The Toms–Winter regularity conjecture

Harbin Functional Analysis Seminar

Jorge Castillejos (UCIM-UNAM)

A glimpse into classification

Problem: Given two C^* -algebras A and B, how can we decide if A is isomorphic (or not) to B?

This is a very difficult question!

In order to simplify this problem one must restrict to simple separable unital and nuclear C*-algebras.

A is nuclear if there is a net of finite rank completely positive approximations, i.e.

- F_i is finite dimensional
- $-\psi_i$ and φ_i are cp
- $-\lim_{i} \|a \varphi_{i} \circ \psi_{i}(a)\| = 0$

Examples.

- Commutative C*-algebras - $C^*(G)$ if G is amenable

Inductive limits

Given an increasing sequence of C^* -algebras

$$A_1 \hookrightarrow A_2 \hookrightarrow A_3 \hookrightarrow \ldots \hookrightarrow A_n \hookrightarrow \ldots$$

we can construct a new C^* -algebra

$$A = \varinjlim A_n = \bigcup_{n=1}^{\infty} A_n$$

<u>Definition</u>. (Non commutative Cantor sets)

A C^* -algebra is $\overline{\mathsf{AF}}$ it is an inductive limit of finite dimensional C^* -algebras.

 $\mathsf{Fact} \colon C(X) \mathsf{ is AF } \quad \Longleftrightarrow \quad X \mathsf{ is totally disconnected}$

 $M_{2^{\infty}}$

Formally M_{2^∞} is the inductive limit of the sequence

$$M_2(\mathbb{C}) \to M_4(\mathbb{C}) \to M_8(\mathbb{C}) \to \dots$$

In general, given $r \in \mathbb{N}$ we can construct M_{r^∞} by considering the sequence

$$M_r(\mathbb{C}) \to M_{r^2}(\mathbb{C}) \to M_{r^3}(\mathbb{C}) \to \dots$$

Question: $M_{2^{\infty}} \cong M_{3^{\infty}}$?

To answer this question, we can use some covariant functors

$$\{\mathrm{C}^*\text{-algebras}\} \ o \ \{ ext{abelian groups}\} \ A \mapsto K_*(A)$$

extending the classical functors of topological K-theory

$$K_0(M_{2^\infty})=\mathbb{Z}[1/2]$$
 and $K_0(M_{3^\infty})=\mathbb{Z}[1/3]$ \Longrightarrow $M_{2^\infty}\ncong M_{3^\infty}$

Elliott conjecture 80's:

Simple separable unital and nuclear C^* -álgebras are classified by an invariant constructed with K-theory and tracial information, i.e.

$$A \cong B \iff \operatorname{Ell}(A) \cong \operatorname{Ell}(B)$$

The conjecture is false!

- Rørdam (Acta Math. '03)
- Toms (Ann. of Math. '08)

These counterexamples are inductive limits using $M_k(C(\prod_{\mathbb{N}} \mathbb{S}^2))$

The covering dimension of a topological space is at most n if any open cover has a finite refinement that can be coloured with n+1 colours in such a way that open sets with the same colour do not intersect each other. The covering dimension is the minimum n.

$$-\dim \mathbb{R}^n = n$$

- $\dim X = 0$ iff X is totally disconnected

-
$$\dim \prod_{\mathbb{N}} \mathbb{S}^2 = \infty$$

Non commutative topological dimension

Definition. (Winter-Zacharias '10) A C*-algebra A has nuclear dimension at most n, $\dim_{\mathrm{nuc}} A \leq n$, if for any finite set $\mathfrak{F} \subset A$ and $\epsilon > 0$ there exist finite dimensional C*-algebras F_1, \ldots, F_{n+1} and cp maps $\psi: A \to \bigoplus_{k=1}^n F_k$, $\phi: \bigoplus_{k=1}^n F_k \to A$ such that

- $||a \phi \circ \psi(a)|| < \epsilon$ for all $a \in \mathfrak{F}$,
- $\phi_k := \phi|_{F_k}$ preserves orthogonality.

Basic facts and examples

- $\dim_{\mathrm{nuc}} C_0(X) = \dim X$ (Winter '03)
- If $\dim_{\mathrm{nuc}} A < \infty$ then A is nuclear.
- Converse is false! $\dim_{\mathrm{nuc}} C([0,1]^{\mathbb{N}}) = \infty$
- $\dim_{\mathrm{nuc}} A = 0 \iff A \text{ es AF (Winter '03)}$
- Γ abelian group $\Longrightarrow \dim_{\mathrm{nuc}} C^*_r(\Gamma) = \dim \widehat{\Gamma}$
- Γ non amenable $\implies \dim_{\mathrm{nuc}} C^*_r(\Gamma) = \infty$
- Γ virtually nilpotent and finitely generated $\implies \dim_{\mathrm{nuc}} C^*_r(\Gamma) < \infty$ (Eckhardt-Gillaspy-McKenney '17)
- $\dim_{\mathrm{nuc}} C_0(X) \rtimes_{\alpha} \mathbb{Z} \le 2(\dim X)^2 + 6\dim X + 4$ (Hirshberg-Wu '17)
- $\dim_{\mathrm{nuc}} A \rtimes_{\alpha} \Gamma < \infty$ with extra hypotheses.

The Classification Theorem (Many hands)

The class of simple separable unital (UCT) C^* -algebras with finite nuclear dimension is classified with the Elliott invariant; i.e.

$$A \cong B \iff \operatorname{Ell}(A) \cong \operatorname{Ell}(B)$$

Technical hurdle: Verifying that a C^* -algebra has finite nuclear dimension can be quite challenging!

The Toms-Winter regularity conjecture predicts that other regularity conditions are equivalent to finite nuclear dimension.

The catch is that these conditions (at priori) are easier to verify!

Dimension drop algebra

$$Z_{p,q} = \{ f : [0,1] \to M_p \otimes M_q \mid f(0) \in M_p \otimes \{1\}, f(1) \in \{1\} \otimes M_q \}$$

The Jiang-Su algebra ${\mathcal Z}$ is constructed as some inductive limit of the form

$$Z_{p_1,q_1} \xrightarrow{\phi_1} Z_{p_2,q_2} \xrightarrow{\phi_2} Z_{p_3,q_3} \xrightarrow{\phi_2} \ldots \to \mathcal{Z}.$$

It is simple, separable, unital, nuclear, with unique trace and with no non-trivial projections.

We view it as an infinite dimensional version of \mathbb{C} .

In fact, $\mathrm{Ell}(\mathbb{C})\cong\mathrm{Ell}(\mathcal{Z})$ and under mild conditions $\overline{\mathrm{Ell}(A)}\cong\mathrm{Ell}(A\otimes\mathcal{Z})$.

It satisfies $\mathcal{Z} \cong \mathcal{Z}^{\otimes 2} \cong \mathcal{Z}^{\otimes 3} \cong \ldots \cong \mathcal{Z}^{\otimes \infty}$ and $\dim_{\mathrm{nuc}} \mathcal{Z} = 1$.

It is the right C^* -analogue of the hyperfinite II_1 factor \mathcal{R} .

A C*-algebra A is called \mathcal{Z} -stable if $A \otimes \mathcal{Z} \cong A$.

Important property: If A is \mathcal{Z} -stable, then there is a *-isomorphism $\phi:A\to A\otimes\mathcal{Z}$ such that $\phi\approx_{\sf u.e.}\operatorname{id}_A\otimes 1_\mathcal{Z}$

Reminder. Let ω be a free ultrafilter on \mathbb{N} .

$$A_{\omega} = \ell^{\infty}(A)/\{(a_n) \mid \lim_{n \to \omega} ||a_n|| = 0\}$$
$$A_{\omega} \cap A' = \{(x_n) \in A_{\omega} \mid \lim_{n \to \omega} ||x_n a - ax_n|| = 0 \text{ for all } a \in A\}$$

Theorem (Rørdam-Winter, Toms-Winter) Let A be unital and separable. TFAE

- (i) A is \mathcal{Z} -stable,
- (ii) $\mathcal{Z} \hookrightarrow A_\omega \cap A'$ unitally,
- (iii) $Z_{n,n+1} \hookrightarrow A_{\omega} \cap A'$ for all n.

Notation. T(A) is the set of tracial states.

Fact. If A is unital, T(A) is compact.

<u>Definition</u>. Let $a,b \in A_+$. It is said a is <u>Cuntz subequivalent</u> to b, $a \lesssim b$, if there is a sequence (x_n) such that $a = \lim x_n^* b x_n$.

Example. $f \lesssim g$ in C(X) if and only if $supp(f) \subset supp(g)$.

<u>Definition</u>. A has strict comparison if for all $a, b \in A_+$ that satisfy

$$\lim_{n \to \infty} \tau(a^{1/n}) < \lim_{n \to \infty} \tau(b^{1/n}), \qquad \tau \in T(A)$$

then $a \lesssim b$.

Idea: Strict comparison is a technical condition that allows us to recover the Cuntz-order from tracial information.

Toms-Winter regularity conjecture

Let A be separable simple nuclear and non elementary. TFAE

- (i) $\dim_{\mathrm{nuc}} A < \infty$,
- (ii) $A \otimes \mathcal{Z} \cong A$,
- (iii) A has strict comparison.

Progress

- o (i)⇒(ii) Winter '11, Tikuisis '14
- o (ii)⇒(iii) Rørdam '04
- (iii)⇒(ii) Known for some cases (Kirchberg, Matui, Sato, Rørdam, Thiel, Toms, White, Winter, Zhang)
 - T(A) Bauer or tight with finite covering dimension
 - stable rank one with locally finite nuclear dimension
- \circ (ii) \Longrightarrow (i) Known for T(A) Bauer (Bosa, Brown, Matui, Sato, Tikuisis, White, Winter)

<u>Theorem</u> (Matui–Sato, Sato–White–Winter)

Let A be separable simple, unital and nuclear with unique trace. If A is $\mathcal{Z}\text{-stable}$ then $\dim_{\text{nuc}}A\leq 1.$

Sketch. Using that $\pi_{\tau}(A)''\cong \mathcal{R}\cong \pi_{\tau}(M_{2^{\infty}})''$, we can produce diagrams

$$A \xrightarrow{\mathrm{id}_A \otimes 1_{\mathcal{Z}}} A \otimes \mathcal{Z} \qquad \qquad \tau(a) \approx \tau(\sigma \psi(a))$$

Let $h \in \mathcal{Z}$ be a positive element with spectrum [0,1]. Then

$$\operatorname{id}_{A} \otimes h \approx_{ue} \sigma \psi \otimes h, \qquad \operatorname{id}_{A} \otimes (1_{\mathcal{Z}} - h) \approx_{ue} \sigma \psi \otimes (1_{\mathcal{Z}} - h)$$

$$\Rightarrow a \otimes 1_{\mathcal{Z}} = a \otimes h + a \otimes (1_{\mathcal{Z}} - h)$$

$$\approx u_{1}(\sigma \psi(a) \otimes h)u_{1}^{*} + u_{2}(\sigma \psi(a) \otimes (1 - h))u_{2}^{*}$$

$$A \longrightarrow A \otimes \mathcal{Z} \qquad \phi_{i}(x) = u_{i}(\sigma(x) \otimes h_{i})u_{i}^{*}$$

$$\downarrow \phi_{0} + \phi_{2}$$

$$\Rightarrow \dim_{\operatorname{puc}} A < 1$$

How do we handle more than one trace? For each trace $\tau \in T(A)$

$$A \xrightarrow[\psi_{\tau}]{} A \otimes \mathcal{Z} \qquad \qquad \tau(a) \approx \tau(\sigma_{\tau} \psi_{\tau}(a))$$

$$F_{\tau} \qquad \qquad F_{\tau} \qquad F_{\tau} \qquad \qquad F_{\tau} \qquad \qquad F_{\tau} \qquad F_{\tau} \qquad \qquad F_{\tau} \qquad F_{$$

By compactness of T(A), there is a finite cover $\{U_i\}$ and $\tau_i \in U_i$ such that $\tau(a) \approx \tau_i(a)$ if $\tau \in U_i$. Let (h_i) be a PoU subordinated to $\{U_i\}$. (Naive PoU) There are positive contractions $e_1, \ldots, e_k \in A_\omega \cap A'$ such that $\tau(e_i a) = h_i(\tau)\tau(a)$.

Set
$$\sigma: \bigoplus F_{\tau_i} \to A \otimes \mathcal{Z}$$
 by $\sigma(x_1, \dots, x_k) = \sum e_i \sigma_{\tau_i}(x_i)$

$$A \longrightarrow A \otimes \mathcal{Z} \qquad \tau \approx \tau \circ \sigma \circ \psi \quad \forall \tau$$

$$\psi = \oplus \psi_{\tau_i} \qquad \sigma = \sum e_i \sigma_{\tau_i}$$

As in the monotracial case, $\dim_{\text{nuc}} A \leq 1$.

Naive partitions of unity do not exist in general : (but a weaker form of partitions of unity suffices at the cost of making the proof more difficult.

Definition

A has complemented partitions of unity (CPoU) if for any family of positive contractions $a_1, \ldots, a_k \in A$ and $\delta > 0$ such that

$$\delta > \sup_{\tau \in T(A)} \min\{\tau(a_1), \dots, \tau(a_k)\},$$

there exist pairwise orthogonal contractions $e_1,\ldots,e_k\in A_\omega\cap A'$ with

$$\tau(\sum e_i) = 1, \quad \tau(e_i a_i) \le \delta \tau(e_i), \quad i = 1, \dots, n, \ \tau \in T(A).$$

When do we have CPoU?

Definition

Suppose A is unital and simple. A has uniform property Γ if for any n there exist pairwise orthogonal positive contractions $e_1,\ldots,e_n\in A_\omega\cap A'$ such that

$$\tau\left(\sum e_i\right) = 1, \quad \tau(ae_i) = \frac{1}{n}\tau(a), \qquad a \in A, \ \tau \in T(A).$$

This notion is a C^* -star version of the property Γ for Π_1 factors.

Examples

- The universal UHF algebra $\mathbb{Q} = igotimes_{n \in \mathbb{N}} M_n$
- The Jiang-Su algebra ${\mathcal Z}$
- \mathcal{Z} -stable C^* -algebras
- the non- ${\mathcal Z}$ -stable Villadsen algebras contructed by Toms and Winter

<u>Theorem</u> (C-Evington-Tikuisis-White)

Let A be separable nuclear and unital. TFAE

- \bullet A has CPoU,
- $oldsymbol{ @ } A$ has uniform property Γ ,
- (§) A is uniformly McDuff, i.e. for all $n \in \mathbb{N}$ there exists an order zero map $\varphi: M_n(\mathbb{C}) \to A_\omega \cap A'$ such that $\tau \circ \phi(1) = 1$

Theorem (Carrión-C-Evington-Gabe-Schafhauser-Tikuisis-White) Let A be simple separable with uniform property Γ . Then A has CPoU.

Corollary Let A be separable simple nuclear. Then $\overline{A \cong A \otimes \mathcal{Z}} \Longleftrightarrow \dim_{\mathrm{nuc}} A < \infty$.

Corollary Separable simple unital nuclear \mathcal{Z} -stable C^* -algebras in the UCT class are classified by their Elliott invariant.

Corollary Let A be a simple C^* -algebra. Then

$$\dim_{\mathrm{nuc}} A = egin{cases} 0 & A \text{ is AF} \\ 1 & A \text{ is nuclear } \mathcal{Z}\text{-stable but not AF} \\ \infty & \text{otherwise} \end{cases}$$

 $\frac{\text{Theorem}}{\text{Let }A} \text{ (C-Evington-Tikuisis-White, C-Evinton, Lin)} \\ \text{Let }A \text{ be simple separable and nuclear. If }A \text{ has uniform property }\Gamma \text{ and strict comparison then }A \text{ is }\mathcal{Z}\text{-stable.} \\$

Theorem (Toms–Winter)

Let \boldsymbol{A} be separable simple nuclear and non-elementary. TFAE

- (3) A has strict comparison and uniform property Γ .

Thank you!