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The Problem

Fractional Integral:

I.f(x) = Ldy, a>0.

o |X — y|

lo: LP+— L9 where1/g=1/p— a/n.
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The Problem

Fractional Integral:

f
Iaf(X) = . p(_(%dy, a > 0.

lo: LP+— L9 where1/g=1/p— a/n.

i.e., forany f € [P, g € LY,

/ F()g() S 1Flsllglle
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The Problem

The Hardy-Littlewood-Sobolev inequality: for any f € LP*(R")
and g € LP(R"), where 1 < p;,po < co with 1/p; +1/py > 1, we

have

f(x)g(y)
. — y|n(2_1/p1_1/p2) dXdy < Cﬁ,anHLpl ||g||LP2‘ (1)
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The Problem

The Hardy-Littlewood-Sobolev inequality: for any f € LP*(R")
and g € LP(R"), where 1 < p;,po < co with 1/p; +1/py > 1, we

have

Problem: what will happen if f(x)g(y) is replaced by a general
function h(x,y)?

f(x)g(y)
. — y|n(2_1/p1_1/p2) dXdy < Cﬁ,an”LPl ||g||LP2‘ (1)

3/ 49



The Problem

Geometric inequality: for any f € LP' and g € LP2.

1 f]lioi|lgl| e < Cpn sup F(x)g(y)|x — y|"/Prrn/Pe (2)

x,y€R"
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The Problem

Geometric inequality: for any f € LP* and g € L.

[l ligl < Con sup F(x)g(y)ix _ el ()
X,y €R"

Again, what will happen if f(x)g(y) is replaced by a general func-
tion h(x,y)?
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Mixed Norms

For p = (p1,...,p,) and a measurable function f defined on
R™ x ... x R™, where p; are positive numbers and n; are positive
integers, 1 </ < r, we define the LP norm of f by

1l i= |1z -+

Pr :
Ler

The Lebesgure space LP(R™ x ... x R™) with mixed norms consists
of all measurable functions f for which ||f||;5 < co.
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Mixed Norms

Define
f(x,y)

Ix =y
For v = n(2 —1/p; — 1/p>), the Hardy-Littlewood-Sobolev inequality
says that

LWf(Xv.y): ) 7>0

ILfoglsSIf@gle  fel?R),gelPR).
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Mixed Norms

Define
f(x,y)

Ix —y|
For v = n(2 —1/p; — 1/p>), the Hardy-Littlewood-Sobolev inequality
says that

LWf(Xv.y): ) 7>0

ILfogllsSIfogls  felP(RY),ge PR

It is natural to ask if the above inequality is still true whenever
f ® g is replaced by a general function in LP(R" x R")? More precisely,
do we have

IL Al < Flss VF € PR x RY)
for appropriate p, ¢ and 7
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Mixed Norms

Define
f(x,y)

Ix =y
For v = n(2 —1/p; — 1/p>), the Hardy-Littlewood-Sobolev inequality
says that

LWf(Xv.y): ) 7>0

ILfoglsSIf@gle  fel?R),gelPR).

It is natural to ask if the above inequality is still true whenever
f ® g is replaced by a general function in LP(R" x R")? More precisely,
do we have

Ly Fllea S (1F lless Vf € LP(R" x R")
for appropriate p, ¢ and 77 The answer is false in general.
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Mixed Norms

Next we consider another variant of (1). By replacing g with
g(—-) and a change of variable, we get

f(x)g(y)
n JRrn |X —|-y’”(2—1/P1—1/P2

ydxdy < Coullf|ie gl e

Observe that
1 1 1
< + .
(Ix+yl+Ix=y) = Ix+yp  |x=yp

This prompts us to consider the following operator

f(x,y)
(Ix +yl+|x=y|)’

T, f(x,y) = ~ > 0.
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Mixed Norms
We see from the Hardy-Littlewood-Sobolev inequality that for v =

n(2—1/p1 —1/p2),
||va®g||LT < [[f® gl

We ask if the following inequality
IToflls S IFlss W € LP

Y

is true for some p and g7 The answer is again negative. Moreover,
the following inequality

IT5fllaee SN Flless VF
is also false whenever § # (00, 00), where

[£]| 7.0 == sup )‘HX{|f|>)\}HL5
A>0

is the weak L9 norm of f.
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Mixed Norms

When the weak norm is replaced by the iterated weak norm defined
by

Lprioo’
Xr

Hf”L(Pr,oo)(...(L(Pl,oo))) = H HfHLi}’OO e ’

we get a positive conclusion. Specifically, we have the following.
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Mixed Norms

Theorem

Let f be a nonnegative measurable function defined on R?".

Q Forall0 < g < pr <0 and0 < g < p, < o satisfying the
homogeneity condition1/g1+1/g, = 1/p1+1/p>+7/n, we have

(3)

[T f (| ozoeraneey < Cognll Fllpace (ipro).
However, neither

IT5flla < Cagnyllflloce

nor

”TW’C”L‘WXJ <C p>G,n 7||f||LP

is true in general.

(4)

(5)
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Mixed Norms

Theorem (Continued)

Q Forall0 < p; < g <0 and0 < pp < g < oo satisfying the
homogeneity condition

pP1 P2 ()] aQ n’

we have

1T Fllimoquaeey > Cogallflliomoquros). (6)

o’
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Weak Norms

Weak Norms

12 / 49



Weak Norms

For simplicity, we consider only the case of r = 2.

In this case, the iterated weak norm on R" x R™ is

1/p2

|| F]| Lp2roo(rpriooy = supy Hy csup M {x : |F(x,y)| > AHYP > ”Y}
v>0 A>0

)
LP2,50

sup A|E, »|"/P
A>0

where
E, = {x: |f(x,y)| > A}. (7)

And the mixed weak norm is

1/m

[l pe = sup )‘HX{|f|>)\}HL5 = sup ||>\Ey,A’ Hm .
A>0 A>0
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Weak Norms

Theorem

Suppose that 0 < p;, p» < oo and m and n are positive integers. We
have
Q@ LPr(LPr®)(R" x R™) ¢ LP°(R" x R™) and LP>®(R" x R™) ¢
LP2oo([PL)(R" x R™);
Q@ LL(Lfr) ¢ L (L™) and Lpo(Lg) ¢ L2(L2);
o LP C | Proe ﬂ LP2:OO(I_P1700)’-
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Weak Norms

Q@ F(x,y) = 1/(Ix|™P]y|™P) € LP2o(LPr2) \ P

o G(X7y) = a|y|mX[0,a*P1\ylm/n](‘XD € Lﬁ,oo \ Lp27OO(Lp17OO)' where
a> 1
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Weak Norms

It is easy to see that f ® g(x,y) := f(x)g(y) € L9>(LP>)\ {0}
if and only if f € LP*° and g € L9°°. Next we consider the conditions
for f ® g e LPoo,

Theorem

Suppose that 0 < p,q < oo and m and n are positive integers. We
have
Q I/ff € LPv>°(R") and g € LP*(R™), then f ® g € LP=°(R" x R™),
Q IffelP, gecP™® and p; < p,, then f ® g € LP>.

Q IffegelP>®andf,g#0, then f € LPv>™ and g € LP>>. But
g need not to be in g € LP2.
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Weak Norms

Given p'= (p1, p2), we compare the three mixed norms LP2°(LP1),
LP2(LP1>°), and LP°.

Theorem

Suppose that p'= (p1, p2). We have

© For any measurable function F defined on R" x R™, we have

|Flliseo < IF lmqeone).

@ LPo(LP) ¢ LF® and LFeo ¢ [P2oo(LPr).
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Holder’s inequality

It is well known that Holder's inequality holds for both LP and
LP>. Forl/r=1/p+1/q, 0 < p,q < oo, we have

Ifell- < lIllsllgllg

Weak type:

g\a /p\1/p
gl < ()7 (8) " llreeliglon
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Holder’s inequality

For mixed norms, it was shown by Benedek (1961) that if 1 <
pi < o0, i =1,2, then we have

Il < Ifllsllglle

where p' = (pi, p3).
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Holder’s inequality

Using the weak type Holder's inequality, we get Holder's inequality
for iterated weak norms.

Suppose that 0 < p;, q;, r; < oo and that 1/r, =1/p;+1/q;, i = 1,2.
Then we have

18| (rnoey < CogllFllraoo(urroc)llg | Lo2ioo (raniooy.
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Holder’s inequality

However, for mixed weak norms, Holder's inequality is true only
for very special cases. The following is a complete characterization of
indices for which Holder's inequality is true on mixed weak spaces.
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Theore

Suppose that 1/r; = 1/p; + 1/q;, i = 1,2, where 0 < p1, p2, q1,
G» < 00. Then there exists some constant C5 g < 0o such that

|fg

e < Cagllflliellfllias, Vg,

if and only if
pP192 = p2q:.
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Theorem.

Suppose that 1/r; = 1/p; + 1/q;, i = 1,2, where 0 < p1, p2, q1,
G» < 00. Then there exists some constant C5 g < 0o such that

|fg

if and only if

e < Cagllflliellfllias, Vg,

P142 = pP2qi.

When the condition is true, we have

/<72
max{l 2 1/r2}P2 , 0<p1,p2, 91,92 < o0,

1/P1 1/q1

Cog = max{1, 2%/~ 1},,_’ P2 = G2 = 00,0 < p1, pr < 0,
’ 1/p2 l/qz
T’ p1=¢q1 =00,0 < pa,q2 < 00,
2

L1, p = (00, 00) or § = (00, 00).
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Holder’s inequality

Counter Examples. Suppose that

For g = 00, 0 < pp < o0 and 0 < py, g < 00, set v = 1/g» and
a=p1/p2t+pi/qa. Let f(x,y) = (Ix|"+|y|™) xe(x,y) and g(x,y) =
(Ix|"+1yIm) =, where £ = {(x,y) : 0 < [xI" < |y| ™1 < |y| < N}.
Then we have

L=

[im Ifg
N=oo || f|| 1700 || g ][ .00
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Holder’s inequality

Example
For g = 00, 0 < py < oo and 0 < po,q1 < 00, set v = n/q;.
Let f(x,y) = |[x|"xe(x,y) and g(x,y) = |x|~7, where E = {(x,y) :
Ix|" < |y|~™n/r2}. Then we have

e L HfHLﬁ’oo”gHLioo-

Ifg
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Holder’s inequality

Example
For 0 < p1, p2, q1, G2 < 00 With py/q2 > p1/qu, set

1 B _p+1/g

a
m @ G Clp+ /g

f(x,y) = lyl*xe(x,y) and g(x,y) = ly|™xe(x,y), where E =
{(x,y): |x|" < |ly|~™}. Then we have

1770 Z NI [l oo llg ]| Laioe-
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Holder’s inequality

Example
For 0 < py1, P2, q1, G2 < 00 With py/q2 < p1/q1, set

1 B _p+1/g

(0%
m p p C1p+1/q]

f(x,y) = IyI"*xe(x,y) and g(x,y) = |y|*xe(x,y), where E =
{(x,y): |x|" < |y|~™%}. Then we have

1770 Z NI [l oo llg ]| Laioe-
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Interpolation

It is well known that for p < r < g, we have PN L9 C L".
The same is true for weak Lebesgue spaces. Moreover, we have the
following interpolation formula.

Proposition
Letp<qg<ooandfelP*NLY® Thenf isinL" for all r satisfies
that 1/r =0/p+ (1 —6)/q, where0 < 6 < 1,

1/r
r r _
o2 (7o) Al

with the suitable interpretation when q = oc.

If
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Interpolation

However, the above proposition is not true in general if p, g, r are
replaced with vector indices.

Theorem

Suppose that p'= (p1, p2), § = (q1, g2) and F'= (r1, r2) satisfy that

1 0 1-06 1 0 1-06
= + ) = + ) (8)

n P1 )] r P2 aq>

where 0 < § < 1 is a constant. Then we have

1£lli7e0 < NI Lmoo 117

However, LP> N L3> ¢ LT if§# G and 1/py +1/py =1/q1 + 1/qo.
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Interpolation

When the iterated weak norms are invoked, we get again an in-
terpolation theorem. However, four iterated weak norms are invoked

Theorem
Suppose that

1 0 1-6

_:_—‘f_ ,

n P1 (¢4]

1 0 1-6 0(1 — — _
1_66 (-6 60-9 (0-00-8
r P21 P22 421 (®)r))

where 0 < 0,& < 1 are constants. Then we have

If

1-6
17 < Lo ooy |

|| H(l 0)(1-¢)
LP22:°0([41,°0) | L 921, 00(LP1 o)

quz,OO(Lq1,OO) .
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Interpolation

1 1
(o o) )
p1’ g1 : |
1 :
| ° :
I
: (%)
|
‘ 1
‘ |
1 1 )L _______ ‘
prpa) ST J(%’é)

Figure: Interpolation area
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Convergence in weak norms

Theorem

Let W be either LP>® or LP»>(LPv>), where p = (py, p2) with 0 <
p1, p2 < oo. Suppose that {f, : k > 1} is a sequence of non-negative
measurable functions such that fi(x,y) < fit1(x,y), a.e, k > 1.
Then we have

Jim 4], = Jim D5l

Hlim inf ka < liminf |||\ -
k—o00 w k—o00
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Convergence in weak norms

However, the dominated convergence theorem fails in weak norm
spaces. For example, set fo(x) = 1/|x|"/Pt and fi(x) = fo(x) X k.01 (|X])-
Take some g € LP\{0}. We have lim;_, fx®g(x,y) = 0. Moreover,
we see from Theorem 5 that f ® g < fy ® g € LP>° N LP>°(LPo),
But

1 @ gllise = |fi ® gl ey = vi/P|lg e, Kk > 1.
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Convergence in weak norms

It is known that if {f, : kK > 1} is convergent in LP or LP*°, then
it is convergent in measure. However, it is not true for mixed norm.
Specifically, neither the strong convergence nor the weak convergence
in mixed norm spaces implies the convergence in measure.

Nevertheless, it was shown in by Benedek that if {f, : k > 1}
is convergent to f in LP, then it contains a subsequence convergent
almost everywhere to f. We show that the same is true for weak
norms.
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Convergence in weak norms

Theorem

Let W be either LP>® or LP»>®(LPv>), where p = (py, p2) with 0 <
p1, po < 0o. Let {fy : k > 1} be a Cauchy sequence in W, that is,

k,|—o0

Then there is some f € W such that limy_, ||f — f|lw = 0.
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Convergence in weak norms

Theorem

Let W be either LP>® or LP»>®(LPv>), where p = (py, p2) with 0 <
p1, po < 0o. Let {fy : k > 1} be a Cauchy sequence in W, that is,

k,|—o0

Then there is some f € W such that limy_, ||f — f|lw = 0.

Let W be either LP> or LP2>°(LPv>°), where p = (pi1, p>) with 0 <
p1, p2 < oo. Suppose that limy ., ||k — fllw = 0. Then we have

limisoo || fllw = || fllw-
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Convergence in weak norms

In [Benedek1961], the Riesz theorem for mixed norm Lebesgue
spaces was proved. It says that if

lim ||fllis = ||fllis and  lim fi(x,y) = f(x,y), a.e.
k—o00 k—00
where p = (p1, p2) with 1 < p;, po < 00, then we have

lim |[fi — £l = 0.
k—o0
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Convergence in weak norms

Whenever weak norms are considered, the above conclusion fails.
For example, set fo(x) = 1/|x|"/P* and fi(x) = fo(x)X[0.k(|x]). Take
some g € LP2\ {0}. We have

lim £ @ g(x,y) = fo(x)g(y)
k—o00
and
lim [|fe @ gllisee = lim ||fie @ gllirzoe ey = va/P||g]| s
k—o00 k—o00
However, for any k > 1,

1 ®g—fhRglpe =ik ®g—f®glerne = v/ gl

Hence {f, ® g : k > 1} is not convergent to fy ® g in LP> or
LP2,OO(LP1,OO)'
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Maximal Functions

It is well known that the Hardy-Littlewood maximal operator is
of strong type (p, p) for p > 1 and weak type (1,1). Moreover, the
strong maximal operator is not of weak type (1,1).

When the iterated weak norm is considered, we do not know if
the maximal operator is of weak type (1,1).
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Maximal Functions

Let M be the strong maximal operator defined by

Mf(x,y) = sup /
’ Qicrn @acrn | Q] Qs |Q2| QixQ

(va EQIXQ2

Theorem
Let f € LY(R?). Suppose that there is some a € R such that for
f(x,y)| is increasing on (—o0, a) and
decreasing on (a,c0) with respect to x (or y). Then we have

| Msf (x, ¥)| oo (rroey < 12]|F 1.
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Maximal Functions

1/p2
sup B |{y: alfx: IMF(x,y)| > a}/7" > 8} S )il
a,5>0
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Maximal Functions

1/p2
sup B |{y: alfx: IMF(x,y)| > a}/7" > 8} S )il
a,5>0

v

| MFf || oo (rro0y S 11127
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Singular Integral Operators

The strong maximal function is bounded on L? if p; > 1.
Weighted bounded for w(x, y) = u(x)v(y).

Linear and multilinear CZ Operators:
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Geometric Inequalities

we study the boundedness of T, and L, from LP to L9. First, we
consider T, with p'= (00, 00). In this case, it is more convenient to
rewrite the inequality in the following form,

IFllx < sup F(x,y)(|x 4+ y| + |x — y|)/atn/e,

x,y€eRn

where X stands for some norm defined on R2?". Recall that LP = [
whenever p = (00, 00).
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Geometric Inequalities

Theorem

Let F be a nonnegative measurable function defined on R?". Then for
all 0 < g1, g, < 00, we have

1Fllaee < Can sup F(x,y)(Ix +y| + |x — yl)"ate/e (9)

x,y€R"

1Flceequoney < G sup Fx,y)(Ix +y| + [x — y|)e+/®. (10)

x,yERM

However, for ¢ # (oo, 0), we have

IFllis < Gan sup Fx,y)(Ix +y| + |x — yl)atr/e (11)

X,y€R"

is not true for all F € L9(R?").
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Geometric Inequalities

Next we consider the boundedness of T, from L°(R?") to X(R"),
where X stands for the mixed norm L9°°(L9) or L%(L9°).

Theorem

Let F be nonnegative measurable functions defined on R?". Then for
all 0 < g1, g2 < 00 we have

[Fll oo (rany < Caim e Fy)(Ix + y| + [x = y|)Yatr/e. (12)
x,y€R"

However,

1F | oz (ranoey < G P FOy)(x + vl + [x — y[)ate/e (13)
x,y€R"

does not hold.
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Geometric Inequalities

Theorem (Continued)

Meanwhile, we present all the endpoint cases. For any Cg, > 0,

1F ey & Can sup F(x,y)(Ix +y| + |x = y)"/ o,

X,y ER?

IFllas) £ Can sup Fx,y)(Ix +yl+ Ix — y[)"™.

’ye
For the remaining endpoint cases, we have
IF ||y < Can sup F(x,y)(Ix +y| + x — y[)"®,

X,yeRn?

[Fllieqa=) < Can sup F(x, y)(Ix + y| + |x = y[)*.
x,ye€R"

(14)

(15)

(16)

(17)
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Geometric Inequalities

Corollary
For all 0 < py, po < 00,

11l llgllirae < g sup F(x)g(y)lx — y|/PrHn/P

x,y€ERN
holds for any f € LPv>°, g € LP>*°,

Furthermore, by interpolation

1£llnllglie < o sup F(x)g(y)|x — y|"/PrHn/P

Xx,y€R"

holds for any f € LP*, g € LP2.

(19)
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Geometric Inequalities

Theorem

Let f be nonnegative measurable functions defined on R?". Then for
all0 < r < pp <00 and 0 < p, < oo satisfying the homogeneity
condition 1/r = 1/p; + v/n,

||L7f||Lp2(Lr,oo) S Cp’,nan”LPz(LPl’OO), (20)

||L,yf||Lp2,oo(Lr,oo) S Cﬁ,r7n||f||LP27°°(LP17°°)- (21)

And for all 0 < p; < r < o0 and 0 < p, < oo satisfying the homo-
geneity condition 1/py = 1/r +~/n,

LS ] raqiroey = CornllFllira(eonoe), (22)

IS ]| raoe 1oy > Coronl|Fl|oaroo (iproey. (23)
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Geometric Inequalities

Theorem (Continued)

However, for any multiple indices p and q,
Iy Fl| oo oy £ CognllfllLraoo(ion); (24)
||L,Yf”Lq2(Lq1,oo) ﬁ Cﬁ@,,”f”/_ﬂz(/_mm) unless P2 = Q2, (25)
||L7f||Lq2,oo(Lq1,oo) g Cﬁyé‘me”Lpg,oo(LPLoo) unless P2 = Qo; (26)
ILyflla £ Cognllfllis, (27)]
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Geometric Inequalities

Finally, let us show that both Theorem 24 and Theorem 1 im-
ply the classical Hardy-Littlewood-Sobolev inequality and its reverse
version as follows.

Corollary

Forl < pi,pp < oo with1l/p;+1/p, > 1,

/ / V)x —y| VPR dxdy < Coul|fllien gl (28)

holds for all nonnegative functions f € L', g € LP2,
For 0 < py, p> < 1 and all nonnegative functions f € LP*, g € L2,

[ 608lx =y /P17 Dby > ol flum e (29)

4
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THANKS!
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