On the isomorphism class of q-Gaussian C*-algebras for infinite variables

Mateusz Wasilewski

IM PAN

11 May 2022

Mateusz Wasilewski [Non-isomorphism of q-Gaussians](#page-44-0)

4 m k

2 [The Akemann-Ostrand property](#page-24-0)

³ [Main results](#page-38-0)

Mateusz Wasilewski | [Non-isomorphism of q-Gaussians](#page-0-0)

4 0 8

4 冊 ▶ 4 重 \sim э **In** ∍ 299

Operator algebras

Today we will talk about both C^* -algebras (norm closed) and von Neumann algebras (weakly closed).

 \overline{a}

 Ω

Operator algebras

Today we will talk about both C^* -algebras (norm closed) and von Neumann algebras (weakly closed).

Group algebras

Every discrete group Γ acts on $\ell^2(\Gamma)$ and the norm closure of $\mathbb C\Gamma$ is the reduced group C^* -algebra $\mathcal{C}_\lambda^*(\mathsf{\Gamma})$ and the weak closure is the von Neumann algebra L(Γ).

Operator algebras

Today we will talk about both C^* -algebras (norm closed) and von Neumann algebras (weakly closed).

Group algebras

Every discrete group Γ acts on $\ell^2(\Gamma)$ and the norm closure of $\mathbb C\Gamma$ is the reduced group C^* -algebra $\mathcal{C}_\lambda^*(\mathsf{\Gamma})$ and the weak closure is the von Neumann algebra L(Γ).

In general, if you have a state on a C^* -algebra then, using the GNS construction, you can build a von Neumann algebra – many constructions exist on both levels.

ഹൈ

Free Gaussian algebras

Free group factors

If we take $\Gamma = \mathbb{F}_n$ then we obtain very important examples $\mathsf{L}(\mathbb{F}_n)$ – the free group factors.

a mille

 200

Free Gaussian algebras

Free group factors

If we take $\Gamma = \mathbb{F}_n$ then we obtain very important examples $\mathsf{L}(\mathbb{F}_n)$ – the free group factors.

Voiculescu's construction

For appropriate operators $(a_i)_{i\in[n]}$ satisfying $a_ia_j^* = \delta_{ij}1\!\!1$ the von Neumann algebra generated by $(a_i + a_i^*)_{i \in [n]}$ will be isomorphic to $L(\mathbb{F}_n)$.

Free Gaussian algebras

Free group factors

If we take $\Gamma = \mathbb{F}_n$ then we obtain very important examples $\mathsf{L}(\mathbb{F}_n)$ – the free group factors.

Voiculescu's construction

For appropriate operators $(a_i)_{i\in[n]}$ satisfying $a_ia_j^* = \delta_{ij}1\!\!1$ the von Neumann algebra generated by $(a_i + a_i^*)_{i \in [n]}$ will be isomorphic to $L(\mathbb{F}_n)$.

The corresponding C^* -algebras are not the same.

Free Gaussian algebras

Free group factors

If we take $\Gamma = \mathbb{F}_n$ then we obtain very important examples $\mathsf{L}(\mathbb{F}_n)$ – the free group factors.

Voiculescu's construction

For appropriate operators $(a_i)_{i\in[n]}$ satisfying $a_ia_j^* = \delta_{ij}1\!\!1$ the von Neumann algebra generated by $(a_i + a_i^*)_{i \in [n]}$ will be isomorphic to $L(\mathbb{F}_n)$.

The corresponding C^* -algebras are not the same. How to construct such operators?

Full Fock space

Let H be a Hilbert space. The Hilbert space $\mathcal{F}(\mathsf{H}) := \bigoplus_{n=0}^{\infty} \mathsf{H}^{\otimes n}$ is called the (full) Fock space, where $\mathsf{H}^{\otimes 0}:=\mathbb{C}\Omega.$

and and

す (一) す す す す

 200

Fock spaces

Full Fock space

Let H be a Hilbert space. The Hilbert space $\mathcal{F}(\mathsf{H}) := \bigoplus_{n=0}^{\infty} \mathsf{H}^{\otimes n}$ is called the (full) Fock space, where $\mathsf{H}^{\otimes 0}:=\mathbb{C}\Omega.$

Creation/annihilation operators

For $v \in H$ we can define the creation operator $a^*(v)$ and the annihilation operator $a(v)$ via $a^*(v) (w_1\otimes \cdots \otimes w_n) := v\otimes w_1\otimes \cdots \otimes w_n$ and $a(v)(w_1 \otimes \cdots \otimes w_n) := \langle v, w_1 \rangle w_2 \otimes \cdots \otimes w_n$ (with $a(v)\Omega := 0$).

Fock spaces

Full Fock space

Let H be a Hilbert space. The Hilbert space $\mathcal{F}(\mathsf{H}) := \bigoplus_{n=0}^{\infty} \mathsf{H}^{\otimes n}$ is called the (full) Fock space, where $\mathsf{H}^{\otimes 0}:=\mathbb{C}\Omega.$

Creation/annihilation operators

For $v \in H$ we can define the creation operator $a^*(v)$ and the annihilation operator $a(v)$ via $a^*(v) (w_1\otimes \cdots \otimes w_n) := v\otimes w_1\otimes \cdots \otimes w_n$ and $a(v)(w_1 \otimes \cdots \otimes w_n) := \langle v, w_1 \rangle w_2 \otimes \cdots \otimes w_n$ (with $a(v)\Omega := 0$).

Field operators

If H is the complexification of a real Hilbert space $H_{\mathbb{R}}$ then we define $s(v) := a^*(v) + a(v)$ for $v \in H_{\mathbb{R}}$.

Commutation relations

The creation and annihilation operators satisfy the relation $a(v)a^*(w) = \langle v, w \rangle \mathbb{1}.$

E

∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ↓

 2990

Commutation relations

The creation and annihilation operators satisfy the relation $a(v)a^*(w) = \langle v, w \rangle \mathbb{1}.$

Canonical (anti)commutation relations

One can also build (anti)symmetric Fock spaces and the relations satisfied by the creation/annihilation operators are the following:

$$
a(v)a^*(w) \pm a^*(w)a(v) = \langle v, w \rangle 1.
$$

Commutation relations

The creation and annihilation operators satisfy the relation $a(v)a^*(w) = \langle v, w \rangle \mathbb{1}.$

Canonical (anti)commutation relations

One can also build (anti)symmetric Fock spaces and the relations satisfied by the creation/annihilation operators are the following:

$$
a(v)a^*(w) \pm a^*(w)a(v) = \langle v, w \rangle 1.
$$

Could it be that for each $q \in [-1, 1]$ we can find operators satisfying $a(v)a^*(w) - qa^*(w)a(v) = \langle v, w \rangle \hat{1}$?

≮ロト (何) (日) (日)

q-Gaussian algebras

Bożejko-Speicher

One can introduce a deformed inner product on the Fock space $\mathcal{F}(H)$ so that the creation and annihilation operators satisfy the q-commutation relations.

and and

 200

q-Gaussian algebras

Bożejko-Speicher

One can introduce a deformed inner product on the Fock space $\mathcal{F}(H)$ so that the creation and annihilation operators satisfy the q-commutation relations.

q-Gaussian algebras

Let $H_{\mathbb{R}}$ be a real Hilbert space and let H be its complexification. Then the von Neumann algebra generated by $(a(v) + a^*(v))_{v \in H_{\mathbb{R}}}$ is denoted by $\Gamma_{q}(\mathsf{H}_{\mathbb{R}})$ and called the q-**Gaussian algebra**.

(ロ) (何) (ヨ)

Some more details

Formulas

The creation operator stays the same: $a^*(v)(w_1 \otimes \cdots \otimes w_n) =$ $v \otimes w_1 \otimes \cdots \otimes w_n$) and the commutation relations force $a(v)(w_1 \otimes$ $\cdots \otimes w_n) = \sum_{i=1}^n q^{i-1} \langle v, w_i \rangle w_1 \otimes \ldots \hat{w}_i \cdots \otimes w_n.$

(ロ) (何) (ヨ) (ヨ) (ヨ)

 200

Some more details

Formulas

The creation operator stays the same: $a^*(v)(w_1 \otimes \cdots \otimes w_n) =$ $v \otimes w_1 \otimes \cdots \otimes w_n$) and the commutation relations force $a(v)(w_1 \otimes$ $\cdots \otimes w_n) = \sum_{i=1}^n q^{i-1} \langle v, w_i \rangle w_1 \otimes \ldots \hat{w}_i \cdots \otimes w_n.$

The inner product

The fact that $a^*(v)$ is the adjoint of $a(v)$ provides a formula for the inner product. The difficult part is to show that this inner product is positive definite.

←ロト ←何ト ←ヨト ←ヨト

Some more details

Formulas

The creation operator stays the same: $a^*(v)(w_1 \otimes \cdots \otimes w_n) =$ $v \otimes w_1 \otimes \cdots \otimes w_n$) and the commutation relations force $a(v)(w_1 \otimes$ $\cdots \otimes w_n) = \sum_{i=1}^n q^{i-1} \langle v, w_i \rangle w_1 \otimes \ldots \hat{w}_i \cdots \otimes w_n.$

The inner product

The fact that $a^*(v)$ is the adjoint of $a(v)$ provides a formula for the inner product. The difficult part is to show that this inner product is positive definite.

The trace

The formula $\tau(x) := \langle \Omega, x\Omega \rangle$ defines a trace on $\Gamma_{q}(H_{\mathbb{R}})$.

Are they all the same?

The extreme cases $q = \pm 1$ definitely give different algebras. What about $q \in (-1,1)$?

4 m k

 QQ

Are they all the same?

The extreme cases $q = \pm 1$ definitely give different algebras. What about $q \in (-1,1)$?

Free transport

Guionnet and Shlyakhtenko proved that if dim(H_R) is finite and |q| is very small then $\Gamma_{q}(H_{\mathbb{R}})$ is isomorphic to the free Gaussian algebra (also works on the C^* -level).

Are they all the same?

The extreme cases $q = \pm 1$ definitely give different algebras. What about $q \in (-1,1)$?

Free transport

Guionnet and Shlyakhtenko proved that if dim($H_{\mathbb{R}}$) is finite and $|q|$ is very small then $\Gamma_{q}(H_{\mathbb{R}})$ is isomorphic to the free Gaussian algebra (also works on the C^* -level). It is possible that it happens for all $q \in (-1, 1)$.

Are they all the same?

The extreme cases $q = \pm 1$ definitely give different algebras. What about $q \in (-1,1)$?

Free transport

Guionnet and Shlyakhtenko proved that if dim($H_{\mathbb{R}}$) is finite and $|q|$ is very small then $\Gamma_{q}(H_{\mathbb{R}})$ is isomorphic to the free Gaussian algebra (also works on the C^* -level). It is possible that it happens for all $q \in (-1, 1)$.

Nothing is yet known in the case dim $(H_\mathbb{R}) = \infty$ – that's the plan for today.

す 何 ト す ヨ ト す ヨ ト

Approximately finite dimensional

A C^* -algebra (or a von Neumann algebra) is $\mathsf{AF}(\mathsf{D})$ if it is equal to the closure of a union of an increasing family of finite dimensional ∗-subalgebras.

Approximately finite dimensional

A C^* -algebra (or a von Neumann algebra) is $\mathsf{AF}(\mathsf{D})$ if it is equal to the closure of a union of an increasing family of finite dimensional ∗-subalgebras.

Nuclearity and injectivity

A C^* -algebra A is **nuclear** if $A \otimes_{\sf max} B = A \otimes_{\sf min} B$ for any C^* -algebra B.

(ロ) (伺) (目)

Approximately finite dimensional

A C^* -algebra (or a von Neumann algebra) is $\mathsf{AF}(\mathsf{D})$ if it is equal to the closure of a union of an increasing family of finite dimensional ∗-subalgebras.

Nuclearity and injectivity

A C^* -algebra A is **nuclear** if $A \otimes_{\sf max} B = A \otimes_{\sf min} B$ for any C^* -algebra B.

A vNa M is injective if the left-right action $\mathsf{M} \otimes \mathsf{M}^\mathsf{op} \to \mathsf{B}(L^2(\mathsf{M}))$ is min-continuous.

(ロ) (母) (ヨ) (

Approximately finite dimensional

A C^* -algebra (or a von Neumann algebra) is $\mathsf{AF}(\mathsf{D})$ if it is equal to the closure of a union of an increasing family of finite dimensional ∗-subalgebras.

Nuclearity and injectivity

A C^* -algebra A is **nuclear** if $A \otimes_{\sf max} B = A \otimes_{\sf min} B$ for any C^* -algebra B.

A vNa M is injective if the left-right action $\mathsf{M} \otimes \mathsf{M}^\mathsf{op} \to \mathsf{B}(L^2(\mathsf{M}))$ is min-continuous.

For vNas $AFD =$ injective! (Connes)

∢ロト ∢母 ト ∢ ヨ ト ∢ ヨ ト

Aproximation properties of free groups

Free groups are not amenable hence their C^* algebras are not nuclear and the von Neumann algebras are not injective.

 200

Aproximation properties of free groups

Free groups are not amenable hence their C^* algebras are not nuclear and the von Neumann algebras are not injective.

Haagerup showed that $\, \mathcal{C}_{\lambda}^* (\mathbb{F}_n) \,$ has the metric approximation property, which is a strong form of having finite dimensional approximations.

Aproximation properties of free groups

Free groups are not amenable hence their C^* algebras are not nuclear and the von Neumann algebras are not injective.

Haagerup showed that $\, \mathcal{C}_{\lambda}^* (\mathbb{F}_n) \,$ has the metric approximation property, which is a strong form of having finite dimensional approximations.

Akemann and Ostrand discovered the surprising fact that the leftright action $C^*_\lambda(\mathbb{F}_n) \otimes C^*_\rho(\mathbb{F}_n) \mapsto \mathsf{B}(\ell^2(\mathbb{F}_n))$ becomes min-continuous if we take the quotient onto the Calkin algebra.

→ 何 ▶ → 三 ▶

The Akemann-Ostrand property

A vNA M has the **Akemann-Ostrand property** if there exist weakly dense C^* -subalgebras $A\subset \mathsf{M}$ and $B\subset \mathsf{M}^{\mathsf{op}}$ such that the left-right action $A \otimes B \mapsto {\sf B}(L^2({\sf M})) / \, {\sf K}(L^2({\sf M}))$ is min-continuous.

 Ω

The Akemann-Ostrand property

A vNA M has the **Akemann-Ostrand property** if there exist weakly dense C^* -subalgebras $A\subset \mathsf{M}$ and $B\subset \mathsf{M}^{\mathsf{op}}$ such that the left-right action $A \otimes B \mapsto {\sf B}(L^2({\sf M})) / \, {\sf K}(L^2({\sf M}))$ is min-continuous.

Proof strategy

Embed A into a nuclear C^* -algebra A such that $[A, B] \subset K$.

 Ω

Ozawa proved that if M has the AO property (with A locally reflexive) then M is **solid**, i.e. the commutant of any diffuse subalgebra is injective.

4 m k

 200

Ozawa proved that if M has the AO property (with A locally reflexive) then M is **solid**, i.e. the commutant of any diffuse subalgebra is injective.

Prime factors

A II₁-factor M is called **prime** if it cannot be decomposed as a nontrivial tensor product. The unique injective II_1 -factor is not prime. Non-injective solid factors are prime (e.g. the free group factors).

ഹൈ

Free vs q-Gaussian algebras

AO for free Gaussian algebras

The C^* -algebra generated by field operators embeds into the one generated by creation operators, which is nuclear (Toeplitz-Cuntz). The commutator of the left creation operator with the right annihilation operator is of finite rank, so all commutators are compact.

Free vs q-Gaussian algebras

AO for free Gaussian algebras

The C^* -algebra generated by field operators embeds into the one generated by creation operators, which is nuclear (Toeplitz-Cuntz). The commutator of the left creation operator with the right annihilation operator is of finite rank, so all commutators are compact.

q-Gaussians

In this case the commutator is equal to the operator q^N (multiplication by q^n on the n-th tensor power in the Fock space), which is not compact if dim(H_R) = ∞ .

Free vs q-Gaussian algebras

AO for free Gaussian algebras

The C^* -algebra generated by field operators embeds into the one generated by creation operators, which is nuclear (Toeplitz-Cuntz). The commutator of the left creation operator with the right annihilation operator is of finite rank, so all commutators are compact.

q-Gaussians

In this case the commutator is equal to the operator q^N (multiplication by q^n on the n-th tensor power in the Fock space), which is not compact if dim(H_R) = ∞ .

 $\Gamma_q(\ell^2)$ might not have the Akemann-Ostrand property but it is hard to check it for all possible C^* -subalgebras A and B.

 q -Gaussian C^* -algebras

We will try to disprove the Akemann-Ostrand property with respect to a specific C^* -subalgebra, namely the one generated by the field operators.

 Ω

q -Gaussian C^* -algebras

We will try to disprove the Akemann-Ostrand property with respect to a specific C^* -subalgebra, namely the one generated by the field operators.

Theorem (Borst, Caspers, Klisse, W.)

For $q \neq 0$ the q-Gaussian C*-algebra $A_q(\ell^2)$ is not isomorphic to the free Gaussian C*-algebra.

q -Gaussian C^* -algebras

We will try to disprove the Akemann-Ostrand property with respect to a specific C^* -subalgebra, namely the one generated by the field operators.

Theorem (Borst, Caspers, Klisse, W.)

For $q \neq 0$ the q-Gaussian C*-algebra $A_q(\ell^2)$ is not isomorphic to the free Gaussian C*-algebra.

Proof.

One can show that these algebras have a unique trace, so they remember the von Neumann algebras, therefore an isomorphism would transfer the AO property.

Crucial lemma

Lemma

 $B \subset A \subset M$, infinitely many mutually orthogonal subspaces $H_i \subset I$ $L^2(M)$, left and right invariant. Suppose that, for some $\delta > 0$ and $b_j, c_j \in B$ we have

$$
\inf_{i}\|\sum_{j}b_{j}c_{j}^{\mathsf{op}}\|_{\mathsf{B}(H_{i})}\geqslant (1+\delta)\|\sum_{j}b_{j}\otimes c_{j}^{\mathsf{op}}\|_{B\otimes_{\mathsf{min}}B^{\mathsf{op}}}.
$$

Then M does not have AO with respect to A.

The case of q-Gaussians

Write $\ell^2 = \mathbb{R}^d \oplus \mathsf{H}_\mathbb{R}$ and take $\mathsf{M} := \mathsf{\Gamma}_q(\ell^2), \ A := \mathsf{A}_q(\ell^2), \ B :=$ $A_q(\mathbb{R}^d)$, and $H_i:=\overline{Bf_iB}$, where $(f_i)_{i\in\mathbb{N}}$ is an ONB of $H_\mathbb{R}$.

The case of q-Gaussians

Write
$$
\ell^2 = \mathbb{R}^d \oplus H_{\mathbb{R}}
$$
 and take $M := \Gamma_q(\ell^2)$, $A := A_q(\ell^2)$, $B := A_q(\mathbb{R}^d)$, and $H_i := \overline{Bf_iB}$, where $(f_i)_{i \in \mathbb{N}}$ is an ONB of $H_{\mathbb{R}}$.

If k is large enough then for an orthonormal basis (ξ_j) of $(\mathbb{R}^d)^{\otimes k}$, we can choose $b_j := W(\xi_j)^*$ and $c_j := W(\xi_j)$ and use Nou's Khintchine inequality.

Thank you for your attention!

4 17 18

 \sim 4 重 э

 299

∍ Пb.