Marcinkiewicz interpolation for non-commutative maximal functions

L. Cadilhac joint work with E. Ricard (Caen, France)

Sorbonne University, Paris

2022, November 30

Motivation from ergodic theory

 (X, μ) a measure space T a measure preserving transformation of X

Ergodic averages

Let $f \in L_0(X)$ and $n \geq 0$, define

$$
A_n(f):=\frac{1}{n+1}\sum_{k=0}^n f\circ T^k.
$$

Maximal inequality

Let $f \in L_1(X)$ and $\lambda > 0$. Then

$$
\mu\big(\bigg\{\sup_{n\geq 0}|A_n(f)|>\lambda\bigg\}\big)\lesssim \lambda^{-1}\left\|f\right\|_1.
$$

This is a crucial ingredient to prove the convergence of $A_n(f)$

Weak L_p -space

• Let $f \in L_0(X)$ and $p \in (0, \infty)$ then

$$
||f||_{p,\infty} := \sup_{\lambda>0} \lambda \mu(\{|f|>\lambda\}).
$$

• Let S be a (quasi-)linear operator. Then S is said to be of weak type (p, p) if there exists a constant $C > 0$ such that

$$
||S(f)||_{p,\infty}\leq C||f||_p \quad \forall f\in L_p(X).
$$

• Equivalently,

$$
\forall f \in L_p(X) \ \forall \lambda > 0 \quad \mu(\{|S(f)| > \lambda\}) \leq C\lambda^{-1} \|f\|_p.
$$

The maximal inequality of the previous slide can be refrased as the weak (1, 1) boundedness of the operator $S = \sup_{n>0} A_n$.

From weak to strong inequalities

An operator S is said to be of strong type (p, p) if there is a constant $C > 0$ such that

 $\left\|S(f)\right\|_p \leq C \left\|f\right\|_p$.

Theorem (Marcinkiewicz)

Let $p_0 < p < p_1 \in (0,\infty]$. Assume that S is of weak type (p_0, p_0) with constant C_0 and of weak type (p_1, p_1) with constant C_1 . Then S is of strong type (p, p) with constant

$$
\mathcal{C}_\rho \leq \mathcal{C} \mathcal{C}_0^{1-\theta} \mathcal{C}_1^\theta \left(\frac{1}{\rho} - \frac{1}{\rho_1} \right)^{-1} \left(\frac{1}{\rho_0} - \frac{1}{\rho} \right)^{-1}
$$

where θ is determined by $1/p = (1 - \theta)/p_0 + \theta/p_1$ and C is universal.

• It applies once again to the supremum of ergodic averages

The framework

 (\mathcal{M}, τ) - $\mathcal M$ von Neumann algebra and τ a n.s.f trace • For $x \in L_p(\mathcal{M})$,

$$
||x||_p = \tau(|x|^p)^{1/p}.
$$

• For $x \in L_{p,\infty}(\mathcal{M})$,

$$
||x||_{p,\infty} = \sup_{\lambda > 0} \lambda \tau(\chi_{[\lambda,\infty)}(|x|))^{1/p}.
$$

• $L_0(\mathcal{M})$ to be though of as the space of measurable functions • For $x \in L_0(\mathcal{M})$ and $t > 0$

$$
\mu(x,t)=\sup_{\tau(1-e)\leq t}\|exe\|_{\infty},
$$

where e is a projection.

 $\left\Vert \mathsf{x}\right\Vert _{\rho}=\left\Vert \mu(\mathsf{x})\right\Vert _{L_{\rho}\left(\mathbb{R}\right)}.$ True for any symmetric space.

Back to ergodic theory

 T a positive trace preserving contraction on M

Ergodic averages

Let $x \in L_0(\mathcal{M})$ and $n \geq 0$, define

$$
A_n(f):=\frac{1}{n+1}\sum_{k=0}^n T^k(x).
$$

Lance proposed a formulation in terms of measures or states

Maximal inequality (Yeadon)

Let $x \in L_1(\mathcal{M})$ and $\lambda > 0$, then there exists a projection $e \in \mathcal{M}$ such that

$$
\lambda \tau(1-e) \leq ||x||_1 \quad \text{and} \quad ||eA_n(x)e||_{\infty} \leq \lambda \quad \forall n \geq 0.
$$

e is to be thought of as $\{ \sup_{n\geq 0} |A_n(x)| \leq \lambda \}$

Noncommutative weak type

Weak maximal norm

Let $p \in (0, \infty)$. Define

$$
\|(x_n)_{n\geq 0}\|_{\Lambda_{\rho,\infty}(\mathcal{M},\ell_\infty)}=\sup_{\lambda>0}\inf_e\lambda(\tau(1-e))^{1/\rho}
$$

where the sup is taken over all projections e such that $||ex_ne||_{\infty} \leq \lambda \ \forall n \geq 0$.

- We say that $S = (S_n)_{n \geq 0}$ a sequence of linear maps is of weak type (p, p) if it sends $L_p(\mathcal{M})$ to $\Lambda_{p,\infty}(\mathcal{M}, \ell_{\infty})$.
- Can be generalized to any symmetric space

$$
\mu_{\Lambda}((x_n)_{n\geq 0}, t) = \inf_{\tau(1-e)\leq t} \sup_{n\geq 0} ||ex_n e||_{\infty}.
$$

By definition, $||(x_n)_{n\geq 0}||_{\Lambda_n \sim (\mathcal{M}, \ell_\infty)} = ||\mu_\Lambda((x_n)_{n\geq 0}||_{p,\infty}).$

Noncommutative weak type

The weak type inequality offers a control over a diagonal of the x_n 's. Assume that $||(x_n)_{n\geq 0}||_{\Lambda_1,\cdots,\Lambda_n,\ell_\infty}\leq C.$

• Let $k \in \mathbb{Z}$ and choose a projection e_k such that

$$
\tau(1-e_k)\leq 2^{-k}\cdot 2C \quad \text{and} \quad \left\|e_kx_ne_k\right\|_{\infty}\leq 2^{k} \quad \forall n\geq 0.
$$

- Considering $e'_k = \bigwedge_{i \geq k} e_i$, the e_k 's may be assumed to be increasing, losing a factor 2 in the previous estimate.
- Set $q_k = e_{k+1} e_k$ then the q_k 's are disjoint and for any $k \in \mathbb{Z}$,

$$
\tau(q_k) \leq 2^{-k} \cdot 4C \quad \text{and} \quad ||q_k x_n q_k||_{\infty} \leq 2 \cdot 2^k \quad \forall n \geq 0.
$$

And for all $n > 0$

$$
\left\|\sum_{k\in\mathbb{Z}}q_kx_nq_k\right\|_{1,\infty}\leq 4C.
$$

Noncommutative strong type

Definition due to Junge and Pisier:

Maximal p-norm

Let $p \in (0, \infty)$,

$$
\|(x_n)_{n\geq 0}\|_{L_p(\mathcal{M}, \ell_\infty)} := \inf_{x_n = a y_n b} \|a\|_{2p} \|b\|_{2p} \sup_{n\geq 0} \|y_n\|_{\infty}.
$$

- The corresponding space is denoted by $L_p(\mathcal{M}, \ell_\infty)$ to be thought of as the space of sequences (x_n) such that $\left\|\sup_n |x_n|\right\|_p < \infty$.
- If for all *n*, $x_n \geq 0$ then

$$
\|(x_n)_{n\geq 0}\|_{L_p(\mathcal{M}, \ell_\infty)} = \inf \left\{ \|a\|_p : x_n \leq a \quad \forall n \geq 0 \right\}.
$$

- If $p \in [1, \infty)$, the infimum above is achieved uniquely but on an element depending on p!
- Many pathologies outside of positive sequences: $(x_n)_{n>0} \in L_p(\mathcal{M}, \ell_\infty)$ does not imply that $(|x_n|)_{n\geq 0} \in L_n(\mathcal{M}, \ell_\infty)$.

Noncommutative strong type

Let $p \in (0, \infty)$.

Definition

A family of maps $S_n: L_1(\mathcal{M}) + L_\infty(\mathcal{M}) \to L_0(\mathcal{M})$ is of strong (p, p) -type if for all $x \in L_n(\mathcal{M})$

$$
||(\mathsf{T}_{n}(f))||_{L_{p}(\mathcal{M},\ell_{\infty})}\leq C||f||_{p}.
$$

If T_n is defined only on the positive cone, we relax the definition for positive f only.

Asymmetric norms

• More recently, people consider asymmetric versions $0 \le \theta \le 1$: $L_p(\mathcal{M}, \ell_{\infty}^{\theta}) =$ $\{(x_n)_{n>0}|\exists a\in L_{p/\theta}(\mathcal{M}), b\in L_{p/1-\theta}, u_n\in \mathcal{M}, ||u_n||\leq 1, x_n=au_nb\}$ and

$$
\|(x_n)\|_{L_p(\ell_\infty^\theta)}=\inf \|a\|_{p/\theta}\|b\|_{p/1-\theta}
$$

- These are Banach spaces if $p \geq 2 \max\{\theta, 1-\theta\}$.
- When $\theta = 0$ this is $L_p(\ell_{\infty}^c)$ and when $\theta = 1$, $L_p(\ell_{\infty}^r)$.

$$
L_p(\mathcal{M}, \ell_{\infty}^c) = \{(x_n) | b \in L_p, u_n \in \mathcal{M}, ||u_n|| \leq 1, x_n = u_n b\}
$$

• One can also define θ -asymmetric strong (p, p) -type

$$
||(S_n(x))||_{L_p(\mathcal{M}, \ell_\infty^\theta)} \leq C||x||_p.
$$

Maximal spaces and interpolation

Fundamental result by Junge

 $(L_p(\mathcal{M},\ell_{\infty}^{\theta}))_{p\geq 2\max\{\theta,1-\theta\}}$ form an interpolation scale for the complex method.

They are good for complex interpolation, but not for real interpolation:

Bad news from Junge and Xu

$$
(L_1(\mathcal{M}, \ell_{\infty}), L_{\infty}(\mathcal{M}, \ell_{\infty}))_{\frac{1}{p}, p} \neq L_p
$$

The nc Marcinkiewicz theorem

Junge and Xu

Let $1\leq \rho_0<\rho_1\leq \infty.$ Let $S=(S_n)$ be a sequence of maps from $L_{\rho_0}^++L_{\rho_1}^+$ into L_0^+ . Assume that S is subadditive in the sense that $S_n(x+y) \leq S_n(x) + S_n(y)$ for all $n \geq 0$. If S is of weak type (p_0, p_0) with constant C_0 and of type (p_1, p_1) type (p_1, p_1) with constant C_1 , then for any $p_0 < p < p_1$, S is of strong type (p, p) with constant C_p satisfying

$$
\mathcal{C}_\rho \leq \mathcal{C} \mathcal{C}_0^{1-\theta} \mathcal{C}_1^\theta \Big(\frac{1}{\rho_0}-\frac{1}{\rho}\Big)^{-2} \left(\frac{1}{\rho}-\frac{1}{\rho_1}\right)^{-1},
$$

where θ is determined by $1/p = (1 - \theta)/p_0 + \theta/p_1$ and C is universal.

Applications

Corollary : The Maximal Doob inequality (Junge)

Consider a filtration $\mathcal{M}_0 \subset \ldots \subset \mathcal{M}_k \subset \ldots$ of $\mathcal M$ with conditional expectations \mathbb{E}_n , for $1 < p < \infty$, there is \mathcal{C}_ρ such that for any $x \in L^+_\rho$, there exists $z \in L_\rho$ with

$$
0\leq \mathbb{E}_n x\leq z, \qquad \|z\|_p\leq c_p \|x\|_p
$$

- It is also known from another Junge and Xu work that c_p behaves like $1/(p-1)^2$ when p is close to 1. Thus the constant in the nc Marcinkiewicz theorem is optimal.
- Also applies to ergodic averages!

Many generalizations

- Extensions to more general symmetric function spaces by Bekjan, Chen and Osekowski. Still the restriction to strong (p_1, p_1) -type.
- An almost optimal form by Dirksen He got the weak (p_1, p_1) -type hypothesis and the result for all interpolation spaces.

The nc Marcinkiewicz theorem

After Dirksen, simple statement

Let $1\leq \rho_0<\rho_1\leq \infty.$ Let $S=(S_n)$ be a sequence of maps from $L_{\rho_0}^++L_{\rho_1}^+$ into L_0^+ . Assume that S is subadditive in the sense that $S_n(x+y) \leq S_n(x) + S_n(y)$ for all $n \ge 0$. If S is of weak type (p_0, p_0) with constant C_0 and of weak type (p_1, p_1) with constant C_1 , then for any $p_0 < p < p_1$, S is of strong type (p, p) with constant C_p satisfying

$$
\mathcal{C}_\rho \leq \mathcal{C} \mathcal{C}_0^{1-\theta} \mathcal{C}_1^\theta \Big(\frac{1}{\rho_0}-\frac{1}{\rho}\Big)^{-2} \Big(\frac{1}{\rho}-\frac{1}{\rho_1}\Big)^{-2},
$$

where θ is determined by $1/p = (1 - \theta)/p_0 + \theta/p_1$ and C is universal.

The main novelty

We can recover Dirksen statement quite easily with variants. For simplicity, we state the following theorem for linear maps.

Theorem (Ricard, C.)

Let $1 \leq p_0 < p_1 \leq \infty$. Let $S = (S_n)_{n \geq 0}$ be a sequence of linear positive maps from $L_{\rho_0}+L_{\rho_1}$ into L_0 . Assume that S of weak type (ρ_0,ρ_0) with constant C_0 and of weak type (p_1, p_1) with constant \mathcal{C}_1 . Then there is are constants $\mathcal{C}_{\theta,p_0,p_1}$ such that for any $x\in L_{\rho_0}\cap L_{\rho_1}$, there exist $a\in (L_1+L_{\infty})^+$ and contractions $u_n\in M$ indep of θ with

$$
S_n(x) = au_n a, \qquad ||a||_{2p}^2 \leq C_{\theta, p_0, p_1} ||x||_p.
$$

Moreover, for any $\varepsilon > 0$,

$$
\mathsf{C}_{\theta, \rho_0, \rho_1} \leq \mathsf{C}_{\varepsilon} \mathsf{C}_{0}^{1-\theta} \mathsf{C}_{1}^{\theta} \Big(\frac{1}{\rho_0} - \frac{1}{\rho} \Big)^{-(2+\varepsilon)} \Big(\frac{1}{\rho} - \frac{1}{\rho_1} \Big)^{-(2+\varepsilon)}.
$$

Application to martingale theory

Corollary : a more explicit Maximal Doob inequality

Consider a filtration $\mathcal{M}_0 \subset ... \subset \mathcal{M}_k \subset ...$ of \mathcal{M} (finite) with conditional expectations \mathbb{E}_n . There are constants C_p , $1 < p < \infty$, such that for any let $x \in L_{\infty}^{+}$, there exists $z \in L_{1}^{+}$ with

$$
0\leq \mathbb{E}_n x\leq z, \qquad \forall \, 1<\rho<\infty, \; \|z\|_\rho\leq C_\rho \|x\|_\rho
$$

- This means that one can construct an element z playing the role of $\sup_{n>0} \mathbb{E}_n(x)$.
- The construction becomes explicit using Cuculescu's projections.
- Unfortunately, there is a price to pay on the constants.

The asymmetric version

Theorem

Let $1 \leq p_0 < p_1 \leq \infty$ and $0 < \gamma < 1$. Let $S = (S_n)$ be a sequence of linear positive maps from $L_{\rho_0}+L_{\rho_1}$ into L_1+L_{∞} . Assume that S of weak type (ρ_0,ρ_0) with constant C_0 and of weak type (p_1, p_1) with constant C_1 . Then S is of strong γ -asymmetric type (p, p) for $p_0 < p < p_1$ and $p > 2$ max $\{\gamma, 1 - \gamma\}$. Moreover, there are constants $\mathsf{C}_{\theta,p_0,p_1}$ such that for any $x\in\mathsf{L}_{\rho_0}\cap\mathsf{L}_{\rho_1}$ and $a \in (L_1 + L_{\infty})^+$ and contractions $u_n \in M$ indep of θ with

$$
S_n(x) = a^{\gamma} u_n a^{1-\gamma}, \qquad ||a||_p \leq C_{\theta, p_0, p_1} ||x||_p.
$$

This is false if $p = 2 \max\{\gamma, 1 - \gamma\}$ in general.

The good Lemma

How to majorize positive elements by diagonal type ones

Let $N\geq 0$ and q_0,\ldots,q_N be disjoint projections in \mathcal{M} , set $q=\sum_{i=0}^N q_i$. Let $d_0,\ldots,d_N > 0$. Then for any $x \in L_0(\mathcal{M})^+$,

$$
qxq \leq \left(\sum_{k=0}^N 1/d_k\right)\sum_{k=0}^N d_k q_k xq_k.
$$

The proof is simple. Assume $\sum_{k=0}^{N} 1/d_k = 1$:

- Note that the matrix $A = \sum_{k=0}^n d_k e_{k,k} + \sum_{k,l=0}^N e_{k,l}$ is positive
- Then A admits a square root $B = (b_{i,j})_{1 \le i,j \le N}$ (B real symmetric)
- Note that

$$
\sum_{k=0}^N d_k q_k x q_k - q x q = \sum_{i=0}^N \left(\sum_{i=0}^N b_{i,i} q_i \right) x \left(\sum_{j=0}^N b_{j,i} q_j \right) \geq 0.
$$

Some ideas case $p_0 = 1$, $p_1 = \infty$

Assume that $x = p$ is a projection with $\tau(p) = t$

• Recall that we can find disjoint projections q_k , $k \geq 0$ such that

$$
\tau(q_k) \leq C2^k t \quad \text{and} \quad \|q_k S_n(p) q_k\|_{\infty} \leq 2^{-k} \quad \forall n \geq 0.
$$

• By the good lemma, for any sequence $(d_k)_{k>0}$ of positive numbers, we have

$$
S_n(x) \leq \left(\sum_{k=0}^{\infty} 1/d_k\right) \sum_{k=0}^{\infty} d_k q_k x q_k.
$$

It remains only to choose d_k wisely. Set for example $d_k = 1 + k^2$ and $z = \sum_{k=0}^{\infty} d_k q_k x q_k$. Note that

$$
||z||_p^p \lesssim \sum_{k=0}^{\infty} (1+k^2) 2^{kp} t^p 2^{-k} = t^p \sum_{k=0}^{\infty} (1+k^2) 2^{k(1-p)}.
$$

Ideas of proof

If $x \geq 0$ is no longer a projection then $x = \sum_{j \in \mathbb{Z}} 2^j p_j$ with p_j projections.

 $\mu(x) \approx \sum_{j\in\mathbb{Z}} 2^j \mu(p_j)$

construct z_j thanks to the previous slide and $z=\sum_{j\in\mathbb{Z}}2^jz_j$

- $S_n(x) \leq z$ for all $n > 0$
- $\mu(\pmb{z})$ is dominated by $\sum_{j\in\mathcal{Z}b}2^j\mu(\pmb{z}_j)$ which is dominated by

$$
\sum_{j\in Zb}\sum_{k\geq 0}2^j2^{-k}d_k\mu q_{j,k}\leq \sum_{k\geq 0}2^{-k}\sum_{j\in \mathbb{Z}}d_kD_{2^k}(2^j\mu(p_j))\leq \sum_{k\geq 0}d_k2^{-k}D_{2^k}\big(\mu(x)\big)
$$

where D_{2^k} is the dilation by a factor 2^k .

Beyond positivity ?

The Marcinkiewicz theorem is simply false if S_n are not assumed to be positive !

Natural Conjecture

If S is of strong type (∞, ∞) and weak $(1, 1)$, then S is bounded from L_p to $L_p(\ell_\infty^c)+L_p(\ell_\infty^r)$ for $2\leq p<\infty$? i.e.

$$
S_n(x)=zu_n+v_nz
$$

for some $z \in L_p$ with $||z||_p \leq C_p ||x||_p$ and contractions u_n, v_n

Ok if x is a projection !

Beyond positivity?

One can try to use interpolation techniques but

Big problem

The spaces $(L_p(\mathcal{M},\ell_{\infty}^c))_{\rho\geq 2}$ don't form a scale for the real interpolation method !

Junge and Xu have a partial result for positive cones which is at the heart of their proof of the Marcinkiewicz theorem.

Best try at the conjecture

Let $1 < p < q < \infty$. If S is of strong type (∞, ∞) and weak $(1, 1)$, then

$$
S_n(x)=zu_n+v_nz
$$

for some $z\in L_p$ with $\|z\|_p\leq C_{p,q}\,\|x\|_q^{q/p}\,\|x\|_\infty^{1-q/p}$ and contractions $u_n,v_n.$

Thank you!