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A unified approach for Hardy spaces
7k 4= Auburn University

#E: It was well known that one uses different test function and distribution spaces to define the
Hardy space. A natural question is that can one characterize these Hardy spaces in terms of the same
test function and distribution spaces? In this talk, we would like to answer this question.

Bilinear Riesz means on the Heisenberg group
PRI S | N

$E: We investigate the bilinear Riesz means S*{\alpha}$ associated to the sublaplacian on the Hei-
senberg group. The operator $S”°{\alphal$ is bounded from SLAMp {1}\times L p {2}}$ into

SLA{p}S for S1\leq p_{1}, p_{2}\leg \infty$ and $1/p=1/p_{1}+ 1/p_{2}$ when S\alpha$ is large than a
suitable smoothness index S\alpha(p_{1},p_{2})S.



A New Weak Norm with Applications to Geometric Inequalities
PNCE BIFR

#ZE. In this talk, we consider a new weak norm, iterated weak norm in Lebesgue spaces with mixed
norms. We study properties of the mixed weak norm and the iterated weak norm and present the
relationship between the two weak norms. Even for the ordinary Lebesgue spaces, the two weak norms
are not equivalent and any one of them can not control the other one. We give some convergence and
completeness results for both weak norms. We show that Holder's inequality is not always true on
mixed weak spaces and we give a complete characterization of indices which admit Hélder's inequality.
As applications, we establish some geometric inequalities related to fractional integration in mixed weak
spaces and in iterated weak spaces which essentially generalize the Hardy-Littlewood-Sobolev
inequality.

Harmonic analysis on non-doubling manifold with ends

L K

#E: Consider a non-doubling manifold with ends $M = \mathbb R*m \sharp \mathbb R”nS$ for
Sm> n \geq 3S. In this talk | will talk some recent results on SMS, which include the Littlewood-Paley
theory, spectral multipliers, Riesz transforms and the BMO space associated to operators

with generalised Gaussian bounds.

Sharp Bilinear Decompositions of Products of Hardy Spaces

and Their Dual Spaces
7PN Y RN

FHE: Itis well known that bilinear decompositions of products of Hardy spaces and their dual spaces
play an important role in the study on various problems from analysis. In this talk, we present some
recent progresses on such bilinear decompositions of products of Hardy spaces and their dual spaces.
Some open questions are also mentioned in this talk.
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