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Background



Background: Open Quantum Systems

An ideal quantum system is not realistic because it should be perfectly isolated;
however, in practice, it is influenced by coupling to an environment.

Time evolution is governed by the global

) Hamiltonian
Enviroment

H = Hs + Hg + Hint.

By taking the partial trace and

assuming the Markov property we have

the following Lindblad equation:
dps(t)

—aqr = L(ps(2)).
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Background: Quantum Markov Semigroups

Mathematically, from a closed quantum system to an open quantum system,
the Hamiltonian is replaced by a Lindblad operator

Hs ~~ L.

Meanwhile, the time evolution is no longer described by means of
one-parameter groups of unitary maps eS| but one needs to introduce
semigroups of completely positive maps et thus leading to the concept of

quantum Markov semigroups.
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Background: Quantum Markov Semigroups

Definition 1 (Quantum Markov semigroup)

Let A be a von Neumann algebra. A quantum dynamical semigroup (7¢)¢>o0
on A is a family of bounded operators on A with the following properties:

To(a) = a for all a € A and Teis = T¢Ts for all t,s > 0,
T: is completely positive for all t > 0,
T: is o-weakly continuous on A for all t > 0,

for each a € A, the map t — T¢(a) is continuous w.r.t. the o-weak
topology.

If Te(1) = 1 in addition, we call (T¢)¢>0 a quantum Markov semigroup.

Definition 2 (Predual semigroup)

The predual semigroup of (T¢)e=o0, (Twt)e>0, is @ semigroup on A, defined by

Tet(w)(a) := w(Ti(a)), Vae A, we A.
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Background: GKSL Forms

The characterization of the generator of a quantum dynamical semigroup due
to Lindblad [Lin76] in the case of an arbitrary Hilbert space and to Gorini,
Kossakowski and Sudarshan [GKS76] in the case of a finite-dimensional Hilbert
space.

Theorem 3

A bounded operator L on B(H) is the generator of a uniformly continuous
quantum dynamical semigroup if and only if

@) =ilH.a— 3 3 (VVia— vfavi + 2y V).
J

where V; € B(H), >, V; € B(H) and H € B(H) self-adjoint. In this case,
the predual generator is of the form

J

, 1
La(p) = —i[H.pl = 5 > (Y'Vip = VipV] +pV]V)) .

j
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Exponential Ergodicity: Induced Semigroup

Let (7¢)¢>0 be a quantum Markov semigroup on the von Neumann algebra A.
Assume that (7¢):>0 possesses a faithful normal invariant state p, i.e.

p(a) >0, ac AN\{0} p(7e(a)) =p(a), Vt=0, VacA

Induced semigroup

Let (H,m, &) be the Gelfand-Naimark-Segal representation associated to the
faithful normal state p. Then, we can construct a strongly continuous
contraction semigroup (T¢):>0 on the Hilbert space H by

Te(m(a)¢) := 7(Te(a))s, a€ A

(T¢)e>o is referred to be the induced semigroup of (7;):>0. By L we denote
the generator of the induced semigroup (T¢)¢>o0.
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Exponential Ergodicity: Special States

We use S(A) to denote all normal states on the von Neumann algebra A.

Special states

By S,(A) we denote the set of all normal states on A which are majorized by
a scalar multiple of p. That is,

Sp(A) :={¢p € S(A) : IXN > 0s.t. ¢ < A\p}.
S,(A) is dense in S(A), and the linear span of S,(A) is dense in A..

Lemma 4

¢ is a positive o-weakly continuous functional on A that is majorized by A\p
for some \ > 0 if and only if there exists a unique x; € w(.A)" with
0 < x4 < Al such that

P(a) = (xp€, m(a)g), Va€ A,

where w(A)" denotes the commutant of w(.A).
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Exponential Ergodicity: Spectral Gap

Spectral gap
The spectral gap of the induced generator L is the non-negative number «
defined as follows:

o = inf {— Re(x,Lx) : x € DomL C H, |x]|=1, x € kerLl} .
Notice that ker L characterizes invariant vectors of (T¢)¢>o.
This term is referred to as the “spectral gap” because in the case where the

generator L is self-adjoint, o represents the maximum value for which there is
no part of the spectrum of L within the interval (—a, 0).

Remark
Roughly speaking, the self-adjointness of L is equivalent to the reversibility
(detailed balance) of (T;):>0. We do not assume it in our work.
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Exponential Ergodicity: Main Results

Theorem 5 (Exponential Ergodicity)

Assume that the infinitesimal generator L of the induced semigroup (T¢):>0
has a spectral gap a > 0, and there exists a common core for L and L*.
Then, there exists a projection P onto o-weakly continuous functionals that
are invariant under (Tst)e>0, and for all 1 € A, Tue(v) — P(2) in the norm
topology as t — +oo. In particular, if ) € Span{S,(A)}, then

n n

17e(#) = P@)lla, <e (D e =P D exut ||

k=1 k=1 -
where P is the projection onto invariant vectors of (T;)¢>o.

In the following we will answer the following two questions: In general, can we
observe uniform exponential convergence for normal states in S,(.A)? Do

o-weakly continuous functionals in A, \ Span{S,(.A)} demonstrate exponential
convergence?
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

A quantum Ornstein-Uhlenbeck semigroup models the evolution of an open
quantum system that is coupled to a reservoir with inverse temperature 5 > 0.

Let $ be a complex separable Hilbert space with an orthonormal basis (ep)nen.
The quantum Ornstein-Uhlenbeck semigroup (ﬁﬂ)tzo associated with the
inverse temperature 3 is given by the generator

i 1 1 1
L£°(x) = eﬁe, 1 (—%atax +afxa— %xafa)—keﬁ — (—Eaatx + axa' — Exaaf) ,

where x € Dom £” C B($)), a is the annihilation operator, and a' is the
creation operator.

aen=+/ne,1, n>1, ae=0; ae=+n+1les, n>0.

. Moreover, the position operator g, the momentum operator p and the
number operator N are given by

a+tal i(a — a)

e,,, €en —
V2 P V2

gen = en, Ne, = ne,.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Remarks

1. a and a' are unbounded operators.

2. (T)e>0 is indeed self-adjoint due to the lack of a Hamiltonian part in its
generator.

It was proved in [CFLOO] that (7;”)>0 has a unique faithful normal invariant
state

[e'e]

pPr=1—-eP)eN=01- efB)Zef’Bk lex)ex|
k=0

and its induced semigroup admits a spectral gap.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

The restriction of the quantum Ornstein-Uhlenbeck semigroup (7;°)¢>o to the
subalgbera of the position operator corresponds to a classical
Ornstein-Uhlenbeck process. The restriction of its predual semigroup (ﬁf)tzo
to the subalgebra of the number operator is a classical birth-and-death process.

Lemma 6

(T 1 (N))t>o is the classical birth-and-death process with birth rates
((n41)/(e® — 1))nen and death rates (ne® /(e — 1))nen. In addition,
(T 1 1°°(N))e>0 has a spectral gap oo = 1.

Just notice that

ne® ne® +n+1

+
Ef(\e,,) (en]) = B _1 len—1) <enfl\—ﬁ en) ( n|+ |en+1> (en1l,

and we can define the following transition probabilities

pj () = Tr (Th(len) (eil) &) (gi]) , i,j € N.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Uniformly exponentially convergence for CTMCs

Let (X¢)t>0 be a continuous-time Markov chain with state space /| = N and
transition probabilities P(t) = (pjj(t))i,je;. Suppose there exists a unique
invariant density (7;)ies for (X¢)e>o0. Similar to the case of quantum Markov
semigroups, we say that P(t) is uniformly exponentially convergent if there
exists M > 0 and a > 0 such that |p;(t) — ;| < Me™** for all i,j € I.

The following theorem shows that uniform exponential convergence can be
characterized by the mean hitting times to state 0. Recall that, starting from
state n € N, the mean time taken for (X:):>o to reach state 0 is given by

kn :=E[T|Xo = n], where T :=inf{t > 0: X, = 0}.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Theorem 7 (Characterizations of uniform exponential convergence)

The following statements are equivalent:

1. P(t) is uniformly exponentially convergent.

2. lim¢— 100 sup;c, |pir(t) — m| = 0 for some | € | with m; > 0.
3.

4. 5(P(t)) < 1 for some t > 0, where

lime s oo SUPj¢ Zje/ |pU(t) - 7rj| =0.

I(P(t)) == %Supi,jel ZhE/ lpin(t) — pin(t)]-

the sequence of mean hitting times (kn)n>o is uniformly bounded.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Let (X)i>0 be the birth-and-death process associated to the quantum
Ornstein-Uhlenbeck semigroup (7;°)¢>0. We have the following results:

Proposition 8

For the process (Xtﬂ )e>o0, Starting from state n, the mean hitting time of state
n
0equalsy’  1/m.
The following result is immediate:

Theorem 9

For the quantum Ornstein-Uhlenbeck semigroup (T’ )¢>o, there does not
exist M > 0 and o > 0 such that

|

TH@) = 0°|| < Me™™", Yo € S,(A).
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

In fact, we can conduct more detailed computations and analysis. The
transition probabilities of a birth-and-death process have what is known as the
Kendall representation. Let (X/):>o be the birth-and-death process associated
to (7)t>0, and let (7TJ-B)J'€N denote its unique invariant distribution. According
to [KM58], the Kendall representation of (pfj(t));’jeN is

Py (t ﬂz QI (M@ (n)e P, i jeN. (1)

The above (Q);en are Meixner polynomials defined by

where
(a)k =

For a non-positive integer a, the above (a) is defined by continuation.

aeR, keN.
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

The proposition below demonstrates that the convergence speed towards the
unique faithful normal invariant state p? for normal states in the form of
|ei) (ei] cannot have an exponential rate with parameter 1 + €, where € > 0

Proposition 10

There does not exists ¢ > 0 and M; > 0 such that

Th(len (el) — 5| < Mo~ 0+

Notice that

Th(ler) (el) — ‘*H—Z|p5<r (1—e Me™].
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Exponential Ergodicity: Quantum Ornstein-Uhlenbeck Semigroups

Let @ ==k o, k™ *|en) (€] with k :=6/7".
Proposition 11

When 3 > —log 1/2, there does not exist an M > 0 such that

|

TH@) = p°|| < Me™*, vt>o0.

Therefore, we have discovered a normal state outside of S,(A) that is not
a-exponentially convergent.
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