Schatten properties of commutators on twisted crossed product

ZENG Kai

Analysis Seminar

Harbin Institute of Technology, October 9, 2024

ZENG Kai Scha[t](#page-1-0)ten properties of commutators on twiste \sim [Oc](#page-0-0)t[obe](#page-0-0)[r](#page-42-0) [9,](#page-0-0) [20](#page-42-0)[24](#page-0-0) \sim 1/43

 200

• Given a von Neumann algebra M and a locally compact group, suppose that there exists an action α of G on $\mathcal M$, assume invariably that α is strong $*$ -cotinuous, that is, for each fixed $x \in M$, the map $s \mapsto \alpha_s(x)$ is strong ∗-continuous.

Definition 1

A twisted dynamical system is a quadruple (M, G, α, σ) with a twisted action (α, σ) of G on M. Here the two functions $\alpha : G \to \text{Aut}(\mathcal{M})$ and $\sigma : G \times G \rightarrow \mathcal{U}(\mathcal{M})$ satisfy the following conditions: for any s, t, $r \in G$ $\mathbf{0} \quad \alpha_s \circ \alpha_t = \text{Ad}_{\sigma(s,t)} \circ \alpha_{st};$

$$
\Phi \quad \sigma(r,s)\sigma(rs,t) = \alpha_r(\sigma(s,t))\sigma(r,st);
$$

 $\mathbf{\Phi} \quad \sigma(e,s) = \sigma(s,e) = 1.$

目

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Definition 2

•

A covariant homomorphism of (M, G, α, σ) is a pair (ρ, u) of a normal representation ρ of M on a Hilbert space K, and a function $u : G \to \mathcal{U}(K)$ such that

$$
u(s)u(t)=\rho(\sigma(s,t))u(st), s, t\in G;
$$

$$
\Phi \quad \rho(\alpha_s(a))=u(s)\rho(a)u(s)^*,\ a\in \mathcal{M},\ s\in \mathcal{G}.
$$

$$
(\pi_{\alpha}(a)\xi)(t) = \alpha_{t^{-1}}(a)\xi(t), \quad \xi \in L_2(G, H), t \in G,
$$

$$
(\lambda_{\sigma}(s)\xi)(t) = \sigma(t^{-1}, s)\xi(s^{-1}t), \quad \xi \in L_2(G, H), s, t \in G.
$$

メイラメ

Definition 3

The von Neumann algebra generated by $\pi_{\alpha}(\mathcal{M})$ and $\lambda_{\sigma}(G)$ on $L_2(G, H)$ is called the twisted crossed product of M by (α, σ) and is denoted by $M \rtimes_{\alpha,\sigma} G$.

• set

$$
\mathcal{R}=\mathcal{M}\rtimes_{\alpha,\sigma}\mathbb{R}^d\quad\text{and}\quad\mathcal{N}=\mathcal{M}\overline{\otimes}B(L_2(\mathbb{R}^d)).
$$

 200

• For an element $f \in K(G, \mathcal{M})$, we put $\lambda_{\sigma} \times \pi_{\alpha}(f)$ to be

$$
\lambda_{\sigma}\times \pi_{\alpha}(f)=\int_{G}\lambda(s)\pi_{\alpha}(f(s))ds.
$$

Proposition 4

$$
(\lambda_\sigma \times \pi_\alpha(K(G,\mathcal{M})))'' = span{\lambda_\sigma(G) \cup \pi_\alpha(\mathcal{M})\}'' = \mathcal{M} \rtimes_{\alpha,\sigma} G
$$

化重新润滑脂

4 D F

 298

æ

Preliminaries: Dual trace

• For a given weight τ on \mathcal{M} , it is said to be semi-finite if

$$
\mathfrak{p}_{\tau} = \{ x \in \mathcal{M}_+ : \tau(x) < +\infty \}
$$

generates \mathcal{M} ; while

$$
\mathfrak{n}_\tau = \{x \in \mathcal{M} : x^*x \in \mathfrak{p}_\tau\},
$$

$$
\mathfrak{m}_{\tau} = \{\sum_{i=1}^n y_i^* x_i : x_1, ..., x_n, y_1, ..., y_n \in \mathfrak{n}_{\tau}\}.
$$

 n_{τ} is a left ideal of M, and $m_{\tau} \cap M_{+} = \mathfrak{p}_{\tau}$. For a fixed weight τ on M. The set

$$
N_{\tau} = \{x \in \mathcal{M} : \tau(x^*x) = 0\}
$$

is a left ideal of M contained in n_{τ} .

• Define a canonical quotient map $\eta_{\tau} : \mathfrak{n}_{\tau} \to \mathfrak{n}_{\tau}/N_{\varphi}$ by:

$$
\eta_\tau(x)=x+N_\tau\in\mathfrak{n}_\tau/N_\tau.
$$

Define a sesquilinear functional:

$$
\langle \eta_\tau(x), \eta_\tau(y) \rangle = \tau(y^*x)
$$

on $\mathfrak{n}_{\tau}/N_{\tau}$.

• Take the completion of n_τ/N_τ with respect to this sesquilinear functional and denote it by \mathfrak{H}_{τ} .

医心室 医心室

• Define a representation π_{τ} of M on \mathfrak{H}_{τ} by

$$
\pi_{\tau}(a)\eta_{\tau}(x)=\eta_{\tau}(ax).
$$

- The triplet $\{\pi_{\tau}, \mathfrak{H}_{\tau}, \eta_{\tau}\}\$ is called the semi-cyclic representation of M.
- Let $K(G, M)$ be the space of all σ -strongly- $*$ continuous M valued functions on G with compact support.

• For $x, y \in K(G, \mathcal{M})$ define

$$
x *_{\sigma} y(s) = \int_{G} \sigma(s^{-1}, s)^{*} \sigma(s^{-1}, st) \alpha_{t}(x(st)) \sigma(t, t^{-1}) y(t^{-1}) dt,
$$

$$
x^{\#}(s) = \delta_{G}(s)^{-1} \sigma(s^{-1}, s)^{*} \alpha_{s^{-1}}(x(s^{-1}))^{*}.
$$

and

$$
\langle x,y\rangle_{\mathcal{M}}=\int_G y(t)^*x(t)dt.
$$

Where δ_G is the modular function of G.

 \rightarrow \equiv \rightarrow

 \leftarrow \Box

造

 QQ

• We define

$$
(x \cdot a)(s) = x(s)a,
$$

\n
$$
(a \cdot x)(s) = \alpha_s^{-1}(a)x(s),
$$

for $x \in K(G, \mathcal{M})$, $a \in \mathcal{M}$, then $K(G, \mathcal{M})$ is a right module over \mathcal{M} .

• Set

$$
\mathfrak{b}_{\tau} = \mathcal{K}(\mathcal{G},\mathcal{M}) \cdot \mathfrak{n}_{\tau} = \text{span}\{x \cdot a : x \in \mathcal{K}(\mathcal{G},\mathcal{M}), a \in \mathfrak{n}_{\tau}\}.
$$

 \leftarrow \Box

 $\leftarrow \equiv +$ - 2 QQ

• Define the map $\tilde{\eta}_{\tau}: x \in \mathfrak{b}_{\tau} \mapsto \tilde{\eta}_{\tau}(x) \in L_2(G, \mathfrak{H}_{\tau})$ by

$$
\tilde{\eta}_{\tau}(x)(s) = \eta_{\tau}(\sigma(s^{-1}, s)x(s))
$$

for $x \in \mathfrak{b}_{\tau}$ and $s \in G$.

 $\bullet\ \tilde{\mathfrak{A}}_\tau=\tilde{\eta}_\tau(\mathfrak{b}_\tau\cap\mathfrak{b}^\#_\tau)$ is a left Hilbert algebra with respect to the following operations:

$$
\tilde{\eta}_{\tau}(x)\tilde{\eta}_{\tau}(y) = \tilde{\eta}_{\tau}(x *_{\sigma} y), x, y \in \mathfrak{b}_{\tau} \cap \mathfrak{b}_{\tau}^{\#},
$$

$$
\tilde{\eta}_{\tau}(x)^{\#} = \tilde{\eta}_{\tau}(x^{\#}).
$$

• Given a normal, semi-finite and faithful weight τ on \mathcal{M} , the normal, semi-finite and faithful weight $\tilde{\tau}$ associated with the left Hilbert algebra $\tilde{\mathfrak{A}}_{\tau}$ is called the dual weight of τ , namely, the weight is in the following form for $x\in\mathcal{R}_\ell(\tilde{\mathfrak{A}}_\tau)_+$:

$$
\tilde{\tau}(x) = \begin{cases} ||\xi||^2 & \text{if } x = \pi_{\ell}(\xi)^* \pi_{\ell}(\xi), \ \xi \in \tilde{\mathfrak{A}}_{\tau} \\ +\infty & \text{otherwise.} \end{cases}
$$

• By the Plancherel formula, the map $f \mapsto \lambda_\sigma \times \pi_\alpha(f)$ establishes an isometry from $L_2(\mathbb{R}^d, L_2(\mathcal{M}))$ onto $L_2(\mathcal{R})$.

Theorem 5

For $x \in \mathfrak{b}_\tau$.

$$
\tilde{\tau}((\lambda_{\sigma}\times \pi_{\alpha}(x))^*(\lambda_{\sigma}\times \pi_{\alpha}(x)))=\tau((x^{\#}*x)(e)).
$$

In addition, there exists uniquely an operator valued weight T from $M \rtimes_{\alpha,\sigma} G$ onto $\pi_{\alpha}(M)$ such that for $x \in (M \rtimes_{\alpha,\sigma} G)_+$,

$$
\tilde{\tau}(x)=\tau\circ\pi_{\alpha}^{-1}(T(x))
$$

for any faithful semi-finite normal weight τ on M.

 Ω

• Suppose the group G is abelian, the action α admits a dual action $\widehat{\alpha}$ of the dual group G on the twisted crossed product $M \rtimes_{\alpha,\sigma} G$ as follows, let ω be the unitary representation of \widehat{G} on $L_2(G, H)$ in the following form:

$$
(w(\gamma)\xi)(h)=\overline{\gamma(h)}\xi(h), \quad \xi\in L_2(G,H),\ h\in G,\ \gamma\in\widehat{G}.
$$

Then the dual action $\hat{\alpha}$ is implemented by w:

$$
\widehat{\alpha}_{\gamma}(x) = w(\gamma) x w(\gamma)^*, \quad x \in \mathcal{M} \rtimes_{\alpha,\sigma} G, \ \gamma \in \widehat{G}.\tag{1}
$$

$$
\widehat{\alpha}_{\gamma}(\pi_{\alpha}(x)) = \pi_{\alpha}(x), \quad \widehat{\alpha}_{\gamma}(\lambda_{\sigma}(g)) = \overline{\gamma(g)}\lambda_{\sigma}(g), \quad x \in \mathcal{M}, \ g \in \mathcal{G}, \ \gamma \in \widehat{\mathcal{G}}.
$$
\n(2)

•

つひひ

•

Definition 6

The action $\hat{\alpha}$ defined in [\(1\)](#page-13-1) and [\(2\)](#page-13-2) is called the dual action of \hat{G} on $M \rtimes_{\alpha,\sigma} G$ and $\{M \rtimes_{\alpha,\sigma} G, \widetilde{G}, \alpha\}$ is called the dual twisted covariant system.

•

Theorem 7

The dual action $\widehat{\alpha}$ of \widehat{G} on $M \rtimes_{\alpha,\sigma} G$ has the following properties:
 A faithful weight $\tilde{\tau}$ on $M \rtimes_{\alpha,\sigma} G$ is dual to a faithful weight τ

- A faithful weight $\tilde{\tau}$ on $M \rtimes_{\alpha,\sigma} G$ is dual to a faithful weight τ on M if and only if $\tilde{\tau}$ is $\hat{\alpha}$ invariant.
- **(iii)** Considering the second crossed product $M \rtimes_{\alpha,\sigma} G \rtimes_{\widehat{\alpha}} \widehat{G}$, there exists a unique isomorphism Φ of $M \rtimes_{\alpha,\sigma} G \rtimes_{\widehat{\alpha}} \widehat{G}$ onto $M \overline{\otimes} B(L_2(G))$.

 QQ

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

 \bullet $\widehat{\alpha}_{\gamma}$ is $\tilde{\tau}$ invariant, $\widehat{\alpha}_{\gamma}$ extends to an isometric action $\widehat{\alpha}_{\gamma}^{(\bm{\rho})}$ on $I_{\gamma}(M\rtimes_{\gamma}G)$ $L_p(\mathcal{M} \rtimes_{\alpha,\sigma} G)$.

 \bullet We can define the convolution between a function $f\in L_1(\mathbb{R}^d)$ and an element $x \in L_p(\mathcal{R})$.

$$
f * x = \int_{\mathbb{R}^d} f(s) \widehat{\alpha}_{-s}^{(p)}(x) ds.
$$
 (3)

• \mathcal{M}^{∞} is the smooth subalgebra with $x \in \mathcal{M}$ such that the map $s \mapsto \alpha_s(x)$ is smooth.

• The class of Schwartz functions on R is defined as the image of the Schwartz class $\mathcal{S}(\mathbb{R}^d,\mathcal{M}^{\infty})$ under $\lambda_{\sigma}\times \pi_{\alpha}.$ That is,

$$
S(\mathcal{R}) = \{\lambda_{\sigma} \times \pi_{\alpha}(f) : f \in S(\mathbb{R}^d, \mathcal{M}^{\infty})\}.
$$
 (4)

• The space of tempered distributions on $\mathcal R$ is the topological dual space $\mathcal{S}'(\mathcal{R})$ of $\mathcal{S}(\mathcal{R})$, i.e., the space of continuous linear functionals on $\mathcal{S}(\mathcal{R})$.

Preliminaries: Derivatives on twisted crossed product

• For
$$
x = \lambda_{\sigma} \times \pi_{\alpha}(f) \in \mathcal{S}(\mathcal{R})
$$
, $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$, we set

$$
\partial^{\alpha} x = \int_{\mathbb{R}^d} s^{\alpha} \lambda_{\sigma}(s) \pi_{\alpha}(f(s)) ds,
$$

where $s^{\alpha} = s_1^{\alpha_1} \cdots s_d^{\alpha_d}$.

 \bullet ∂^{α} x belongs to $\mathcal{S}(\mathcal{R})$ too. By duality, these partial derivations extend to all distributions.

 QQ

 \bullet Let $\Delta = \partial_1^2 + \cdots + \partial_d^2$ be the Laplacian. We will frequently use the Bessel and Riesz operators $(1+\Delta)^{\frac{1}{2}}$ and $\Delta^{\frac{1}{2}}$ which will be abbreviated as J and I respectively. More generally, for $a\in\mathbb{R}$, define $J^a=(1+\Delta)^{\frac{a}{2}}$ and $I^a = \Delta^{\frac{a}{2}}$.

• The Bessel potential J^a operates on $\mathcal{S}'(\mathcal{R})$. While for the Riesz potential *I^a*. Let

$$
\mathcal{S}_0(\mathbb{R}^d,\mathcal{M}^\infty)=\{x:\widehat{\partial^\alpha x}(0)=0\quad\forall\;\alpha\in\mathbb{N}_0^d\}.
$$

Then I^a operates on $\mathcal{S}_0(\mathcal R)=\lambda_\sigma\times \pi_\alpha\big(\mathcal{S}_0(\mathbb R^d,\mathcal{M}^\infty)\big)$, and by duality, on the dual space $\mathcal{S}'_0(\mathbb{R}^d_\theta)$.

• We denote $\check{\phi}$ as the inverse Fourier transform of ϕ . Now assume that $\check{\phi} \in L_1(\mathbb{R}^d).$ Define

$$
\check{\phi} * x = \int_{\mathbb{R}^d} \check{\phi}(t) \widehat{\alpha}_{-t}(x) dt.
$$
 (5)

 \bullet For $x=\lambda_{\sigma}\times \pi_{\alpha}(f)$ with $f\in \mathcal{S}(\mathbb{R}^d,\mathcal{M}^{\infty})$, we have for the Fourier multiplier T_{ϕ} ,

$$
T_{\phi}(x) = \lambda_{\sigma} \times \pi_{\alpha}(\phi f) = \check{\phi} * x.
$$

• Given $x \in \mathcal{R}$, denote by $M_x : y \mapsto xy$ the left multiplication on $L_2(\mathcal{R})$. Then M_x is a bounded linear operator on $L_2(\mathcal{R})$. We now define the commutator

$$
\mathbf{C}_{\phi,x}=[T_{\phi},M_{x}].
$$

This is a so-called Calderón-Zygmund transform on \mathcal{R} , it is bounded on $L_2(\mathcal{R})$.

 Ω

 \bullet The *homogeneous Sobolev space* $\dot{W}^m_p(\mathcal{R})$ consists of those $x\in\mathcal{S}'(\mathcal{R})$ such that every partial derivative of order m is in $L_p(\mathcal{R})$, equipped with the seminorm:

$$
||x||_{\dot{W}_{p}^{m}}=\Big(\sum_{|\alpha|=m}||\partial^{\alpha}x||_{p}\Big)^{\frac{1}{p}}.
$$

 Ω

 \bullet Besov spaces are defined by using a fixed test function $\varphi \in \mathcal{S}(\mathbb{R}^d)$ such that

$$
\begin{cases}\n\sup p \varphi \subset \{\xi : 2^{-1} \le |\xi| \le 2\}, \\
\varphi > 0 \text{ on } \{\xi : 2^{-1} < |\xi| < 2\}, \\
\sum_{k \in \mathbb{Z}} \varphi(2^{-k}\xi) = 1, \ \xi \neq 0.\n\end{cases}
$$
\n(6)

 $\rightarrow 4 \equiv 12 \equiv 12.5$

The sequence $\{\varphi(2^{-k} \cdot)\}_{k \in \mathbb{Z}}$ is a Littlewood-Paley decomposition of \mathbb{R}^d , modulo constant functions. Denote by φ_k the inverse Fourier transform of $\varphi(2^{-k}\cdot).$

Definition 8

Let $1\leq \rho,q\leq \infty$ and $a\in \mathbb{R}.$ The *homogeneous Besov space* on \mathbb{R}^d_θ is defined by

$$
B_{p,q}^a(\mathcal{R})=\big\{x\in L_p(\mathcal{R}): \|x\|_{B_{p,q}^a}<\infty\big\},\
$$

where

$$
||x||_{B_{p,q}^a} = \left(\sum_{k \in \mathbb{Z}} 2^{qka} ||\varphi_k * x||_p^q\right)^{\frac{1}{q}}.
$$

Let $B^{\mathsf{a}}_{\rho, c_0}(\mathcal{R})$ be the subspace of $B^{\mathsf{a}}_{\rho, \infty}(\mathcal{R})$ consisting of all x such that $2^{kr} \|\varphi_k * x\|_p \to 0$ as $|k| \to \infty$.

Function spaces on twisted crossed product

- Denote by $A(\widehat{G})$ the Fourier algebra of \widehat{G} which is the image of $L_1(G)$ under the Fourier transform.
- For an action β of G on M, with a function $f \in A(\widehat{G})$, define

$$
\beta_f(x) = \int_G \check{f}(t)\beta_{-}t(x)dt.
$$

• For each $x \in \mathcal{M}$, putting

$$
I(x) = \{f \in A(\widehat{G}) : \beta_f(x) = 0\}
$$

• The Arveson's β - spectrum $\sigma_{\beta}(x)$ is defined by

$$
\sigma_{\beta}(x)=\{p\in \widehat{G}:f(p)=0,f\in I(x)\}.
$$

つへへ

• Define $A(\mathcal{R}) = \{x \in \mathcal{R} \cap L_1(\mathcal{R}) : \sigma_{\widehat{\alpha}}(x) \text{ is compact}\}.$

• $\mathcal{A}(\mathcal{R})$ is a *-algebra.

 \bullet $\mathcal{A}(\mathcal{R})$ is dense in $B^{a}_{p,q}(\mathcal{R})$ for $1\leq p<\infty$ and $1\leq q<\infty.$

 $\begin{array}{cccccccccccccc} \star & \star & \equiv & \star & \star & \equiv & \star & \circ & \circ & \circ & \circ \end{array}$

 \bullet $\mathcal{A}(\mathcal{R})$ is norm-dense in $\mathcal{W}^{m}_{\rho}(\mathcal{R})$ when $m\geq 0$ and $1\leq \rho<\infty;$ the density of ${\mathcal A}({\mathcal R})$ in $\dot{W}^m_p({\mathcal R})$ holds only when $m\geq 0$ and $1< p<\infty$

• The dual space of $B^a_{p,q}(\mathcal{R})$ coincides isomorphically with $B^{-a}_{p',q}$ $\mathcal{C}_{p',q'}^{-a}(\mathcal{R})$ for $1 \leq p < \infty$ and $1 \leq q < \infty$

 \bullet J^b and I^b are isomorphisms between $B^a_{p,q}(\mathcal R)$ and $B^{a-b}_{p,q}(\mathcal R).$

E ▶ K E ▶ - E → 19 Q @

• The first results [Mcdonald, Sukochev and Xiong, Commun. Math. Phys. 2019] concerning quantum differentiability in the noncommutative euclidean space are the characterizations of the Schatten $S_{d,\infty}$ properties of

$$
dx := \sum_{j=1}^d \gamma_j \otimes dx_j \tag{7}
$$

4 日本 → 포 → → 포 → → 포 → → 9 Q O

on noncommutative euclidean space $\mathbb{R}^d_\theta.$

 \bullet γ_j 's denote the d -dimensional euclidean gamma matrices, and $\vec{a}x_j:=\mathrm{i}[R_j,M_x],$ where for $1\leq j\leq d,$ $R_j=\mathcal{T}_\phi$ for $\phi(s)=\frac{s_j}{|s|}$ denote the quantum counterpart of Riesz transforms on $\mathbb{R}^d_\theta.$

• Our research in the second part is motivated by the following:

Theorem 9 (Mcdonald, Sukochev and Xiong, 2019)

 dx_i has bounded extension in $S_{d,\infty}$ for every $1 \leq i \leq d$ iff x belongs to the homogeneous Sobolev space $\dot{W}^1_d(\mathbb{R}^d_\theta)$.

• One related result is the formula on Dixmier Trace. For any continuous normalised trace tr on $S_{1,\infty}$ we have

$$
\operatorname{Tr}_{\omega}(|dx|^{d}) = c_{d} \left\| \sum_{j=1}^{d} \gamma_{j} \otimes (\partial_{j} x - s_{j} \sum_{k=1}^{d} s_{k} \partial_{k} x) \right\|_{d}^{d}.
$$
 (8)

 Ω

• We aim to extend the aforementioned results to a more general setting. Here are our results.

Theorem 10

Let $d < p < \infty$. If $x \in B^{\frac{d}{p}}_{p, p}(\mathcal{R})$, then $\mathbf{C}_{\phi, \mathsf{x}}$ has a bounded extension in S_p and

$$
\left\| \mathbf{C}_{\phi, x} \right\|_{S_p} \lesssim_{d, p} \big[\sup_{s \in \mathbb{S}^{d-1}} |\phi(s)| + \sup_{s \in \mathbb{S}^{d-1}} |\nabla \phi(s)| \big] \left\| x \right\|_{B^{\frac{d}{p}}_{p, p}}.
$$

Conversely, assume additionally that ϕ is not constant. If $x \in \mathcal{R}$ and $\mathbf{C}_{\phi,\mathsf{x}}\in\mathcal{S}_\mathsf{p},$ then $\mathsf{x}\in\mathcal{B}_{\mathsf{p},\mathsf{p}}^{\frac{d}{p}}(\mathcal{R})$ and

$$
\big\|x\big\|_{\mathcal{B}_{\rho,\rho}^{\frac{d}{p}}}\lesssim_{d,\rho} \big[\sup_{s\in \mathbb{S}^{d-1}}|\phi(s)|+\sup_{s\in \mathbb{S}^{d-1}}|\left.\nabla\phi(s)\right|\big]\big\|\mathbf{C}_{\phi,x}\big\|_{\mathcal{S}_{\rho}}.
$$

Main results: Application to noncommutative Euclidean space

• For the critical case, i.e., the $S_{d,\infty}$ properties of $\mathbf{C}_{\phi,x}$ for $p \leq d$.

Theorem 11

If $x\in \dot{W}^1_d(\mathbb{R}^d_\theta)$, then $\mathsf{C}_{\phi,x}$ has bounded extension in $S_{d,\infty}.$

 QQ

Main results: Applications to noncommutative Euclidean space

• The following trace formula is new even for classical setting.

Theorem 12

Let $x\in \dot{W}^{1}_{d}(\mathbb{R}^{d}_{\theta}).$ Then for every continuous normalised trace Tr_{ω} on $S_{1,\infty}$, we have

$$
\mathrm{Tr}_{\omega}(|\mathbf{C}_{\phi,\mathsf{x}}|^d)=C_d\int_{\mathbb{S}^{d-1}}\tau_\theta(|\sum_{1\leq k\leq d}\partial_{s_k}\phi\;\partial_k\mathsf{x}|^d)ds.
$$

Here the integral over \mathbb{S}^{d-1} is taken with respect to the rotation-invariant measure ds on \mathbb{S}^{d-1} .

KHT → KE → KE → E → YOU → KE

• We view $\mathcal{M} \rtimes_{\alpha,\sigma} G$ as a right Hilbert w^{*} module on \mathcal{M} with the inner product

$$
\langle x,y\rangle =T(x^*y).
$$

 \bullet $\mathcal M\rtimes_{\alpha,\sigma}\mathcal G$ can be embedded as a submodule of $\mathcal C_l(\mathcal M)=\bigoplus_{i\in I}\mathcal M$ for an index sets I, i.e., there exist right module map $u = (u_i)_{i \in I}$ such that for $x, y \in \mathcal{M} \rtimes_{\alpha, \sigma} G$, we have

$$
\langle x, y \rangle = \langle u(x), u(y) \rangle
$$

=
$$
\sum_{i \in I} u_i(x)^* u_i(y)
$$
 (9)

Proof of Theorem [10:](#page-29-1) Basic ingredients

• For a element $x \in L_p(\mathcal{R})$, we define the Fourier transform of x by

$$
\widehat{x}(s) = \mathcal{T}(\lambda_{\sigma}(s)^{*}x).
$$

• With this Fourier coefficient, we can write x formally as

$$
x=\int_{\mathbb{R}^d}\lambda_\sigma(s)\pi_\alpha(\widehat{x}(s))ds.
$$

• For instance, if we have $f \in L_1(G, \mathcal{M}) + L_\infty(G, \mathcal{M})$, then we can calculate

$$
\widehat{\lambda_{\sigma}\times \pi_{\alpha}(f)}(s)=f(s).
$$

We use the complex interpolation to obtain the desired estimate. Indeed, we have the following three endpoint cases.

 \bullet Let $a>0, b>0$ and $a+b< 1$. If $x\in B^{a+b}_{\infty,\infty}(\mathcal{R})$, then $I^{\mathsf{a}} \mathsf{C}_{\phi, \mathsf{x}} I^{\mathsf{b}} \in \mathsf{S}_\infty(L_2(\mathcal{R}))$ and

$$
\|I^a\mathbf{C}_{\phi,x}I^b\|_{\mathcal{S}_{\infty}}\lesssim_{d,a,b}\|x\|_{\mathcal{B}^{a+b}_{\infty,\infty}}.
$$

• Let
$$
a > -\frac{d}{2}
$$
, $b > -\frac{d}{2}$ and $a + b + d < 1$. If $x \in B_{1,1}^{a+b+d}(\mathcal{R})$, then $l^a \mathbf{C}_{\phi,x} l^b \in S_1$ and

$$
||I^{a} \mathbf{C}_{\phi, x} I^{b}||_{S_{1}} \lesssim_{d, a, b} ||x||_{B_{1,1}^{a+b+d}}.
$$
 (10)

 Ω

Proof of Theorem [10:](#page-29-1) Upper bounds estimate

• Let
$$
a, b > -\frac{d}{2}
$$
 and $a + b + \frac{d}{2} < 1$. If $x \in B_{2,2}^{a+b+\frac{d}{2}}(\mathcal{R})$, then $l^a \mathbf{C}_{\phi,x} l^b \in S_2$ and

$$
\left\|I^a \mathbf{C}_{\phi,x} I^b\right\|_{S_2} \lesssim_{d,a,b} \left\|x\right\|_{B^{a+b+\frac{d}{2}}_{2,2}}.
$$

Theorem 13

Let
$$
1 \le p \le \infty
$$
, $a + b + \frac{d}{p} < 1$ and $a, b > \max(-\frac{d}{p}, -\frac{d}{2})$. If
\n $x \in B_{p,p}^{a+b+\frac{d}{p}}(\mathcal{R})$, then $l^a \mathbf{C}_{\phi,x} l^b$ belongs to $B_{p,p}^{a+b+\frac{d}{p}}(\mathcal{R})$ and
\n
$$
||l^a \mathbf{C}_{\phi,x} l^b||_{S_p} \lesssim_{d,p,a,b} ||x||_{B_{p,p}^{a+b+\frac{d}{p}}}.
$$

4 0 8 \leftarrow \leftarrow \leftarrow

医电子测定术 医

 298

• We end this part with a generalization to higher commutators. Namely, let $\phi_1,\cdots,\phi_N\in C^\infty(\mathbb{S}^{d-1})$ be N non-constant functions. Define

$$
\mathbf{C}_{\phi_1,\cdots,\phi_N,x} = [T_{\phi_N},..., [T_{\phi_1}, M_x]...]
$$
(11)

 Ω

• Theorem [13](#page-35-1) extends to higher commutators.

• This part is devoted to the converse results of those in the previous part.

• We need the following nondegeneracy condition:

$$
\forall s \in \mathbb{R}^d \setminus \{0\} \ \exists \ t \in \mathbb{R}^d \setminus \{0\} \ \text{ such that } \ \prod_{i=1}^N (\phi_i(s) - \phi_i(t)) \neq 0. \tag{12}
$$

For $N = 1$, this condition means that ϕ_1 is not a constant function.

つへへ

Proof of Theorem [10:](#page-29-1) Lower bounds estimate

• Denote $\gamma = -(a + a_1 + b + b_1 + d)$ and set

$$
\omega(s) = |s|^\gamma \int_{\mathbb{R}^d} \prod_{i=1}^N |\phi_i(s+t) - \phi_i(t)|^{2k} |s+t|^{a+a_1} |t|^{b+b_1} dt. \tag{13}
$$

• Suppose that $\phi_1, ..., \phi_N$ satisfy condition [12,](#page-37-1) we can show that ω is a homogeneous function of order 0 and never vanishes for $s \neq 0$.

 \bullet ω is a Fourier multiplier on $B^r_{1,1}(\mathcal{R}))$ for some $r.$ By a Tauberian result, we see that ω^{-1} is a Fourier multiplier on $B^a_{\rho,\rho}(\mathcal R)$ for any $a\in\mathbb R.$

Proof of Theorem [10:](#page-29-1) Lower bounds estimate

• For $k > 1$ set

$$
\mathbf{C}_{N,k,y} = \mathbf{C}_{\underbrace{\phi_1,...,\phi_N}_{k \text{ tuple}}}, \underbrace{\bar{\phi}_1,...\bar{\phi}_N}_{k-1 \text{ tuple}}, y
$$

• By the duality, we have

$$
\langle I^{a}C_{\phi_{1},...,\phi_{N},x}I^{b}, I^{a_{1}}\mathbf{C}_{N,k,y}I^{b_{1}}\rangle = \langle I^{-\gamma}T_{\omega}(x),y\rangle.
$$

Thus,

$$
||T_{\omega}(x)||_{B^{\frac{a+b+\frac{d}{p}}{p}}_{\rho,p}} \leq C||I^a \mathbf{C}_{\phi_1,...,\phi_N,x}I^b||_{S_p}.
$$

 \leftarrow \Box

 QQ

目

÷

 \bullet Given $f \in \mathcal{S}(\mathbb{R}^d)$ and $\rho \in S^m(\mathbb{R}^d; \mathcal{S}(\mathbb{R}^d_\theta))$, we set

$$
P_{\rho}(\lambda_{\theta}(f))=\int_{\mathbb{R}^d}f(\xi)\rho(\xi)\lambda_{\theta}(\xi)d\xi.
$$

The operator P_{ρ} is called the pseudo-differential operator of symbol ρ .

 200

• We replace τ_{ϕ} by another Fourier multiplier $\tau_{\widetilde{\phi}}$ whose symbol is smooth on the whole \mathbb{R}^d .

• We put

$$
A = \frac{1}{2\pi i} \sum_{1 \le k \le d} T_{|\xi| \partial_{\xi_k} \widetilde{\phi}} M_{\partial_k x}.
$$
 (14)

 QQQ

We are going to reduce the computation of $\text{Tr}_{\omega}(|\mathsf{C}_{\phi,\mathsf{x}}|^{d})$ to that of $\text{Tr}_{\omega}(|A|^d(1+\Delta)^{-\frac{d}{2}}).$

The trace formula

 \bullet Compute the symbol of ${\sf C}_{\widetilde{\phi},\times}-A J^{-1}$ is of order $-2.$ We see that

$$
M_{y}\mathbf{C}_{\widetilde{\phi},x}-M_{y}AJ^{-1}\in S_{\frac{d}{2},\infty}.
$$

Then we have

$$
|M_{y}\mathbf{C}_{\phi,x}|^{d}-|M_{y}A|^{d}J^{-d}\in S_{1}.
$$

• We have

$$
\mathrm{Tr}_{\omega}(|M_{y}\mathbf{C}_{\phi,x}|^{d})=\mathrm{Tr}_{\omega}(|M_{y}A|^{d}J^{-d}).
$$

So we can apply the trace formula in [McDonald, Sukochev and Zanin, Math. Ann. 2018] to deduce our trace formula.