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The Brown measure of addition with an elliptic operator

Some relevant work

Free probability method: additive model

Haagerup-Larsen 2000, R-diagonal operators

Biane-Lehner 2001, examples of Brown measures

Hermitian reduction: Aagaard-Haagerup 2004,

Belinschi-Speicher-Śniady 2018

Z. 2021, Hermitian reduction, subordination functions

PDE method: additive model or multiplicative model

Driver-Kemp-Hall 2019

Ho-Z. 2019, PDE method and subordination functions

Hall-Ho, 2020 and 2021

Random matrix method: additive model

Bordenave-Caputo-Chafai 2014, random matrix approach
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Main questions

Random matrix models

The Brown measure

Typical behavior of random matrices

• Let XN be some random matrix model and set

µXN
=

1

N
(δλ1

+ · · ·+ δλN
) .

• The measure µXN
is a random probability measure.

Quite often, there exists some deterministic probability measure µ such

that

µXN
→ µ

as N → ∞.
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Main questions

Random matrix models

The Brown measure

Main questions and our goal

Hermitian random matrices are relatively well understood.

Non-Hermitian random matrices and non-selfadjoint operators

have wild properties.

Problem

Find the eigenvalue distribution of non-Hermitian random matrices.

1 Find their limit distributions (our main goal of this talk).

2 Prove convergence of empirical spectral distribution (ESD) of

random matrices.

We study explicit formula of the limit ESD of summation of two

non-Hermitian random matrices, one of which has certain symmetry.
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The Brown measure of addition with an elliptic operator

Main questions

Random matrix models

The Brown measure

Formulation of the main questions

Random matrix XN −→ operator x ∈ A ⊂ B(H).

Noncommutative probability space: (A, φ).

Brown measure of a random variable in free probability can often

be regarded as limit of eigenvalue distribution of suitable random

matrix models.

• limit operators can help us understand random matrices;

• random matrices can help us understand operators.
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Random matrix models

The Brown measure

Ginibre Ensemble

ZN =


x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

. . .
...

xN1 xN2 · · · xNN


The Ginibre Ensemble ZN has i.i.d. complex Gaussian entries with

variance 1/N.

Definition

The Empirical Spectral Distribution (ESD) of ZN is

µN =
1

N
(δλ1

+ · · ·+ δλN
) .
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The circular law
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1.0 The following result is due to Ginibre,

Girko, Bai, Tao, Vu and many others.

Theorem (circular law) Given

any random variable X with mean

zero and variance one. Let ZN be

the n × n square random matrices

with i.i.d. entries that have the same

distribution as X/
√

n. The ESD of

ZN convergences to the uniform

measure on the unit disk as n→ ∞.
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Wigner’s Semicircle law

Definition

A matrix W = 1√
N
(xkl)N

k,l=1 is a complex Wigner random matrix if:

it is Hermitian: W = W∗, and

{xkl |1 ≤ k ≤ l ≤ N} are independent, xk,k ∼ N (0, 1) and

xk,l ∼ N (0, 1/2) + iN (0, 1/2).

Large N limit of eigenvalue distribution µW is the semicircle law.
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Distribution of real part in circular law "=" semicircular law

Ping Zhong Brown Measure of addition with an circular or elliptic element



Questions on non-Hermitian random matrices

The Brown measure of addition with an elliptic operator
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Random matrix models

The Brown measure

Elliptic deformation

An elliptic random matrix XN is a square matrix whose (i, j)-entry

XN(i, j) is independent of every other entry except possibly XN(j, i).

Elliptic random matrices generalize Wigner matrices and

non-Hermitian random matrices with i.i.d. entries.
x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

. . .
...

xN1 xN2 · · · xNN


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Random matrix models

The Brown measure

Circular and elliptic random matrices

• Given two independent i.i.d. Wigner random matrices Wn,W ′n.

• Circular random matrix = Wn + iW ′n

• Elliptic random matrix = eiθ(αWn + iβW ′n), where α, β ≥ 0.
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Random matrix models

The Brown measure

The Brown measure of a square matrix

The characteristic polynomial of a matrix T ∈ Mn(C) is

P(λ) = det(λI − T ) = (λ− λ1) · · · (λ− λn).

The eigenvalue distribution is

µT =
1

n

(
δλ1

+ · · ·+ δλn

)
.

Consider log |P(λ)| = log | det(λI − T )| = ∑n
i=1 log |λ− λi |. Note

∆ log |λ| = 2πδ0.

Then

µT =
1

2πn
∆ log | det(λI − T )|.
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Main questions

Random matrix models

The Brown measure

Noncommutative probability space and Brown measure

• Noncommutative probability space: (A, φ):

A ⊂ B(H) operator algebra (finite von Neumann algebra),

and φ : A → C is a replacement of trace.

• The Fuglede-Kadison determinnat of x ∈ (A, φ) is defined as

D(x) = exp[φ(log(|x|))] ∈ [0,∞).

Definition (Brown, 1983)

The Brown measure of x is the distributional Laplacian,

µx =
1

2π
∆ logD(x − λ).

• When A ∈ Mn(C), then µA is the eigenvalue distribution of A.
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Random matrix models

The Brown measure

Operator models

semicircular element gt : selfadjoint, µgt
is semicircular law

Voiculescu’s circular element:

ct =
1√
2
(gt + ig

′
t).

elliptic deformations y = gt,γ (|γ| ≤ t):

gt,γ = e
iθ(αgt + βg

′
t),

such that all non-zero free cumulants of y are given by

κ(y, y
∗) = κ(y∗, y) = t, κ(y, y) = γ, κ(y∗, y

∗) = γ.
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The limit of certain non-Hermitian random matrices

Main Results and Examples

Some ideas of the proof

Convergence of empirical spectral distributions

Let XN be a sequence of N × N Hermitian matrices (either random but

independent with ZN , or deterministic) that converges to some limit.

Question (deformed random matrix model)

What is the limit ESD of XN + WN (sum of two Hermitian matrices)?

What is the limit ESD of XN + ZN (Hermitian + non-normal matrix)?

Theorem (Corollary of (Voiculescu, 90s))

The limit distribution of XN + WN is the distribution of two selfadjoint

random variables that are independent in the sense of Voiculescu’s

free independence. That is,

µXN+WN
→ µx+g.
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Asymptotic freeness and convergence in ∗-moments

Theorem (Voiculescu 1991)

For a suitable family of independent random matrices (X
(N)
i )i∈I , all

mixed moments

tr
(
X
(N)
i1
· · · X (N)

ik

)
→ φ(xi1 · · · xik )

almost surely as N → ∞, where i1, · · · , ik ∈ I and {xi}i∈I is a family of

freely independent random variables in certain non-commutative

probability space (A, φ).
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The limit of certain non-Hermitian random matrices

Main Results and Examples

Some ideas of the proof

• The convergence of random matrices in the sense of Brown measure

does not follow from convergence in ∗-moments.

Theorem (Śniady 2001 and Tao-Vu 2010)

The empirical spectral distribution of XN + ZN(t) converges to the

Brown measure of x0 + ct , where

XN → x0 in ∗-moments,

ct is Voiculescu’s circular element,

and {x0, ct} are freely independent.

• Biane-Lehner (2001) calculated Brown(x0 + ct) for some special x0.

• Bordenave-Caputo-Chafai (2014) obtained Brown measure formula

for normal operator (x∗0 x0 = x0x∗0 ) with Gaussian distribution (related to

Laplacian matrix of the oriented Erdös-Rényi random graph).
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The limit of certain non-Hermitian random matrices

Main Results and Examples

Some ideas of the proof

Main results

Let x0 be an arbitrary operator that is ∗-free from {x0, gt,γ}.

Theorem (Z. 2021)

The Brown measure of x0 + ct is absolutely continuous in some open set

Ξt and is supported in its closure Ξt . The density of the Brown measure

can be expressed explicitly by certain subordination functions.

Theorem (Z. 2021)

The Brown measure of x0 + gt,γ is the push-forward measure of the

Brown measure of x0 + ct by certain explicitly constructed map

λ 7→ Φt,γ(λ). That is,

µx0+ct
((Φ−1

t,γ(·)) = µx0+gt,γ(·). (1)
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The pushforward map from x0 + ct to x0 + igt and x0 + gt
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From circular to elliptic: selfadjoint case
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Figure: The Brown measures of x0 + ct and x0 + gt,γ for t = 0.5, γ = −0.25− 0.25i,

and x0 distributed as 0.25δ−1 + 0.5δ0 + 0.25δ1.
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Brown measure support of addition with a circular element

Theorem (Z., 2021)

The Brown measure of x0 + ct is supported in the closure of the open set

Ξt =

{
λ ∈ C : φ

[(
(x0 − λ)∗(x0 − λ)

)−1
]
>

1

t

}
.

The density formula can be expressed in terms of subordination

functions.

• We believe that µx0+ct
(Ξt) = 1 (all our examples support this).

Ping Zhong Brown Measure of addition with an circular or elliptic element



Questions on non-Hermitian random matrices

The Brown measure of addition with an elliptic operator
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Fundamental domain (circular): selfadjoint case
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Figure: The domain Ξt for t = 1 and x0 distributed as 0.4δ−2 + 0.1δ−0.8 + 0.5δ1. The

graph of vt is the solid read curve above the x-axis.

Ξt =

{
λ = a + bi :

∫
R

1

(a− u)2 + b2
dµx0

(u) >
1

t

}
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Main Results and Examples
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Main results: formulas

Theorem

The density of the Brown measure at λ ∈ Ξt is given by

1

π

(
|φ((λ− x0)(h−1)2)|2

φ((h−1)2)
+ wt (λ)

2φ(h−1
k
−1)

)
where wt (λ) is determined by

φ((x0 − λ)∗(x0 − λ) + wt (λ)
2)−1) =

1

t
,

and h = h(λ,wt (λ)) and k = k(λ,wt (λ)) for

h(λ,wt ) = (λ− x0)
∗(λ− x0) + wt (λ)

2

and

k(λ,wt ) = (λ− x0)(λ− x0)
∗ + wt (λ)

2.
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Main Results and Examples

Some ideas of the proof

Brown measure of the addition with an elliptic deformation

We denote

Φt,γ(λ) = λ + γ · p(0)
λ (wt ), λ ∈ Ξt ,

where

p
(0)
λ (wt ) = −φ

[
(x0 − λ)∗

(
(x0 − λ)(x0 − λ)∗ + wt (λ)

2
)−1

]
.

Let gt,γ be an elliptic operator eiθ(s1 + is2), where s1, s2 are semicircular family.

Theorem (Z. 2021)

The Brown measure of x0 + gt,γ is the push-forward measure of the Brown measure of

x0 + ct by the map λ 7→ Φt,γ(λ). That is,

µx0+ct
((Φ−1

t,γ(·)) = µx0+gt,γ (·). (2)
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Main Results and Examples

Some ideas of the proof

Another formula for the pushforwrd map

• The pushforward map between µx0+ct
and µx0+gt,γ(|γ| ≤ t) is

Φt,γ(λ) = λ + 2γ · ∂

∂λ
log ∆(x0 + ct − λ), λ ∈ C.

Problem

Is Φt,γ some optimal transport map?

• For some special cases, we can show Φt,γ(λ) is the gradient of some

convex function.
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Main Results and Examples

Some ideas of the proof

Examples

We can calculate explicit formulas when

x0 is selfadjoint;

x0 is Haar unitary/R-diagonal operator;

x0 is quasi-nilpotent DT operator.
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The Brown measure of free circular Brownian motion with

selfadjoint initial condition x0

Theorem (Ho-Z., 2019 (based on PDE method of Driver-Kemp-Hall))

Brown(x0 + ct ) is symmetric with respect to the x-axis.

The boundary of the support is the graph of a function, related to

the subordination function of x0 + st with respect to x0.

The density is constant along vertical lines, and can be expressed

explicitly by the boundary set.
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The density formula: selfadjoint+circular

Theorem (Ho-Z., 2019)

The Brown measure µx0+ct
is absolutely continuous and its density

formula (within the support) is

dρt(a + ib) =
1

πt

(
1− t

2

d

da

∫
R

x

(a− x)2 + fν(a)2
dν(x)

)
db da,

where ν = νx0
the spectral distribution of x0.

x+i*fν(x)
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Brown(x0 + circular) and distribution of x0 + semicircular
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The distribution of ”x0 + semicircular” is the pushforward measure of

"Brown(x0 + circular)" under some natural map (related to

subordination functions).
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The limit of certain non-Hermitian random matrices

Main Results and Examples
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Connection with range of subordination function

Subordination function

Cauchy transform: Gµ(z) =
∫

R
1

z−u
dµ(u).

Subordination function Gµx0+gt
(z) = Gµx0

(ω(z)).

Then ω : C+ → C+, and

ω(C+) = C+\supp(Brown(x0 + ct)).

Inverse ω−1 coincides with the pushforward map on the boundary.

x+i*fν(x)
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The pushforward property

• Let x0 be a selfadjoint operator, free from {ct , gt}.
• Hall-Ho (2020) calculated Brown(x0 + igt ) for x0 selfadjoint.

Combining Ho-Z. 2019 and Hall-Ho 2020

Brown(x0 + ct)
Φ3 //

Φ1

))

Brown(x0 + igt)

Φ2uu
Brown(x0 + gt) = µx0+gt

Remark

The pushforward map Φ3 is nonsingular; Φ1,Φ2 are singular.
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Sum of a Haar unitary and an elliptic operator

Let u be a Haar unitary. Let ct be a circular operator with variance t

and gt be a semicircular operator with variance t .
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Figure: The random matrix simulation for u + ct and u + gt with t = 0.5.

• Similar phenomena holds for R-diagonal operator + ct /gt,γ.
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Some ideas of the proof

Deformed random matrix model

• Our results potentially unify various deformed random matrix models:

1 (finite rank/full rank) deformed Wigner random matrix

(well-studied)

AN + WN ;

2 (finite rank/full rank) deformed i.i.d. random matrix (Bai, Tao-Vu,

Tao, Bordenave-Caputo-Chafai, Capitaine-Bordenave, etc )

3 finite rank deformed elliptic random matrix (only finite rank

perturbation was studied so far)

• work in preparation (with Yin): convergence of full rank deformed

elliptic random matrix

• work in progress: outliers in full rank deformed elliptic random matrix
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free probability

= non-commutative probability + freeness

Definition (Voiculescu 1985)

Let (A, φ) be a non-commutative probability space. Unital

subalgebras {Ai}i∈I are free or freely independent, if

ai ∈ Aj(i), j(i) ∈ I
j(1) 6= j(2), j(2) 6= j(3), · · · , j(n− 1) 6= j(n)

φ(ai) = 0, ∀i

⇒ φ(a1 · · · an) = 0.

Random variable {xi}i∈I ⊂ A are free if subalgebras

Ai := alg{xi , 1A} are free.
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Review on free additive convolution

• Given a probability measure µ on R, define its Cauchy transform

Gµ(z) =
∫

R

1

z − u
dµ(u), z ∈ C+;

and Voiculescu’s R-transform Rµ(z) = G
〈−1〉
µ (z)− 1/z.

• Let x, y be operators in A that are free to each other, then

Rµx+y
(z) = Rµx

(z) + Rµy
(z).

Hence, the R-transform linearizes free additive convolution.
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Main Results and Examples

Some ideas of the proof

Subordination functions

• Let x, y be selfadjoint operators in A that are free to each other.

Theorem (Voiculescu 1991, Biane 1997)

There exists analytic functions ω1,ω2 : C+ → C+ such that

Gµx+y
(z) = Gµx

(ω1(z)) = Gµy
(ω2(z)), z ∈ C+.

Theorem (Belinschi-Bercovici 2007)

The functions ω1,ω2 can be obtained from the following fixed point

equations

ω1(z) = z + Hµy
(z + Hµx

(ω1(z))), ω2(z) = z + Hµx
(z + Hµy

(ω2(z))),

where Hµ(z) = 1/Gµ(z)− z
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Main Results and Examples

Some ideas of the proof

Operator-valued free probability

• An operator-valued W ∗-probability space (A,E,B) consists of a

von Neumann algebra A, a unital ∗-subalgebra B ⊂ A, and a

conditional expectation E : A → B, which satisfies

1 E(b) = b for all b ∈ B, and

2 E(b1xb2) = b1E(x)b2 for all x ∈ A, b1, b2 ∈ B.

• A family of subalgebras (Ai)i∈I (B ⊂ Ai ⊂ A) is free with

amalgamation over B with respect to the conditional expectation E if

E(x1x2 · · · xn) = 0

for every n ≥ 1, there are indices i1, i2, · · · , in ∈ I such that

i1 6= i2, i2 6= i3, · · · , in−1 6= in, and for j = 1, 2, · · · , n, we have

xj ∈ Aij such that E(x1) = E(x2) = · · · = E(xn) = 0.
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The limit of certain non-Hermitian random matrices

Main Results and Examples

Some ideas of the proof

Operator-valued subordination functions

• Let X be a selfadjoint operator in W ∗-probability space (A,E,B).
• The Cauchy transform is defined in H+(B) = {b ∈ B : =b > 0}

GX (b) = E(b− X)−1, =b > 0.

• Let X , Y be free with amalgamation in (A,E,B).

Theorem (Voiculescu, Biane)

There exists two analytic self-maps Ω1,Ω2 of H+(B), such that

GX+Y (b) = GX (Ω1(b)) = GY (Ω2(b)).
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Some ingredients of the proof: Hermitian reduction

Operator-valued W ∗-probability space (M2(A),E,M2(C)),
where the conditional expectation E : M2(A)→ M2(C) is

E

[
a11 a12

a21 a22

]
=

[
φ(a11) φ(a12)
φ(a21) φ(a22)

]
.

Hermitian reducation: for x ∈ A,

x −→ X =

[
0 x

x∗ 0

]
∈ M2(A).

Voiculescu’s R-transform linearizes the addition

RX+Y (b) = RX (b) + RY (b),

where RX (b) := G
〈−1〉
X (b)− b.
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The operator-valued Cauchy transform

Cauchy transform

GX (b) = E(b− X)−1.

We have

GX

([
iε λ

λ iε

])
= E

[
iε λ− x

λ− x∗ iε

]−1

=

[
gX ,11(λ, ε) gX ,12(λ, ε)
gX ,21(λ, ε) gX ,22(λ, ε)

]
where

gX ,11(λ, ε) = −iεφ
((

(λ− x)(λ− x)∗ + ε2
)−1
)

gX ,12(λ, ε) = φ
(
(λ− x)

(
(λ− x)∗(λ− x) + ε2

)−1
)

gX ,21(λ, ε) = φ
(
(λ− x)∗

(
(λ− x)(λ− x)∗ + ε2

)−1
)

gX ,22(λ, ε) = −iεφ
((

(λ− x)∗(λ− x) + ε2
)−1
)
.
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The regularized Brown measures

• The regularized Fuglede-Kadison determinnat of x ∈ (A, φ) is

defined as

Dε(x) = exp

[
1

2
φ(log(|x|2 + ε2))

]
∈ (0,∞).

Definition

The regularized Brown measure of x is the distributional Laplacian,

µx,ε =
1

2π
∆ logDε(x − λ).

Proposition (Haagerup-Larsen-Schultz)

The measure µx,ε is a probability measure and µx,ε → µx weakly as

ε→ 0.
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Cauchy transform and Brown measures

Cauchy transform carries important information

• Let Lx,ε(λ) = 2 logDε(x − λ) = φ[log((x − λ)∗(x − λ) + ε2)]

1

2

∂

∂ε
Lx,ε(λ) = iεφ

((
(λ− x)(λ− x)∗ + ε2

)−1
)
= igX ,11(λ, ε)

∂

∂λ
Lx,ε(λ) = φ

(
(λ− x)∗

(
(λ− x)(λ− x)∗ + ε2

)−1
)
= gX ,21(λ, ε)
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Free probability approach to Brown measures

How to calculate the Brown measure of x + y?

Dreaming some algorithm of calculation

Find a nice formula of the matrix-valued Cauchy transform of

X + Y ,

or find a nice formula of the FK-determinant Dε(x + y − λ).

Study the limit limε→0 gx+y,21(λ, ε), or limε→0Dε(x + y − λ).

Calculate the derivative
∂

∂λ
of the limit, or the Laplacian.

Belinschi-Speicher-Śniady: for any polynomial of x, y , it is possible to

calculate its Brown measure by some numerical algorithm.
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Hermitian reduction of x0 + gt,γ

x0 −→ X =

[
0 x0

x∗0 0

]
∈ M2(A).

gt,γ −→ Y =

[
0 gt,γ

g∗t,γ 0

]
∈ M2(A).

Proposition

The operator Y is an operator-valued semicircular element. The

R-transform of Y is given by

RY (b) = E(YbY ) =

[
a22φ(yy∗) a21φ(yy)

a12φ(y∗y∗) a11φ(y∗y)

]
,

where y = gt,γ and b =

[
a11 a12

a21 a22

]
.
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Why Hermitian reduction method works?

GX+Y (b) = GX (Ω1(b)) = GY (Ω2(b))

RX (b) = G
〈−1〉
X (b)− b

RX (b) + RY (b) = RX+Y (b)

G
〈−1〉
X (b) + RY (b) = G

〈−1〉
X+Y (b)

G
〈−1〉
X (GX+Y (b)) + RY (GX+Y (b)) = G

〈−1〉
X+Y (GX+Y (b))

• We can express the subordination function Ω1 as

Ω1(b) = b− RY (GX+Y (b)),

which is defined for all b satisfying =b > εI for ε > 0.
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The Fuglede-Kadison determinant formula: circular case

Theorem

1 If φ
[(
(x0 − λ)∗(x0 − λ)

)−1
]
> 1

t
, then

∆
(
x0 + ct − λ

)2
= ∆

(
(x0 − λ)∗(x0 − λ) + w(0;λ, t)2

)
× exp

(
− (wt (λ))2

t

)
,

(3)

where wt (λ) is determined by

φ
[(
(x0 − λ)∗(x0 − λ) + wt (λ)

2
)−1
]
=

1

t
. (4)

2 If φ
[(
(x0 − λ)∗(x0 − λ)

)−1
]
≤ 1

t
, then

∆(x0 + ct − λ) = ∆(x0 − λ).
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The Fuglede-Kadison determinant and subordination

functions

Example (Ho-Z.)

1 Given λ = a + bi ∈ Ωt , then wt (λ)2 = fν(a)2 − b2, then

∆(x0 + ct − λ) =

(
∆
(
(x0 − λ)∗(x0 − λ) + wt (λ)2

)) 1

2

exp
(
−wt (λ)2

2t

)
. (5)

2 If λ ∈ C\Ωt , then

∆(x0 + cε − λ) = ∆(x0 − λ). (6)

x+i*fν(x)
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Strong convergence of regularized Brown measures

Φ(ε)
t,γ(λ) = λ + γ · φ

(
(λ− x0)

∗((λ− x0)(λ− x0)
∗ + w(ε;λ, t)2

)−1

)
= λ + γ · φ

(
(λ− x0 − ct )

∗((λ− x0 − ct )(λ− x0 − ct )
∗ + ε2

)−1

)

Lemma

The function Φ(ε)
t,γ(λ) converges to Φt,γ(λ) uniformly in C as ε→ 0.
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Triangular elliptic deformation

• A triangular elliptic random matrix XN is a square matrix whose

(i, j)-entry XN(i, j) is independent of every other entry except possibly

XN(j, i). It generalizes elliptic model (α = β).
x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

. . .
...

xN1 xN2 · · · xNN


E(xijxij) = α, (if i < j); E(xijxij) = β, (if i > j).

• (Belinschi-Yin-Z. 2022): Brown(x0 + triangular elliptic operator) for

unbounded x0.
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