On the isomorphism class of q-Gaussian C*-algebras for infinite variables

Mateusz Wasilewski

IM PAN

11 May 2022

2 The Akemann-Ostrand property

3 Main results

Mateusz Wasilewski Non-isomorphism of q-Gaussians

< ∃ >

Operator algebras

Today we will talk about both C^* -algebras (norm closed) and von Neumann algebras (weakly closed).

Operator algebras

Today we will talk about both C^* -algebras (norm closed) and von Neumann algebras (weakly closed).

Group algebras

Every discrete group Γ acts on $\ell^2(\Gamma)$ and the norm closure of $\mathbb{C}\Gamma$ is the reduced group C^* -algebra $C^*_{\lambda}(\Gamma)$ and the weak closure is the von Neumann algebra $L(\Gamma)$.

Operator algebras

Today we will talk about both C^* -algebras (norm closed) and von Neumann algebras (weakly closed).

Group algebras

Every discrete group Γ acts on $\ell^2(\Gamma)$ and the norm closure of $\mathbb{C}\Gamma$ is the reduced group C^* -algebra $C^*_{\lambda}(\Gamma)$ and the weak closure is the von Neumann algebra $L(\Gamma)$.

In general, if you have a state on a C^* -algebra then, using the GNS construction, you can build a von Neumann algebra – many constructions exist on both levels.

Free Gaussian algebras

Free group factors

If we take $\Gamma = \mathbb{F}_n$ then we obtain very important examples $L(\mathbb{F}_n)$ – the free group factors.

Free Gaussian algebras

Free group factors

If we take $\Gamma = \mathbb{F}_n$ then we obtain very important examples $L(\mathbb{F}_n)$ – the free group factors.

Voiculescu's construction

For appropriate operators $(a_i)_{i \in [n]}$ satisfying $a_i a_j^* = \delta_{ij} \mathbb{1}$ the von Neumann algebra generated by $(a_i + a_i^*)_{i \in [n]}$ will be isomorphic to $L(\mathbb{F}_n)$.

Free Gaussian algebras

Free group factors

If we take $\Gamma = \mathbb{F}_n$ then we obtain very important examples $L(\mathbb{F}_n)$ – the free group factors.

Voiculescu's construction

For appropriate operators $(a_i)_{i \in [n]}$ satisfying $a_i a_j^* = \delta_{ij} \mathbb{1}$ the von Neumann algebra generated by $(a_i + a_i^*)_{i \in [n]}$ will be isomorphic to $L(\mathbb{F}_n)$.

The corresponding C^* -algebras are not the same.

Free Gaussian algebras

Free group factors

If we take $\Gamma = \mathbb{F}_n$ then we obtain very important examples $L(\mathbb{F}_n)$ – the free group factors.

Voiculescu's construction

For appropriate operators $(a_i)_{i \in [n]}$ satisfying $a_i a_j^* = \delta_{ij} \mathbb{1}$ the von Neumann algebra generated by $(a_i + a_i^*)_{i \in [n]}$ will be isomorphic to $L(\mathbb{F}_n)$.

The corresponding C^* -algebras are not the same. How to construct such operators?

Fock spaces

Full Fock space

Let H be a Hilbert space. The Hilbert space $\mathcal{F}(H) := \bigoplus_{n=0}^{\infty} H^{\otimes n}$ is called the (full) Fock space, where $H^{\otimes 0} := \mathbb{C}\Omega$.

• □ ▶ • < </p>
• □ ▶ • < </p>

Fock spaces

Full Fock space

Let H be a Hilbert space. The Hilbert space $\mathcal{F}(H) := \bigoplus_{n=0}^{\infty} H^{\otimes n}$ is called the (full) Fock space, where $H^{\otimes 0} := \mathbb{C}\Omega$.

Creation/annihilation operators

For $v \in H$ we can define the creation operator $a^*(v)$ and the annihilation operator a(v) via $a^*(v)(w_1 \otimes \cdots \otimes w_n) := v \otimes w_1 \otimes \cdots \otimes w_n$ and $a(v)(w_1 \otimes \cdots \otimes w_n) := \langle v, w_1 \rangle w_2 \otimes \cdots \otimes w_n$ (with $a(v)\Omega := 0$).

Fock spaces

Full Fock space

Let H be a Hilbert space. The Hilbert space $\mathcal{F}(H) := \bigoplus_{n=0}^{\infty} H^{\otimes n}$ is called the (full) Fock space, where $H^{\otimes 0} := \mathbb{C}\Omega$.

Creation/annihilation operators

For $v \in H$ we can define the creation operator $a^*(v)$ and the annihilation operator a(v) via $a^*(v)(w_1 \otimes \cdots \otimes w_n) := v \otimes w_1 \otimes \cdots \otimes w_n$ and $a(v)(w_1 \otimes \cdots \otimes w_n) := \langle v, w_1 \rangle w_2 \otimes \cdots \otimes w_n$ (with $a(v)\Omega := 0$).

Field operators

If H is the complexification of a real Hilbert space $H_{\mathbb{R}}$ then we define $s(v) := a^*(v) + a(v)$ for $v \in H_{\mathbb{R}}$.

(日)

Commutation relations

The creation and annihilation operators satisfy the relation $a(v)a^*(w) = \langle v, w \rangle \mathbb{1}$.

э

くロ と く 同 と く ヨ と 一

Commutation relations

The creation and annihilation operators satisfy the relation $a(v)a^*(w) = \langle v, w \rangle \mathbb{1}$.

Canonical (anti)commutation relations

One can also build (anti)symmetric Fock spaces and the relations satisfied by the creation/annihilation operators are the following:

$$a(v)a^*(w) \pm a^*(w)a(v) = \langle v, w \rangle \mathbb{1}.$$

Commutation relations

The creation and annihilation operators satisfy the relation $a(v)a^*(w) = \langle v, w \rangle \mathbb{1}$.

Canonical (anti)commutation relations

One can also build (anti)symmetric Fock spaces and the relations satisfied by the creation/annihilation operators are the following:

$$a(v)a^*(w) \pm a^*(w)a(v) = \langle v, w \rangle \mathbb{1}.$$

Could it be that for each $q \in [-1, 1]$ we can find operators satisfying $a(v)a^*(w) - qa^*(w)a(v) = \langle v, w \rangle \mathbb{1}$?

< ロ > < 同 > < 三 > < 三 >

q-Gaussian algebras

Bożejko-Speicher

One can introduce a deformed inner product on the Fock space $\mathcal{F}(H)$ so that the creation and annihilation operators satisfy the *q*-commutation relations.

q-Gaussian algebras

Bożejko-Speicher

One can introduce a deformed inner product on the Fock space $\mathcal{F}(H)$ so that the creation and annihilation operators satisfy the *q*-commutation relations.

q-Gaussian algebras

Let $H_{\mathbb{R}}$ be a real Hilbert space and let H be its complexification. Then the von Neumann algebra generated by $(a(v) + a^*(v))_{v \in H_{\mathbb{R}}}$ is denoted by $\Gamma_q(H_{\mathbb{R}})$ and called the *q*-Gaussian algebra.

< □ > < 同 > < 三 >

Some more details

Formulas

The creation operator stays the same: $a^*(v)(w_1 \otimes \cdots \otimes w_n) = v \otimes w_1 \otimes \cdots \otimes w_n$ and the commutation relations force $a(v)(w_1 \otimes \cdots \otimes w_n) = \sum_{i=1}^n q^{i-1} \langle v, w_i \rangle w_1 \otimes \cdots \otimes w_n$.

- 4 同 1 4 三 1 4 三 1

Some more details

Formulas

The creation operator stays the same: $a^*(v)(w_1 \otimes \cdots \otimes w_n) = v \otimes w_1 \otimes \cdots \otimes w_n$ and the commutation relations force $a(v)(w_1 \otimes \cdots \otimes w_n) = \sum_{i=1}^n q^{i-1} \langle v, w_i \rangle w_1 \otimes \cdots \otimes w_n$.

The inner product

The fact that $a^*(v)$ is the adjoint of a(v) provides a formula for the inner product. The difficult part is to show that this inner product is positive definite.

Some more details

Formulas

The creation operator stays the same: $a^*(v)(w_1 \otimes \cdots \otimes w_n) = v \otimes w_1 \otimes \cdots \otimes w_n$ and the commutation relations force $a(v)(w_1 \otimes \cdots \otimes w_n) = \sum_{i=1}^n q^{i-1} \langle v, w_i \rangle w_1 \otimes \cdots \otimes w_n$.

The inner product

The fact that $a^*(v)$ is the adjoint of a(v) provides a formula for the inner product. The difficult part is to show that this inner product is positive definite.

The trace

The formula $\tau(x) := \langle \Omega, x \Omega \rangle$ defines a trace on $\Gamma_q(\mathsf{H}_{\mathbb{R}})$.

< □ > < 同 > < 三 >

Are they all the same?

The extreme cases $q = \pm 1$ definitely give different algebras. What about $q \in (-1, 1)$?

Are they all the same?

The extreme cases $q = \pm 1$ definitely give different algebras. What about $q \in (-1,1)$?

Free transport

Guionnet and Shlyakhtenko proved that if $\dim(H_{\mathbb{R}})$ is finite and |q| is very small then $\Gamma_q(H_{\mathbb{R}})$ is isomorphic to the free Gaussian algebra (also works on the C^* -level).

Are they all the same?

The extreme cases $q = \pm 1$ definitely give different algebras. What about $q \in (-1,1)$?

Free transport

Guionnet and Shlyakhtenko proved that if dim(H_R) is finite and |q| is very small then $\Gamma_q(H_R)$ is isomorphic to the free Gaussian algebra (also works on the C^{*}-level). It is possible that it happens for all $q \in (-1, 1)$.

Are they all the same?

The extreme cases $q = \pm 1$ definitely give different algebras. What about $q \in (-1,1)$?

Free transport

Guionnet and Shlyakhtenko proved that if dim(H_R) is finite and |q| is very small then $\Gamma_q(H_R)$ is isomorphic to the free Gaussian algebra (also works on the C^{*}-level). It is possible that it happens for all $q \in (-1, 1)$.

Nothing is yet known in the case $\text{dim}(H_{\mathbb{R}})=\infty$ – that's the plan for today.

Approximately finite dimensional

A C^* -algebra (or a von Neumann algebra) is AF(D) if it is equal to the closure of a union of an increasing family of finite dimensional *-subalgebras.

Approximately finite dimensional

A C^* -algebra (or a von Neumann algebra) is AF(D) if it is equal to the closure of a union of an increasing family of finite dimensional *-subalgebras.

Nuclearity and injectivity

A C*-algebra A is **nuclear** if $A \otimes_{\max} B = A \otimes_{\min} B$ for any C*-algebra B.

Approximately finite dimensional

A C^* -algebra (or a von Neumann algebra) is AF(D) if it is equal to the closure of a union of an increasing family of finite dimensional *-subalgebras.

Nuclearity and injectivity

A C*-algebra A is **nuclear** if $A \otimes_{\max} B = A \otimes_{\min} B$ for any C*-algebra B.

A vNa M is injective if the left-right action $M\otimes M^{op}\to B(L^2(M))$ is min-continuous.

Approximately finite dimensional

A C^* -algebra (or a von Neumann algebra) is AF(D) if it is equal to the closure of a union of an increasing family of finite dimensional *-subalgebras.

Nuclearity and injectivity

A C*-algebra A is **nuclear** if $A \otimes_{\max} B = A \otimes_{\min} B$ for any C*-algebra B.

A vNa M is injective if the left-right action $M \otimes M^{op} \to B(L^2(M))$ is min-continuous.

For vNas AFD = injective! (Connes)

Aproximation properties of free groups

Free groups are not amenable hence their C^* algebras are not nuclear and the von Neumann algebras are not injective.

Aproximation properties of free groups

Free groups are not amenable hence their C^* algebras are not nuclear and the von Neumann algebras are not injective.

Haagerup showed that $C^*_{\lambda}(\mathbb{F}_n)$ has the metric approximation property, which is a strong form of having finite dimensional approximations.

Aproximation properties of free groups

Free groups are not amenable hence their C^* algebras are not nuclear and the von Neumann algebras are not injective.

Haagerup showed that $C^*_{\lambda}(\mathbb{F}_n)$ has the metric approximation property, which is a strong form of having finite dimensional approximations.

Akemann and Ostrand discovered the surprising fact that the leftright action $C^*_{\lambda}(\mathbb{F}_n) \otimes C^*_{\rho}(\mathbb{F}_n) \mapsto B(\ell^2(\mathbb{F}_n))$ becomes min-continuous if we take the quotient onto the Calkin algebra.

Image: A image: A

The Akemann-Ostrand property

A vNA M has the **Akemann-Ostrand property** if there exist weakly dense C^* -subalgebras $A \subset M$ and $B \subset M^{op}$ such that the left-right action $A \otimes B \mapsto B(L^2(M))/K(L^2(M))$ is min-continuous.

The Akemann-Ostrand property

A vNA M has the **Akemann-Ostrand property** if there exist weakly dense C^* -subalgebras $A \subset M$ and $B \subset M^{op}$ such that the left-right action $A \otimes B \mapsto B(L^2(M))/K(L^2(M))$ is min-continuous.

Proof strategy

Embed A into a nuclear C^* -algebra \widetilde{A} such that $[\widetilde{A}, B] \subset K$.

Ozawa proved that if M has the AO property (with A locally reflexive) then M is **solid**, i.e. the commutant of any diffuse subalgebra is injective.

Ozawa proved that if M has the AO property (with A locally reflexive) then M is **solid**, i.e. the commutant of any diffuse subalgebra is injective.

Prime factors

A II₁-factor M is called **prime** if it cannot be decomposed as a nontrivial tensor product. The unique injective II₁-factor is not prime. Non-injective solid factors are prime (e.g. the free group factors).

Free vs q-Gaussian algebras

AO for free Gaussian algebras

The C^* -algebra generated by field operators embeds into the one generated by creation operators, which is nuclear (Toeplitz-Cuntz). The commutator of the left creation operator with the right annihilation operator is of finite rank, so all commutators are compact.

Free vs q-Gaussian algebras

AO for free Gaussian algebras

The C^* -algebra generated by field operators embeds into the one generated by creation operators, which is nuclear (Toeplitz-Cuntz). The commutator of the left creation operator with the right annihilation operator is of finite rank, so all commutators are compact.

q-Gaussians

In this case the commutator is equal to the operator q^N (multiplication by q^n on the *n*-th tensor power in the Fock space), which is not compact if dim($H_{\mathbb{R}}$) = ∞ .

Free vs q-Gaussian algebras

AO for free Gaussian algebras

The C^* -algebra generated by field operators embeds into the one generated by creation operators, which is nuclear (Toeplitz-Cuntz). The commutator of the left creation operator with the right annihilation operator is of finite rank, so all commutators are compact.

q-Gaussians

In this case the commutator is equal to the operator q^N (multiplication by q^n on the *n*-th tensor power in the Fock space), which is not compact if dim($H_{\mathbb{R}}$) = ∞ .

 $\Gamma_q(\ell^2)$ might not have the Akemann-Ostrand property but it is hard to check it for all possible C^* -subalgebras A and B.

q-Gaussian C^* -algebras

We will try to disprove the Akemann-Ostrand property with respect to a specific C^* -subalgebra, namely the one generated by the field operators.

q-Gaussian C^* -algebras

We will try to disprove the Akemann-Ostrand property with respect to a specific C^* -subalgebra, namely the one generated by the field operators.

Theorem (Borst, Caspers, Klisse, W.)

For $q \neq 0$ the q-Gaussian C^{*}-algebra $A_q(\ell^2)$ is not isomorphic to the free Gaussian C^{*}-algebra.

q-Gaussian C^* -algebras

We will try to disprove the Akemann-Ostrand property with respect to a specific C^* -subalgebra, namely the one generated by the field operators.

Theorem (Borst, Caspers, Klisse, W.)

For $q \neq 0$ the q-Gaussian C^{*}-algebra $A_q(\ell^2)$ is not isomorphic to the free Gaussian C^{*}-algebra.

Proof.

One can show that these algebras have a unique trace, so they remember the von Neumann algebras, therefore an isomorphism would transfer the AO property.

Crucial lemma

Lemma

 $B \subset A \subset M$, infinitely many mutually orthogonal subspaces $H_i \subset L^2(M)$, left and right invariant. Suppose that, for some $\delta > 0$ and $b_j, c_j \in B$ we have

$$\inf_{i} \|\sum_{j} b_{j} c_{j}^{\mathsf{op}}\|_{\mathsf{B}(H_{i})} \geqslant (1+\delta) \|\sum_{j} b_{j} \otimes c_{j}^{\mathsf{op}}\|_{B \otimes_{\min} B^{\mathsf{op}}}.$$

Then M does not have AO with respect to A.

The case of q-Gaussians

Write $\ell^2 = \mathbb{R}^d \oplus H_{\mathbb{R}}$ and take $M := \Gamma_q(\ell^2)$, $A := A_q(\ell^2)$, $B := A_q(\mathbb{R}^d)$, and $H_i := \overline{Bf_iB}$, where $(f_i)_{i \in \mathbb{N}}$ is an ONB of $H_{\mathbb{R}}$.

The case of q-Gaussians

Write
$$\ell^2 = \mathbb{R}^d \oplus H_{\mathbb{R}}$$
 and take $M := \Gamma_q(\ell^2)$, $A := A_q(\ell^2)$, $B := A_q(\mathbb{R}^d)$, and $H_i := \overline{Bf_iB}$, where $(f_i)_{i \in \mathbb{N}}$ is an ONB of $H_{\mathbb{R}}$.

If k is large enough then for an orthonormal basis (ξ_j) of $(\mathbb{R}^d)^{\otimes k}$, we can choose $b_j := W(\xi_j)^*$ and $c_j := W(\xi_j)$ and use Nou's Khintchine inequality.

Thank you for your attention!

э