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The Cauchy problem of the wave equation
((9/0t)* = A)u =0,
Uli—o = f, in R?, (1)
(0/0t)ult=0 = &.

Taking the Fourier transform in the spatial variables x only, then we have

((0/01)? + €1 a(t, ) =0,
0(0,¢) = £(¢), in R?. (2)
(0/0t)a(0,8) = &(§)-

This is an ODE for each fixed ¢ € R?. It is easy to show that

sin(t[¢])&(€)
I
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b(t, &) = cos(t|¢|)F(£) +



Classical example

Let J, be Bessel functions (¢ > —1/2) and m,(§) = G, €77 s ([€]).

Observe that
2 cosr
= | il
J—1/2(r) Irq/z-jk(r) \/;rl/z 3

2sinr
Jija(r) = \/;m,

then one can easily see that

b(t, &) = com_y o(t|€))F (&) + cltml/z(ﬂer)gr(&)

—

=: coAt_1/2f(§) +a tAl/zg(f)

where A" (&) = mo(t|EF(E).
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Classical example

Taking the inverse Fourier transform, then we have

u(t,x) = coAt_l/zf(x) +a tA%/zg(x),

where
ATF(x) = (ma<t| - |>) “F(x)
= 7 [ =P )y

Wherexjsr:x, ifoO;xizO, if x <0.
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The existence almost everywhere of lim;_,o u(t, x) and lim;_ %u(t,x) to
the wave equation (1) will follow from

< Cllfllo(r2)-
LP(R2?)

sup |A7f(x)|
t>0

Noticing that in the sense of distribution,

. 1 a—1 __
Jm S o)

where §(t) denotes the Dirac distribution at zero. Then it is not hard to
see that

Acf(x) = AVf(x) = /5 flx—ty)da(y),

which is well-known " Bourgain's circular maximal operators”.
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Maximal operator M related to hypersurfaces

Let S be a smooth hypersurface in R"” with a surface measure dyu and

n € Cg°(R") be a non-negative smooth function with compact support.
Suppose that 0:(x) = (% x1, t%x2, - -+ , t%"x,) is a family of dilations with
aj > 0. Then the associated full maximal operator M is given by

MfF(x) :=sup
>0

/5 Fx — 6:)n(y)duly)|. f € SE®™).

For which p, M : LP(R") — LP(R") is a bounded operator?
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The best understood class — d¢(x) = tx:

I. Hypersurface: non-vanishing Gaussian curvature everywhere

o Stein, 1976: spherical maximal operator, p > n/(n—1), n > 3;

o Greenleaf, 1981: non-vanishing Gaussian curvature everywhere,
star-shaped with respect to the origin, p > n/(n—1), n > 3;

o Bourgain, 1986: analogous results in dimension two, p > 2.
I' An alternative approach by [Mockenhaupt-Seeger-Sogge, 1992]
More general results about local smoothing estimates by
[Mockenhaupt-Seeger-Sogge, 1993][Beltran-Hickman-Sogge, 2020]
[Guth-Wang-Zhang, 2020][Gao-Liu-Miao-Xi,2020]
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Il. Hypersurface: Gaussian curvature vanishes at some points

o losevich, 1994: curves of finite type, sharp results, n = 2;

o losevich-Sawyer, 1997: convex hypersurfaces of finite line type, sharp
results, n > 3;

o lkromov-Kempe-Miiller, 2010: hypersurfaces of finite type satisfying
the transversality assumption (in particular, 0 € S),
p > max{h(xo,S),2} for a fixed point xo € S, n=3;

o Zimmermann, 2014: analytic hypersurfaces located at the origin,
p>2 n=3.
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Results associated with nonisotopic dilations

Generic dilations d;(x) = (t%'x1, t%xp, - -+ , t%"X,):

Some previously mentioned results have been extended with little change
to maximal operators associated with nonisotropic dilations, such as by

[Greenleaf, 1981], [losevich-Sawyer, 1997] and [Ikromov-Kempe-Miiller,
2010].
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Results associated with nonisotopic dilations

Open problem:

1. The LP(R3) — LP(R3) estimates for maximal operator defined by the
surface S 1= {(x1,x2, co + x5 (1 + O(x4M)) : (x1, %) € Q}, where d > 2,
m>1, ¢ € R and Q is an open neighborhood of the origin.

2. Weighted estimates.

3. Higher dimensions n > 3.

[Li, 2018, J. Math. Pure. Appl.]: confirmly answer the first question in R3.
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Definition for weights

Q A weight w € A, (Muckenhoupt class) for 1 < p < oo if

[w]a, == sup <w>Q<w1_pl>'é_1 < 00.
QeQ

Q A weight w € RH,, (reverse Holder class) for 1 < p < oo if

[wlrn, = sup (w)g!(w)q,p < oo
QeQ
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Weighted estimates for spherical maximal functions

Set F, to be those weights w for which Mga—1 maps LP(w) to LP(w), for
1 < p < oo. Define m to be the piecewise linear function on [0, 2=2]
whose graph connects the points P1 =(0,1), Py = w_n n _”+2) and

n241>  n241
P3:(n; "1) e <r < p<@(r), we have

Ap/r N RH(¢(r)//p)/ C Fp. (3)
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Weighted estimates for spherical maximal functions

We say that a collection of cubes S is sparse if there are sets

{Es C §: S € S} such that they are pairwise disjoint and |Es| > %|S| for
all S € S. Forany cube Q and 1 < r < o, deﬁne the r-average of a
function f on Q by (f)q,, := (|Q| Jo ]f(x)|rdx) Let S denote a sparse

collection. For 1 < p,q < oo, the (p, g)-sparse form Ns p q(f,g) is a
bilinear form defined by

/\Squg Z|5|
Ses
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Weighted estimates for spherical maximal functions

For n > 2 and let F, be the trapezium W|th vertexes
=(0,1), PZ—(",,la%) Ps = ("~ ) (ﬁ,%ﬂ‘i—f) For all
(;, 1) in the interior of F,, there hoIds

‘ < MS"—1f7g > | S ngp/\S,r,S(fag)' (4)

Moreover, for % + % > 1 not in the closed set F, the inequality fails.

One of great advantages of sparse bounds: one can easily derive weighted
inequalities for sparse operators.
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Weighted estimates for spherical maximal functions

Let F;, be the closed convex hull of the four points P; = (0, 0),

Py = ("=, n=1) pL= (22 1) and Py = (%72, 5=L). Forall (1, 1) in
the |nter|or of F}, we have for some n = n(n,r,s) >0,

| 120, Acf =1y Acfllls < Cly [l ly| < 1. (5)
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Sz daiEten A oelied esimee e mastne ietere
Weighted estimates for spherical maximal functions

Let F,, be the closed convex hull of the four points P; = (0,0), P5 = (© 1,

n1), Py = (221

—1 1y and P, = (%z—ﬁ',i’zrll) For all (1,1)in F), we have

| sup |Acf]ls < CIIf[. (6)
1<t<2
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Maximal operator M, related to hypersurfaces

Let S be a smooth hypersurface in R” with a surface measure dy and

n € Cg°(R") be a non-negative smooth function with compact support.
Suppose that §;:(x) = (t%x1, t¥xp,- -+ , t%x,) is a family of dilations with
a; > 0. Then the associated local maximal operator M is given by

/Sf(X—(st(Y))n(}’)d,u(y) , fe SR

Mlocf(x) ‘= sup
te[1,2]
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Maximal operator M, related to hypersurfaces

Let S be a smooth hypersurface in R” with a surface measure dy and

n € Cg°(R") be a non-negative smooth function with compact support.
Suppose that §;:(x) = (t%x1, t¥xp,- -+ , t%x,) is a family of dilations with
a; > 0. Then the associated local maximal operator M is given by

Miocf(x) := sup
te[1,2]

/Sf(X—(st(Y))n(}’)d,u(y) , fe SR

For which p and g with p < q, Mjoc : LP(R") — L9(R") is a bounded
operator?
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 Sparse domination and weighted estimates for maximal functions . |
Results for M, associated with isotropic dilations

o Schlag, 1997: Circle, combinatorial method, bounded if (1/p,1/q) €
interior of the closed triangle I, n = 2;
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Results for M, associated with isotropic dilations
o Schlag, 1997: Circle, combinatorial method, bounded if (1/p,1/q) €
interior of the closed triangle I, n = 2;

o Schlag-Sogge, 1997: Circle, local smoothing method, M, can not
be bounded for (1/p,1/q) € ([0,1] x [0,1]\ /), n=2;
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SRt e ane) esied esineies tar mosdae! fgeiers |
Results for M, associated with isotropic dilations
o Schlag, 1997: Circle, combinatorial method, bounded if (1/p,1/q) €
interior of the closed triangle I, n = 2;

o Schlag-Sogge, 1997: Circle, local smoothing method, M, can not
be bounded for (1/p,1/q) € ([0,1] x [0,1]\ /), n=2;

o Lee, 2002: Circle, local smoothing method, bounded if
(1/p,1/q) € IN{P, T}, n=2.

Q=

S=(Ll)

Q=(0,0) R=(1,0) P
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 Sparse domination and weighted estimates for maximal functions . |
Results for M, associated with isotropic dilations

o Schlag-Sogge, 1997: spherical maximal estimate is bounded if
(1/p,1/q) € interior of quadrangle [J with vertices V; = (0, 0),

_ _ _ —1 _
Vo= (221, 21y vy = (221 1y and v, = (200 aely g >3,
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 Sparse domination and weighted estimates for maximal functions . |
Results for M, associated with isotropic dilations

o Schlag-Sogge, 1997: spherical maximal estimate is bounded if
(1/p,1/q) € interior of quadrangle [J with vertices V; = (0, 0),
Vo = (2=1, n=1y yy = (021 1y apg = (20D noly s g

n ' n n °n n?24+1 ’ n24+1

o Lee, 2002: spherical maximal estimate is bounded if
(1/p.1/q) € O\{ Va, V3, V).
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Sparse domination and weighted estimates for maximal functions _

Now we consider the LP — L9 estimates for local maximal operators along
curves of finite type d (d > 2) at the origin. For convenience, we define
the following regions of boundedness exponents that will be referred to

later on:
Bo={(5 )i < TS U0} ()

D= {(5 1) g < o S sig > oL > 2=} U{0.0) (9)
Az—{(;,;):;p<;s;,}d:l—l}u{(o,o»; (9)

N L SER A RN
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 Sparse domination and weighted estimates for maximal functions . |
[P — L9 boundedness for M, in the plane

Let ¢ € C*°(/,R), where | is a bounded interval containing the origin, and

$(0) #0; ¢U)(0) =0, j=1,2,--- ,m—1; {™(0) £0 (m>1). (11)
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[P — L9 boundedness for M, in the plane

Define the averaging operator

Af(y) = /R Flys — txyo — t(x90(0) + (x)dx,  (12)

where 7 is supported in a sufficiently small neighborhood of the origin.
Then we have the following results:

(1 )when c=0, for

(3 1yea ={(2.1): 4 <
there exists a constant Coq >
(2) when ¢ # 0, for

(%, %) SAVES {(%,% : % < % < %,% > % — 1} U{(0,0)}, there exists
a constant Cp g > 0 such that || supecy o) [Atll[r— 19 < Cpq-

Spig >~y > - gl U0
such that || sup,c1 o) [Aelllp—19 < Cpqi
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 Sparse domination and weighted estimates for maximal functions . |
[P — L9 boundedness for M, in the plane

1
q (1,1 1 (1,1)
___________________ bl el
1 1
I 1
I I
l I
I |
i 11 I
(3:3) | 2) |
| I
! d_ d-2\
\ o— s\ 227 2072 )
I
21 I
0(5’5) | o(%a%) :
1
- ° Dol
P L P
(0,0) (0,0) \(ﬁ, ﬁ)
Ay Ay for2<d<4andd > 5

Figure 1: Ay =Apfor2<d<4and Ay C Agford>5
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 Sparse domination and weighted estimates for maximal functions . |
[P — L9 boundedness for M, in the plane

Q=

b oo (1,1)

/
o0 / Y1)

(L #)
24417 2d+1
Ag ford =2andd >3
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[P — L9 boundedness for M, in the plane

Define the averaging operator

Af(y) = /R Flyr — 7%, yo — t2(x0(x) + ))(x)dx,  dar # a, (13)

where 7 is supported in a sufficiently small neighborhood of the origin.
Then we have the following results:

(1 )when c=0, for

(3 1yea ={(2.1): 4 <
there exists a constant Coq >
(2) when ¢ # 0, for

(%, %) SAVES {(%,% : % < % < %,% > % — 1} U{(0,0)}, there exists
a constant Cp g > 0 such that || supecy o) [Atll[r— 19 < Cpq-

Spig >~y > - gl U0
such that || sup,c1 o) [Aelllp—19 < Cpqi
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[P — L9 boundedness forM . in the plane

Define the averaging operator
1
Acf(y) = / f(yr — tx, y2 — t9x9)dx, (14)
0
1 1y.1 1112 11 1
thenfor( ) € A3 {(PE Z<a§5,a>;-1,a>5—d—+l}U
{(0,0),(1, 1) there exists a constant C, g > 0 such that
< Cpg-
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Results for M, associated with isotropic dilations

1
LA 1,1)
|
|
1
|
|
I
O
M 1 (_d d-1
| d+17d+1)
O |
21 !
o (373) :
!
\ | v
P

(0,0)
(22 ak)

As ford=2andd >3
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[P — L9 boundedness for M, in the plane

Define the averaging operator

= [ Fon = o2 = #9000 dx (15)

where 7 is supported in a sufficiently small neighborhood of the origin
Then for

(5 ) €D ={(57) 13 <
>

<
there exists a constant C,J q s

1 1 1 3 1 1 1
3 55>I_7_1’5>5_d_+1}u{(0’0)}'
0 such that || sup,c1 o) [Ae|[|Lr—1s < Cpg-
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[P — L9 boundedness for M, in the plane

For all j > mk, and p, g satisfying 2—1p < % <2 % <1-
we have for some ¢ > 0,

4 1/q m .
// FFF(y, 0)|dtdy ) < €2% 0757926 4 £y oy,
r2 J1/2
(16)

where

Ff(y. ) = pi(y. 1) /R el mratt g, t)po(2—f|f|)>2(§—;)?(£)de
(17)

In fact, here —t2£,®(s,§) can be considered as a small perturbation of

52 —km 53
2% T2 té.
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[P — L9 boundedness for M, in the plane

Let F be given by

FH) = [ @9z OO 2= (x 0. (19)

Suppose a is a symbol of order zero, supp a(+,&) is contained in a fixed
compact set and suppose that ¢(z,-) is a homogeneous function of degree
one. For all (z,£) € supp a, ¢ satisfies

rank 62§¢ =2,

and

rank 8§§<8z¢,9> =1

provided # € S? is the unique direction for which V¢(9,¢,60) = 0, also all
non-zero eigenvalues of 0 ( ,®,0) have the same sign.

4th. April 2022 30 / 47



 Sparse domination and weighted estimates for maximal functions . |
[P — L9 boundedness forM . in the plane

°p
3

Y

Thenfor%gqgoo, gl—%,q

1 FFllie < C2G=3F5| £, (19)
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Localized maximal functions associated with surfaces in R3

We first show LP — L9 estimates for maximal functions related to
hypersurfaces with at least one non-vanishing principal curvature when
232 ;ﬁ as.

Assume that ®(x1, x2) € C*°(Q) satisfies
020(0,0) =0,  959(0,0) #0, (20)
and 2ap # a3. Define the averaging operator by

Acf(y) = /R Ay~ e, 0, @t x2)) m(x) (21)

where 7 is supported in a sufficiently small neighborhood U C Q of the
origin. For (5,2) € Ao ={(3:¢) 25 <+ < 52 > 2 — 1} U{(0,0)},
there exists a constant Cp g > 0 such that || sup,cpy oy [Atll|p—10 < Cpg-
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Localized maximal functions associated with surfaces in R3

Assume that ®(x1, x2) € C*°(Q) satisfies inequality (20). Define the
averaging operator

Afly) = [ Fly = thuo S0aaaldde ()

where 7 is supported in a sufficiently small neighborhood U C Q of the
origin. For (5,2) € Ao ={(3:¢) 125 <& < 512 > 2 — 11 U{(0,0)},
there exists a constant Cp g > 0 such that || sup,cpy o7 [Atll|lLp—10 < Cpg-

We note that in [Schlag, 1997; Schlag-Sogge, 1997], the “cinematic
curvature” condition in R3 is required to establish LP — L9 estimates for
the local maximal functions. While in this corollary, we just need the
“cinematic curvature” condition in R2.
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Localized maximal functions associated with surfaces in R3

Assume that ®(x1, x2) € C°(Q) satisfies $(0,0) # 0 and day # a3,
d > 2. The associated averaging operator is defined by

Acf(y) == /R2 f(y — 0e(x1, x2, c + xgd)(xl,xz)))n(x)dx, (23)

where 7 is supported in a sufficiently small neighborhood U of the origin.
Then we have the following results:

(1 )when c =0, for

_ 1
( ) SN {(p 7) 15, <
there exists a constant C, 4 >

(2 )when c#0, for

( ) €Ny = {( 21p < % < I—lj,% > % — 1} U {(0,0)}, there exists

a constant Coq > 0 Such that | supeerz) [Aelllr—1a < Cpq-

1 11 3 1 1 1
0 such that || sup,cpr o |Aelll e 10 < Cpgi
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Localized maximal functions associated with surfaces in R3

Let ¢ € C°°(/), where | is a bounded interval containing the origin.
Define the averaging operator by

Af) = [ Ay = Bilsedole)nbde (20)

where 7 is supported in a sufficiently small neighborhood U of the origin.
Assume that ¢ satisfies (11) and d32 = a3 Then for

11 _ gl 1 1 1
(E7E)EA1_{(E7E : <a§p,q>l_3_1 E_d_H}U{(OJO)}'
there exists a constant Cp g > 0 such that || SUPte[1,2] |At|||Lp—19 < Cpoq
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Continuity lemma

There exists a real number € > 0 such that for any z € R”, there holds

sup |Aif(y +z) — Acf(y)

te(1,2]

La(Rn)

provided that

(1) n=2, A; is defined by (13) W|th ¢ =0 or by (15), and
(2. Hem\{(00)={1L 1) L<i<iisd i1y
(2) n=3, A; is defined by (23) W|th c=0orby (24), and
(2,5) e a\{(0,00} = {(%, }): ,,<%,s,%,§>é—1,%,>l—%ﬂ}:
(3) n=2, A; is defined by (13) with ¢ # 0; n = 3, A; is defined by (23)
|th c#0, and

1 _ 111 d+1 :
(3:9) €2N{(0,0)} ={(£,5) 155 < g < 3o > TS -1}

S 12Nl e ey (25)
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Continuity lemma

(4) n=2, A is defined by (14), (5, 3) € A3\{(0,0), (1, 1)} = {(5,3)
2_1p<c17§r'1ul7 _1'>E_dil}?

(5) n=23, A is defined by (21)

(5:35) €200} ={(5:5) s < g < g >3 1}
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Sparse domination and weighted estimates for maximal functions _

Let n : R — R be a smooth function supported on a sufficiently small
neighborhood U C Q of the origin. We define the average associated to
the hypersurface parametrized by ¢ := (®;)1<j<p as

Actbf(y) = /Rk f(y — 0t (P1(x), ..., Pn(x))) n(x)dx.

The corresponding maximal function can then be defined as

MgF(y) = sup |A®F(y)|. (26)
t>0
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0-cubes with dyadic size

Let R denote the collection of all axes-parallel hyperrectangles. Then the
collection of d-cubes with dyadic size is defined as

Q% :={QeR:h(Q)=2 T 1(Q) =21 forsome k € Z},

where /;(Q) denote the j-th side-length of Q@ and b; > 1 for 1 <j < n.
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Sparse form

Q We say that a collection of J-cubes S is sparse if there are sets
{Es € §: S € S} such that they are pairwise disjoint and
|Es| > 1|S| forall S € S.
Q For any d-cube @ and 1 < r < oo, define the r-average of a function
1
fonQby (flo,r:= (ﬁ fQ [f(x)|"dx)". Let S denote a sparse

collection. For 1 < p,q < oo, the (p, g)-sparse form Ns p o(f,g) is a
bilinear form defined by

AS,p,q(fvg) = Z |5|<f>5,p<g>5,q-
Ses
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Sparse domination

Let Mg denote the maximal function defined in (26). Suppose that the
corresponding local operator defined by

Mgf = sup |A®f], (27)
1<t<2

satisfies the local continuity property in the range £,,. Then for all
bounded compactly supported functions f, g and for any (%}, %) e L,
there exists a constant C < oo such that

|(M5f,g)| < ngpAS,p,q’(fag)a

where the supreme is taken over all possible sparse collections of §-cubes.
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Weighted estimates

O A weight w is a poistive function defined on R” equipped with the
Lebesgue measure and the metric defined by

1
ps(x,y) = Mmax Ixi — yil®.

We usually denote by w(E) := [ w(x)dx and
1
1Flliz, == (S IF(x)[Pw(x)dx) .

Q A weight w € A, (Muckenhoupt class) for 1 < p < oo if

o\ p—1
[wW]a, = sup (w)olw! P)f " < oc.
QeQ’

Q A weight w € RH,, (reverse Holder class) for 1 < p < oo if
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Weighted estimates

Suppose that S is a sparse collection of d-cubes. For any p < r < g with
(3, %) € Ly and weight w € Ar N RH(ay"
P b

Nspa(F.0) S (lagelergyy ) 17,

a:=max( 1 ,q_l). (28)

r—p q—r
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Weighted estimates

Suppose that the maximal operator M defined in (26) satisfies the
sparse bound described in Theorem 11. Then for any p < r < g with
(£,%) € £, and weight w € As (1 RHq) defined on d-cubes,

Mgl S (laglenyy ) (29)

for a specified in (28).
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Weighted estimates

Let w be a weight defined on d-cubes such that w € Aﬁ N RH(E)/. Define
the global maximal operator '

Mf(y) = sup|A:f(y)|.
t>0

(1) When A; is defined in terms of (13) with ¢ = 0 or by (15), then for M
and any p < r < q with (%, %) € Ay, (29) holds true.

(2) When A; is defined in terms of (23) with ¢ = 0 or by (24), then for M
and any p < r < q with (I%, %) € Ay, (29) holds true.

(3) When A; is defined in terms of (13) with ¢ # 0 or by (23) with ¢ # 0,
then for M and any p < r < g with %, (l,) € Ay, (29) holds true.
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Some areas not covered

(4) When A; is defined in terms of (14), then for M and any p<r < g
with (%}, %) € Az, (29) holds true.
(5) When A; is defined in terms of (21), then for M and any p<r < g
with (%’, %) € Ay, (29) holds true.
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