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1.1 Definition

@ Denote by H the Hilbert transform, which is defined by
1

=p.v.— Mdy.
i

In 1965, A. P. Calderén (Proc. Nat. Acad. Sci.) introduced the following
commutator:

H f(x)

o, SLHI(@) = pla) = Hf (@) — - {H(pD)} @)

where ¢ € Lip(R).
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1.1 Definition

@ Denote by H the Hilbert transform, which is defined by
1
=p.v.— Mdy.

T JrZT—Y

H f(x)

In 1965, A. P. Calderén (Proc. Nat. Acad. Sci.) introduced the following
commutator:

o, SLHI(@) = pla) = Hf (@) — - {H(pD)} @)

where ¢ € Lip(R).
@ By a formal computation,

[%d%H](f)(m) =—p-v.%[{%ﬂy)d@/ = —Col (@),

where C, is recalled by Calderé6n commutator.
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1.2 Calderdn’s results: LP boundedness

Theorem Al (Calderén, PNAS, 1965)

If ¢ € Lip(R), then the commutator C is bounded on LP(R) for 1 < p < oco. In
particular, the commutator C, is bounded on L2(R) if and only if ¢ € Lip(R).
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1.2 Calderdn’s results: LP boundedness

Theorem Al (Calderén, PNAS, 1965)

If ¢ € Lip(R), then the commutator C is bounded on LP(R) for 1 < p < oco. In
particular, the commutator C, is bounded on L2(R) if and only if ¢ € Lip(R).

Theorem A2 (Calderén, PNAS, 1977)

The commutator Cy, is of weak type (1,1) if ||¢/||co is very small.
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1.2 Calderdn’s results: LP boundedness

Theorem Al (Calderén, PNAS, 1965)

If ¢ € Lip(R), then the commutator C is bounded on LP(R) for 1 < p < oco. In
particular, the commutator C, is bounded on L2(R) if and only if ¢ € Lip(R).

Theorem A2 (Calderén, PNAS, 1977)

The commutator Cy, is of weak type (1,1) if ||¢/||co is very small.

@ In 1974 Vancouver-ICM, C. Fefferman gave a Plenary Report, titled " Recent
Progress in Classical Fourier Analysis’. (See PICM., Vancouver, 1974,
95-118.)
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1.2 Calderdn’s results: LP boundedness

Theorem Al (Calderén, PNAS, 1965)

If ¢ € Lip(R), then the commutator C is bounded on LP(R) for 1 < p < oco. In
particular, the commutator C, is bounded on L2(R) if and only if ¢ € Lip(R).

Theorem A2 (Calderén, PNAS, 1977)

The commutator Cy, is of weak type (1,1) if ||¢/||co is very small.

@ In 1974 Vancouver-ICM, C. Fefferman gave a Plenary Report, titled " Recent
Progress in Classical Fourier Analysis’. (See PICM., Vancouver, 1974,
95-118.)

@ In 1988, T. Murai (Lecture Notes in Math. 1307) collected 8 proofs on
Calderén commutator C,, is bounded on L*(R).

Yong Ding Calderén commutators associated with the fractional differentiation



Background of the classical Calderén commutator

1 domain

1.3 Cauchy integral along Lipschitz curve

o Let v be a Lipschitz curve on C, that is, v is the graph of ¢ € Lip(R).
For g € L?(y) (1 < p < o), the Cauchy integral of g on -y is defined by

F(w) = L / 9(2) dz, w¢n.

21 z—w
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1.3 Cauchy integral along Lipschitz curve

o Let v be a Lipschitz curve on C, that is, v is the graph of ¢ € Lip(R).
For g € L?(y) (1 < p < o), the Cauchy integral of g on -y is defined by

F(w)zi/ ()d,z7 w & .

21 z—

@ Denote w = z £ iy (y > 0), then by Plemelj’s formula in complex analysis,
it is know that for a.e. zp € 7,

1 1
F(zoiiy)aiig(z0)+ﬂp A%dz asy — 0.
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1.3 Cauchy integral along Lipschitz curve

o Let v be a Lipschitz curve on C, that is, v is the graph of ¢ € Lip(R).
For g € L?(y) (1 < p < o), the Cauchy integral of g on -y is defined by

F(w) = L / 9(2) dz, w¢n.

21 z—w

@ Denote w = z £ iy (y > 0), then by Plemelj’s formula in complex analysis,
it is know that for a.e. zp € 7,

F(zo £iy) — il

5 (20) + L p.v./ 9(2) dz asy—0.
v

271 Z— 20

o Thus, if

1
— p.v./ Mdz < oo fora.e. z €7,
27 52— 20

then
1ig})[F(z0 +iy) — F(z0 —iy)] = g(20) for a.e. 2o € 7.
Yy
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1.3 Cauchy integral operator on Lipschitz curve

@ It is easy to see that the LP-boundedness of the operator
A 1 9(2)
d
Cy(g)(w) = 5 PV /{Z oz (w € ~)

is equivalent to the LP-boundedness of C on R, where C is defined by

. f(t)
Cyf(x) :=p. /JR (x —t) +i(p(x) — So(t))dt‘
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1.3 Cauchy integral operator on Lipschitz curve

@ It is easy to see that the LP-boundedness of the operator
A 1 9(2)
d
Cy(g)(w) = 5 PV /{Z oz (w € ~)

is equivalent to the LP-boundedness of C on R, where C is defined by

. f(t)
Cyf(x) :=p. /JR (x —t) +i(p(x) — So(t))dt‘

@ Operator C is called by Cauchy integral operator on Lipschitz curve ~.

In 1960, A. Zygmund conjectured that C., is bounded on L?(R) for any
Lipschitz curve 7.
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1.3 Cauchy integral operator on Lipschitz curve

@ It is easy to see that the LP-boundedness of the operator
A 1 9(2)
d
Cy(g)(w) = 5 PV /{Z oz (w € ~)

is equivalent to the LP-boundedness of C on R, where C is defined by

. f(t)
Cyf(x) :=p. /JR (x —t) +i(p(x) — So(t))dt‘

@ Operator C is called by Cauchy integral operator on Lipschitz curve ~.

In 1960, A. Zygmund conjectured that C., is bounded on L?(R) for any
Lipschitz curve 7.

Theorem A5 (Calderén, PNAS, 1977)

The Cauchy integral operator C is of weak type (1.1) and bounded on LP(R) for
1< p<ooaslong as ||¢||cc < & for some fixed small e.
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1.3 Cauchy integral operator on Lipschitz curve

@ It is easy to see that the LP-boundedness of the operator
~ 1 9(2)
= _——p.wv. d
Colo)w) = 5o [ Fode (we)
is equivalent to the LP-boundedness of C on R, where C is defined by

. f(t)
Cyf(x) :=p. /JR (x —t) +i(p(x) — So(t))dt‘

@ Operator C is called by Cauchy integral operator on Lipschitz curve ~.

In 1960, A. Zygmund conjectured that C., is bounded on L?(R) for any
Lipschitz curve 7.

Theorem A5 (Calderén, PNAS, 1977)

The Cauchy integral operator C is of weak type (1.1) and bounded on LP(R) for
1< p<ooaslong as ||¢||cc < & for some fixed small e.

o Calderdn conjectured the restriction ||¢’||cc < € can be removed.
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1.3 Cauchy integral operator on Lipschitz curve

Theorem A6 (Coifman-Mclntosh-Meyer, 1982, Annals of Math.)

C, is of weak type (1.1) and bounded on LP(R) for 1 < p < oo and any Lipschitz
curve vy in C.
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1.3 Cauchy integral operator on Lipschitz curve

Theorem A6 (Coifman-Mclntosh-Meyer, 1982, Annals of Math.)

C, is of weak type (1.1) and bounded on LP(R) for 1 < p < oo and any Lipschitz
curve vy in C.

@ Theorem A6 shows that both Calderén's conjecture and Zygmund's conjec-
ture are true.
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1.3 Cauchy integral operator on Lipschitz curve

Theorem A6 (Coifman-Mclntosh-Meyer, 1982, Annals of Math.)

C, is of weak type (1.1) and bounded on LP(R) for 1 < p < oo and any Lipschitz
curve vy in C.

@ Theorem A6 shows that both Calderén's conjecture and Zygmund's conjec-
ture are true.

o A. Calderén, Commutators, singular integrals on Lipschitz curves and ap-
plication, Proc. ICM. Helsinki, 1978, 85-96.
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1.3 Cauchy integral operator on Lipschitz curve

Theorem A6 (Coifman-Mclntosh-Meyer, 1982, Annals of Math.)

C, is of weak type (1.1) and bounded on LP(R) for 1 < p < oo and any Lipschitz
curve vy in C.

@ Theorem A6 shows that both Calderén's conjecture and Zygmund's conjec-
ture are true.

o A. Calderén, Commutators, singular integrals on Lipschitz curves and ap-
plication, Proc. ICM. Helsinki, 1978, 85-96.

o C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis,
Vol. Il. Cambridge Studies in Advanced Mathematics, 138. Cambridge
Univ. Press, 2013.
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1.4 Dirichlet and Neumann problems on bounded C'' domain

@ Suppose U is a bounded C'* domain in R"** consider the following Dirichlet
problem for A on U:

Au=0 in U,
_ (D)
ulov = f on OU.
Neumann problem for A on U, that is,
Au=0 in U,
ou
— = on 9U,
onl,, ! (V)

/anda:O.
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1.4 Dirichlet and Neumann problems on bounded C'' domain

@ Suppose U is a bounded C'* domain in R"** consider the following Dirichlet
problem for A on U:

Au=0 in U,
_ (D)
ulov = f on OU.
Neumann problem for A on U, that is,
Au=0 in U,
ou
— = on 9U,
onl,, ! (V)
fdo =0.
U

o Using Calderén theorem on Cauchy integral on C* curves and method of
layer potentials, Fabes, Jodeit and Riviére (Acta Math., 1978) gave the
uniquely solvability of the Dirichlet problem (D) and Neumann problem (V)
with LP(OU) (1 < p < 00) data on C* domain. Their techniques rely also
on the compactness of the double layer potentials:in the:C'* case.
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1.4 Dirichlet and Neumann problems on bounded C'' domain

o E. Fabes, M. Jodeit and N. Riviére, Potential techniques for boundary
value problems on C'-domains, Acta Math. 141 (1978), no. 3-4, 165-
186.
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1.4 Dirichlet and Neumann problems on bounded C'' domain

o E. Fabes, M. Jodeit and N. Riviére, Potential techniques for boundary
value problems on C'-domains, Acta Math. 141 (1978), no. 3-4, 165-
186.

o A. Calderédn, C. Calderén, E. Fabes, M. Jodeit and N. Rivi & re, Applications
of the Cauchy integral on Lipschitz curves. Bull. Amer. Math. Soc. 84
(1978), no. 2, 287-290.
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1.4 Dirichlet and Neumann problems on bounded C'' domain

o E. Fabes, M. Jodeit and N. Riviére, Potential techniques for boundary
value problems on C'-domains, Acta Math. 141 (1978), no. 3-4, 165-
186.

o A. Calderédn, C. Calderén, E. Fabes, M. Jodeit and N. Rivi & re, Applications
of the Cauchy integral on Lipschitz curves. Bull. Amer. Math. Soc. 84
(1978), no. 2, 287-290.

o C. Kenig, Elliptic boundary value problems on Lipschitz domains. Beijing
lectures in harmonic analysis (Beijing, 1984), 131-183, Annals of Math.
Stud., 112, Princeton Univ. Press, Princeton, NJ, 1986.
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1.4 Dirichlet and Neumann problems on bounded C'' domain

o E. Fabes, M. Jodeit and N. Riviére, Potential techniques for boundary
value problems on C'-domains, Acta Math. 141 (1978), no. 3-4, 165-
186.

A. Calderén, C. Calderdn, E. Fabes, M. Jodeit and N. Rivi & re, Applications
of the Cauchy integral on Lipschitz curves. Bull. Amer. Math. Soc. 84
(1978), no. 2, 287-290.

o C. Kenig, Elliptic boundary value problems on Lipschitz domains. Beijing
lectures in harmonic analysis (Beijing, 1984), 131-183, Annals of Math.
Stud., 112, Princeton Univ. Press, Princeton, NJ, 1986.

o B. Dahlberg and C. Kenig, Hardy spaces and the Neumann problem in LP
for Laplace’s equation in Lipschitz domains, Annals of Math., 125, (1987),
437-465.
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2.1 Murray's generalization

o Recall the following characterization of the L?(R)-boundedness for C.,.
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2.1 Murray's generalization

o Recall the following characterization of the L?(R)-boundedness for C.,.

Theorem Al (Calderén, PNAS, 1965)

If ¢ € Lip(R), then the commutator C,, is bounded on LP(R) for 1 < p < oo. In
particular, the commutator C, is bounded on L2(R) if and only if ¢ € Lip(R).
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Calderén commutator associated with fractional differential operator

2.1 Murray's generalization

o Recall the following characterization of the L?(R)-boundedness for C.,.

Theorem Al (Calderén, PNAS, 1965)

If ¢ € Lip(R), then the commutator C,, is bounded on LP(R) for 1 < p < oo. In
particular, the commutator C, is bounded on L2(R) if and only if ¢ € Lip(R).

@ 1985, for 0 < a < 1, Murray extended considered the commutator of the
[e3

fractional differential operator D® defined by Do f(¢) = |€|*f(€).
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Calderén commutator associated with fractional differential operator

2.1 Murray's generalization

o Recall the following characterization of the L?(R)-boundedness for C.,.

Theorem Al (Calderén, PNAS, 1965)

If ¢ € Lip(R), then the commutator C,, is bounded on LP(R) for 1 < p < oo. In
particular, the commutator C, is bounded on L2(R) if and only if ¢ € Lip(R).

@ 1985, for 0 < a < 1, Murray extended considered the commutator of the
[e3

fractional differential operator D® defined by Do f(¢) = |€|*f(€).

Theorem B1 (Murray, 1985, IUMJ)

Suppose 0 < a < 1, then the Calderén commutator of fractional order [b, D*H] is
bounded on L2(R) if and only if D®b € BMO(R), i.e., b € Io(BMO), where H is the
Hilbert transform and I, denotes the Riesz potential of a order.
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2.1 Murray's generalization
o Recall the following characterization of the L?(R)-boundedness for C.,.

Theorem Al (Calderén, PNAS, 1965)

If ¢ € Lip(R), then the commutator C,, is bounded on LP(R) for 1 < p < oo. In
particular, the commutator C, is bounded on L2(R) if and only if ¢ € Lip(R).

@ 1985, for 0 < a < 1, Murray extended considered the commutator of the
[e3

fractional differential operator D® defined by Do f(¢) = |€|*f(€).

Theorem B1 (Murray, 1985, IUMJ)

Suppose 0 < a < 1, then the Calderén commutator of fractional order [b, D*H] is
bounded on L2(R) if and only if D®b € BMO(R), i.e., b € Io(BMO), where H is the
Hilbert transform and I, denotes the Riesz potential of a order.

@ Theorem Bl can be seen an extension of Theorem Al. However, it needs
. d
to point out that [b, D*H] # [b, — H] for o = 1.
dx



Murray's result

Calderén commutator associated with fractional differential operator O (ol

2.1 Murray's generalization

e Lipy C I,(BMO) by Strichatez's result (Indiana Univ. Math. J., 1980).
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2.1 Murray's generalization

e Lipy C I,(BMO) by Strichatez's result (Indiana Univ. Math. J., 1980).

e If 0 < a < 1, then Io,(BMO) C Lip. by above Strichatez's paper.
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2.1 Murray's generalization

e Lipy C I,(BMO) by Strichatez's result (Indiana Univ. Math. J., 1980).
e If 0 < a < 1, then Io,(BMO) C Lip. by above Strichatez's paper.

o If @ = 0, then Iy(BMO) = BMO, so Theorem Bl is just Coifman-
Rocherberg-Weiss's result (Annals Math., 1976).
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2.1 Murray's generalization

Lip, C I,(BMO) by Strichatez's result (Indiana Univ. Math. J., 1980).
e If 0 < a < 1, then Io,(BMO) C Lip. by above Strichatez's paper.

o If @ = 0, then Iy(BMO) = BMO, so Theorem Bl is just Coifman-
Rocherberg-Weiss's result (Annals Math., 1976).

@ It remains an open problem whether Theorem B1 holds or not for a = 1.
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2.2 Our results

Theorem 1 (Chen-Ding-Hong, Analysis and PDE, 2016.)

Suppose a € (0,1) and b € L], (R"). Let 1 < p < oo and 0 < A < n. Then the
following five statements are equivalent:

(i) b€ Io(BMO);
iif) For j =1,---,n, [b, D*R;] are bounded on L?(R™);
ili) For j =1, ,n, [b, D*R;] are bounded from L!(R™) to L1:>°(R");
iv) For j=1,---,n, [b, D*R;] are bounded on LP*(R™);
v) Forj=1,---,n, [b, D*R;] are bounded from L>°(R™) to BMO(R™).

(
(
(
(
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2.2 Our results

Theorem 1 (Chen-Ding-Hong, Analysis and PDE, 2016.)

Suppose a € (0,1) and b € L], (R"). Let 1 < p < oo and 0 < A < n. Then the
following five statements are equivalent:

(i) b€ Io(BMO);

(ii) For j =1,--- ,n, [b, D*R;] are bounded on LP(R"™);
(ili) For j =1,---,n, [b, D*R;] are bounded from L!(R") to L1,>°(R");
(iv) For j =1, ,n, [b, D*R;] are bounded on LP:*(R™);
(v) Forj=1,---,n, [b, D*R;] are bounded from L>°(R™) to BMO(R™).
o Here

R;: the Riesz transforms j =1,--- | n;

LY (R™): the weak L' space;

DA Ty L . _ 1 P L
LPARY) = f o ([fllppr =(  sup  — |f(W)I” dy < oo

X
zeR™,r>0 " JQ(a,r)
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Calderén commutator associated with fractional differential operator

2.2 Our results

e Remark 1: If a = 0, then IH(BMO) = BMO and [b, D°R;] = [b, R;]. In
this case, the following equivalents are well known:
(i) b€ BMO;
(ii) For j=1,---,n, [b, R;] are bounded on LP(R™);
(iv) For j =1,---,n, [b, R;] are bounded on LP*(R™).
In fact, these conclusions still hold if replacing R; by the singular integral
operator with Calderén-Zygmund standard kernels.
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2.2 Our results

e Remark 1: If a = 0, then IH(BMO) = BMO and [b, D°R;] = [b, R;]. In
this case, the following equivalents are well known:
(i) b€ BMO;
(ii) For j=1,---,n, [b, R;] are bounded on LP(R™);
(iv) For j =1,---,n, [b, R;] are bounded on LP*(R™).
In fact, these conclusions still hold if replacing R; by the singular integral
operator with Calderén-Zygmund standard kernels.

o Remark 2: For a = 0, the commutator [b, R;] is not bounded from L'(R")
to L (R™); so is not bounded from L>°(R™) to BMO(R").
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2.2 Our results

e Remark 1: If a = 0, then IH(BMO) = BMO and [b, D°R;] = [b, R;]. In
this case, the following equivalents are well known:
(i) b€ BMO;
(ii) For j=1,---,n, [b, R;] are bounded on LP(R™);
(iv) For j =1,---,n, [b, R;] are bounded on LP*(R™).
In fact, these conclusions still hold if replacing R; by the singular integral
operator with Calderén-Zygmund standard kernels.

o Remark 2: For a = 0, the commutator [b, R;] is not bounded from L'(R")
to L (R™); so is not bounded from L>°(R™) to BMO(R").

@ Remark 3: It is not clear whether the conclusions of Theorem 1 hold or not
for o = 1.
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Suffic r S bound, i,

fficient for the LP>
LPA

Outline of proof y ips (1)
I T for 0 < o
Impli s (1)
Proof of

3.1 Sufficiency for LP boundedness of [b, T,

@ Theorem 1 is a consequence of the general results obtained in our paper.
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Outline of proof

Implicati
Proof of

3.1 Sufficiency for LP boundedness of [b, T ]

@ Theorem 1 is a consequence of the general results obtained in our paper.

@ Suppose that b € L{.(R™) and Q satisfies the following conditions:
(i) Qz) = Q()\x) forall A >0 and z € R™\ {0};
(ii) [gno1 Q(2")do(2") = 0;
(i) Q e L (S" h.
Then for 0 < a < 1, the commutator associated with b, 2, « is defined by

Tl w) = v [ S (bw) = b))

Yong Ding Calderén commutators associated with the fractional differentiation



Sufficiency for LI{‘ boundedness of [b, To,
cy for L T

Outline of proof

3.1 Sufficiency for LP boundedness of [b, T ]

@ Theorem 1 is a consequence of the general results obtained in our paper.

@ Suppose that b € L{.(R™) and Q satisfies the following conditions:
(i) Qz) = Q()\x) forall A >0 and z € R™\ {0};
(ii) [gno1 Q(2")do(2") = 0;
(i) Q e L (S" h.
Then for 0 < a < 1, the commutator associated with b, 2, « is defined by

Tl w) = v [ S (bw) = b))

o lfa=0,be L (R") and Q € Lip(S™ '), by Coifman-Rocherberg-Weiss
(Annals Math., 1976), [b, 1] is bounded on LP(R™) for all 1 < p < oo if
and only if b € BMO(R™).
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3.1 Sufficiency for LP boundedness of [b, T,,]

Suppose a € (0,1) and b € I(BMO). If Q € LlogTL(S™™ 1) with mean zero on
Sn=1, then for 1 < p < oo, [|[b, TalfllLr S IDbllBaroll fllLe.
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Outline of proof

Suppose a € (0,1) and b € I(BMO). If Q € LlogTL(S™™ 1) with mean zero on
Sn=1, then for 1 < p < oo, [|[b, TalfllLr S IDbllBaroll fllLe.

@ Proof of Theorem 2: Littlewoof-Paley decomposition + Fourier trans-
form estimates.
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3.2 Sufficiency for L1'>° boundedness of [b, T,,]

o Note that when b € I,(BMO) for 0 < o < 1 and Q € Lip(S™™') with
mean zero on S™~ !, it is easy to check that the kernel

k(e ) = 229 0) b(y))

o -yt

is a Calderén-Zygmund standard kernel.
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3.2 Sufficiency for L1'>° boundedness of [b, T,,]

o Note that when b € I,(BMO) for 0 < o < 1 and Q € Lip(S™™') with
mean zero on S™~ !, it is easy to check that the kernel

k(e ) = 229 0) b(y))

o -yt

is a Calderén-Zygmund standard kernel.

@ Hence, by Theorem 2 and the C-Z singular integral theory, we see that
[b,Ta] for 0 < a < 1 is of weak type (1,1).
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3.2 Sufficiency for L1'>° boundedness of [b, T,,]

@ On the other hand, if & = 1, the commutator [b, T1] was defined by Calderén
in 1965.
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3.2 Sufficiency for L1'>° boundedness of [b, T,,]

@ On the other hand, if & = 1, the commutator [b, T1] was defined by Calderén

in 1965.

Theorem C1 (Calderén, PNAS, 1965)

IfQ € LlogTL(S™ 1) is odd and satisfies
/ Qz")al do(a’) =0, j=1,2,---,n (3.1)
Sn—1
and Vb e L™(R™) (1 < r < o0). Then for1 < p < oo and% :%Jr%,
6, Ta] fllparny S IVOI Lr @y | Fll o ey -
”
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o Note that if Q € Lip(S™™ ") is odd and satisfies (3.1), then the kernel

k(o,y) = %@(m) ~by))

is a Calderén-Zygmund standard kernel, so we have
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3.2 Sufficiency for L1'>° boundedness of [b, T,,]

o Note that if Q € Lip(S™™ ") is odd and satisfies (3.1), then the kernel

k(o,y) = %(b(w) ~by))

is a Calderén-Zygmund standard kernel, so we have

(i) If b € Lip(R™) and © € Lip(S™~1!) is odd and satisfies (3.1), then [b, T1] is of weak
type (1,1).

(i) If b € In(BMO) for 0 < a < 1 and € Lip(S™~!) with mean zero on S™~1,
then [b, To] for 0 < o < 1 is of weak type (1,1).
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3.2 Sufficiency for L1'>° boundedness of [b, T,,]

o Note that if Q € Lip(S™™ ") is odd and satisfies (3.1), then the kernel

k(o,y) = %(b(w) ~by))

is a Calderén-Zygmund standard kernel, so we have

(i) If b € Lip(R™) and © € Lip(S™~1!) is odd and satisfies (3.1), then [b, T1] is of weak
type (1,1).

(i) If b € In(BMO) for 0 < a < 1 and € Lip(S™~!) with mean zero on S™~1,
then [b, To] for 0 < o < 1 is of weak type (1,1).

@ By the way, the conclusion (i) in Corollary 3 has been improved by Ding
and Lai (to appear in Trans. Amer. Math. Soc.)
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3.3 Sufficient condition of LP* boundedness

o To get the Morrey space L”* boundedness of [b,T,], we need to use an
implying relationship.
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3.3 Sufficient condition of LP* boundedness

o To get the Morrey space L”* boundedness of [b,T,], we need to use an
implying relationship.

Theorem C2 (Chen-Ding-Wang, Canad. J. Math., 2012)

Suppose 2 € LI(S™1) for ¢ > n/(n — \) and S is a sublinear operator satisfying

si@i<c [ =B 1),

Let 1 < p < oo. If the operator S is bounded on LP(R™), then S is bounded on
LPA(R?).
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3.3 Sufficient condition of LP* boundedness

o To get the Morrey space L”* boundedness of [b,T,], we need to use an
implying relationship.

Theorem C2 (Chen-Ding-Wang, Canad. J. Math., 2012)

Suppose 2 € LI(S™1) for ¢ > n/(n — \) and S is a sublinear operator satisfying

si@i<c [ =B 1),

Let 1 < p < oo. If the operator S is bounded on LP(R™), then S is bounded on
LPA(R?).

@ Thus, applying Theorem 2 and Theorem C2, we have
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3.3 Sufficient condition of LP* boundedness

o To get the Morrey space L”* boundedness of [b,T,], we need to use an
implying relationship.

Theorem C2 (Chen-Ding-Wang, Canad. J. Math., 2012)

Suppose 2 € LI(S™1) for ¢ > n/(n — \) and S is a sublinear operator satisfying
Qz —y
sr<c [ B 5 a
R |z —yl

Let 1 < p < oo. If the operator S is bounded on LP(R™), then S is bounded on
LPA(R?).

@ Thus, applying Theorem 2 and Theorem C2, we have

Corollary 4

Let 0 < A < n. Suppose o € (0,1) and b € I,(BMO). If Q € LI(S™ 1) for
qg>n/(n— M), then for 1 < p < oo,

6, Talfll poox S ID0lBaroll fll Lo
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3.4 Necessary for LP* boundedness of [b, T,

o We gave a necessary condition for L”* boundedness of [b, T4].
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3.4 Necessary for LP* boundedness of [b, T, ]

o We gave a necessary condition for L”* boundedness of [b, T4].

Suppose 0 < a < 1, b € L] _(R™) and Q € Lip(S™~1) satisfying mean zero on S"~!
or (3.1). If for some 1 < p < oo and 0 < A < n, [b,Tw] is a bounded on LP:A(R™),
then b € Lip,, (R™).
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3.4 Necessary for LP* boundedness of [b, T,,]

o We gave a necessary condition for L”* boundedness of [b, T4].

Suppose 0 < a < 1, b € L] _(R™) and Q € Lip(S™~1) satisfying mean zero on S"~!
or (3.1). If for some 1 < p < oo and 0 < A < n, [b,Tw] is a bounded on LP:A(R™),
then b € Lip,, (R™).

o In particular, if [b,T.] is a bounded on LP(R™) for some 1 < p < oo, then
b € Lip, (R").
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3.4 Necessary for LP* boundedness of [b, T,]

o We gave a necessary condition for L”* boundedness of [b, T4].

Suppose 0 < a < 1, b € L] _(R™) and Q € Lip(S™~1) satisfying mean zero on S"~!
or (3.1). If for some 1 < p < oo and 0 < A < n, [b,Tw] is a bounded on LP:A(R™),
then b € Lip,, (R™).

o In particular, if [b,T.] is a bounded on LP(R™) for some 1 < p < oo, then
b € Lip, (R™).

@ In the proof of Theorem 5, we used the following equivalent, which was
given by N. Meyers in [PAMS, 1964]:

b € Lip,(R") <= sup %/ |b(x) — bol|dx < C.
Qcrr QT Jg
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3.5 Necessary for L'>° boundedness of [b, T},]

Theorem 6

Suppose 0 < a <1, b € Llloc(]R") and Q € Lip(S™~1) satisfying mean zero on S?~1
or (3.1). If [b, Ts] is bounded from L!(R™) to L1:>°(R™), then b € Lip, (R™).
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5 Necessary for L'> boundedness of [b, T},]

Theorem 6

Suppose 0 < a <1, b € Llloc(]R") and Q € Lip(S™~1) satisfying mean zero on S?~1
or (3.1). If [b, Ts] is bounded from L!(R™) to L1:>°(R™), then b € Lip, (R™).

o As far as we know, this is the first time to give a necessary condition for
the L' (R™) — L"*°(R™) boundedness of an operator.
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3.5 Necessary for L'>° boundedness of [b, T},]

@ Applying Theorem C1, Theorem C2, Corollary 3, Theorems 5 and 6 for
a =1, we give the characterizations for the Calderén commutator [b, 71].
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3.5 Necessary for L'>° boundedness of [b, T},]

@ Applying Theorem C1, Theorem C2, Corollary 3, Theorems 5 and 6 for
a =1, we give the characterizations for the Calderén commutator [b, 71].

Let 1 < p < 00, 0 < A < n. Suppose that b € Ll (R") and © € Lip(S™"~1) is odd
and satisfying (3.1), then the following four statements are equivalent:

(i) b€ Lip(R™);

(ii) [b,T1] is bounded on LP(R™);

(iii) [b, T1] is bounded from L!(R™) to L':>°(R™);
(iv) [b, T1] is bounded on LP-*(R™).
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3.6 Implicative relationships (I)

@ For 0 < a < 1, there are the following implicative relationships between
boundedness of [b, T4 ].
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3.6 Implicative relationships (1)

@ For 0 < a < 1, there are the following implicative relationships between
boundedness of [b, T4 ].

Theorem 8

Suppose 0 < o < 1, b € LL (R") and Q € Lip(S"~1) satisfying mean value zero
property. Let 1 < p < oo and 0 < A < m. Then the implicative relationships (i) =
(i1) = (iii) = (iv) hold for the following four statements:

(1) [b,Tw] is bounded on LP(R™);

(ii) [b, Tw] is bounded from L1 (R™) to LY*°(R"™); (by Theorem 6, b € Lip, (R™))
(iii) [b,Tw] is bounded on LP:*(R™); (by Theorem 5, b € Lip,, (R™))

(iv) [b,T4] is bounded from L*°(R™) to BMO(R™).
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37T, =DT for0<a<1

@ We now show that T, = DT for 0 < a < 1, where

Q(x —
T f(z) = p.v. /]R ﬁf(y)dy, 0<a<l, (3.2)
Qz —
15w = [ D s (33

Here both © and € are homogeneous of degree zero and with mean value
zero.
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37T, =DT for0<a<1

@ We now show that T, = DT for 0 < o < 1, where

Q(x —
T f(z) = p.v. /]R %f(y)dy, 0<a<l, (3.2)
Qz —
15w = [ D s (33)

Here both © and € are homogeneous of degree zero and with mean value
zero.

Proposition 9

(i) For 0 < @ < 1 and Q € L2(S™ 1), there exists a singular integral operator T'
defined by (3.3) with Q € L2 (S™~1) such that T, = D*T.

(ii) Conversely, for any singular integral operator T' with Q € L2(S™~1), there exists
an operator Ty, defined by (3.2) with Q € L2(S™~1) such that T, = DT.
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@ Denote by H,, the spaces of spherical harmonics of degree m and {Y,»,; }"lm

denotes the normalized orthonormal basis of H,,. Then using the spherical
harmonic decomposition,

d’”l
L3S ) = {Q Q)= Zamj @), 3 a2, < oo.}
m>1j=1 m>1j=1

and for0 < aa < 1,

Li(snfl) = {Q : Q(w’) = Zmzl Z;i;nl bm,ij,j(J?/),
St X (m b )? < 00. .
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37T, =DT for0<a<1

@ Denote by H,, the spaces of spherical harmonics of degree m and {Y,»,; }"lm
denotes the normalized orthonormal basis of H,,. Then using the spherical
harmonic decomposition,

d’”l
LX(S™ Y = {Q Q)= Zam] @), SNk, < oo.}
m>1j=1 m>1j=1

and for0 < aa < 1,

Li(snfl) = {Q : Q(w’) = Zmzl Z;i;nl bm,ij,j(J?/),
St X (m b )? < 00. .

@ Proof of Proposition 9: Fourier transform estimate of spherical harmonic
functions and Riesz potential.
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3.8 Implicative relationships (I1)

@ The following implicative relationships between boundedness of [b, D*T] is
an immediate consequence of Theorem 8 and Proposition 9.
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3.8 Implicative relationships (I1)

@ The following implicative relationships between boundedness of [b, D*T] is
an immediate consequence of Theorem 8 and Proposition 9.

Corollary 10

Suppose 0 < a < 1, b € Ll (R™) and Q € C2(5S"—1) satisfying mean value zero
property. Let 1 < p < co and 0 < A < m. Then the implicative relationships (i) =
(ii) = (iii) = (iv) hold for the following four statements:

(i) [b, D*T] is bounded on LP(R™);

(ii) [b, D®T] is bounded from L!(R™) to L1:>°(R"™);
(ili) [b, D*T] is bounded on LP*(R™);

(iv) [b, D*T] is bounded from L°°(R"™) to BMO(R™).
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3.9 Proof of Theorem 1

o Finally, applying Corollary 10 to Riesz transforms, we get the conclusion of
Theorem 1.
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3.9 Proof of Theorem 1

o Finally, applying Corollary 10 to Riesz transforms, we get the conclusion of
Theorem 1.

Suppose 0 < o < 1 and b € L1 (R?). Let 1 < p < co and 0 < A\ < n. Then the

loc
following five statements are equivalent:

(i) b € I,(BMO);

ii) For j =1,--- ,n, [b, D*R;] are bounded on LP(R"™);

iii) For j =1,---,n, [b, D*R;] are bounded from L!(R™) to L!>°(R");
iv) For j =1,---,n, [b, D*R;] are bounded on LP*(R");

v) Forj=1,---,n, [b, D*R;] are bounded from L>°(R™) to BMO(R").

(
(
(
(

Yong Ding Calderén commutators associated with the fractional differentiation



Outline of proof

T DT for O @ <
Implicative relationships (I1)
Proof of Theorem 1

3.9 Proof of Theorem 1

o Finally, applying Corollary 10 to Riesz transforms, we get the conclusion of
Theorem 1.

Suppose 0 < o < 1 and b € L1 (R?). Let 1 < p < co and 0 < A\ < n. Then the

loc
following five statements are equivalent:

(i) b € I,(BMO);

ii) For j =1,--- ,n, [b, D*R;] are bounded on LP(R"™);

iii) For j =1,---,n, [b, D*R;] are bounded from L!(R™) to L!>°(R");
iv) For j =1,---,n, [b, D*R;] are bounded on LP*(R");

v) Forj=1,---,n, [b, D*R;] are bounded from L>°(R™) to BMO(R").

(
(
(
(

o In fact, let Q;(z) = I%J\ for j = 1,---,n, then we see that (ii) = (iii) =
(iv) = (v) hold by Corollary 10. So, it remains to show that (i) = (ii) and

(v) = (i)
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3.9 Proof of Theorem 1

o Note that for 5 =1,2,--- ,n, DTR\jf(f) = —i&[€1* 1 F(€) and
7““)<p”iEF§%¥E) (&) = igsle” Y,

l—-n—a I(2te=1)
2 71'%+a71]_—‘(1_T0‘)

00" R f(a) = p. [ )

gn T — gyl T

where n(a) = . Hence we get

(b(z) = b(y)) f(y) dy,

where ©;(z) = n(a) .

x
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3.9 Proof of Theorem 1

o Note that for 5 =1,2,--- ,n, DTR\jf(f) = —i&[€1* 1 F(€) and
7”“)<p”iEF§%?E) (&) = igsle” Y,

l—-n—a I(2te=1)
2 71'%+a71]_—‘(1_T0‘)

00" R f(a) = p. [ )

gn T — gyl T

where n(a) = . Hence we get

(b(z) = b(y)) f(y) dy,

where Q;(z) = n(a) .

J
|z

o If b € Io(BMO), then by Theorem 2,
Ib, D*Ry]|[» < CI Dbl BMo]| fl|Lr
for j=1,2,--- ,nand 1 < p < oo. Thus we show that (i) = (ii).
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3.9 Proof of Theorem 1

o Finally, we show that (v) = (i).
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3.9 Proof of Theorem 1

o Finally, we show that (v) = (i).

@ Using the relationship between BM O function and Carleson measure, Fefferman-
Stein (Acta Math., 1972) showed that

iR?feBMO:fGBMO. (%)

j=1
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3.9 Proof of Theorem 1

o Finally, we show that (v) = (i).

@ Using the relationship between BM O function and Carleson measure, Fefferman-
Stein (Acta Math., 1972) showed that

> Rif € BMO = f € BMO. (%)

j=1

e By (v), [b, D“R;] : L>° — BMO, the vanishing moment of €; gives
[b, D*R;)(1)(z) = —D*R;b(z) = —R; D*(b)(z) € BMO,forj =1,2,-- ,n.
Hence, —>°"_, RiD*(b) € BMO. By (x), D*(b) € BMO, so (i) holds.
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Many thanks for your attention!
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