Schatten properties of commutators on twisted crossed product

ZENG Kai

Analysis Seminar

Harbin Institute of Technology, October 9, 2024

ZENG Kai

Schatten properties of commutators on twiste

October 9, 2024

Twisted crossed product

• Given a von Neumann algebra \mathcal{M} and a locally compact group, suppose that there exists an action α of G on \mathcal{M} , assume invariably that α is strong *-cotinuous, that is, for each fixed $x \in \mathcal{M}$, the map $s \mapsto \alpha_s(x)$ is strong *-continuous.

Definition 1

A twisted dynamical system is a quadruple $(\mathcal{M}, G, \alpha, \sigma)$ with a twisted action (α, σ) of G on \mathcal{M} . Here the two functions $\alpha : G \to \operatorname{Aut}(\mathcal{M})$ and $\sigma : G \times G \to \mathcal{U}(\mathcal{M})$ satisfy the following conditions: for any $s, t, r \in G$ (a) $\alpha_s \circ \alpha_t = \operatorname{Ad}_{\sigma(s,t)} \circ \alpha_{st}$; (b) $\sigma(r, s)\sigma(rs, t) = \alpha_r(\sigma(s, t))\sigma(r, st)$;

< □ > < @ >

Definition 2

A covariant homomorphism of $(\mathcal{M}, G, \alpha, \sigma)$ is a pair (ρ, u) of a normal representation ρ of \mathcal{M} on a Hilbert space K, and a function $u : G \to \mathcal{U}(K)$ such that

$$u(s)u(t) = \rho(\sigma(s,t))u(st), \ s,t \in G;$$

$$egin{aligned} & ig(\pi_lpha(m{a})\xiig)(t)=lpha_{t^{-1}}(m{a})\xi(t), \quad \xi\in L_2(G,H), t\in G, \ & ig(\lambda_\sigma(m{s})\xiig)(t)=\sigma(t^{-1},m{s})\xi(m{s}^{-1}t), \quad \xi\in L_2(G,H), m{s},t\in G. \end{aligned}$$

Definition 3

The von Neumann algebra generated by $\pi_{\alpha}(\mathcal{M})$ and $\lambda_{\sigma}(G)$ on $L_2(G, H)$ is called the twisted crossed product of \mathcal{M} by (α, σ) and is denoted by $\mathcal{M} \rtimes_{\alpha,\sigma} G$.

set

$$\mathcal{R} = \mathcal{M} \rtimes_{\alpha,\sigma} \mathbb{R}^d$$
 and $\mathcal{N} = \mathcal{M} \overline{\otimes} B(L_2(\mathbb{R}^d)).$

• For an element $f \in K(G, \mathcal{M})$, we put $\lambda_{\sigma} imes \pi_{\alpha}(f)$ to be

$$\lambda_{\sigma} imes \pi_{lpha}(f) = \int_{\mathcal{G}} \lambda(s) \pi_{lpha}(f(s)) ds.$$

Proposition 4

$$(\lambda_{\sigma} \times \pi_{\alpha}(K(G, \mathcal{M})))'' = span\{\lambda_{\sigma}(G) \cup \pi_{\alpha}(\mathcal{M})\}'' = \mathcal{M} \rtimes_{\alpha, \sigma} G$$

Preliminaries: Dual trace

 \bullet For a given weight τ on $\mathcal{M},$ it is said to be semi-finite if

$$\mathfrak{p}_{ au} = \{x \in \mathcal{M}_+ : au(x) < +\infty\}$$

generates \mathcal{M} ; while

$$\mathfrak{n}_{ au} = \{ x \in \mathcal{M} : x^* x \in \mathfrak{p}_{ au} \},$$

$$\mathfrak{m}_{\tau} = \{\sum_{i=1}^{n} y_i^* x_i : x_1, ..., x_n, y_1, ..., y_n \in \mathfrak{n}_{\tau}\}.$$

 \mathfrak{n}_{τ} is a left ideal of \mathcal{M} , and $\mathfrak{m}_{\tau} \cap \mathcal{M}_{+} = \mathfrak{p}_{\tau}$. For a fixed weight τ on \mathcal{M} . The set

$$N_{\tau} = \{x \in \mathcal{M} : \tau(x^*x) = 0\}$$

is a left ideal of \mathcal{M} contained in \mathfrak{n}_{τ} .

• Define a canonical quotient map $\eta_{ au}:\mathfrak{n}_{ au} o \mathfrak{n}_{ au}/N_{\!arphi}$ by:

$$\eta_{\tau}(x) = x + N_{\tau} \in \mathfrak{n}_{\tau}/N_{\tau}.$$

Define a sesquilinear functional:

$$\langle \eta_{\tau}(x), \eta_{\tau}(y) \rangle = \tau(y^*x)$$

on $\mathfrak{n}_{\tau}/N_{\tau}$.

• Take the completion of n_{τ}/N_{τ} with respect to this sesquilinear functional and denote it by \mathfrak{H}_{τ} .

• Define a representation π_τ of $\mathcal M$ on $\mathfrak H_\tau$ by

$$\pi_{\tau}(a)\eta_{\tau}(x)=\eta_{\tau}(ax).$$

- The triplet $\{\pi_{\tau}, \mathfrak{H}_{\tau}, \eta_{\tau}\}$ is called the semi-cyclic representation of \mathcal{M} .
- Let $K(G, \mathcal{M})$ be the space of all σ -strongly-* continuous \mathcal{M} valued functions on G with compact support.

• For $x, y \in K(G, \mathcal{M})$ define

$$\begin{aligned} x *_{\sigma} y(s) &= \int_{\mathcal{G}} \sigma(s^{-1}, s)^* \sigma(s^{-1}, st) \alpha_t(x(st)) \sigma(t, t^{-1}) y(t^{-1}) dt, \\ x^{\#}(s) &= \delta_{\mathcal{G}}(s)^{-1} \sigma(s^{-1}, s)^* \alpha_{s^{-1}}(x(s^{-1}))^*. \end{aligned}$$

and

$$\langle x,y \rangle_{\mathcal{M}} = \int_{\mathcal{G}} y(t)^* x(t) dt.$$

Where δ_{G} is the modular function of G.

• We define

$$(x \cdot a)(s) = x(s)a,$$

$$(a \cdot x)(s) = \alpha_s^{-1}(a)x(s),$$

for $x \in K(G, \mathcal{M})$, $a \in \mathcal{M}$, then $K(G, \mathcal{M})$ is a right module over \mathcal{M} .

• Set

$$\mathfrak{b}_{ au} = \mathcal{K}(\mathcal{G}, \mathcal{M}) \cdot \mathfrak{n}_{ au} = \operatorname{span}\{x \cdot a : x \in \mathcal{K}(\mathcal{G}, \mathcal{M}), a \in \mathfrak{n}_{ au}\}.$$

3

• Define the map $ilde\eta_ au: x \in \mathfrak{b}_ au \mapsto ilde\eta_ au(x) \in L_2(G,\mathfrak{H}_ au)$ by

$$\widetilde{\eta}_{\tau}(x)(s) = \eta_{\tau}(\sigma(s^{-1},s)x(s))$$

for $x \in \mathfrak{b}_{\tau}$ and $s \in G$.

• $\tilde{\mathfrak{A}}_{\tau} = \tilde{\eta}_{\tau}(\mathfrak{b}_{\tau} \cap \mathfrak{b}_{\tau}^{\#})$ is a left Hilbert algebra with respect to the following operations:

$$egin{aligned} & ilde\eta_ au(x) & ilde\eta_ au(y) = ilde\eta_ au(x*_\sigma y), \; x,y \in \mathfrak{b}_ au \cap \mathfrak{b}_ au^\#, \ & ilde\eta_ au(x)^\# = ilde\eta_ au(x^\#). \end{aligned}$$

ZENG Kai

• Given a normal, semi-finite and faithful weight τ on \mathcal{M} , the normal, semi-finite and faithful weight $\tilde{\tau}$ associated with the left Hilbert algebra $\tilde{\mathfrak{A}}_{\tau}$ is called the dual weight of τ , namely, the weight is in the following form for $x \in \mathcal{R}_{\ell}(\tilde{\mathfrak{A}}_{\tau})_+$:

$$ilde{ au}(x) = egin{cases} \|\xi\|^2 & ext{if } x = \pi_\ell(\xi)^* \pi_\ell(\xi), \ \xi \in ilde{\mathfrak{A}}_ au \ + \infty & ext{otherwise} \ . \end{cases}$$

• By the Plancherel formula, the map $f \mapsto \lambda_{\sigma} \times \pi_{\alpha}(f)$ establishes an isometry from $L_2(\mathbb{R}^d, L_2(\mathcal{M}))$ onto $L_2(\mathcal{R})$.

October 9, 2024

Theorem 5

For $x \in \mathfrak{b}_{\tau}$,

$$ilde{ au}((\lambda_\sigma imes \pi_lpha(x))^*(\lambda_\sigma imes \pi_lpha(x))) = au((x^\# * x)(e)).$$

In addition, there exists uniquely an operator valued weight T from $\mathcal{M} \rtimes_{\alpha,\sigma} G$ onto $\pi_{\alpha}(\mathcal{M})$ such that for $x \in (\mathcal{M} \rtimes_{\alpha,\sigma} G)_+$,

$$\tilde{\tau}(x) = \tau \circ \pi_{\alpha}^{-1}(T(x))$$

for any faithful semi-finite normal weight τ on \mathcal{M} .

October 9, 2024

• Suppose the group G is abelian, the action α admits a dual action $\hat{\alpha}$ of the dual group \hat{G} on the twisted crossed product $\mathcal{M} \rtimes_{\alpha,\sigma} G$ as follows, let ω be the unitary representation of \hat{G} on $L_2(G, H)$ in the following form:

$$(w(\gamma)\xi)(h) = \overline{\gamma(h)}\xi(h), \quad \xi \in L_2(G,H), \ h \in G, \ \gamma \in \widehat{G}.$$

Then the dual action $\widehat{\alpha}$ is implemented by *w*:

$$\widehat{\alpha}_{\gamma}(x) = w(\gamma) x w(\gamma)^*, \quad x \in \mathcal{M} \rtimes_{\alpha,\sigma} \mathcal{G}, \ \gamma \in \widehat{\mathcal{G}}.$$
(1)

$$\widehat{\alpha}_{\gamma}(\pi_{\alpha}(x)) = \pi_{\alpha}(x), \quad \widehat{\alpha}_{\gamma}(\lambda_{\sigma}(g)) = \overline{\gamma(g)}\lambda_{\sigma}(g), \quad x \in \mathcal{M}, \ g \in \mathcal{G}, \ \gamma \in \widehat{\mathcal{G}}.$$
(2)

•

Definition 6

The action $\widehat{\alpha}$ defined in (1) and (2) is called the dual action of \widehat{G} on $\mathcal{M} \rtimes_{\alpha,\sigma} G$ and $\{\mathcal{M} \rtimes_{\alpha,\sigma} G, \widehat{G}, \alpha\}$ is called the dual twisted covariant system.

•

Theorem 7

The dual action $\widehat{\alpha}$ of \widehat{G} on $\mathcal{M} \rtimes_{\alpha,\sigma} G$ has the following properties:

- (a) A faithful weight $\tilde{\tau}$ on $\mathcal{M} \rtimes_{\alpha,\sigma} G$ is dual to a faithful weight τ on \mathcal{M} if and only if $\tilde{\tau}$ is $\hat{\alpha}$ invariant.
- **(**) Considering the second crossed product $\mathcal{M} \rtimes_{\alpha,\sigma} G \rtimes_{\widehat{\alpha}} \widehat{G}$, there exists a unique isomorphism Φ of $\mathcal{M} \rtimes_{\alpha,\sigma} G \rtimes_{\widehat{\alpha}} \widehat{G}$ onto $\mathcal{M} \otimes B(L_2(G))$.

• $\widehat{\alpha}_{\gamma}$ is $\widetilde{\tau}$ invariant, $\widehat{\alpha}_{\gamma}$ extends to an isometric action $\widehat{\alpha}_{\gamma}^{(p)}$ on $L_p(\mathcal{M} \rtimes_{\alpha,\sigma} G)$.

• We can define the convolution between a function $f \in L_1(\mathbb{R}^d)$ and an element $x \in L_p(\mathcal{R})$.

$$f * x = \int_{\mathbb{R}^d} f(s) \widehat{\alpha}_{-s}^{(p)}(x) ds.$$
(3)

• \mathcal{M}^{∞} is the smooth subalgebra with $x \in \mathcal{M}$ such that the map $s \mapsto \alpha_s(x)$ is smooth.

• The class of Schwartz functions on \mathcal{R} is defined as the image of the Schwartz class $\mathcal{S}(\mathbb{R}^d, \mathcal{M}^{\infty})$ under $\lambda_{\sigma} \times \pi_{\alpha}$. That is,

$$\mathcal{S}(\mathcal{R}) = \{\lambda_{\sigma} \times \pi_{\alpha}(f) : f \in \mathcal{S}(\mathbb{R}^{d}, \mathcal{M}^{\infty})\}.$$
(4)

17 / 43

• The space of *tempered distributions* on \mathcal{R} is the topological dual space $\mathcal{S}'(\mathcal{R})$ of $\mathcal{S}(\mathcal{R})$, i.e., the space of continuous linear functionals on $\mathcal{S}(\mathcal{R})$.

Preliminaries: Derivatives on twisted crossed product

• For
$$x = \lambda_{\sigma} \times \pi_{\alpha}(f) \in \mathcal{S}(\mathcal{R})$$
, $\alpha = (\alpha_1, \cdots, \alpha_d) \in \mathbb{N}_0^d$, we set

$$\partial^{lpha} x = \int_{\mathbb{R}^d} s^{lpha} \lambda_{\sigma}(s) \pi_{lpha}(f(s)) ds,$$

where $s^{\alpha} = s_1^{\alpha_1} \cdots s_d^{\alpha_d}$.

• $\partial^{\alpha} x$ belongs to $S(\mathcal{R})$ too. By duality, these partial derivations extend to all distributions.

October 9, 2024

• Let $\Delta = \partial_1^2 + \cdots + \partial_d^2$ be the Laplacian. We will frequently use the Bessel and Riesz operators $(1 + \Delta)^{\frac{1}{2}}$ and $\Delta^{\frac{1}{2}}$ which will be abbreviated as J and I respectively. More generally, for $a \in \mathbb{R}$, define $J^a = (1 + \Delta)^{\frac{a}{2}}$ and $I^a = \Delta^{\frac{a}{2}}$.

• The Bessel potential J^a operates on $S'(\mathcal{R})$. While for the Riesz potential I^a . Let

$$\mathcal{S}_0(\mathbb{R}^d, \mathcal{M}^\infty) = \{ x : \widehat{\partial^{\alpha} x}(0) = 0 \quad \forall \ \alpha \in \mathbb{N}_0^d \}.$$

Then I^a operates on $S_0(\mathcal{R}) = \lambda_\sigma \times \pi_\alpha(S_0(\mathbb{R}^d, \mathcal{M}^\infty))$, and by duality, on the dual space $S'_0(\mathbb{R}^d_\theta)$.

• We denote $\check{\phi}$ as the inverse Fourier transform of ϕ . Now assume that $\check{\phi} \in L_1(\mathbb{R}^d)$. Define

$$\check{\phi} * x = \int_{\mathbb{R}^d} \check{\phi}(t) \widehat{\alpha}_{-t}(x) dt.$$
 (5)

• For $x = \lambda_{\sigma} \times \pi_{\alpha}(f)$ with $f \in S(\mathbb{R}^d, \mathcal{M}^{\infty})$, we have for the Fourier multiplier T_{ϕ} ,

$$T_{\phi}(x) = \lambda_{\sigma} imes \pi_{lpha}(\phi f) = \check{\phi} * x.$$

<u>October 9, 2024</u>

• Given $x \in \mathcal{R}$, denote by $M_x : y \mapsto xy$ the left multiplication on $L_2(\mathcal{R})$. Then M_x is a bounded linear operator on $L_2(\mathcal{R})$. We now define the commutator

$$\mathbf{C}_{\phi,x} = [T_{\phi}, M_x].$$

This is a so-called Calderón-Zygmund transform on \mathcal{R} , it is bounded on $L_2(\mathcal{R})$.

October 9, 2024

•The homogeneous Sobolev space $W_p^m(\mathcal{R})$ consists of those $x \in S'(\mathcal{R})$ such that every partial derivative of order *m* is in $L_p(\mathcal{R})$, equipped with the seminorm:

$$\|x\|_{\dot{W}_p^m} = \Big(\sum_{|\alpha|=m} \|\partial^{\alpha} x\|_p\Big)^{\frac{1}{p}}.$$

October 9, 2024

 \bullet Besov spaces are defined by using a fixed test function $\varphi\in\mathcal{S}(\mathbb{R}^d)$ such that

$$\begin{cases} \sup \varphi \subset \{\xi : 2^{-1} \le |\xi| \le 2\}, \\ \varphi > 0 \text{ on } \{\xi : 2^{-1} < |\xi| < 2\}, \\ \sum_{k \in \mathbb{Z}} \varphi(2^{-k}\xi) = 1, \ \xi \neq 0. \end{cases}$$
(6)

The sequence $\{\varphi(2^{-k}\cdot)\}_{k\in\mathbb{Z}}$ is a Littlewood-Paley decomposition of \mathbb{R}^d , modulo constant functions. Denote by φ_k the inverse Fourier transform of $\varphi(2^{-k}\cdot)$.

Definition 8

Let $1 \leq p, q \leq \infty$ and $a \in \mathbb{R}$. The homogeneous Besov space on \mathbb{R}^d_{θ} is defined by

$$B^a_{p,q}(\mathcal{R}) = \left\{ x \in L_p(\mathcal{R}) : \|x\|_{B^a_{p,q}} < \infty
ight\},$$

where

$$\|x\|_{B^a_{p,q}} = \left(\sum_{k\in\mathbb{Z}} 2^{qka} \|\varphi_k * x\|_p^q\right)^{\frac{1}{q}}.$$

Let $B^{a}_{\rho,c_{0}}(\mathcal{R})$ be the subspace of $B^{a}_{\rho,\infty}(\mathcal{R})$ consisting of all x such that $2^{kr} \|\varphi_{k} * x\|_{p} \to 0$ as $|k| \to \infty$.

Function spaces on twisted crossed product

- Denote by $A(\widehat{G})$ the Fourier algebra of \widehat{G} which is the image of $L_1(G)$ under the Fourier transform.
- For an action β of G on \mathcal{M} , with a function $f \in A(\widehat{G})$, define

$$\beta_f(x) = \int_G \check{f}(t)\beta_-t(x)dt.$$

• For each $x \in \mathcal{M}$, putting

$$I(x) = \{f \in A(\widehat{G}) : \beta_f(x) = 0\}$$

• The Arveson's β - spectrum $\sigma_{\beta}(x)$ is defined by

$$\sigma_{\beta}(x) = \{ p \in \widehat{G} : f(p) = 0, f \in I(x) \}.$$

• Define $\mathcal{A}(\mathcal{R}) = \{x \in \mathcal{R} \cap L_1(\mathcal{R}) : \sigma_{\widehat{\alpha}}(x) \text{ is compact}\}.$

• $\mathcal{A}(\mathcal{R})$ is a *-algebra.

• $\mathcal{A}(\mathcal{R})$ is dense in $B^{a}_{p,q}(\mathcal{R})$ for $1 \leq p < \infty$ and $1 \leq q < \infty$.

• $\mathcal{A}(\mathcal{R})$ is norm-dense in $W_p^m(\mathcal{R})$ when $m \ge 0$ and $1 \le p < \infty$; the density of $\mathcal{A}(\mathcal{R})$ in $\dot{W}_p^m(\mathcal{R})$ holds only when $m \ge 0$ and 1

• The dual space of $B^a_{p,q}(\mathcal{R})$ coincides isomorphically with $B^{-a}_{p',q'}(\mathcal{R})$ for $1 \leq p < \infty$ and $1 \leq q < \infty$

• J^b and I^b are isomorphisms between $B^a_{p,q}(\mathcal{R})$ and $B^{a-b}_{p,q}(\mathcal{R})$.

• The first results [Mcdonald, Sukochev and Xiong, Commun. Math. Phys. 2019] concerning quantum differentiability in the noncommutative euclidean space are the characterizations of the Schatten $S_{d,\infty}$ properties of

$$dx := \sum_{j=1}^{d} \gamma_j \otimes dx_j \tag{7}$$

on noncommutative euclidean space \mathbb{R}^d_{θ} .

• γ_j 's denote the *d*-dimensional euclidean gamma matrices, and $dx_j := i[R_j, M_x]$, where for $1 \le j \le d$, $R_j = T_{\phi}$ for $\phi(s) = \frac{s_j}{|s|}$ denote the quantum counterpart of Riesz transforms on \mathbb{R}^d_{θ} .

• Our research in the second part is motivated by the following:

Theorem 9 (Mcdonald, Sukochev and Xiong, 2019)

 d_{x_i} has bounded extension in $S_{d,\infty}$ for every $1 \le i \le d$ iff x belongs to the homogeneous Sobolev space $\dot{W}^1_d(\mathbb{R}^d_{\theta})$.

 \bullet One related result is the formula on Dixmier Trace. For any continuous normalised trace ${\rm tr}$ on $S_{1,\infty}$ we have

$$\operatorname{Tr}_{\omega}(|dx|^{d}) = c_{d} \left\| \sum_{j=1}^{d} \gamma_{j} \otimes \left(\partial_{j} x - s_{j} \sum_{k=1}^{d} s_{k} \partial_{k} x \right) \right\|_{d}^{d}.$$
 (8)

• We aim to extend the aforementioned results to a more general setting. Here are our results.

Theorem 10

Let $d . If <math>x \in B_{\rho,p}^{\frac{d}{p}}(\mathcal{R})$, then $\mathbf{C}_{\phi,x}$ has a bounded extension in S_p and

$$\left\|\mathbf{C}_{\phi,x}\right\|_{\mathcal{S}_{p}} \lesssim_{d,p} \left[\sup_{s \in \mathbb{S}^{d-1}} \left|\phi(s)\right| + \sup_{s \in \mathbb{S}^{=d-1}} \left|\nabla\phi(s)\right|\right] \left\|x\right\|_{\mathcal{B}_{p,p}^{\frac{d}{p}}}$$

Conversely, assume additionally that ϕ is not constant. If $x \in \mathcal{R}$ and $\mathbf{C}_{\phi,x} \in S_p$, then $x \in B_{p,p}^{\frac{d}{p}}(\mathcal{R})$ and

$$\left\|x\right\|_{B^{\frac{d}{p}}_{p,p}} \lesssim_{d,p} \left[\sup_{s \in \mathbb{S}^{d-1}} |\phi(s)| + \sup_{s \in \mathbb{S}^{d-1}} |\nabla \phi(s)|\right] \left\|\mathsf{C}_{\phi,x}\right\|_{S_{p}}.$$

Main results: Application to noncommutative Euclidean space

• For the critical case, i.e., the $S_{d,\infty}$ properties of $\mathbf{C}_{\phi,x}$ for $p \leq d$.

Theorem 11

If $x \in \dot{W}^1_d(\mathbb{R}^d_{\theta})$, then $\mathbf{C}_{\phi,x}$ has bounded extension in $S_{d,\infty}$.

October 9, 2024

Main results: Applications to noncommutative Euclidean space

• The following trace formula is new even for classical setting.

Theorem 12

Let $x \in \dot{W}^1_d(\mathbb{R}^d_\theta)$. Then for every continuous normalised trace Tr_ω on $S_{1,\infty}$, we have

$$\mathrm{Tr}_{\omega}(|\mathbf{C}_{\phi,x}|^d) = C_d \int_{\mathbb{S}^{d-1}} \tau_{\theta}(\big|\sum_{1 \leq k \leq d} \partial_{s_k} \phi \; \partial_k x \big|^d) ds.$$

Here the integral over \mathbb{S}^{d-1} is taken with respect to the rotation-invariant measure ds on \mathbb{S}^{d-1} .

• We view $\mathcal{M} \rtimes_{\alpha,\sigma} G$ as a right Hilbert w* module on \mathcal{M} with the inner product

$$\langle x,y\rangle = T(x^*y).$$

• $\mathcal{M} \rtimes_{\alpha,\sigma} G$ can be embedded as a submodule of $\mathcal{C}_{I}(\mathcal{M}) = \bigoplus_{i \in I} \mathcal{M}$ for an index sets *I*, i.e., there exist right module map $u = (u_i)_{i \in I}$ such that for $x, y \in \mathcal{M} \rtimes_{\alpha,\sigma} G$, we have

$$\langle x, y \rangle = \langle u(x), u(y) \rangle$$

= $\sum_{i \in I} u_i(x)^* u_i(y)$ (9)

Proof of Theorem 10: Basic ingredients

• For a element $x \in L_p(\mathcal{R})$, we define the Fourier transform of x by

$$\widehat{x}(s) = T(\lambda_{\sigma}(s)^*x).$$

• With this Fourier coefficient, we can write x formally as

$$x = \int_{\mathbb{R}^d} \lambda_\sigma(s) \pi_lpha(\widehat{x}(s)) ds.$$

• For instance, if we have $f \in L_1(G, \mathcal{M}) + L_\infty(G, \mathcal{M})$, then we can calculate

$$\lambda_{\sigma} \times \pi_{\alpha}(f)(s) = f(s).$$

We use the complex interpolation to obtain the desired estimate. Indeed, we have the following three endpoint cases.

• Let a > 0, b > 0 and a + b < 1. If $x \in B^{a+b}_{\infty,\infty}(\mathcal{R})$, then $I^a \mathbf{C}_{\phi,x} I^b \in S_{\infty}(L_2(\mathcal{R}))$ and

$$\|I^{a}\mathbf{C}_{\phi,x}I^{b}\|_{\mathcal{S}_{\infty}} \lesssim_{d,a,b} \|x\|_{B^{a+b}_{\infty,\infty}}.$$

• Let
$$a > -\frac{d}{2}$$
, $b > -\frac{d}{2}$ and $a + b + d < 1$. If $x \in B^{a+b+d}_{1,1}(\mathcal{R})$, then $I^a \mathbf{C}_{\phi,x} I^b \in S_1$ and

$$\| I^{a} \mathbf{C}_{\phi, x} I^{b} \|_{S_{1}} \lesssim_{d, a, b} \| x \|_{B^{a+b+d}_{1, 1}}.$$
 (10)

Proof of Theorem 10: Upper bounds estimate

• Let
$$a, b > -\frac{d}{2}$$
 and $a + b + \frac{d}{2} < 1$. If $x \in B^{a+b+\frac{d}{2}}_{2,2}(\mathcal{R})$, then $I^a \mathbf{C}_{\phi,x} I^b \in S_2$ and

$$\left\|I^{a}\mathsf{C}_{\phi,x}I^{b}\right\|_{S_{2}} \lesssim_{d,a,b} \left\|x\right\|_{B^{a+b+\frac{d}{2}}_{2,2}}.$$

Theorem 13

Let
$$1 \leq p \leq \infty$$
, $a + b + \frac{d}{p} < 1$ and $a, b > \max(-\frac{d}{p}, -\frac{d}{2})$. If
 $x \in B_{p,p}^{a+b+\frac{d}{p}}(\mathcal{R})$, then $I^{a}\mathbf{C}_{\phi,x}I^{b}$ belongs to $B_{p,p}^{a+b+\frac{d}{p}}(\mathcal{R})$ and
 $\|I^{a}\mathbf{C}_{\phi,x}I^{b}\|_{S_{p}} \lesssim_{d,p,a,b} \|x\|_{B_{p,p}^{a+b+\frac{d}{p}}}.$

ヨト イヨト

October 9, 2024

æ

• We end this part with a generalization to higher commutators. Namely, let $\phi_1, \cdots, \phi_N \in C^{\infty}(\mathbb{S}^{d-1})$ be N non-constant functions. Define

$$\mathbf{C}_{\phi_1, \cdots, \phi_N, x} = [T_{\phi_N}, \dots, [T_{\phi_1}, M_x] \dots]$$
(11)

October 9, 2024

37 / 43

• Theorem 13 extends to higher commutators.

• This part is devoted to the converse results of those in the previous part.

• We need the following nondegeneracy condition:

$$\forall s \in \mathbb{R}^d \setminus \{0\} \ \exists t \in \mathbb{R}^d \setminus \{0\} \text{ such that } \prod_{i=1}^N (\phi_i(s) - \phi_i(t)) \neq 0.$$
 (12)

For N = 1, this condition means that ϕ_1 is not a constant function.

October 9, 2024

Proof of Theorem 10: Lower bounds estimate

• Denote $\gamma = -(a + a_1 + b + b_1 + d)$ and set

$$\omega(s) = |s|^{\gamma} \int_{\mathbb{R}^d} \prod_{i=1}^N |\phi_i(s+t) - \phi_i(t)|^{2k} |s+t|^{a+a_1} |t|^{b+b_1} dt.$$
(13)

• Suppose that $\phi_1, ..., \phi_N$ satisfy condition 12, we can show that ω is a homogeneous function of order 0 and never vanishes for $s \neq 0$.

• ω is a Fourier multiplier on $B_{1,1}^r(\mathcal{R})$ for some r. By a Tauberian result, we see that ω^{-1} is a Fourier multiplier on $B_{p,p}^a(\mathcal{R})$ for any $a \in \mathbb{R}$.

Proof of Theorem 10: Lower bounds estimate

• For $k \geq 1$ set

$$\mathbf{C}_{N,k,y} = \mathbf{C}_{\underbrace{\phi_1,...,\phi_N}_{k \text{ tuple}},\underbrace{\bar{\phi}_1,...\bar{\phi}_N}_{k-1 \text{ tuple}},y},$$

• By the duality, we have

$$\langle I^{a}C_{\phi_{1},\ldots,\phi_{N},x}I^{b}, I^{a_{1}}\mathbf{C}_{N,k,y}I^{b_{1}}\rangle = \langle I^{-\gamma}T_{\omega}(x),y\rangle.$$

Thus,

$$\|T_{\omega}(x)\|_{B^{a+b+\frac{d}{p}}_{p,p}} \leq C \|I^{a}\mathbf{C}_{\phi_{1},\ldots,\phi_{N},x}I^{b}\|_{S_{p}}.$$

• Given $f \in \mathcal{S}(\mathbb{R}^d)$ and $\rho \in S^m(\mathbb{R}^d; \mathcal{S}(\mathbb{R}^d_{\theta}))$, we set

$$P_
ho(\lambda_ heta(f)) = \int_{\mathbb{R}^d} f(\xi)
ho(\xi) \lambda_ heta(\xi) d\xi.$$

The operator P_{ρ} is called the pseudo-differential operator of symbol ρ .

October 9, 2024

• We replace T_{ϕ} by another Fourier multiplier $T_{\widetilde{\phi}}$ whose symbol is smooth on the whole \mathbb{R}^d .

• We put

$$A = \frac{1}{2\pi i} \sum_{1 \le k \le d} T_{|\xi|\partial_{\xi_k}\widetilde{\phi}} M_{\partial_k x}.$$
 (14)

We are going to reduce the computation of $\operatorname{Tr}_{\omega}(|\mathbf{C}_{\phi,x}|^d)$ to that of $\operatorname{Tr}_{\omega}(|A|^d(1+\Delta)^{-\frac{d}{2}})$.

The trace formula

• Compute the symbol of $\mathbf{C}_{\widetilde{\phi}, \mathsf{x}} - AJ^{-1}$ is of order -2. We see that

$$M_{\mathcal{Y}}\mathbf{C}_{\widetilde{\phi},x}-M_{\mathcal{Y}}AJ^{-1}\in S_{\frac{d}{2},\infty}.$$

Then we have

$$|M_{\mathcal{Y}}\mathbf{C}_{\phi,x}|^d - |M_{\mathcal{Y}}A|^d J^{-d} \in S_1.$$

• We have

$$\operatorname{Tr}_{\omega}(|M_{\mathcal{Y}}\mathbf{C}_{\phi,x}|^{d}) = \operatorname{Tr}_{\omega}(|M_{\mathcal{Y}}A|^{d}J^{-d}).$$

So we can apply the trace formula in [McDonald, Sukochev and Zanin, Math. Ann. 2018] to deduce our trace formula.

October 9, 2024