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What is complexity?

In general

Complexity is the quality or state of being complex. For example, if a
math paper only involves simple calculus and linear algebra, we can
say that the complexity of this paper is low(low complexity ̸= not
good!). If it involves ”fancy” tools, we say it is more complex.

In computer science

Complexity theory is a central topic in theoretical computer science. It
helps determine the difficulty of a problem, often measured by how
much time and space (memory) it takes to solve a particular problem.
For example, some problems can be solved in polynomial amounts of
time and others take exponential amounts of time, with respect to the
input size.
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In quantum information theory

Quantum complexity is a fundamental concept in quantum
information and quantum computation theory. It is a generalization of
classical computational complexity and characterizes the inherent
difficulty of various quantum information tasks.
Quantum information specialists primarily focus on the quantum
circuit complexity, which emphasizes on the number of elementary
gates required to simulate a complex unitary transformation.

Our work: mathematical framework of quantum complexity

Quantum complexity is much more difficult to quantify and
measure –estimates instead.
Previous work mainly focus on the quantum circuit complexity –
propose a different measure that works for general quantum
channels.

Moreover, we build some connections to some existing complexity
measures.
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Resource-dependence of complexity

Different available resources produce different complexity.

Bread cooking: resource = flour or wheat

low complexity

high complexity
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Preliminaries

Mathematical model of resources
Let H be a Hilbert space and let B(H) be the bounded operators on
H. Suppose N ⊂ B(H) is a finite von Neumann algebra.

(Definition 1)N is weakly closed *-algebra containing identity.
(Definition 2, also known as double commutant theorem)N is a
subalgebra closed under involution and its closure equal to its
double commutant.
(Definition 3)N is a C∗-algebra that has a predual.
Finite means N is the direct integral of finite factors (implying the
von Neumann algebra has a faithful normal tracial state).

A resource set S is any subset of N .



Motivation Basic properties of resource-dependent complexity Comparison to other complexity measures Estimates for different models

Typical example of N ⊂ B(H)

N = L∞(X , µ), with predual as integrable functions.
N = (B(H), tr), with predual as trace class operators. In
quantum information science, we mainly deal with the case when
dimension of H is finite.
N∗ ∼= L1(N ).

General framework can cover both classical setting(commutative) and
quantum setting(non-commutative).
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Mathematical model of quantum channels

A quantum channel Φ is a normal, trace-preserving, completely
positive map:

Φ : N∗ → N∗,

The dual map Φ∗ : N → N defined via tr(Φ∗(ρ)x) = tr(ρΦ(x)) for any
ρ ∈ L1(N ), x ∈ N , is a normal unital completely positive map.
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Definition of resource-dependent complexity

Axiom
The ingredients are a given resource set S ⊂ N and quantum
channels.
Mathematically, our goal is to find an appropriate complexity function
C defined on quantum channels

C : CP(N ) → R≥0,

where CP(N ) is the set of all the quantum channels on N , such that
it satisfies some of the following axioms:
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Axioms
1 C(Φ) = 0 if and only if Φ = id .
2 (subadditivity under concatenation) C(ΦΨ) ≤ C(Φ) + C(Ψ).
3 (Convexity ) For any probability distribution {pi}i∈I and any

channels {Φi}i∈I , we have

C(
∑
i∈I

piΦi) ≤
∑
i∈I

piC(Φi). (1)

4 (Tensor additivity ) For finitely many channels {Φi}1≤i≤m, we have

C(
m⊗

i=1

Φi) =
m∑

i=1

C(Φi). (2)

(Only subadditive holds in fact.)
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Definition of resource-dependent complexity

The induced Lipschitz (semi-)norm is defined by

|||f |||S := sup
s∈S

∥[s, f ]∥∞, f ∈ N . (3)

For a quantum channel Φ : N∗ → N∗, the complexity is defined as

CS(Φ) := ∥Φ∗ − id : (N , ||| · |||S) → B(H)∥. (4)

The complexity measure can be infinity, but if ΦS′ = id , it will be
finite.
||| · |||S is only a seminorm, but via standard quotient procedure,
one can make it a form on the ”mean” 0 space
A ∼= {f ∈ N : ES′(f ) = 0}. Here we assume S′ is a von
Neumann algebra which is the case in most settings.
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Basic properties of resource-dependent
complexity

For technical simplicity, we will assume the commutant S′ is a von
Neumann algebra and ES′ is a conditional expectation, and we
denote ES′ as Efix since the resource set is fixed.

1 CS(Φ) = 0 if and only if Φ = id .
2 CS(ΦΨ) ≤ CS(Φ) + CS(Ψ) for any quantum channels Φ,Ψ.
3 For any probability tribution {pi}i∈I and any channels {Φi}i∈I , we

have
CS(

∑
i∈I

piΦi) ≤
∑
i∈I

piCS(Φi). (5)

4 CS(Φ) ≤ CS(Efix)∥Φ∗ − id : N → N∥.
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Basic properties of resource-dependent
complexity

Complete version

The complete(correlation-assisted) complexity of a quantum channel
Φ is defined by

Ccb
S (Φ) := sup

n≥1
∥idn ⊗ (Φ∗ − id) : (Mn(A), ||| · |||nS) → Mn(B(H))∥. (6)

Standard argument shows that complete version of complexity is
additive.
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Return time trick
Denote Nfix = S′ and suppose Efix is the tracial conditional
expectation onto Nfix .
For any quantum channel Φ with Φ∗Efix = Efix , we can define the
mixing time of Φ as follows: for ε > 0,

tmix(ε,Φ) := inf{n ≥ 1 : ∥Φn∗−Efix : N → N∥ = ∥Φn−Efix : L1(N ) → L1(N )∥ ≤ ε}.
(7)

For ε > 0, the return time is given by

tret(ε,Φ) := inf{n ≥ 1 : (1 − ε)Efix ≤cp Φn∗ ≤cp (1 + ε)Efix}. (8)

Note that similar definition for complete version is immediate.

Theorem: return time trick
For any channel Φ with Φ∗Efix = Efix , we assume that for some ε > 0,
the (complete) mixing time is finite. Then we have

(1 − ε)C(cb)
S (Efix) ≤ t (cb)

mix (ε,Φ)C(cb)
S (Φ) ≤ t (cb)

ret (ε,Φ)C(cb)
S (Φ). (9)
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Perturbation argument

Perturbation argument helps us compare the complexity of different
channels.
Suppose Φ1,Φ2 are two quantum channels such that

EfixΦi = Efix . (10)

Then we have

CS(Φ2) ≤ CS(Φ1) + ∥Φ1 − Φ2∥⋄CS(Efix). (11)

The same argument holds for correlation assisted complexity Ccb
S .
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Comparison to minimal length of quantum circuits

For quantum circuits, a natural definition of complexity is defined by
the length. Suppose a gate set S ⊆ U(d) is given.

Definition
For any U ∈ U(d), the exact complexity(or length) of U is defined by

lS(U) := inf{l ≥ 1 : U = V1 · · ·Vl , Vi ∈ S}. (12)

Given any δ > 0, the approximate δ-complexity is defined by

lS,δ(U) := inf{l ≥ 1 : ∥U − V1 · · ·Vl∥∞ ≤ δ, Vi ∈ S}. (13)

Theorem

Suppose Φ = U · U† is a unitary channel. Then the
resource-dependent complexity CS(Φ) of Φ is upper bounded by
lS(U).
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Comparison to Nielsen’s geometric complexity

Lie group theory: basics

Suppose G is a locally compact Lie group, with Haar measure µ. For
any unitary representation of G on a Hilbert space K:

π : G → U(K),

define the induced representation of the Lie algebra g

dπ : g → u(K),

which is connected by the exponential map: exp(dπ(X )) = π(exp(X )),
X ∈ g, exp(X ) ∈ G.
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Lie theory: continue

Let H ⊆ g be a subspace of the Lie-algebra and X1, · · · ,Xm be a
linearly independent set such that span{X1, · · · ,Xm} = H. We
consider {X1, · · · ,Xm} as the infinitesimal resource to construct the
target unitary. For any element h ∈ H, define the induced norm of h
by

∥h∥H =
∑

j

|αj |2, h =
∑

j

αjXj . (14)

Then the corresponding Carnot-Caratheodory distance is given by

dH(g,h) := inf{
∫ 1

0
∥Xγ(t)∥Hdt : γ′(t) = Xγ(t)γ(t),Xγ(t) ∈ H}, (15)

where γ(t) ranges over all the piecewise smooth curve such that
γ(0) = g, γ(1) = h, g,h ∈ G. γ′(t) = Xγ(t)γ(t),Xγ(t) ∈ H should be
understood as the admissible directions of the curve are restricted
within H.
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Recovery of Geometric complexity

Suppose G = SU(2n) and H is taken to be the full Lie algebra su(2n).
The orthonormal set is given by

{σ, pσ′ : σ ∈ Σ, σ′ ∈ Σ′}, (16)

where p > 0 is a weight constant, Σ is the set of Pauli operators with
weight less than or equal to 2, Σ′ is the set of Pauli operators with
weight greater than 2. For any U ∈ SU(2n), the geometric complexity
is defined to be dH(g, I), which recovers the definition proposed by
Nielsen and his collaborators.

Theorem
For any g ∈ G, we have

CH,π(Adπ(g)) ≤ dH(g, I). (17)
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Comparison to Wasserstein complexity of order 1

For n-qudit system Hn := C⊗n
d ,:

OT
n is denoted as the traceless Hermitian operators on Hn.

On is denoted as the set of self-adjoint operators on Hn.
For any X ∈ OT

n ,

∥X∥W1 :=
1
2
min

{ n∑
i=1

∥X (i)∥1 : X (i) ∈ OT
n , tri(X

(i)) = 0,X =
n∑

i=1

X (i)}.
(18)

For any quantum channel Φ : B(Hn) → B(Hn), the Wasserstein
complexity CW1(Φ) is defined by

CW1(Φ) := sup
ρ∈D(Hn)

∥ρ− Φ(ρ)∥W1 = ∥id − Φ : B(Hn)∗ → (OT
n , ∥ · ∥W1)∥,

(19)
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Theorem
If S is given by Pauli gate, CW1 is equivalent to CS.
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Linear growth conjecture of complexity

Brown-Susskind conjecture: a generic random quantum circuit keeps
growing linearly with time before exponential time.
We can show that given any random quantum circuit produced by the
resource set, the resourse-dependent complexity grows linearly with
time before return time.
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Hamiltonian simulation
The starting point is a Hamiltonian given by

H =
L∑

j=1

hjHj

where Hj are some ‘more elementary’ components such that
∥H∥∞ ≤ 1 and hj are some positive weights. Denote

λ :=
L∑

j=1

hj . (20)

In this setting, we consider

S = {Hj |1 ≤ j ≤ L} (21)

as a set of resources. The goal is to approximate the unitary
U(t) = exp(itH) using a product of Uj(τ) = exp

(
iτHj

)
,1 ≤ j ≤ L up to

some desired precision.
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Bound on the cost of quantum computation

The number of elementary gates Uj(τ) = exp
(
iτHj

)
used is called the

cost of this quantum computation.
Qdrift protocol: Suppose N ≥ 1 is a fixed large integer and denote
τ = tλ

N . Assume j1, j2, · · · , jN are i.i.d. random variables distributed as

P(j1 = j) =
hj∑L
l=1 hl

,1 ≤ j ≤ L. (22)

Then the random unitary of length N defined by

Vj1,··· ,jN =
N∏

k=1

exp
(
iτHjk

)
(23)

is a candidate to approximate U(t) up to precision ε.
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In fact, The mean of Vj1,··· ,jN is given as follows:

EVj1,··· ,jNρV ∗
j1,··· ,jN = ΦN

τ (ρ),

where for any τ > 0, Φτ is defined by

Φτ (ρ) :=
L∑

j=1

pj exp
(
iτHj

)
ρ exp

(
−iτHj

)
, (24)

where pj :=
hj
λ =

hj∑L
j=1 hj

.

It is shown in (Campbell 2019) that an upper bound of the gate count
N is given by O(λ2t2/ε).

Theorem
CS(AdU(t)) ∼ t for small t and it provides a lower bound on the cost of
computation.
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Summary

Our flexible notion for quantum channels falls into the axiomatic
regime from Wasserstein complexity.
By choosing the resource set suitably, we can show upper and
lower bounds for the complexity of random circuits and
continuous time evolution.
The linear aspect of the Brown-Süsskind conjecture is confirmed
in our context. The new Brown-Süsskind threshold is determined
by the geometric properties of the resource set.
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Thank you!
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