Sharp endpoint L_p estimate of Schrödinger groups under noncommutative algebraic framework

Zhijie Fan Wuhan University

This is a joint work with Guixiang Hong and Liang Wang

August 15, 2022

This talk is based on

• Z. Fan, G. Hong and L. Wang, Sharp endpoint L_p estimate of Schrödinger groups under noncommutative algebraic framework. In progress.

Schrödinger equation

Schrödinger equation on \mathbb{R}^n :

$$\left\{ \begin{array}{ll} i\partial_t u(x,t) - \Delta u(x,t) = 0 & x \in \mathbb{R}^n, \ t > 0, \\ u(x,0) = f(x), \end{array} \right.$$

where $\Delta := -\sum_{i=1}^n \partial_{x_i}^2$. Then

$$u(x,t) = e^{it\Delta} f(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{i(\langle x,\xi\rangle + t|\xi|^2)} d\xi,$$

where

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-ix\xi} dx.$$

Schrödinger equation

- $e^{it\Delta}$ is bounded on $L^p(\mathbb{R}^n)$ iff p=2.
 - (Hormander, Acta. Math, 1960).
- If $p \neq 2$, then $e^{it\Delta}$ is bounded from $L_{2s}^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$, where s > n|1/2 1/p|. Equivalently, $(I + \Delta)^{-s}e^{it\Delta}$ is bounded on $L^p(\mathbb{R}^n)$.
 - (Lanconelli, Boll. Un. Mat. Ital, 1968);
 - (Sjöstrand, Ann. Scuola Norm. Sup. Pisa, 1970);
 - (Brenner, Ark. Mat, 1973).
- If $p \neq 2$, then $e^{it\Delta}$ is unbounded from $L_{2s}^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$, where s < n|1/2 1/p|. Equivalently, $(I + \Delta)^{-s}e^{it\Delta}$ is unbounded on $L^p(\mathbb{R}^n)$.
 - (Sjöstrand, Ann. Scuola Norm. Sup. Pisa, 1970);
 - (Brenner, Ark. Mat, 1973).

Sharp L^p estimate

Theorem 1 (Miyachi, 1980)

If
$$s = n|1/2 - 1/p|$$
, then for any $1 ,$

$$\|(I+\Delta)^{-s}e^{it\Delta}\|_{L^p(\mathbb{R}^n)}\leq C(1+|t|)^s\|f\|_{L^p(\mathbb{R}^n)}.$$

Remark 1.1

This estimate is sharp:

- If s < n|1/2 1/p|, then $(I + \Delta)^{-s}e^{it\Delta}$ is unbounded on L^p ;
- The upper bound on t is sharp.

Schrödinger equation associated with operators

Question: When Δ is replaced by L, it is possible to obtain corresponding L^p regularity estimate?;

- Balabane-Emami-Rad (1985): P(D) + V(x);
- Thangavelu (1987): $-\Delta + V(x)$;
- Lohoué (1992); Alexopoulos (1994): Sub-Laplacian operator on Lie group or Riemannian manifold;
- ullet Jensen-Nakamura (1994,1995): $e^{-itL}f(L)$, where $L=-\Delta+V(x)$ and $V(x)\geq 0$;

Schrödinger groups associated with operators

Let (X, d, μ) be measure space with distance d and measure μ , L is a non-negative self-adjoint operator on $L^2(X)$. Consider Schrödinger equation on X:

$$\begin{cases} i\partial_t u(x,t) + Lu(x,t) = 0, & x \in X, \quad t > 0, \\ u(x,0) = f(x), \end{cases}$$

Then for any $f \in L^2(X)$, by spectral decomposition,

$$e^{itL}f = \int_0^\infty e^{it\lambda} dE_L(\lambda)f.$$

where $E_L(\lambda)$ is the projection-valued measure supported on the spectrum of L. By spectral theorem, e^{itL} is bounded on $L^2(X)$.

Homogeneous (Doubling measure) space

Definition 2

If $\exists C > 0$ such that

$$V(x,2r) \leq CV(x,r), \quad \forall r > 0, \ x \in X,$$

then we say that (X, d, μ) satisfies doubling property, where we denote $V(x, r) := \mu(B(x, r))$.

Note that the above inequality can deduce that: $\exists C, n > 0$ s.t.

$$V(x, \lambda r) \leq C\lambda^n V(x, r), \ \forall \lambda \geq 1, \ x \in X.$$

then we say that (X, d, μ) is a homogeneous space with dimension n.

Assumption: Gaussian upper bound

Definition 3

Let $m \ge 2$ and L is a non-negative self-adjoint operator on $L^2(X)$, if integral kernel $p_t(x,y)$ of e^{-tL} satisfies:

$$|p_t(x,y)| \le \frac{C}{\mu(B(x,t^{1/m}))} \exp\left(-c\left(\frac{d(x,y)^m}{t}\right)^{\frac{1}{m-1}}\right), \quad (GE_m)$$

then we say that the kernel $p_t(x, y)$ satisfies *m*-order Gaussian upper bound.

Example 4

- \bullet $-\Delta_M$ (Laplace-Beltrami operator on compact manifold);
- $-\Delta + V(x)$, $0 \le V(x) \in L^1_{loc}(\mathbb{R}^n)$ (Schrödinger operator with non-negative potential)
- $-divA\nabla + V(x)$ (Divergence operator);
- $-\Delta_{\mathbb{H}}$ (Sub-Laplacian operator on homogeneous groups).

Sharp L^p estimate

Theorem 5 (Chen–Duong–Li–Yan, 2020)

Let (X, d, μ) be a homogeneous space with dimension n. Besides, if L is a non-negative self-adjoint operator, and semigroup e^{-tL} satisfies $m(\geq 2)$ -order Gaussian-estimate, then for any $1 , <math>\exists C_{n,p} > 0$ s.t.

$$||e^{itL}(I+L)^{-\sigma_p n}f||_{L^p(X)} \le C_{n,p}(1+|t|)^{\sigma_p n}||f||_{L^p(X)},$$

where $\sigma_p = |1/2 - 1/p|$.

Reference

1. P. Chen, X.T. Duong, J. Li and L.X. Yan, Sharp endpoint *L^p* estimates for Schrödinger groups, *Math. Ann.* **378** (2020), 667–702.

Our task

In order to investigate L^p regularity estimate of non-commutative Schrödinger equation, we will study the L^p boundedness of the corresponding targeted operator

$$e^{itL}(I+L)^{-\sigma_p n}$$

on noncommutative measure space.

Difficulties

- (1) Lack of pointwise estimates, how to formulate this question appropriately? In particular, how to define the dimension n? What conditions should be imposed on L?
- (2) Lack of atomic decomposition of Hardy space on general VNA.
- (3) One cannot apply sharp maximal function as effectively as in the classical setting.

Observation

Calderón-Zygmund singular integral theory

- ⇒ Hörmander-Mihlin multiplier theorem
- ⇒ Radial Hörmander-Mihlin multiplier theorem
- \Rightarrow Non-endpoint L^p boundedness of targeted operator

In the last " \Rightarrow ", the oscillatory term $e^{-it\Delta}$ doesn't play any role.

Observation

Combine

Singular integral theory beyond Calderón-Zygmund framework

with

Digging out extra oscillatory information about e^{itL}

 \Rightarrow Endpoint L^p boundedness of targeted operator

A general form of noncommutative singular integral operator theory

[JMPX] first introduced a noncommutative form of Calderón-Zygmund theory under algebraic framework.

- Cover many concrete examples in both classical setting and noncommutative setting.
- Particularly interesting for measure spaces with poor geometric information.

Reference

1. M. Junge, T. Mei, J. Parcet and R. Xia, Algebraic Calderon-Zygmund theory, *Adv. Math.* **376** (2021), 107443.

Our Task

We will follow the establishment of a general form of noncommutative SIO theory to establish non-commutative Schrödinger group theory under algebraic framework.

Reference

1. M. Junge, T. Mei, J. Parcet and R. Xia, Algebraic Calderon-Zygmund theory, *Adv. Math.* **376** (2021), 107443.

This will be divided into the following steps.

Step 1: Identify the approciate BMO spaces.

Step 2: Provide conditions on *L* which yield $L_{\infty} \to BMO$ boundedness of target operator.

Step 3: Verify these conditions for a large number of concrete examples.

- (1) \mathcal{M} : semifinite von Neumann algebra;
- (2) τ : a normal semifinite faithful trace on \mathcal{M} ;
- (3) $S = (S_t)_{t \geq 0}$: Markovian semigroup over M;

A semigroup ${\mathcal S}$ over ${\mathcal M}$ is said to be Markovian if

- (i) Each S_t is a weak-* continuous, contractive and completely positive map s.t. $S_t(1) = 1$;
- (ii) Each S_t is self-adjoint in the sense that

$$\tau(S_t(f)g) = \tau(fS_t(g)), \text{ for all } f, g \in \mathcal{M} \cap L_1(\mathcal{M}).$$
 (1)

(iii) The map $t o \mathcal{S}_t$ is a pointwise weak-* continuous map.

By Stone's theorem, ${\cal S}$ admits an infinitesimal negative generator

$$Af = \lim_{t \to 0} \frac{S_t(f) - f}{t}$$

defined on $dom(A) = \bigcup_{1 \le p \le \infty} dom_p(A)$, where $dom_p(A)$ is given by

$$dom_p(A) = \Big\{ f \in L_p(\mathcal{M}) : \lim_{t \to 0} \frac{S_t(f) - f}{t} \text{ converges in } L_p(\mathcal{M}) \Big\}.$$

Note that L := -A is a non-negative self-adjoint operator acting on $L_2(\mathcal{M})$.

A P-Markovian metric associated to (\mathcal{M}, τ) and \mathcal{S} is determined by a family

$$Q = \{(R_{j,t}, \sigma_{j,t}) : j \in \mathbb{N}, t > 0\}.$$

Here each $R_{j,t}: \mathcal{M} \to \mathcal{M}$ is a normal completely positive unital map, and $\sigma_{j,t} \in \mathcal{M}$ s.t. the estimates below hold for some $m \geq 2$:

(i) Semigroup majorization:

$$S_t(|\xi|^2) \leq \sum_{j\geq 0} \sigma_{j,t}^* R_{j,\sqrt[m]{t}}(|\xi|^2) \sigma_{j,t}, \forall \ t>0 \ \mathrm{and} \ \xi \in \mathcal{M};$$

(ii) Average domination condition:

$$||R_{j,t}(|\xi|^2)||_{\mathcal{M}} \le ||R_t(|\xi|^2)||_{\mathcal{M}}, \forall t > 0, j \ge 0 \text{ and } \xi \in \mathcal{M};$$

(iii) Metric integrability condition:

$$k_{\mathcal{Q}} := \sup_{t>0} \left\| \sum_{j\geq 0} |\sigma_{j,t}|^2 \right\|_{\mathcal{M}}^{1/2} < \infty.$$

Set
$$R_t(f) := R_{0,t}(f)$$
.

(i) Semigroup majorization:

$$S_t(|\xi|^2) \leq \sum_{j \geq 0} \sigma_{j,t}^* R_{j,\sqrt[m]{t}}(|\xi|^2) \sigma_{j,t}, \forall \ t > 0 \ \mathrm{and} \ \xi \in \mathcal{M}.$$

The above inequality describes: if the heat kernel $p_t(x, y)$ associated with L satisfies m-order Gaussian upper bound, then

$$\int_{X} p_{t}(x, y) |\xi(y)|^{2} d\mu(y)
\leq C \sum_{j>0} \frac{\mu(B(x, 2^{j} t^{1/m}))}{\mu(B(x, t^{1/m}))} \exp\left(-c 2^{\frac{jm}{m-1}}\right) \int_{B(x, 2^{j} t^{1/m})} |\xi(y)|^{2} d\mu(y)$$

(ii) Average domination condition:

$$\left\|R_{j,t}(|\xi|^2)\right\|_{\mathcal{M}} \leq \left\|R_t(|\xi|^2)\right\|_{\mathcal{M}}, \forall t>0, j\geq 0 \text{ and } \xi\in\mathcal{M};$$

The above inequality describes:

$$\left\| \int_{B(x,2^jt^{1/m})} |\xi(y)|^2 d\mu(y) \right\|_{L_{\infty}(X)} \le C \left\| \int_{B(x,t^{1/m})} |\xi(y)|^2 d\mu(y) \right\|_{L_{\infty}(X)}.$$

(iii) Metric integrability condition:

$$k_{\mathcal{Q}} := \sup_{t>0} \left\| \sum_{j\geq 0} |\sigma_{j,t}|^2 \right\|_{\mathcal{M}}^{1/2} < \infty.$$

The above inequality describes:

$$k_{\mathcal{Q}} = C \left\| \sum_{j \geq 0} \frac{\mu(B(x, 2^{j}t^{1/m}))}{\mu(B(x, t^{1/m}))} \exp\left(-c2^{\frac{jm}{m-1}}\right) \right\|_{L_{\infty}(X)}^{1/2} < \infty.$$

Given $M \in \mathbb{Z}_+$, we define the semigroup $BMO_{\mathcal{S},M}(\mathcal{M})$ semi-norm for $f \in \mathcal{M}$ as

$$\|f\|_{\mathrm{BMO}_{\mathcal{S},M}(\mathcal{M})} := \max \big\{ \|f\|_{\mathrm{BMO}_{\mathcal{S},M}^r(\mathcal{M})}, \|f\|_{\mathrm{BMO}_{\mathcal{S},M}^c(\mathcal{M})} \big\},$$

where the column BMO semi-norm is given by

$$\|f\|_{{\mathrm{BMO}}^c_{\mathcal{S},M}(\mathcal{M})} := \sup_{t>0} \|e^{-tL}|(I-e^{-tL})^{M}f|^2\|_{\mathcal{M}}^{1/2}$$

For any $M \in \mathbb{Z}_+$, we define the semigroup $BMO_{\mathcal{Q},M}(\mathcal{M})$ semi-norm for $f \in \mathcal{M}$ as

$$\|f\|_{BMO_{\mathcal{Q},M}(\mathcal{M})} = \max \big\{ \|f\|_{BMO_{\mathcal{Q},M}^c(\mathcal{M})}, \|f\|_{BMO_{\mathcal{Q},M}^r(\mathcal{M})} \big\},$$

where the column BMO semi-norm is given by

$$||f||_{BMO_{Q,M}^c(\mathcal{M})} := \sup_{t>0} ||R|_{\sqrt[m]{t}} |(I - e^{-tL})^{M} f|^2 ||_{\mathcal{M}}^{1/2}$$

Lemma 6 (Z. Fan, G. Hong and L. Wang)

Let (\mathcal{M}, τ) be a noncommutative measure space equipped with a markovian semigroup $\mathcal{S} = (S_t)_{t \geq 0}$ and a P-markovian metric $\mathcal{Q} = \{(R_{j,t}, \sigma_{j,t}) : j \in \mathbb{N}, t > 0\}$. Then for any $M \in \mathbb{Z}_+$,

$$||f||_{{\mathrm{BMO}}^c_{\mathcal{S},M}} \lesssim k_{\mathcal{Q}}||f||_{{\mathrm{BMO}}^c_{\mathcal{Q},M}}.$$

Notation:

- (1) $\rho_1, \rho_2: \mathcal{M} \to \mathcal{N}_{\rho}$ are injective *-homomorphisms into certain von Neumann algebra \mathcal{N}_{ρ} ;
- (2) q_r 's are projections in \mathcal{N}_{ρ} satisfying $q_r \nearrow 1$ as $r \to +\infty$.
- (3) $E_{\rho}: \mathcal{N}_{\rho} \to \rho_1(\mathcal{M})$ is an operator-valued weight;

Special model:

(1)
$$\mathcal{N}_{\rho} = L_{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$$
, $\rho_1 f(x, y) = f(x)$, $\rho_2 f(x, y) = f(y)$.

(2)
$$q_r(x,y) = \chi_{B_r(x)}(y) = \chi_{B_r(y)}(x) = \chi_{|x-y|< r}$$

(3) E_{ρ} is the integral in \mathbb{R}^n with respect to the variable y.

Reference

- 1. U. Haagerup, Operator-valued weights in von Neumann algebras
- I, J. Function. Anal. 32 (1979), 175-206.

A general form of noncommutative singular integral operator theory

Take

$$L_{\infty}^{c}(\mathcal{N}_{\rho};E_{\rho}) \,=\, \Big\{f \in \mathcal{N}_{\rho}:\, \big\|E_{\rho}(f^{*}f)\big\|_{\mathcal{M}} < \infty\Big\}.$$

The simplest nontrivial model:

$$E_{\rho} = \operatorname{tr}_{\mathcal{A}} \otimes id_{\mathcal{M}} \text{ with } \mathcal{N}_{\rho} = \mathcal{A} \bar{\otimes} \mathcal{M}$$

and A a semifinite non-finite von Neumann algebra.

A general form of noncommutative singular integral operator theory

Notation

 $\mathcal{A}_{\mathcal{M}}$: weak-* dense subalgebra of \mathcal{M} and dense in $L_p(\mathcal{M})$ s.t. for any C^{∞} differential function F on \mathbb{R} satisfying

$$\left|\frac{d^{\alpha}}{dx^{\alpha}}F(x)\right| \leq C_{\alpha}, \text{ for any } \alpha,$$

we have

$$F(L): \mathcal{A}_{\mathcal{M}} \to \mathcal{A}_{\mathcal{M}}.$$

Assume that cpu map R_r from the P-markovian metric Q is of the following form:

$$\mathcal{M} \xrightarrow{\rho_j} \mathcal{N}_{\rho} \xrightarrow{E_{\rho}} \rho_1(\mathcal{M}) \simeq \mathcal{M}$$

$$R_r f = E_{\rho}(q_r)^{-\frac{1}{2}} E_{\rho}(q_r \rho_2(f) q_r) E_{\rho}(q_r)^{-\frac{1}{2}}, \tag{2}$$

Denote $L(X, Y) = \{\text{all linear operators from } X \text{ to } Y\}.$

Assume that there is a homomorphism

$$\pi: \mathcal{L}(\mathcal{A}_{\mathcal{M}}, \mathcal{A}_{\mathcal{M}}) \to \mathcal{L}(\mathcal{A}_{\mathcal{N}_{\rho}}, \mathcal{N}_{\rho})$$

satisfying:

- (1) continuous in certain suitable topology;
- (2) for any $T \in L(A_{\mathcal{M}}, A_{\mathcal{M}})$,

$$\pi(T) \circ \rho_2 = \rho_2 \circ T \text{ on } \mathcal{A}_{\mathcal{M}}.$$
 (3)

Algebraic conditions

(ALi) Q-monotonicity of E_{ρ}

$$E_{\rho}(b_{k,r}|\xi|^2b_{k,r})\leq E_{\rho}(|\xi|^2)$$

for any $k \geq 1$, $\xi \in \mathcal{N}_{
ho}$ and every projection q_r , where

$$b_{k,r} = \begin{cases} q_{2r}, & \text{if } k = 1, \\ q_{2^{k+1}r} - q_{2^kr}, & \text{if } k \ge 2, \end{cases}$$

The above condition desribes:

$$\int_{U_k(B(x,r))} |\xi(x,y)|^2 d\mu(y) \le \int_{\mathbb{R}^n} |\xi(x,y)|^2 d\mu(y),$$

where $U_k(B(x,r)) := B(x,2^{k+1}r) - B(x,2^kr)$ for $k \ge 2$ and $U_1(B(x,r)) = B(x,2r)$.

Algebraic conditions

(ALii) Right \mathcal{B} -modularity of $\pi(F(L))$

$$\pi(F(L))(\eta b) = \pi(F(L))(\eta)b$$

for all $\eta \in \mathcal{A}_{\mathcal{N}_{\rho}}$, all F being Borel measurable function and all b lying in some von Neumann subalgebra \mathcal{B} of $\rho_1(\mathcal{M})$ which includes $E_{\rho}(q_r)$ for every projection q_r .

The above condition desribes:

$$F(L \otimes id_{\mathcal{M}})(f\mu(B(x,r))) = F(L \otimes id_{\mathcal{M}})(f)\mu(B(x,r))$$

(ANi) Doubling condition For any $r_1 \ge r_2$, $\exists C, n > 0$ s.t.

$$E_{\rho}(q_{r_2})^{-\frac{1}{2}}E_{\rho}(q_{r_1})E_{\rho}(q_{r_2})^{-\frac{1}{2}}\leq C\left(\frac{r_1}{r_2}\right)^n.$$

We call n the dimension of \mathcal{M} .

The above condition desribes: if $r_2 \ge r_1 > 0$, then

$$\frac{\mu(B(x,r_2))}{\mu(B(x,r_1))} \leq C\left(\frac{r_2}{r_1}\right)^n.$$

(ANii) Covering inequalities

 $\exists C > 0$, $D_1 \geq 0$, s.t. for any $r_1 \geq r_2 \geq r_3$ and $f \in \mathcal{M}$,

$$\left\| E_{\rho} \left(\left| \rho_{2}(f) q_{r_{1}} E_{\rho}(q_{r_{3}})^{-\frac{1}{2}} \right|^{2} \right) \right\|_{\mathcal{M}}$$

$$\leq C \left(\frac{r_{1}}{r_{2}} \right)^{D_{1}} \left(\frac{r_{1}}{r_{3}} \right)^{n} \left\| E_{\rho} \left(\left| \rho_{2}(f) q_{r_{2}} E_{\rho}(q_{r_{2}})^{-\frac{1}{2}} \right|^{2} \right) \right\|_{\mathcal{M}}.$$

The above condition desribes:

$$\left\| \frac{1}{\mu(B(x,r_3))} \int_{B(x,r_1)} |f(y)|^2 d\mu(y) \right\|_{L_{\infty}(X)\bar{\otimes}\mathcal{M}} \\ \leq C \left(\frac{r_1}{r_2} \right)^{D_1} \left(\frac{r_1}{r_3} \right)^n \left\| \frac{1}{\mu(B(x,r_2))} \int_{B(x,r_2)} |f(y)|^2 d\mu(y) \right\|_{L_{\infty}(X)\bar{\otimes}\mathcal{M}},$$

Operator conditions

(Oi) Boundedness condition

$$\|\pi(F(L))\|_{L^{c}_{\infty}(\mathcal{N}_{\rho};E_{\rho})\to L^{c}_{\infty}(\mathcal{N}_{\rho};E_{\rho})}\leq \|F\|_{L_{\infty}(\mathbb{R})},$$

for all bounded Borel measurable function F.

The above condition desribes:

$$\left\| \left(\int_X |F(L \otimes id_{\mathcal{M}}) f(x,y)|^2 d\mu(y) \right)^{1/2} \right\|_{\mathcal{N}}$$

$$\leq \|F\|_{\infty} \left\| \left(\int_X |f(x,y)|^2 d\mu(y) \right)^{1/2} \right\|_{\mathcal{N}},$$

Operator condition

(Oii) L_2 -Gaussian estimate

$$\exists$$
 $C,c>0$, $m\geq 2$ s.t. for any $t>0$, $k\geq 1$, $0< r_1\leq r_2$ and $f\in \mathcal{N}_{\rho}$,

$$\begin{split} & \left\| \pi(e^{-tL})(fb_{k,r_2})q_{r_1}E_{\rho}(q_{r_1})^{-\frac{1}{2}} \right\|_{L^{c}_{\infty}(\mathcal{N}_{\rho};E_{\rho})} \\ & \leq CE_{k} \left(-c \left(\frac{r_2}{t^{1/m}} \right)^{\frac{m}{m-1}} \right) \left\| fb_{k,r_2}E_{\rho}(q_{\max\{r_1,t^{1/m}\}})^{-\frac{1}{2}} \right\|_{L^{c}_{\infty}(\mathcal{N}_{\rho};E_{\rho})}, \end{split}$$

where

$$E_k(x) = \begin{cases} 1, & \text{if } k = 1, \\ \exp(2^{\frac{mk}{m-1}}x), & \text{if } k \geq 2. \end{cases}$$

The above condition desribes:

$$\begin{split} & \left\| \left(\int_{B(x,r_1)} |e^{-t(-\Delta \otimes id_{\mathcal{M}})} (\chi_{U_k(B(x,r_2))} f(x,\cdot))(y)|^2 d\mu(y) \right)^{\frac{1}{2}} \right\|_{L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{M}} \\ & \leq C E_k \left(-c \left(\frac{r_2}{t^{1/m}} \right)^{\frac{m}{m-1}} \right) \times \\ & \times \left\| \left(\frac{1}{\mu(B(x, \max\{r_1, t^{1/m}\}))} \int_{U_k(B(x,r_2))} |f(x,y)|^2 d\mu(y) \right)^{\frac{1}{2}} \right\|_{L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{M}} \end{split}$$

Theorem 7 (Z. Fan, G. Hong and L. Wang)

Let (\mathcal{M}, τ) be a semifinite VNA equipped with a markovian semigroup $\mathcal{S} = (e^{-tL})_{t \geq 0}$ with associated P-markovian metric \mathcal{Q} satisfying our algebraic and analytic assumptions. Then $\exists C = C(n) > 0$ s.t. for any $f \in \mathcal{A}_{\mathcal{M}}$,

$$\left\|e^{itL}(I+L)^{-s}f\right\|_{\mathrm{BMO}_{\mathcal{S}}(\mathcal{M})} \leq C(1+|t|)^{n/2}\|f\|_{\mathcal{M}}, \text{ for } s \geq \frac{n}{2}.$$

If in addition ${\cal S}$ admits a Markov dilation, then we have

$$\left\|e^{itL}(I+L)^{-s}f\right\|_{L_p(\mathcal{M})} \leq C(1+|t|)^{\sigma_p}\|f\|_{L_p(\mathcal{M})}$$

for
$$s \geq \sigma_p = n \left| \frac{1}{2} - \frac{1}{p} \right|$$
.

Key Lemma:

Lemma 8 (Z. Fan, G. Hong and L. Wang)

Under our our algebraic and analytic assumptions, for any $M \in \mathbb{Z}_+$, the spaces $\mathrm{BMO}_{\mathcal{Q},1}^c(\mathcal{M})$ and $\mathrm{BMO}_{\mathcal{Q},M}^c(\mathcal{M})$ coincide, and their norms are equivalent.

Key steps:

$$\begin{aligned} & \left\| e^{itL} (I+L)^{-s} f \right\|_{\mathrm{BMO}_{\mathcal{S}}(\mathcal{M})} \\ & \leq C \left\| e^{itL} (I+L)^{-s} f \right\|_{\mathrm{BMO}_{\mathcal{Q}}(\mathcal{M})} \\ & \leq C \left\| e^{itL} (I+L)^{-s} f \right\|_{\mathrm{BMO}_{\mathcal{Q},M}(\mathcal{M})} \\ & \leq C_M (1+|t|)^{n/2} \|f\|_{\mathcal{M}}. \end{aligned}$$

Role of BMO with higher-order M

Role: The term $(I - e^{-\lambda L})^M$ endows function higher cancellation property in the low frequency.

Rough observation:

Let ϕ be a non-negative C_c^{∞} function on $\mathbb R$ s.t. $\mathrm{supp}\phi\subset (1/4,1)$. Let $\phi_\ell(u)=\phi(2^{-\ell}u)$. Then

$$\sup_{u\geq 0} |(I-e^{-\lambda u})^M \phi_\ell(u)| \leq C \min\{1, (2^\ell \lambda)^M\}.$$

We need:

$$\sum_{\ell \in \mathbb{Z}} (2^\ell \lambda)^{-\frac{n}{2m}} \min\{1, (2^\ell \lambda)^M\} < +\infty,$$

which requires $M > \frac{n}{2m}$.

Applications

By choosing different values of each parameter, the above theorem can be applied to obtain Schrödinger groups theory in the below concrete settings:

- (1) Classical doubling metric space associated with non-negative self-adjoint operator with heat kernel bound;
- (2) Operator-valued setting associated with non-negative self-adjoint operator with non-negative heat kernel bound;
- (3) Matrix algebras;
- (4) Quantum Euclidean space;
- (5) Group VNA;
- (6)

Application 1:Operator-valued setting

Notation:

 (X, d, μ) : *n*-dimensional doubling metric space X with distance d and measure μ ;

 $\mathcal{N} := L_{\infty}(X) \bar{\otimes} \mathcal{M}.$

Theorem 9 (Z. Fan, G. Hong and L. Wang)

Suppose that L is a non-negative self-adjoint operator on $L_2(X)$ and its associated heat kernel $p_t(x,y)$ satisfies the Gaussian upper bound (GE_m) and $p_t(x,y) \geq 0$ for any $x,y \in X$. Then $\exists C = C(n,m) > 0$ s.t. for any $f \in \mathcal{A}_{\mathcal{N}}$,

$$\left\| (id_{\mathcal{N}} + L \otimes id_{\mathcal{M}})^{-s} e^{it(L \otimes id_{\mathcal{M}})} f \right\|_{BMO_{\mathcal{S}}(\mathcal{N})} \leq C(1 + |t|)^{n/2} \|f\|_{\mathcal{N}}$$

for $s \ge \frac{n}{2}$.

Application 1:Operator-valued setting

Examples:

- 1. Schrödinger operators: $-\Delta + V(x)$, where $V(x) \in L^1_{loc}(\mathbb{R}^n)$ s.t. V(x) > 0.
- 2. Bessel operator;
- 3. Sub-Laplacian operator on homogeneous groups;
- 4. Neumann operator on half-plane.
- 5. $(-\Delta)^m$, m is a positive integer.
- 6.....

Application 1:Operator-valued setting

Remark 1.2

In the case of $\mathcal{M}=L_{\infty}(\mathbb{C})$, the positivity assumption on $p_t(x,y)$ can be removed. This result goes back to the result due to Chen–Duong–Li–Yan.

Reference:

1. P. Chen, X.T. Duong, J. Li and L.X. Yan, Sharp endpoint L^p estimates for Schrödinger groups, *Math. Ann.* **378** (2020), 667–702.

Application 2: Quantum Euclidean spaces

 Θ : anti-symmetric \mathbb{R} -valued $n \times n$ matrix;

 \mathcal{R}_{Θ} : quantum Euclidean space associated with Θ ;

 $\Delta_{\Theta} \colon$ quantum Laplacian operator.

Theorem 10 (Z. Fan, G. Hong and L. Wang)

$$\exists C = C(n) > 0 \text{ s.t.}$$

$$\left\| (id_{\mathcal{R}_{\Theta}} - \Delta_{\Theta})^{-s} e^{-it\Delta_{\Theta}} f \right\|_{BMO_{\mathcal{S}}^c(\mathcal{R}_{\Theta})} \leq C (1 + |t|)^{n/2} \|f\|_{\mathcal{R}_{\Theta}}, \text{ for } s \geq \frac{n}{2}.$$

Furthermore, for any $1 , <math>\exists C = C(n, p) > 0$ s.t.

$$\left\| (id_{\mathcal{R}_{\Theta}} - \Delta_{\Theta})^{-s} e^{-it\Delta_{\Theta}} f \right\|_{L_{p}(\mathcal{R}_{\Theta})} \leq C (1 + |t|)^{n\left|\frac{1}{2} - \frac{1}{p}\right|} \|f\|_{L_{p}(\mathcal{R}_{\Theta})}$$

for
$$s \ge n \left| \frac{1}{2} - \frac{1}{p} \right|$$
.

Application 2:Matrix algebras

Given $A = \sum_{m,k} a_{m,k} e_{m,k} \in B(\ell_2)$, define

$$S_t(A) = \sum_{m,k} e^{-t|m-k|^2} a_{m,k} e_{m,k}.$$

By Stone's theorem, S_t admits an infinitesimal non-negative generator

$$L_{B(\ell_2)}A = -\lim_{t\to 0} \frac{S_t(A) - A}{t} = \sum_{m,k} |m-k|^2 a_{m,k} e_{m,k}.$$

Application 3:Matrix algebras

Theorem 11 (Z. Fan, G. Hong and L. Wang)

 $\exists C > 0 \text{ s.t.}$

$$\left\| (id_{B(\ell_2)} + L_{B(\ell_2)})^{-s} e^{itL_{B(\ell_2)}} A \right\|_{BMO^c_S(B(\ell_2))} \le C(1+|t|)^{1/2} \|A\|_{B(\ell_2)}$$

for $s \geq \frac{1}{2}$. Furthermore, for any $1 , <math>\exists C_p > 0$ s.t.

$$\left\| (id_{B(\ell_2)} + L_{B(\ell_2)})^{-s} e^{itL_{B(\ell_2)}} A \right\|_{S_p} \le C(1 + |t|)^s \|A\|_{S_p}$$

for $s \ge \left|\frac{1}{2} - \frac{1}{p}\right|$.

Application 4:group von Neumann algebra

Notation:

G: discrete group;

 $\lambda: G \to B(\ell_2(G))$ left regular representation;

 $\mathcal{L}(G)$:group von Neumann algebra;

 τ_G : standard normalized trace on $\mathcal{L}(G)$.

Any $f \in \mathcal{L}(G)$ admits a Fourier series expansion

$$\sum_{g\in G} \hat{f}(g)\lambda(g), \text{ with } \hat{f}(g) = \tau_G(f\lambda(g^{-1})) \text{ s.t. } \tau_G(f) = \hat{f}(e),$$

where e denotes the identity of G.

For any $m:G \to \mathbb{R}$, a Fourier multiplier on $\mathcal{L}(G)$ is defined by

$$T_m: \sum_{g \in G} \hat{f}(g)\lambda(g) \mapsto \sum_{g \in G} m(g)\hat{f}(g)\lambda(g).$$

Application:group von Neumann algebra

Notation:

 ψ : length function on G;

 \mathcal{H}_{ψ} : representation space associated with ψ ;

$$m_s(\psi(g)) := e^{it\psi(g)}(1 + \psi(g))^{-s}.$$

Theorem 12 (Z. Fan, G. Hong and L. Wang)

Assume $dim\mathcal{H}_{\psi} = n < \infty$, then $\exists C = C(n) > 0$ s.t.

$$\|T_{m_s}(f)\|_{BMO_{S_{\psi}}(\mathcal{L}(G))} \leq C(1+|t|)^{n/2}\|f\|_{\mathcal{L}(G)}, \text{ for } s \geq \frac{n}{2}.$$

Furthermore, for any $1 , <math>\exists C = C(n, p) > 0$ s.t.

$$\|T_{m_s}(f)\|_{L_p(\mathcal{L}(G))} \le C(1+|t|)^{\sigma_p} \|f\|_{L_p(\mathcal{L}(G))}, \text{ for } s \ge n \Big| \frac{1}{2} - \frac{1}{p} \Big|.$$

Thank you!

The establishment of a general form of noncommutative SIO theory needs the following steps.

Step 1: Identify the approciate BMO spaces.

Step 2: Prove the expected interpolation results with L_p spaces.

Step 3: Provide conditions on CZO's which yield $L_{\infty} \rightarrow BMO$ boundedness.

Step 1: Identify the approciate BMO spaces.

Given a standard Markovian semigroup of operators of $S = \{T_t\}$ on M and $f \in M \cup L_2(M)$, we define

$$||f||_{bmo_{\mathcal{S}}^c} = \sup_{t} ||T_t|f|^2 - |T_tf|^2||_{\mathcal{M}}^{1/2}.$$

$$||f||_{BMO_{\mathcal{S}}^c} = \sup_{t} ||T_t|f - T_t f|^2 ||_{\mathcal{M}}^{1/2}.$$

Fact: If in addition (T_t) satisfies the $\Gamma_2 \geq 0$ condition, then

$$||f||_{BMO_{\mathcal{S}}^c} \simeq ||f||_{bmo_{\mathcal{S}}^c} + \sup_t ||T_t f - T_{2t} f||_{\mathcal{M}}.$$

Reference

1. M. Junge and T. Mei, BMO spaces associated with semigroups of operators, *Math. Ann.* **352** (2012), 691–743.

Step 2: Prove the expected interpolation results with L_p spaces.

Define

$$L_p^{\circ}(\mathcal{M}) = \Big\{ f \in L_p(\mathcal{M}) : \lim_{t \to \infty} S_t f = 0 \Big\}.$$

Theorem 13

If $S = (S_t)_{t \geq 0}$ is regular on (\mathcal{M}, τ) , then

$$\left[BMO_{\mathcal{S}}, L_p^{\circ}(\mathcal{M})\right]_{p/q} \simeq L_q^{\circ}(\mathcal{M}) \quad \text{for all} \quad 1 \leq p < q < \infty.$$

Reference

1. M. Junge and T. Mei, BMO spaces associated with semigroups of operators, *Math. Ann.* **352** (2012), 691–743.

Step 3: Provide conditions on CZO's which yield $L_{\infty} \to BMO$ boundedness.

Step 3.1: Construct a 'metric' governing the Markov process

Reference

1. M. Junge, T. Mei, J. Parcet and R. Xia, Algebraic Calderon-Zygmund theory, *Adv. Math.* **376** (2021), 107443.

A Markov metric associated to (\mathcal{M}, τ) and \mathcal{S} is determined by a family

$$\mathcal{Q} = \left\{ \left(R_{j,t}, \sigma_{j,t}, \gamma_{j,t}
ight) : \; (j,t) \in \mathbb{Z}_+ imes \mathbb{R}_+
ight\}$$

where $R_{j,t}: \mathcal{M} \to \mathcal{M}$ are cpu maps and $\sigma_{j,t}, \gamma_{j,t}$ are elements of \mathcal{M} with $\gamma_{j,t} \geq 1_{\mathcal{M}}$, s.t. the estimates below hold:

- i) Hilbert module majorization:
 - $\langle \xi, \xi \rangle_{S_t} \leq \sum_{j \geq 1} \sigma_{j,t}^* \langle \xi, \xi \rangle_{R_{j,t}} \sigma_{j,t},$
- ii) Metric integrability condition:

$$k_{\mathcal{Q}} = \sup_{t>0} \left\| \sum_{j\geq 1} \sigma_{j,t}^* \gamma_{j,t}^2 \sigma_{j,t} \right\|_{\mathcal{M}}^{\frac{1}{2}} < \infty.$$

Let $\mathcal{S}=(S_t)_{t\geq 0}$ be a Markov semigroup on (Ω,μ) with associated kernels $s_t(x,y)$ satisfying 2-order Gaussian upper bound. Given $\xi:\Omega\times\Omega\to\mathbb{C}$ essentially bounded, we have

$$\begin{aligned} \langle \xi, \xi \rangle_{S_t} &= \int_{\Omega} s_t(x, y) |\xi(x, y)|^2 d\mu(y) \\ &\leq \sum_{j=1}^{\infty} \frac{|\sigma_{j,t}(x)|^2}{\mu(\Sigma_{j,t}(x))} \int_{\Sigma_{j,t}(x)} |\xi(x, y)|^2 d\mu(y). \end{aligned}$$

This means that $R_{j,t}f(x)$ is the average of f over the set $\Sigma_{j,t}(x)$.

Step 3.2: Define 'metric BMO' spaces which still interpolate with the L_p scale.

Define $||f||_{BMO_Q} = \max\{||f||_{BMO_Q^c}, ||f^*||_{BMO_Q^c}\}$, where the column BMO-norm is given by

$$\sup_{t>0} \inf_{M_t \text{ cpu } j \ge 1} \left\| \left(\gamma_{j,t}^{-1} \left[R_{j,t} |f|^2 - |R_{j,t}f|^2 + |R_{j,t}f - M_t f|^2 \right] \gamma_{j,t}^{-1} \right)^{\frac{1}{2}} \right\|_{\mathcal{M}}$$

and the infimum runs over cpu maps $M_t: \mathcal{M} \to \mathcal{M}$.

Theorem 14 (Junge–Mei–Parcet–Xia, 2021)

Let (\mathcal{M}, τ) be a noncommutative measure space equipped with a Markov semigroup $\mathcal{S} = (S_t)_{t \geq 0}$. Let us consider a Markov metric \mathcal{Q} associated to $\mathcal{S} = (S_t)_{t \geq 0}$. Then, we find

$$||f||_{\mathrm{BMO}_{\mathcal{S}}} \lesssim k_{\mathcal{Q}} ||f||_{\mathrm{BMO}_{\mathcal{Q}}}.$$

In particular, we see that $L_\infty(\mathcal{M}) \subset \mathrm{BMO}_\mathcal{Q} \subset \mathrm{BMO}_\mathcal{S}$ and

$$\left[\mathrm{BMO}_{\mathcal{Q}}, L_p^{\circ}(\mathcal{M}) \right]_{p/q} \simeq L_q^{\circ}(\mathcal{M}) \quad \textit{for all} \quad 1 \leq p < q < \infty$$

for any Markov metric Q associated to a regular semigroup $S = (S_t)_{t \geq 0}$ on (\mathcal{M}, τ) .

Step 3.3: Provide CZ conditions giving $L_{\infty} \to BMO$ boundedness for metric BMO's.

Let $E_{\mathcal{M}}$ be operator-valued weight from \mathcal{N} to \mathcal{M} . And we take

$$L_{\infty}^{c}(\mathcal{N}; E_{\mathcal{M}}) = \Big\{ f \in \mathcal{N} : \|E_{\mathcal{M}}(f^{*}f)\|_{\mathcal{M}} < \infty \Big\}.$$

The simplest nontrivial model:

$$E_{\mathcal{M}} = \operatorname{tr}_{\mathcal{A}} \otimes id_{\mathcal{M}} \text{ with } \mathcal{N} = \mathcal{A} \bar{\otimes} \mathcal{M}$$

and A a semifinite non-finite von Neumann algebra.

Reference

1. M. Junge, T. Mei, J. Parcet and R. Xia, Algebraic Calderon-Zygmund theory, *Adv. Math.* **376** (2021), 107443.

Assume the cpu maps $R_{j,t}$ from Q are of the following form

$$\mathcal{M} \xrightarrow{\rho_j} \mathcal{N}_{\rho} \xrightarrow{E_{\rho}} \rho_1(\mathcal{M}) \simeq \mathcal{M},$$

$$R_{j,t}f = E_{\rho}(q_{j,t})^{-\frac{1}{2}} E_{\rho}(q_{j,t}\rho_2(f)q_{j,t}) E_{\rho}(q_{j,t})^{-\frac{1}{2}},$$
(4)

Notation:

- (1) $\rho_1, \rho_2: \mathcal{M} \to \mathcal{N}_{\rho}$ are *-homomorphisms into certain von Neumann algebra \mathcal{N}_{ρ} ;
- (2) $E_{\rho}: \mathcal{N}_{\rho} \to \rho_1(\mathcal{M})$ is an operator-valued weight;
- (3) $q_{j,t}$'s are projections in \mathcal{N}_{ρ} .

Notation:

- (1) $\rho_1, \rho_2: \mathcal{M} \to \mathcal{N}_{\rho}$ are *-homomorphisms into certain von Neumann algebra \mathcal{N}_{ρ} ;
- (2) $E_{\rho}: \mathcal{N}_{\rho} \to \rho_1(\mathcal{M})$ is an operator-valued weight;
- (3) $q_{j,t}$'s are projections in \mathcal{N}_{ρ} .

Special model:

$$(1)\mathcal{N}_{\rho}=L_{\infty}(\mathbb{R}^n\times\mathbb{R}^n),\ \rho_1f(x,y)=f(x),\ \rho_2f(x,y)=f(y).$$

(2) E_{ρ} is the integral in \mathbb{R}^n with respect to the variable y.

(3)
$$q_{j,t}(x,y) = \chi_{\mathrm{B}_{\sqrt{4jt}}(x)}(y) = \chi_{\mathrm{B}_{\sqrt{4jt}}(y)}(x) = \chi_{|x-y|<\sqrt{4jt}}$$

Let T s.t. $Tf \in \mathcal{M}$ for all f in a weak-* dense subalgebra $\mathcal{A}_{\mathcal{M}}$ of \mathcal{M} . Consider *-homomorphisms $\pi_1, \pi_2 : \mathcal{M} \to \mathcal{N}_{\pi}$ and an operator-valued weight $E_{\pi} : \mathcal{N}_{\pi} \to \pi_1(\mathcal{M})$. Assume there exists a (densely defined) map

$$\widehat{T}: \mathcal{A}_{\mathcal{N}_{\pi}} \subset \mathcal{N}_{\pi} \to \mathcal{N}_{\rho}$$
satisfying $\widehat{T} \circ \pi_{2} = \rho_{2} \circ T$ on $\mathcal{A}_{\mathcal{M}}$. (5)

Algebraic conditions:

i) Q-monotonicity of E_{ρ}

$$E_{\rho}(q_{j,t}|\xi|^2q_{j,t})\leq E_{\rho}(|\xi|^2)$$

for all $\xi \in \mathcal{N}_{\rho}$ and every projection $q_{j,t}$ determined by \mathcal{Q} via the identity. Similarly, we assume the same inequality holds when we replace the $q_{j,t}$'s by the q_t 's.

ii) Right \mathcal{B} -modularity of \widehat{T}

$$\widehat{T}(\eta \pi_1 \rho_1^{-1}(b)) = \widehat{T}(\eta)b$$

for all $\eta \in \mathcal{A}_{\mathcal{N}_{\pi}}$ and all b lying in some von Neumann subalgebra \mathcal{B} of $\rho_1(\mathcal{M})$ which includes $E_{\rho}(q_t)$, $E_{\rho}(q_{j,t})$ and $\rho_1(\gamma_{j,t})$ for every projection q_t and $q_{j,t}$ determined by \mathcal{Q} .

Consider derivations $\delta: \mathcal{N}_{\rho} \to \mathcal{N}_{\sigma}$ given by the difference $\delta = \sigma_1 - \sigma_2$ of two *-homomorphisms, s.t. $\delta(ab) = \sigma_1(a)\sigma_1(b) - \sigma_2(a)\sigma_2(b) = \delta(a)\sigma_1(b) + \sigma_2(a)\delta(b)$.

Define

$$egin{aligned} \widehat{R}_{j,t}: \mathcal{N}_{
ho} \ni \xi \mapsto E_{
ho}(q_{j,t})^{-rac{1}{2}} E_{
ho}(q_{j,t}\xi q_{j,t}) E_{
ho}(q_{j,t})^{-rac{1}{2}} \in
ho_1(\mathcal{M}), \ \widehat{M}_t: \mathcal{N}_{
ho} \ni \xi \mapsto E_{
ho}(q_t)^{-rac{1}{2}} E_{
ho}(q_t\xi q_t) E_{
ho}(q_t)^{-rac{1}{2}} \in
ho_1(\mathcal{M}). \end{aligned}$$

Analytic conditions:

- i) Mean differences conditions
 - $\widehat{R}_{j,t}(\xi^*\xi) \widehat{R}_{j,t}(\xi)^*\widehat{R}_{j,t}(\xi) \leq \Phi_{j,t}(\delta(\xi)^*\delta(\xi)),$
 - $\left[\widehat{R}_{j,t}(\xi) \widehat{M}_t(\xi)\right]^* \left[\widehat{R}_{j,t}(\xi) \widehat{M}_t(\xi)\right] \leq \Psi_{j,t}(\delta(\xi)^* \delta(\xi)),$

for some derivation $\delta: \mathcal{N}_{\rho} \to \mathcal{N}_{\sigma}$ and cpu maps $\Phi_{j,t}, \Psi_{j,t}: \mathcal{N}_{\sigma} \to \rho_1(\mathcal{M})$.

Remark: the above inequality is a replacement of a couple of Jensen's inequality, i.e.

$$\begin{split} & \int_{\mathrm{B}_1} |f|^2 d\mu - \Big| \int_{\mathrm{B}_1} f d\mu \Big|^2 & \leq & \int_{\mathrm{B}_1 \times \mathrm{B}_1} \big| f(y) - f(z) \big|^2 d\mu(y) d\mu(z), \\ \Big| & \int_{\mathrm{B}_1} f d\mu \, - \, \int_{\mathrm{B}_2} f d\mu \, \Big|^2 & \leq & \int_{\mathrm{B}_1 \times \mathrm{B}_2} \big| f(y) - f(z) \big|^2 d\mu(y) d\mu(z). \end{split}$$

Analytic conditions:

- ii) Metric/measure growth conditions
 - $\mathbf{1} \leq \pi_1 \rho_1^{-1} E_{\rho}(q_t)^{-\frac{1}{2}} E_{\pi}(a_t^* a_t) \pi_1 \rho_1^{-1} E_{\rho}(q_t)^{-\frac{1}{2}} \lesssim \pi_1 \rho_1^{-1} (\gamma_{j,t}^2),$
 - $\begin{array}{l} \bullet \ \ \mathbf{1} \leq \pi_1 \rho_1^{-1} E_{\rho}(q_{j,t})^{-\frac{1}{2}} E_{\pi}(a_{j,t}^* a_{j,t}) \pi_1 \rho_1^{-1} E_{\rho}(q_{j,t})^{-\frac{1}{2}} \lesssim \\ \pi_1 \rho_1^{-1}(\gamma_{j,t}^2), \end{array}$

for some family of operators $a_t, a_{j,t} \in \mathcal{N}_{\pi}$ to be determined later on.

Calderón-Zygmund type conditions:

i) Boundedness condition

$$\widehat{T}: L^{c}_{\infty}(\mathcal{N}_{\pi}; E_{\pi}) \to L^{c}_{\infty}(\mathcal{N}_{\rho}; E_{\rho}).$$

Remark: The above inequality is a replacement of L_2 boundedness of T.

Calderón-Zygmund type conditions:

- ii) Size "kernel" condition
 - $\widehat{M}_t\Big(\Big|\widehat{T}(\pi_2(f)(A_{j,t}-a_t))\Big|^2\Big)\lesssim \gamma_{j,t}^2\|f\|_{\infty}^2$,
 - $\widehat{R}_{j,t}\Big(\Big|\widehat{T}(\pi_2(f)(A_{j,t}-a_{j,t}))\Big|^2\Big)\lesssim \gamma_{j,t}^2\|f\|_{\infty}^2$,

for a family of operators $A_{j,t} \in \mathcal{N}_{\pi}$ with $A_{j,t} \geq a_{j,t}, a_t$ to be determined.

The above inequality is a weaker replacement of pointwise inequality:

$$|K(x,y)| \leq \frac{C}{|x-y|}.$$

- iii) Smoothness "kernel" condition
 - $\Phi_{j,t}\Big(\big|\delta\big(\widehat{T}(\pi_2(f)(\mathbf{1}-a_{j,t}))\big)\big|^2\Big)\lesssim \gamma_{j,t}^2\|f\|_{\infty}^2$,
 - $\Psi_{j,t}\Big(\big|\delta\big(\widehat{T}(\pi_2(f)(\mathbf{1}-A_{j,t}))\big)\big|^2\Big) \lesssim \gamma_{j,t}^2\|f\|_{\infty}^2.$

The above inequality is a weaker replacement of pointwise inequality:

$$\sup_{y_1,y_2 \in \mathbb{R}^n} \int_{|y_1-z| \ge 2|y_1-y_2|} |K(y_1,z) - K(y_2,z)| dz < +\infty.$$

Theorem 15 (Junge-Mei-Parcet-Xia, 2021)

Let (\mathcal{M}, τ) be a noncommutative measure space equipped with a Markov semigroup $\mathcal{S} = (S_t)_{t \geq 0}$ with associated Markov metric \mathcal{Q} which fulfills our algebraic and analytic assumptions. Then, any algebraic column CZO T defines a bounded operator

$$T: \mathcal{A}_{\mathcal{M}} \to \mathrm{BMO}_{\mathcal{Q}}^{c}.$$

By choosing different values of each parameter, the above theorem can be applied to obtain CZO theory in the above settings:

- (1) Classical doubling metric space;
- (2) Ornstein-Uhlenbeck semigroup on the Euclidean space equipped with Gaussian measure;
- (3) Operator-valued setting;
- (4) Matrix algebras;
- (5) Quantum Euclidean space;
- (6)

Thank you!