Learning low-degree functions on the discrete hypercube

Alexandros Eskenazis

Functional Analysis Seminar Harbin Institute of Technology

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

Every function $f: \{-1,1\}^n \to \mathbb{R}$ admits a unique expansion

$$
\forall x \in \{-1,1\}^n, \qquad f(x) = \sum_{S \subseteq \{1,\ldots,n\}} \hat{f}(S) w_S(x)
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

where the Walsh functions are given by $w_{\mathcal{S}}(x) = \prod_{i \in \mathcal{S}} x_i$.

Every function $f: \{-1,1\}^n \to \mathbb{R}$ admits a unique expansion

$$
\forall x \in \{-1,1\}^n, \qquad f(x) = \sum_{S \subseteq \{1,\ldots,n\}} \hat{f}(S) w_S(x)
$$

where the Walsh functions are given by $w_{\mathcal{S}}(x) = \prod_{i \in \mathcal{S}} x_i$. The corresponding Fourier coefficients are then given by

$$
\forall S \subseteq \{1,\ldots,n\}, \qquad \hat{f}(S) = \mathbb{E}[f(x)w_S(x)],
$$

where x is uniformly distributed on $\{-1,1\}^n$.

Every function $f: \{-1,1\}^n \to \mathbb{R}$ admits a unique expansion

$$
\forall x \in \{-1,1\}^n, \qquad f(x) = \sum_{S \subseteq \{1,\ldots,n\}} \hat{f}(S) w_S(x)
$$

where the Walsh functions are given by $w_{\mathcal{S}}(x) = \prod_{i \in \mathcal{S}} x_i$. The corresponding Fourier coefficients are then given by

$$
\forall S \subseteq \{1,\ldots,n\}, \qquad \hat{f}(S) = \mathbb{E}[f(x)w_S(x)],
$$

where x is uniformly distributed on $\{-1,1\}^n$. We say that f has degree at most d if $\hat{f}(S) = 0$ when $|S| > d$.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

 $A \sqsubseteq A \rightarrow A \sqsubseteq A \rightarrow A \sqsubseteq A \sqsubseteq A \sqsubseteq A \sqsubseteq A \sqsubseteq A$

Let ${\mathscr F}$ be a class of functions on $\{-1,1\}^n$ and fix an unknown function $f \in \mathscr{F}$. Given access to data of the form

$$
(X_1, f(X_1)), \ldots, (X_Q, f(X_Q))
$$

where $X_1,\ldots,X_Q\in\{-1,1\}^n$, we want to algorithmically construct a hypothesis function $h: \{-1,1\}^n \to \mathbb{R}$ which well-approximates f.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

Let ${\mathscr F}$ be a class of functions on $\{-1,1\}^n$ and fix an unknown function $f \in \mathscr{F}$. Given access to data of the form

$$
(X_1,f(X_1)),\ldots,(X_Q,f(X_Q))
$$

where $X_1,\ldots,X_Q\in\{-1,1\}^n$, we want to algorithmically construct a hypothesis function $h: \{-1,1\}^n \to \mathbb{R}$ which well-approximates f.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

Query model. The algorithm can sequentially request any selection of samples X_1, X_2, \ldots

Let ${\mathscr F}$ be a class of functions on $\{-1,1\}^n$ and fix an unknown function $f \in \mathscr{F}$. Given access to data of the form

$$
(X_1,f(X_1)),\ldots,(X_Q,f(X_Q))
$$

where $X_1,\ldots,X_Q\in\{-1,1\}^n$, we want to algorithmically construct a hypothesis function $h: \{-1,1\}^n \to \mathbb{R}$ which well-approximates f.

Query model. The algorithm can sequentially request any selection of samples X_1, X_2, \ldots

Random example model. The samples X_1, X_2, \ldots are i.i.d. random variables, uniformly distributed on the hypercube. In this model, the output function h is random and we want it to be a good approximation of f with high probability.

Question. How many samples do we need?

Question. How many samples do we need?

Query model. Denote by $Q(\mathscr{F}, \varepsilon)$ the least number of queries such that we can always output a function h with $\|h-f\|_2^2 \leq \varepsilon$.

KELK@ K EXKEX E 1090

Question. How many samples do we need?

Query model. Denote by $Q(\mathscr{F}, \varepsilon)$ the least number of queries such that we can always output a function h with $\|h-f\|_2^2 \leq \varepsilon$. **Random example model.** Denote by $Q_r(\mathscr{F}, \varepsilon, \delta)$ the least number of queries such that we can always output a *random* function h satisfying $\|h - f\|_2^2 \leq \varepsilon$ with probability at least $1 - \delta$.

Question. How many samples do we need?

Query model. Denote by $Q(\mathscr{F}, \varepsilon)$ the least number of queries such that we can always output a function h with $\|h-f\|_2^2 \leq \varepsilon$. **Random example model.** Denote by $Q_r(\mathscr{F}, \varepsilon, \delta)$ the least number of queries such that we can always output a *random* function h satisfying $\|h - f\|_2^2 \leq \varepsilon$ with probability at least $1 - \delta$.

Some structure is needed! If $\mathscr{F} = \{f: \{-1,1\}^n \rightarrow \{0,1\}\}$, one needs at least $(1 - \varepsilon)2^n$ values of an unknown $f \in \mathscr{F}$ in order to make an accurate hypothesis for f up to error ε .

Question. How many samples do we need?

Query model. Denote by $Q(\mathscr{F}, \varepsilon)$ the least number of queries such that we can always output a function h with $\|h-f\|_2^2 \leq \varepsilon$. **Random example model.** Denote by $Q_r(\mathscr{F}, \varepsilon, \delta)$ the least number of queries such that we can always output a *random* function h satisfying $\|h - f\|_2^2 \leq \varepsilon$ with probability at least $1 - \delta$.

Some structure is needed! If $\mathscr{F} = \{f: \{-1,1\}^n \rightarrow \{0,1\}\}$, one needs at least $(1 - \varepsilon)2^n$ values of an unknown $f \in \mathscr{F}$ in order to make an accurate hypothesis for f up to error ε .

$Structure = Low Complexity$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

One of the first concept classes $\mathscr F$ that was rigorously studied was

$$
\mathscr{F}_{n,d} = \{f: \{-1,1\}^n \to [-1,1]: \deg(f) \leq d\}.
$$

K ロ ▶ K (日) K (ミ) K (王) X (三) 2 (0) Q (0)

One of the first concept classes $\mathscr F$ that was rigorously studied was

$$
\mathscr{F}_{n,d} = \{f: \{-1,1\}^n \to [-1,1]: \deg(f) \leq d\}.
$$

Why? Polynomials can be characterized by few values.

One of the first concept classes $\mathscr F$ that was rigorously studied was

$$
\mathscr{F}_{n,d} = \{f: \{-1,1\}^n \to [-1,1]: \deg(f) \leq d\}.
$$

KELK@ K EXKEX E 1090

Why? Polynomials can be characterized by few values.

Toy result. $Q(\mathscr{F}_{n,d},0)=\sum_{j=0}^d{n \choose j}$ n)
j)

One of the first concept classes $\mathscr F$ that was rigorously studied was

$$
\mathscr{F}_{n,d} = \{f: \{-1,1\}^n \to [-1,1]: \deg(f) \leq d\}.
$$

Why? Polynomials can be characterized by few values.

Top result.
$$
Q(\mathscr{F}_{n,d},0)=\sum_{j=0}^d {n \choose j}
$$

Proof. It suffices to check that any degree-d polynomial is fully characterized by its values on a Hamming ball of radius d , e.g.

$$
B_d(1) = \{x \text{ with at most } d \text{ coordinates equal to } -1\}.
$$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

One of the first concept classes $\mathscr F$ that was rigorously studied was

$$
\mathscr{F}_{n,d} = \{f: \{-1,1\}^n \to [-1,1]: \deg(f) \leq d\}.
$$

Why? Polynomials can be characterized by few values.

Top result.
$$
Q(\mathscr{F}_{n,d},0)=\sum_{j=0}^d {n \choose j}
$$

Proof. It suffices to check that any degree-d polynomial is fully characterized by its values on a Hamming ball of radius d , e.g.

$$
B_d(1) = \{x \text{ with at most } d \text{ coordinates equal to } -1\}.
$$

To see that this many samples are also needed, observe that with fewer data points, the system would be undertermined. \Box

Question. What about the random case?

Question. What about the random case?

This question was first addressed in a fundamental result: Low-Degree Algorithm (Linial, Mansour, Nisan, 1989) We have

$$
Q_r(\mathscr{F}_{n,d},\varepsilon,\delta) \leq \frac{2n^d}{\varepsilon} \log \left(\frac{2n^d}{\delta}\right).
$$

KELK@ K EXKEX E 1090

Question. What about the random case?

This question was first addressed in a fundamental result: Low-Degree Algorithm (Linial, Mansour, Nisan, 1989) We have

$$
Q_r(\mathscr{F}_{n,d},\varepsilon,\delta) \leq \frac{2n^d}{\varepsilon} \log \left(\frac{2n^d}{\delta}\right).
$$

Proof. Let X_1, \ldots, X_Q i.i.d. random samples. For a subset S, let

$$
\alpha_S = \frac{1}{Q} \sum_{j=1}^Q f(X_j) w_S(X_j),
$$

which is a sum of bounded indep. variables with $\mathbb{E}[\alpha_S] = \hat{f}(S)$.

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

Therefore, by the Chernoff bound, for $b > 0$ we have

$$
\mathbb{P}\big\{|\alpha_{\mathcal{S}}-\hat{f}(\mathcal{S})|\geq b\big\}\leq 2\exp(-Qb^2/2).
$$

K ロ ▶ K (日) K (ミ) K (王) X (三) 2 (0) Q (0)

Therefore, by the Chernoff bound, for $b > 0$ we have

$$
\mathbb{P}\big\{|\alpha_{\mathcal{S}}-\hat{f}(\mathcal{S})|\geq b\big\}\leq 2\exp(-Qb^2/2).
$$

By the union bound,

$$
\mathbb{P}\big\{|\alpha_{\mathcal{S}}-\hat{f}(\mathcal{S})| \leq b, \ \forall \ \mathcal{S}\big\} \geq 1-2\sum_{j=0}^d \binom{n}{j} \exp(-Qb^2/2) \geq 1-\delta
$$

for

$$
Q = \left\lceil \frac{2}{b^2} \log \left(\frac{2}{\delta} \sum_{j=0}^d \binom{n}{j} \right) \right\rceil.
$$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

Therefore, by the Chernoff bound, for $b > 0$ we have

$$
\mathbb{P}\big\{|\alpha_{\mathcal{S}}-\hat{f}(\mathcal{S})|\geq b\big\}\leq 2\exp(-Qb^2/2).
$$

By the union bound,

$$
\mathbb{P}\big\{|\alpha_{\mathcal{S}}-\hat{f}(\mathcal{S})| \leq b, \ \forall \ \mathcal{S}\big\} \geq 1-2\sum_{j=0}^d \binom{n}{j} \exp(-Qb^2/2) \geq 1-\delta
$$

for

$$
Q = \left\lceil \frac{2}{b^2} \log \left(\frac{2}{\delta} \sum_{j=0}^d \binom{n}{j} \right) \right\rceil.
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

How large can we take b?

Consider the function

$$
\forall x \in \{-1,1\}^{\mathbf{\cdot}} \qquad h_b(x) = \sum_{|S| \leq d} \alpha_S w_S(x).
$$

K ロ ▶ K (日) K (ミ) K (王) X (三) 2 (0) Q (0)

Consider the function

$$
\forall x \in \{-1,1\}^{\mathbf{\cdot}} \qquad h_b(x) = \sum_{|S| \leq d} \alpha_S w_S(x).
$$

Then, if the high probability event holds

$$
||f - h_b||_2^2 = \sum_{|S| \le d} (\alpha_S - \hat{f}(S))^2 \le \sum_{j=0}^d \binom{n}{j} b^2 \le \varepsilon
$$

KELK@ K EXKEX E 1090

for $b^2 \leq \varepsilon/\sum_{j=0}^d \binom{n}{j}$ $\binom{n}{j}$ which completes the proof. $\qquad \Box$

Question. Are $O(n^d \log n)$ samples too many?

Question. Are $O(n^d \log n)$ samples too many?

E.–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{n,d},0,\delta) \leq 2^{O(d)}n^d \log\left(\frac{n}{\delta}\right)$ $\frac{n}{\delta}$).

Question. Are $O(n^d \log n)$ samples too many?

E.–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{n,d},0,\delta) \leq 2^{O(d)}n^d \log\left(\frac{n}{\delta}\right)$ $\frac{n}{\delta}$). The first advance for $\varepsilon > 0$ was a result of: Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

$$
Q_r(\mathscr{F}_{n,d},\varepsilon,\delta)=O_{d,\varepsilon,\delta}(n^{d-1}\log n).
$$

KELK@ K EXKEX E 1090

Question. Are $O(n^d \log n)$ samples too many?

E.–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{n,d},0,\delta) \leq 2^{O(d)}n^d \log\left(\frac{n}{\delta}\right)$ $\frac{n}{\delta}$). The first advance for $\varepsilon > 0$ was a result of: Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

$$
Q_r(\mathscr{F}_{n,d},\varepsilon,\delta)=O_{d,\varepsilon,\delta}(n^{d-1}\log n).
$$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

The correct answer turns out to be much better. **E.**–Ivanisvili (2021). $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = O_{d,\varepsilon,\delta}(\log n)$.

Question. Are $O(n^d \log n)$ samples too many?

E.–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{n,d},0,\delta) \leq 2^{O(d)}n^d \log\left(\frac{n}{\delta}\right)$ $\frac{n}{\delta}$). The first advance for $\varepsilon > 0$ was a result of: Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

$$
Q_r(\mathscr{F}_{n,d},\varepsilon,\delta)=O_{d,\varepsilon,\delta}(n^{d-1}\log n).
$$

The correct answer turns out to be much better.

E.–Ivanisvili (2021). $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = O_{d,\varepsilon,\delta}(\log n)$.

E.–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = \Omega_{d,\varepsilon,\delta}(\log n)$.

Question. Are $O(n^d \log n)$ samples too many?

E.–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{n,d},0,\delta) \leq 2^{O(d)}n^d \log\left(\frac{n}{\delta}\right)$ $\frac{n}{\delta}$).

The first advance for $\varepsilon > 0$ was a result of: Iyer–Rao–Reis–Rothvoss–Yehudayoff (2021).

$$
Q_r(\mathscr{F}_{n,d},\varepsilon,\delta)=O_{d,\varepsilon,\delta}(n^{d-1}\log n).
$$

The correct answer turns out to be much better.

E.–**Ivanisvili (2021).** $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = O_{d,\varepsilon,\delta}(\log n)$. **E.**–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{nd}, \varepsilon, \delta) = \Omega_{d,\varepsilon,\delta}(\log n)$.

Tweaking the Low-Degree Algorithm

Where did we lose in the proof?

Tweaking the Low-Degree Algorithm

Where did we lose in the proof? Since $||f||_2 < 1$, we have

$$
\sum_{|S|\leq d}\hat{f}(S)^2\leq 1
$$

so unless $b^2 \lesssim n^{-d}$ there is not much to gain by incorporating *all* the empirical coefficients α s in the hypothesis function h_b . We should just make sure to include the few influential ones, say those larger than a. By Markov's inequality there are

$$
\#\{S:\ |\hat{f}(S)|>a\}\leq \frac{1}{a^2}\sum_{S:\ |\hat{f}(S)|>a}\hat{f}(S)^2\leq \frac{1}{a^2}.
$$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$
Tweaking the Low-Degree Algorithm

Where did we lose in the proof? Since $||f||_2 < 1$, we have

$$
\sum_{|S|\leq d}\hat{f}(S)^2\leq 1
$$

so unless $b^2 \lesssim n^{-d}$ there is not much to gain by incorporating *all* the empirical coefficients α_S in the hypothesis function h_b . We should just make sure to include the few influential ones, say those larger than a. By Markov's inequality there are

$$
\#\{S:\ |\hat{f}(S)| > a\} \leq \frac{1}{a^2} \sum_{S:\ |\hat{f}(S)| > a} \hat{f}(S)^2 \leq \frac{1}{a^2}.
$$

Then, we are left to estimate a term of the form

$$
\sum_{S: \ |\hat{f}(S)| \leq a} \hat{f}(S)^2 \stackrel{??}{\ll} \varepsilon(a).
$$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

Digression: Littlewood, BH,...

K ロ ▶ K (日) K (ミ) K (王) X (三) 2 (0) Q (0)

Digression: Littlewood, BH,...

Trivially, for $a_1, a_2, \ldots \in \mathbb{R}$,

$$
\sum_{i\geq 1} |a_i| = \sup \Big\{ \Big| \sum_{i\geq 1} a_i x_i \Big| : ||x||_{\infty} \leq 1 \Big\}.
$$

K ロ ▶ K (日) K (ミ) K (王) X (三) 2 (0) Q (0)

Digression: Littlewood, BH,...

Trivially, for $a_1, a_2, \ldots \in \mathbb{R}$,

$$
\sum_{i\geq 1} |a_i| = \sup \left\{ \left| \sum_{i\geq 1} a_i x_i \right| : ||x||_{\infty} \leq 1 \right\}.
$$

Littlewood's $\frac{4}{3}$ -inequality. For $a_{ij} \in \mathbb{R}$, where $i,j \geq 1$

$$
\Big(\sum_{i,j\geq 1}|a_{ij}|^{\frac{4}{3}}\Big)^{\frac{3}{4}}\leq \sqrt{2}\sup\Big\{\Big|\sum_{i,j\geq 1}a_{ij}x_iy_j\Big|:\;\|x\|_{\infty},\|y\|_{\infty}\leq 1\Big\}.
$$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

Digression: Littlewood, BH, ...

Bohnenblust–Hille inequality. For a degree-d polynomial $p(\mathsf{x}) = \sum_{|\alpha| \leq d} \mathsf{c}_{\alpha} \mathsf{x}^{\alpha}$ on infinitely many variables,

$$
\Big(\sum_{|\alpha|\leq d}|c_{\alpha}|^{\frac{2d}{d+1}}\Big)^{\frac{d+1}{2d}}\leq C_d \sup\big\{|p(x)|:\; \|x\|_{\infty}\leq 1\big\}.
$$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

Digression: Littlewood, BH, ...

Bohnenblust–Hille inequality. For a degree-d polynomial $p(\mathsf{x}) = \sum_{|\alpha| \leq d} \mathsf{c}_{\alpha} \mathsf{x}^{\alpha}$ on infinitely many variables,

$$
\Big(\sum_{|\alpha|\leq d}|c_{\alpha}|^{\frac{2d}{d+1}}\Big)^{\frac{d+1}{2d}}\leq C_d \sup\big\{|p(x)|:\; \|x\|_{\infty}\leq 1\big\}.
$$

If p is a multilinear polynomial representing $f: \{-1,1\}^n \to \mathbb{R}$, the maximum on the RHS is attained at a vertex of $\{-1,1\}^n$. Thus, we can get an estimate on the hypercube

$$
\Big(\sum_{|S|\leq d}|\widehat{f}(S)|^{\frac{2d}{d+1}}\Big)^{\frac{d+1}{2d}}\leq B_d\|f\|_{\infty}
$$

for functions of degree at most d.

K ロ ▶ K (日) K (ミ) K (王) X (三) 2 (0) Q (0)

The idea of introducing a cutoff for the spectrum first appeared in an algorithm of Kushilevitz and Mansour (1993). Fix $b > 0$ and set

$$
Q = \left\lceil \frac{2}{b^2} \log \left(\frac{2}{\delta} \sum_{j=0}^d \binom{n}{j} \right) \right\rceil
$$

so that

$$
\mathbb{P}\big\{|\alpha_{\mathcal{S}}-\hat{f}(\mathcal{S})| \leq b, \; \forall \; \mathcal{S}\big\} \geq 1-2\sum_{j=0}^d \binom{n}{j} \exp(-Qb^2/2) \geq 1-\delta.
$$

KELK@ K EXKEX E 1090

The idea of introducing a cutoff for the spectrum first appeared in an algorithm of Kushilevitz and Mansour (1993). Fix $b > 0$ and set

$$
Q = \left\lceil \frac{2}{b^2} \log \left(\frac{2}{\delta} \sum_{j=0}^d \binom{n}{j} \right) \right\rceil
$$

so that

$$
\mathbb{P}\big\{|\alpha_{\mathcal{S}}-\hat{f}(\mathcal{S})|\leq b, \,\, \forall \,\, \mathcal{S}\big\}\geq 1-2\sum_{j=0}^d \binom{n}{j}\exp(-Qb^2/2)\geq 1-\delta.
$$

Consider the random collection of sets

$$
\Sigma_b = \big\{ S : |\alpha_S| > 2b \big\}.
$$

KELK@ K EXKEX E 1090

Then, on the high probability event, we have

 $\forall S \in \Sigma_b, \quad |\hat{f}(S)| > b$

and

$$
\forall S \notin \Sigma_b, \qquad |\hat{f}(S)| \leq 3b.
$$

KID KAR KERKER E 1990

Then, on the high probability event, we have

$$
\forall S \in \Sigma_b, \qquad |\hat{f}(S)| > b
$$

and

$$
\forall S \notin \Sigma_b, \qquad |\hat{f}(S)| \leq 3b.
$$

If we define $h_b = \sum_{\mathcal{S} \in {\mathsf{\Sigma}}_b} \alpha_{\mathcal{S}} w_{\mathcal{S}},$ then

$$
||f - h_b||_2^2 = \sum_{S \in \Sigma_b} (\alpha_S - \hat{f}(S))^2 + \sum_{S \notin \Sigma_b} \hat{f}(S)^2 = (1) + (2).
$$

(ロ) (@) (혼) (혼) (혼) 2000

Then, on the high probability event, we have

$$
\forall S \in \Sigma_b, \qquad |\hat{f}(S)| > b
$$

and

$$
\forall S \notin \Sigma_b, \qquad |\hat{f}(S)| \leq 3b.
$$

If we define $h_b = \sum_{\mathcal{S} \in {\mathsf{\Sigma}}_b} \alpha_{\mathcal{S}} w_{\mathcal{S}},$ then

$$
||f - h_b||_2^2 = \sum_{S \in \Sigma_b} (\alpha_S - \hat{f}(S))^2 + \sum_{S \notin \Sigma_b} \hat{f}(S)^2 = (1) + (2).
$$

To bound (1), observe that

$$
|\Sigma_b|\le b^{-\frac{2d}{d+1}}\sum_{S\in \Sigma_b}\hat{f}(S)^{\frac{2d}{d+1}}\le B_d^{\frac{2d}{d+1}}b^{-\frac{2d}{d+1}}
$$

so that $(1) \leq B_d^{\frac{2d}{d+1}}b^{\frac{2}{d+1}}$.

To bound (2), write

$$
(2)=\sum_{S\notin \Sigma_b}\hat{f}(S)^2\leq (3b)^{\frac{2}{d+1}}\sum_{S\notin \Sigma_b}|\hat{f}(S)|^{\frac{2d}{d+1}}\leq 3B_d^{\frac{2d}{d+1}}b^{\frac{2}{d+1}}.
$$

K ロ ▶ K (日) K (ミ) K (王) X (三) 2 (0) Q (0)

To bound (2), write

$$
(2)=\sum_{S\notin \Sigma_b}\hat{f}(S)^2\leq (3b)^{\frac{2}{d+1}}\sum_{S\notin \Sigma_b}|\hat{f}(S)|^{\frac{2d}{d+1}}\leq 3B_d^{\frac{2d}{d+1}}b^{\frac{2}{d+1}}.
$$

Putting everything together

$$
||f-h_b||_2^2 \leq 4B_d^{\frac{2d}{d+1}}b^{\frac{2}{d+1}} \leq \varepsilon
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

for $b^2 \leq (\varepsilon/4)^{d+1} B_d^{-\frac{2d}{d+1}}$. \Box

Remarks

E.–**Ivanisvili (2021).** $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = O_{d,\varepsilon,\delta}(\log n)$. **E.**–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = \Omega_{d,\varepsilon,\delta}(\log n)$.

イロト イタト イミト イミト ニヨー りんぺ

Remarks

E.–**Ivanisvili (2021).** $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = O_{d,\varepsilon,\delta}(\log n)$. **E.**–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = \Omega_{d,\varepsilon,\delta}(\log n)$.

In fact, for n large enough,

$$
c(1-\sqrt{\varepsilon})2^d\log\left(\frac{n}{\delta}\right)\leq Q_r(\mathscr{F}_{n,d},\varepsilon,\delta)\leq \frac{B_d^{2d}}{\varepsilon^{d+1}}\log\left(\frac{n}{\delta}\right).
$$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

Remarks

E.–**Ivanisvili (2021).** $Q_r(\mathscr{F}_{n,d}, \varepsilon, \delta) = O_{d,\varepsilon,\delta}(\log n)$. **E.**–Ivanisvili–Streck (2022). $Q_r(\mathscr{F}_{nd}, \varepsilon, \delta) = \Omega_{d,\varepsilon,\delta}(\log n)$.

In fact, for n large enough,

$$
c(1-\sqrt{\varepsilon})2^d\log\left(\frac{n}{\delta}\right)\leq Q_r(\mathscr{F}_{n,d},\varepsilon,\delta)\leq \frac{B_d^{2d}}{\varepsilon^{d+1}}\log\left(\frac{n}{\delta}\right).
$$

 \bullet The best known bound for B_d is $B_d\leq \exp(C_d)$ √ d log d). A (conjectured) polynomial bound on B_d would give almost optimal dependence on d also.

 \bullet The dependence on ε can be improved to ε^{-1} if the unknown function is a priori known to be Boolean.

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

Pro. Correct query complexity of polynomials.

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which BH-type arguments would be applicable.

イロト イタト イミト イミト ニヨー りんぺ

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which BH-type arguments would be applicable.

What about the class of bounded *approximate* polynomials,

$$
\mathscr{F}_{n,d}(t) = \left\{ f : \{-1,1\}^n \to [-1,1] : \sum_{|S| > d} \hat{f}(S)^2 \le t \right\} \,?
$$

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which BH-type arguments would be applicable.

What about the class of bounded *approximate* polynomials,

$$
\mathscr{F}_{n,d}(t)=\left\{f:\{-1,1\}^n\to[-1,1]:\sum_{|S|>d}\hat{f}(S)^2\leq t\right\}?
$$

E.–Ivanisvili–Streck (2022). There exists $\eta = \eta(t, d) > 0$ s.t.

$$
Q_r(\mathscr{F}_{n,d}(t),\eta+\varepsilon,\delta)\lesssim_{t,d,\varepsilon}\log\left(\frac{n}{\delta}\right).
$$

Pro. Correct query complexity of polynomials.

Con. Too rigid: hard to imagine other concept classes for which BH-type arguments would be applicable.

What about the class of bounded *approximate* polynomials,

$$
\mathscr{F}_{n,d}(t)=\left\{f:\{-1,1\}^n\to[-1,1]:\sum_{|S|>d}\hat{f}(S)^2\leq t\right\}?
$$

E.–Ivanisvili–Streck (2022). There exists $\eta = \eta(t, d) > 0$ s.t.

$$
Q_r(\mathscr{F}_{n,d}(t),\eta+\varepsilon,\delta)\lesssim_{t,d,\varepsilon}\log\left(\frac{n}{\delta}\right).
$$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

Warning! This is useful only when $\eta(t, d)$ is small.

More concretely, consider $\mathscr{B}_{n,d}(t)$ the subclass of $\mathscr{F}_{n,d}(t)$ consisting of Boolean functions.

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

More concretely, consider $\mathscr{B}_{n,d}(t)$ the subclass of $\mathscr{F}_{n,d}(t)$ consisting of Boolean functions.

E.–Ivanisvili–Streck (2022). We have

$$
t = o\Big(\frac{1}{\sqrt{d}}\Big) \quad \Longrightarrow \quad Q_r(\mathscr{B}_{n,d}(t),\varepsilon,\delta) \lesssim_{t,d,\varepsilon} \log\Big(\frac{n}{\delta}\Big)
$$

KELK@ K EXKEX E 1090

for $\varepsilon > 0$ arbitrarily small constant.

More concretely, consider $\mathscr{B}_{n,d}(t)$ the subclass of $\mathscr{F}_{n,d}(t)$ consisting of Boolean functions.

E.–Ivanisvili–Streck (2022). We have

$$
t = o\Big(\frac{1}{\sqrt{d}}\Big) \quad \Longrightarrow \quad Q_r(\mathscr{B}_{n,d}(t),\varepsilon,\delta) \lesssim_{t,d,\varepsilon} \log\Big(\frac{n}{\delta}\Big)
$$

for $\varepsilon > 0$ arbitrarily small constant.

Conversely, we can also prove that

$$
t = \Omega\Big(\frac{1}{\sqrt{d}}\Big) \quad \Longrightarrow \quad Q_r\big(\mathscr{B}_{n,d}(t),\tfrac{1}{3},\tfrac{1}{3}\big) \gtrsim_{t,d} n.
$$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

A Boolean function of the form $f(x) = sign(\langle x, \theta \rangle)$ for a fixed vector $\theta \in \mathbb{R}^n$ is called a linear threshold function.

A Boolean function of the form $f(x) = sign(\langle x, \theta \rangle)$ for a fixed vector $\theta \in \mathbb{R}^n$ is called a linear threshold function. Peres' noise sensitivity theorem (2004) asserts that any LTF satisfies

$$
\forall t > 0, \qquad \sum_{|S| > \Omega(1/t^2)} \hat{f}(S)^2 \leq t.
$$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi$

A Boolean function of the form $f(x) = sign(\langle x, \theta \rangle)$ for a fixed vector $\theta \in \mathbb{R}^n$ is called a linear threshold function. Peres' noise sensitivity theorem (2004) asserts that any LTF satisfies

$$
\forall t > 0, \qquad \sum_{|S| > \Omega(1/t^2)} \hat{f}(S)^2 \leq t.
$$

As this estimate is in general optimal, the existing algorithm does not allow us to efficiently learn LTFs.

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

A disjunctive normal form (DNF) is a logical \vee of terms, each of which is a logical \wedge of Boolean variables x_i or their negations $\neg x_i,$

$$
(x_1 \wedge x_2) \vee (\neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge x_3).
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q (*

A disjunctive normal form (DNF) is a logical \vee of terms, each of which is a logical \wedge of Boolean variables x_i or their negations $\neg x_i,$

$$
(x_1 \wedge x_2) \vee (\neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge x_3).
$$

The number of terms is the size of the DNF $(=3$ in the example).

KELK@ K EXKEX E 1090

A disjunctive normal form (DNF) is a logical \vee of terms, each of which is a logical \wedge of Boolean variables x_i or their negations $\neg x_i,$

$$
(x_1 \wedge x_2) \vee (\neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge x_3).
$$

The number of terms is the size of the DNF $(=3$ in the example). It is known that any DNF form of size s satisfies

$$
\forall t > 0, \qquad \sum_{|S| > \Omega(\log(s/t)^2)} \hat{f}(S)^2 \leq t
$$

 $4 \Box + 4 \Box + 4 \Xi + 4 \Xi + 4 \Xi + 4 \Box$

A disjunctive normal form (DNF) is a logical \vee of terms, each of which is a logical \wedge of Boolean variables x_i or their negations $\neg x_i,$

$$
(x_1 \wedge x_2) \vee (\neg x_2 \wedge \neg x_3) \vee (\neg x_1 \wedge x_3).
$$

The number of terms is the size of the DNF $(=3$ in the example). It is known that any DNF form of size s satisfies

$$
\forall t > 0, \qquad \sum_{|S| > \Omega(\log(s/t)^2)} \hat{f}(S)^2 \leq t
$$

and plugging this choice of d, one obtains new learning results for the class of DNF formulas.

Thank you!

Kロト K部ト K目ト K目ト 「目」 のQ (V)