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Preliminaries

H : separable Hibert space, dim(H) =∞.

A : a norm-closed ∗-algebra of B(H), C∗-algabra.

commutant of A, A′ := {B ∈ B(H) : AB = BA, ∀A ∈ B(H)}.
M⊂ B(H) : a ∗-algebra of B(H) s.t. M′′ =M, von Neumann
algebra.
A von Neumann algebra is a C∗-algebra.

U(M) := {unitary operators in M}.
N ⊂ B(H): a factor, i.e. a von Neumann algebra with trivial center,
i.e. Z(N ) := N ∩N ′ = C1.
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τ :M+ → [0,∞] : ia called a trace on M if
1 τ(λA+B) = λτ(A) + τ(B), λ ∈ R+, A,B ∈M+.
2 τ(U∗AU) = τ(A), A ∈M+ and U ∈ U(M).
τ is called:

3 faithful if τ(A) = 0⇒ A = 0.
4 normal if τ(supk≥1Ak) = supk≥1 τ(Ak) for every bounded increasing

sequence {Ak}k≥1 ⊂M+.
5 semifinite if ∀A ∈M+, ∃0 6= B ∈M+ s.t. B ≤ A and τ(B) <∞.

A von Neummann algebra M equipped with a normal semifinite
faithful (n.s.f.) trace τ will be a called a semifinite von Neumann
algebra. We will only consider semifinite von Neumann algebras.

Example

When M = B(H),
the matrix trace
τ(A) = Tr(A) =

∑
k≥1〈Aek, ek〉, A ≥ 0, is a trace,

here {ek}k≥1 is any C.O.N.S of H.
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For x ∈M :
l(x) is the projection onto x(H), left support of x
r(x) is the projection onto (kerx)⊥, right support of x
s(x) = l(x) ∨ r(x), support of x
x ∈Msa ⇒ s(x) = l(x) = r(x)

P(M) := {projections in M}.
F(M) := {T ∈M : τ(l(T )) <∞}, operators with τ -finite support

K(M) := F(M)
‖·‖
, τ -compact operators
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Non-commutative symmetric function spaces

S(M, τ): the set of τ -measurable operators.

For a ∈ S(M, τ)sa, let ea be the spectral measure corresponding to a.
For any Borel function f : R→ C, the normal operator f(a) is
defined by the spectral integral
f(a) =

∫
R f(λ)dea(λ) =

∫
σ(a) f(λ)dea(λ).

For x ∈ S(M, τ),
dx(s) := τ(e|x|(s,∞)), s ≥ 0, distribution function of x
µx(t) := inf{s ≥ 0 : dx(s) ≤ t}, t ≥ 0, singular value function of x
µx is decreasing, right-continuous, µx(0) = ‖x‖M if x ∈M.
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A symmetric function space E is a Banach function space on the
semiaxis (0,∞) with Lebesgue measure satisfying:
If y ∈ E and x∗(t) ≤ y∗(t) for all t ∈ (0,∞), then x ∈ E and
‖x‖E ≤ ‖y‖E .

Let E be a symmetric function space on (0,∞). Define
E(M) := {a ∈ S(M, τ) : µa ∈ E},
with norm ‖a‖E(M) := ‖µa‖E , a ∈ E(M).
We have L1 ∩ L∞ ⊂ E, so F(M) ⊂ E(M).

E(0)(M) := F(M)
‖·‖E(M)

.
If E is separable, then E(0)(M) = E(M).

Example

Let 1 ≤ p ≤ ∞ and E = Lp be the Lebesgue Lp space on (0,∞),
Lp(M) := {a ∈ S(M, τ) : µa ∈ Lp},
with norm ‖a‖Lp(M) := ‖µa‖Lp , a ∈ Lp(M).
When p =∞, L∞(M) =M.
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Diagonality modulo non-commutative symmetric function
spaces

D ∈M is diagonal
def⇔ ∃{en}≥1 C.O.N.S of H s.t. Ten = λnen
⇔ ∃{pn}n≥1 ⊂ P(M),

∑
n≥1 pn = 1, s.t. D =

∑
n≥1 λnpn.

Let M von Neumann algebra equiped with an n.s.f. trace τ.
α = (A1, . . . , An) ∈Mn

sa be a commuting self-adjoint n-tuple.
Let E1, . . . , En be symmetric function spaces on (0,∞), set
Φ(M) := E1(M)× · · ·En(M).

Definition

If ∃ commuting diagonal n-tuple δ = (D1, . . . , Dn) ⊂M s.t.
Ai −Di ∈ Ei(M), we say that α is diagonal modulo Φ(M).

If E1 = . . . = En = E, we say α is diagonal modulo E(M).
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The case when M is abelian (trivial)

Example

Suppose M is abelian and E1, . . . , En are given symmetric function
spaces.
∀ commuting n-tuple α ∈ (Msa)

n and ∀ε > 0,
∃ commuting diagonal n-tuple δ ∈ (Msa)

n s.t.

max{‖α− δ‖N , ‖α− δ‖Φ(M)} ≤ ε,

where Φ(M) = E1(M)× · · · × En(M).

Proof.

∃ {pk}k≥1 ⊂ P(M),
∑

k≥1 pk = 1, τ(pk) <∞.
∃δk ⊂ pkMpk s.t. ‖αpk − δk‖M∩Φ(M) ≤ ε

2k
. Set δ =

∑
k≥1 δk.
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Perturbation of self-adjoint operators in a factor

A semifinite factor is called properly infinite if τ(1) =∞.
Let N ⊂ B(H) be a properly infinite factor.

Theorem 1.1 (Zsido ’75, Akemann-Pedersen ’77, Kaftal ’78)

∀A ∈ Nsa,∀ε > 0, then ∃ diagonal D ∈ Nsa s.t. A−D ∈ L2(N ) ∩N
and ‖A−D‖L2(N ) < ε.

Theorem (Li-Shen-Shi, 2020)

Let n ≥ 2. ∀ commuting self-adjoint α ∈ (Nsa)n, ∀ε > 0, ∃ commuting
diagonal n-tuple δ ∈ (Nsa)n s.t. α− δ ∈ Ln(N ) ∩N and
max{‖α− δ‖N , ‖α− δ‖Ln(N )} < ε.
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Quasicentral modulus

Let M be a semifinite von Neumann algebra,
E1, . . . , En be symmetric function spaces on (0,∞), set
Φ(M) := E1(M)× E2(M)× · · · × En(M),
α = (A1, . . . , An) ∈Mn, ‖α‖Φ(M) := max1≤i≤n ‖Ai‖Ei(M).

F+
1 := {R ∈M : 0 ≤ R ≤ 1, τ(s(R)) <∞}.

Quasicentral modulus:

kΦ(M)(α) := inf{lim sup
k→∞

‖[Rk, α]‖Φ(M) : Rk ∈ F+
1 , Rk ↑ 1}.

If E1 = . . . = En = E , kΦ(M)(α) = kE(M)(α).
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Extension of Voiculescu’s results to properly infinite factor

Let N ⊂ B(H) be a properly infinite factor.

Theorem 2.1 (Ber-Sukochev-Zanin-Zhao, 2022, under review)

Let E1, . . . , En be symmetric function spaces on (0,∞) s.t.
Ei * L∞, 1 ≤ i ≤ n,
Φ(N ) := E

(0)
1 (N )× · · · × E(0)

n (N ).
∀ commuting self-adjoint n-tuple α ∈ (Msa)

n, T.F.A.E.

1 kΦ(N )(α) = 0;

2 ∀ε > 0, ∃ diagonal commuting n-tuple δ ∈ (Nsa)n s.t.
α− δ ∈ Φ(N ) ∩N and max{‖α− δ‖N , ‖α− δ‖Φ(N )} < ε.
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Properties of Quasicentral modulus

In the remaining part we will assume Ej * L∞, 1 ≤ j ≤ n,
Φ(N ) := E

(0)
1 (N )× · · · × E(0)

n (N ).

Proposition

Let p ∈M be a projection that commutes with α, then

1 kΦ(M)(pα) ≤ kΦ(M)(α).

2 kΦ(M)(α) ≤ kΦ((1−p)M(1−p))
((1− p)α) + kΦ(pMp)

(pα). (subadditivity)

3 if pα = α, then
kΦ(pMp)(α) = kΦ(M)(α).
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Techniques of proof of Theorem 2.1

The hard part of the proof of Theorem 2.1 is (1)⇒(2), i.e. the
following theorem:

Theorem 2.2

Suppose kΦ(N )(α) = 0. ∀ε > 0, ∃ commuting diagonal n-tuple δ ∈ (Nsa)n
s.t. α− δ ∈ Φ(N ) ∩N and max{‖α− δ‖N , ‖α− δ‖Φ(N )} < ε.

A general way to construct a commuting diagonal n-tuple, is to
construct a monomorphism ψ : C∗(α)→ N s.t.

δ := (ψ(α(1)), . . . , ψ(α(n)))

is a commuting diagonal n-tuple.
The problem is then reduced to prove that α is approximately

equivalent to ψ(α) modulo Φ(N ). Precise definitions will be given.
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Approximately equivalence of ∗-homomorphisms

Let α ∈ (Nsa)n be a given commuting self-adjoint n-tuple,
C∗(α) ⊂ N be the C∗-subalgebra generated by α and 1.
Let π, ψ be unital ∗-homomorphism from C∗(α) into N .
We say that π(α) is approximately equivalent to ψ(α) modulo Φ(N ),
denoted by π ∼Φ(N ) ψ,
if ∃ (Uk)k≥1 ⊂ U(N ) s.t.

1 π(Aj)− Ukψ(Aj)U
∗
k ∈ Ej(N ), 1 ≤ j ≤ n, k ≥ 1.

2 limk→∞ ‖π(Aj)− Ukψ(Aj)U
∗
k‖Ej(N ) = 0, 1 ≤ j ≤ n.

If Uk in the above definition is only an isometry (or partial isometry),
we write

π ∼isometry,Φ(N ) ψ or π ∼Uk,Φ(N ) ψ.
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Construction of diagonal representations

Let Ω := {ρ : ρ : C∗(α)→ C is a nonzero ∗-homomorphism}.
C∗(α) ∼= C(Ω). (Gelfand representation)
Ω is weak-∗ compact Hausdorff topological space.
C(Ω) is separable, so by Riesz’s theorem, Ω is metrizable.
Ω metrizable and compact ⇒ Ω is separable, so
∃{ρk}k≥1 ⊂ Ω, {ρk}k≥1 = Ω,
then the representation ⊕kρk is faithful on C∗(α).
N is properly infinite ⇒ ∃{qn}n≥1 ⊂ P(N ) s.t. 1N =

∑
n≥1 qn and

τ(qn) =∞.
Suppose W ∗(α) ∩ K(N , τ) = {0}. (Technical assumption)
Set

ψ(x) =
∑
k≥1

ρk(x)qk, x ∈ C∗(α).

Clearly, ψ : C∗(α)→ N is a unital ∗-monomorphism.
W ∗(ψ(α)) ⊂W ∗({qk}k≥1) and τ(qk) =∞ for any k ≥ 1 ⇒

W ∗(ψ(α)) ∩ K(N , τ) = {0}.
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Techniques of proof

An important step to prove Theorem 2.2 is the following theorem:

Theorem 2.3

Let ψ : C∗(α)→ N be a unital ∗-monomorphism, s.t.
W ∗(α) ∩ K(N , τ) = W ∗(ψ(α)) ∩ K(N , τ) = {0}, and
kΦ(N )(α) = kΦ(N )(ψ(α)) = 0. Then
∀ε > 0, ∃u ∈ U(N ) s.t. α− uψ(α)u−1 ∈ Φ(N ) and

‖α− uψ(α)u−1‖Φ(N ) < ε.
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Step 1 for proving Theorem 2.3

The first step for proving Theorem 2.3 is to establish the existence of
a smooth partition of the identity with good properties.

Theorem (Step 1)

Suppose kΦ(M)(α) = 0. For every ε > 0, there is a sequence

{em}m≥1 ⊂ F+
1 (M) s.t.∑

m≥1

e2
m = 1M,

∑
m≥1

‖[α, em]‖Φ(M) ≤ ε,

where the first series converges in strong operator topology.
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Step 2 for proving Theorem 2.3

Theorem (Step 2)

Let ψ : C∗(α)→ N be a unital ∗-monomorphism.
Suppose C∗(α) ∩ K(N , τ) = {0}.
∀ε > 0, ∃ an isometry v ∈ N s.t. ‖vψ(α)− αv‖N < ε.

It follows from the following extension of Voiculescu’s theorems to
properly infinite factors.

Theorem (Ciuperca et al, 2013)

Let A be a nuclear C∗-subalgebra of N .
Suppose that ψ : A → N is a unital ∗-homomorphism s.t. ψ|A∩K(N ) = 0.
∀ finite subset F ⊂ A and ∀ε > 0, ∃ a partial isometry v s.t.

‖ψ(a)− v∗av‖N < ε, a ∈ F.
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Step 3 for proving Theorem 2.3

Let N⊗̄B(`2) be the von Neumann algebra generated by the
algebraic tensor product N ⊗B(`2).
Let {Ei,j}i,j≥1 be a matrix unit of B(`2) such that Tr(E1,1) = 1.

Theorem (Step 3, Technical result)

Suppose W ∗(α) ∩ K(N , τ) = {0}.
∃ a sequence of isometries {vj}j≥0 ⊂ N⊗̄B(`2) s.t.

v∗j1vj2 = δj1,j21N ⊗ 1B(`2), vjv
∗
j ≤ 1N ⊗ E1,1, j, j1, j2 ≥ 0,

‖vj(b⊗ 1B(`2))− (b⊗ E1,1)vj‖N → 0, b ∈ α.
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Step 4 and 5 for proving Theorem 2.3

Theorem (Step 4)

Suppose W ∗(α) ∩ K(N , τ) = {0}.
If ψ : C∗(α)→ N is a unital ∗-homomorphism s.t. kΦ(N )(ψ(α)) = 0,
then ∀ε > 0,∃ an isometry v ∈ N⊗̄B(`2) s.t.
‖v(ψ(α)⊗ 1B(`2))− (α⊗ 1B(`2))v‖Φ(N⊗̄B(`2)) ≤ ε.

Theorem (Step 5)

Suppose W ∗(α) ∩ K(N , τ) = {0} and kΦ(N )(α) = 0.
∀ε > 0, ∃ an isometry v ∈ N⊗̄B(`2) s.t.

v(α⊗ 1B(`2))− (α⊗ E1,1)v ∈ Φ(N⊗̄B(`2)),

‖v(α⊗ 1B(`2))− (α⊗ E1,1)v‖Φ(N⊗̄B(`2)) ≤ ε, vv∗ ≤ 1N ⊗ E1,1.
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Combine all the pieces

Proof of Theorem 2.3.

ψ⊕∞ ∼isometry,Φ(N ) id (Step 4 and 5),

⇒ id ∼isometry,Φ(N ) id⊕ ψ,

i.e. α ∼isometry,Φ(N ) α⊕ ψ(α).

Swap ψ(α) with α, repeat the above process for ψ−1 on C∗(ψ(α)),

ψ(α) ∼isometry,Φ(N ) ψ(α)⊕ α.

Obviously ψ(α)⊕ α is unitarily equivalent to α⊕ ψ(α), thus

α⊕ 0 ∼w,Φ(N ) ψ(α)⊕ 0,

for some partial isometry w satisfying w∗w = 1N ⊕ 0, ww∗ = 1N ⊕ 0.
Thus w = u⊕ 0 for some u ∈ U(N ), i.e. α ∼Φ(N ) ψ(α).
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Corollary 2.4

Suppose kΦ(N )(α) = 0 and W ∗(α) ∩ K(N , τ) = {0}. ∀ ε > 0, ∃ a
diagonal n-tuple δ ⊂ N s.t.

(i) α− δ ∈ Φ(N ) ∩N ;

(ii) ‖α− δ‖Φ(N ) < ε.

Proof.

Let ψ be the diagonal representation constructed above, so ψ(α) is
diagonal in N , this implies kΦ(N )(ψ(α)) = 0. By Theorem 2.3,
id ∼Φ(N ) ψ.
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Proof of Theorem 2.2

Proof of Theorem 2.2.

Let W = W ∗(α) be the von Neumann subalgebra in N generated by α
and 1, W is abelian.
Set

pW =
∨
{s(x) : x ∈ W ∩K(N , τ)}.

pWWpW is semifinite and pW commutes with α.
Note that

kΦ(pWNpW )(pWα) = kΦ((1N−pW )N (1−pW ))((1− pW)α) = 0,

it suffices to consider the case pW = 1 and pW = 0 respectively.
Case 1. pW = 1, this is just the commutative semifinite case.
Case 2. pW = 0, then x = xpW = 0 for any x ∈ W ∩K(N , τ), so
W ∩K(N , τ) = {0}. Thus Corollary 2.4 can be applied.
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Noncommutative Lorentz (p, 1)-ideals

Lp,1 := {f ∈ L1 + L∞ :
∫∞

0 f∗(t)t
1
p
−1
dt <∞}, 1 ≤ p ≤ ∞.

Here f∗ denotes the decreasing rearrangement of f ∈ L1 + L∞.

Lp,1(M) :=
{
a ∈ (L1 + L∞)(M) :

∫∞
0 µa(t)t

1
p
−1
dt <∞

}
,

with norm ‖a‖Lp,1(M) := 1
p

∫∞
0 µa(t)t

1
p
−1
dt for any a ∈ Lp,1(M).

Recall that:

Theorem (Voiculescu, 1979 & 2018)

Let M = B(H). Let Φ = Cp1,1 × · · · × Cpn,1, where∑n
i=1

1
pi

= 1, 1 ≤ pi <∞, 1 ≤ i ≤ n.
kΦ(α) = 0⇔ the spectral measure of α is singular.

Spectral measure of α is singular ⇔
α is diagonal modulo Cp1,1 × · · · × Cpn,1.
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Singularity implies vanishing of quasicentral modulus

Theorem 3.1 (Ber-Sukochev-Zanin-Zhao, 2022, under review)

Let n ≥ 1. Let Φ(M) = Lp1,1(M)× · · · × Lpn,1(M),
where 1 ≤ pi ≤ ∞, 1 ≤ i ≤ n and 1

p1
+ · · ·+ 1

pn
≤ 1.

Let α ∈ (Msa)
n be a commuting self-adjoint n-tuple.

The spectral measure of α is singular ⇒ kΦ(M)(α) = 0.

Corollary

The spectral measure of α is singular ⇒ kLn,1(M)(α) = 0.

The converse is not true, i.e.
kLn,1(M)(α) = 0 ; the spectral measure of α is singular.
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Proposition

Le p1, . . . , pL be orthogonal projections in M s.t. p1 + · · ·+ pL = 1 and
plαl = αlpl = αl for any 1 ≤ l ≤ L. Let θl ∈ Rn, 1 ≤ l ≤ L. We have
kΦ(M)(

∑L
l=1 αl) = kΦ(M)(

∑L
l=1 αl − θlpl)).

Let α ∈ (Msa)
n be a commuting self-adjoint n-tuple with singular

spectral measure.

Proposition (Technical result)

Let p, q ∈ P(M) s.t. αp = α, p ≤ q. Suppose there exists a τ -finite
projection e in M s.t. [W ∗(α)e(H)] = q(H). We have

kΦ(M)(α) ≤ cΦ max
1≤j≤n

τ(e)
1
pj · ‖α‖M,

where cΦ is a constant depends only on p1, . . . , pn.
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Theorem (Strong continuity)

Let {pj}j≥1 be a sequence of projections in M s.t.
pjα = αpj and pj → 1 in strong operator topology.
Then kΦ(M)(α) = limj→∞ kΦ(M)(αpj).

Proposition

Suppose ∃ a τ -finite projection e ∈M s.t. span{W ∗(α)e(H)} = H. Then
kΦ(M)(α) = 0.

B(Rn) := {Borel sets in Rn}.
eα : B(Rn) :→ P(M) be the spectral measure of α.
Set µξ(B) := 〈eα(B)ξ, ξ〉, B ∈ B(Rn).
Separability of H ⇒ ∃ a vector ξ ∈ H such that
µη ≺ µξ, ∀η ∈ H.
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Proof.

W.L.O.G, assume that 0 ≤ α ≤ 1.
Let ξ ∈ H s.t. µη ≺ µξ, ∀η ∈ H.
µξ is singular ⇒ ∃B ∈ σ(α), s.t. λ(B) = µξ(Rn\B) = 0.
For every j ∈ N, ∃ disjoint cubes {Ak,j : 1 ≤ k ≤ nj} in Rn with same
side length s.t.
µξ([−2, 2]n\ ∪nj

k=1 Ak,j)→ 0 as j →∞ and
λ(∪nj

k=1Ak,j)→ 0 as j →∞.
Then µη([−2, 2]n\ ∪nj

k=1 Ak,j)→ 0 as j →∞,∀η ∈ H.
i.e. eα(∪nj

k=1Ak,j)
s.o.t.→ 1.

αj := αeα(∪nj

k=1Ak,j) =
∑nj

k=1 αe
α(Ak,j)

choose proper ck,j , A
′
k,j := Ak,j − ck,j so that {A′k,j}

nj

j=1 are disjoint and

diam(∪nj

k=1A
′
k,j)→ 0 as j →∞.

α′j :=
∑nj

k=1(α− ck,j1)eα(Ak,j).

kΦ(M)(αj) = kΦ(M)(α
′
j) ≤ cΦ max1≤i≤n(τ(e))

1
pi diam(∪nj

k=1A
′
k,j)→ 0.

Strong continuity ⇒ kΦ(M)(α) = limj→∞ kΦ(M)(αj) = 0.
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Proof of Theorem 3.1.

Let W ∗(α) be the von Neumann subalgebra in M generated by 1 and α.
By Zorn’s Lemma, ∃ {ek}k≥1 of τ -finite projections s.t.

∑
k≥1 qk = 1

where
qk =

∨
a∈W ∗(α)

(l(aek)) =
∨

B∈B(Rn)

l(χB(α)ek).

ek is a τ -finite cyclic projection of αqk on qk(H) ⇒ kΦ(qkMqk)(αqk) = 0.

Subadditivity of kΦ(M) ⇒ kΦ((
∑k

j=1 qj)M(
∑k

j=1 qk))(α
∑k

j=1 qk) = 0.

Strong continuity of kΦ(M) ⇒ kΦ(M)(α) = 0.
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Ongoing project – Extension of Kato-Rosenblum theorem
to von Neumann algebras

Let α ∈ (Msa)
n be a commuting self-adjoint n-tuple.

A projection P ∈M is called norm absolutely continuous w.r.t. α if
∀ε > 0, ∃δ > 0 s.t.

∑k
j=1 ‖PEα(Qj)P‖M < ε whenever

{Qj}kj=1 ⊂ B(Rn) are pairwise disjoint s.t.
∑k

j=1 λ(Qj) ≤ δ.
P∞
ac (α) := {P : P is norm absolutely continuous w.r.t. α}.

P∞ac (α) =
∨
{P : P ∈P∞

ac (α)}, P∞ac (α) ≤ Pac(α).

In some cases, P∞ac (α) is totally different to Pac(α), there is an
example that Pac(T ) = 1, P∞ac (T ) = 0.
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The following theorem extends [Li-Shen-Shi-Wang, 2018] to the case
when n ≥ 1.

Theorem (Ber-Sukochev-Zanin-Zhao, ongoing)

α, β ∈ (B(H)sa)
n, β − α ∈ (L1(M))n ⇒ ∀t ∈ Sn−1, ∃ a limit

Wt = s.o.t.- limr→∞ e
irtβe−irtαP∞ac (α).

For almost every t ∈ Sn−1,

1 W ∗t Wt = P∞ac (α), WtW
∗
t = P∞ac (β).

2 eβ(∆)Wt = Wte
α(∆),∆ ∈ B(Rn).
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How far we’ve got?

Can we define quasicentral modulus kΦ(M)(α) for α ∈Mn? Yes

Is is true that kΦ(M)(α) = 0⇔ α is diagonal modulo Φ? Yes

What can we say about αs and αac?
kΦ(M)(αs) = 0 for Φ(M) = Lp1,1(M)× · · · × Lpn,1(M),

∑
j

1
pj
≤ 1.

P∞ac (α) is preserved (up to equivalence) under trace class
perturbations.

Spectral multiplicity function does not work well for αac in von
Neumann algebras.
Let U be the corresponding unitary operator such that UαU∗ is the
tuple of multiplication operators of coordinate functions, the obstacle
is that U /∈M, so it is meaningless to calculate kΦ(M)(UαU

∗).
What is the proper analogue of spectral multiplicity theory in von
Neumann algebras?
We do not know yet.
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