
∑
n∈Z

λna
n,

E (bab−1) =
∑
n∈Z

λnba
nb−1.

Clearly, λ0 = 0 by taking trace on both sides.

We compute both sides of the identity E (a)E (bab−1) = E (aE (bab−1)).

LHS =
∑
i ,j∈Z

λiλja
ibajb−1.

RHS = E (a(
∑
k∈Z

λkba
kb−1)) =

∑
k∈Z

λkE (aba
kb−1).

For any x ∈ L(G ), recall that Supp(x) = {g ∈ G : τ(xu∗g ) ̸= 0}, i.e. the
collection of all g with non-zero coefficient in the Fourier expansion of x .
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Key part

LHS =
∑

(i ,j)∈Z2

λiλja
ibajb−1.

RHS =
∑
k∈Z

λkE (aba
kb−1).

(Fact 1) Since bab−1 is free from a, we deduce that

supp(LHS) = {aibajb−1 : λiλj ̸= 0}.

(Fact 2) supp(RHS) ⊆
⋃

k∈Z
⋃

ℓ∈Z(aba
kb−1)ℓ.

(Fact 3) If i ̸= 1 and j ̸= 0, then

aibajb−1 ̸∈
⋃
k∈Z

⋃
ℓ∈Z

(abakb−1)ℓ.

Thus, λiλj = 0 for all i ̸= 1 and j ̸= 0.

Hence λi = 0 for all i ̸= 1, 0 (recall that λ0 = 0).
Yongle Jiang (DLUT) ISR property September 30, 2023 17 / 26



On the proof for general cases

It is not hard to see the proof relies on two points:

1 control of E (g), clearly,

E (g) ∈ L(C (g))′ ∩ L(G ) ⊆ L(⟨g⟩)′ ∩ L(G ) ⊆ L(∪i≥1C (g i )).

2 find s ∈ G such that sg ′s−1 is free from g ′, ∀ g ′ ∈ Supp(E (g)) and
calculate the Fourier expansion.

Due to point 1, we need to assume G is torsion-free in general.

To make point 2 work, we either use property naive/Peterson-Thom
theorem for the group G .
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On the proof for general cases

Case 1: G is a torsion-free non-amenable hyperbolic group.

1 ∀g (̸= e) ∈ G , C (g) is cyclic.

2 G satisfies property naive, i.e. for any finite subset F ⊆ G \ {e},
∃ s ∈ G of infinite order s.t. ∀g ′ ∈ F , ⟨g ′, s⟩ ∼= ⟨g ′⟩ ∗ ⟨s⟩.
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Case 2: G is a torsion-free group with β
(1)
2 (G ) > 0 satisfying (*).

1 E (g) lies in a subgroup.

2 freeness, i.e. Peterson-Thom theorem.

Theorem (Peterson-Thom)

Let G be a torsion-free countable discrete group. Then there exists a
family of subgroups {Gi : i ∈ I}, such that

1 We can write G as the disjoint union: G = {e} ∪
⋃

i∈I Ġi , where

Ġi = Gi \ {e}.
2 The groups Gi are mal-normal in G, for i ∈ G.

3 If G satisfies (*), then Gi is free from Gj , for i ̸= j .

4 β
(2)
1 (Gi ) = 0, for all i ∈ I .
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A general framework

Theorem

Let G be a torsion free group and M ⊆ L(G ) be a G-invariant vN
subalgebra. Denote by E : L(G ) ↠ M the conditional expectation.
Assume that ∀g ∈ G \ {e}, ∃ subgroup Hg ≤ G s.t.

1 g ∈ Hg ,

2 E (ug ) ∈ L(Hg ),

3 ∃s ∈ G s.t. sḢg s
−1 is free from Ḣg , i.e.

⟨sḢg s
−1, Ḣg ⟩ = sHg s

−1 ∗ Hg , where Ḣg = Hg \ {e}.
4 ∀t1, t2 ∈ Hg , if t1 ̸= g , e and t2 ̸= e, then t1st2s

−1 ̸∈ ∪t∈HgHgsts−1 .

Then E (ug ) ∈ C · ug for all g ∈ G, and hence M = L(H) for some normal
subgroup H ≤ G.

If Hg := ∪i≥1C (g i ), then only need to check (3).
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Recent Progress

1. Chifan-Das-Sun partially generalized our main theorem. Their proof
relies on a different approach.

2. How to characterize groups with ISR property?

The guess is that G has ISR property if G has trivial amenable radical, i.e.
G contains no ̸= {e} amenable normal subgroups.

Question

Are there any infinite amenable groups which satisfy ISR property?
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3. About 10 days ago, a preprint appeared on arXiv (ID: 2309.10494).
Denote by Rad(G ) the amenable radical of G .

Theorem (Amrutam-Hartman-Oppelmayer, ’23)

Let G be any countable discrete group. Then L(Rad(G )) is the maximal
amenable G-invariant von Neumann subalgebra in L(G ).

This implies that for a group G with Rad(G ) = {e}, if M is
G -invariant, then M is a subfactor.

At the group level, their proof boils down to a dynamical proof of the
fact that Rad(G ) is the unique maximal amenable normal subgroup
of G .

The above theorem can be generalized to the setting P ⋊ G for any
trace preserving action G ↷ (P, τ) on an amenable tracial vN alg
(P, τ) showing that P ⋊ Rad(G ) is the maximal amenable G -inv. vN.
subalg. in P ⋊ G .
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Proposition

Let G be any countable discrete group. Then Rad(G ) is the maximal
amenable normal subgroup.

Proof.

Let G ↷ X be the action on its Furstenberg boundary X = ∂FG . Now,
assume that Rad(G ) ⊆ H ◁ G and H is amenable.

First, since H is amenable, then ProbH(X ) ̸= ∅. Fix any µ ∈ ProbH(X ).
Since H is normal, we deduce G acts on ProbH(X ) naturally.

Since X is a boundary, we get that {δx : x ∈ X} ⊆ Gµ
w∗ ⊆ ProbH(X ) for

any µ ∈ Prob(X ). Therefore, we deduce that {δx : x ∈ X} ⊆ ProbH(X ).

Hence, H ⊆ Ker(G ↷ X ) = Rad(G ), where the last equality is a theorem
of Furman.
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Theorem (J., 2023)

Let G = Z2 ⋊ SL(2,Z). Then

{P : P ⊆ L(G ) is G-invariant}
= {L(H) : H ◁ G} ∪ {An : n ≥ 1},

where An ⊆ L(nZ2) is the von Neumann subalgebra defined by

An = {x ∈ L(nZ2) : τ(xug ) = τ(xug−1), ∀ g ∈ nZ2}.

Sketch of the proof.

Let P be a G -invariant vN subalg in L(G ).
Step 1: by Chifan-Das-Sun’s thm, we may assume that P is amenable.
Step 2: by Amrutam-Hartman-Oppelmayer’s thm, P ⊆ L(Z2 ⋊ Z/2Z).
Step 3: notice that P ∩ L(Z2) = L(nZ2) or An, then split the proof.
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Thank you for your attention!
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