Perturbation theory of commuting self-adjoint operators and related topics. Part II

Hongyin Zhao (joint work with Alexei Ber, Fedor Sukochev, Dmitriy Zanin)

School of Mathematics and Statistics of UNSW

March, 2023

Hongyin Zhao (UNSW) **March, 2023** 1/34

 200

- \bullet H : separable Hibert space, $\dim(\mathcal{H}) = \infty$.
- $\mathcal A$: a norm-closed $*$ -algebra of $B(\mathcal H)$, C^* -algabra.
- commutant of $\mathcal{A}, \mathcal{A}' := \{B \in B(\mathcal{H}) : AB = BA, \forall A \in B(\mathcal{H})\}.$
- \bullet $\mathcal{M} \subset B(\mathcal{H})$: a *-algebra of $B(\mathcal{H})$ s.t. $\mathcal{M}'' = \mathcal{M}$, von Neumann algebra.

A von Neumann algebra is a C^* -algebra.

- \bullet $\mathcal{U}(\mathcal{M}) := \{$ unitary operators in $\mathcal{M}\}.$
- \bullet $\mathcal{N} \subset B(\mathcal{H})$: a factor, i.e. a von Neumann algebra with trivial center, i.e. $\mathcal{Z}(\mathcal{N}) := \mathcal{N} \cap \mathcal{N}' = \mathbb{C}1$.

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

 $\bullet \tau : \mathcal{M}_+ \to [0,\infty]$: ia called a trace on $\mathcal M$ if

- $\mathbf{1} \ \tau(\lambda A + B) = \lambda \tau(A) + \tau(B), \quad \lambda \in \mathbb{R}_+, A, B \in \mathcal{M}_+.$
- **2** $\tau(U^*AU) = \tau(A)$, $A \in \mathcal{M}_+$ and $U \in \mathcal{U}(\mathcal{M})$.

 τ is called:

9 faithful if
$$
\tau(A) = 0 \Rightarrow A = 0
$$
.

 $\bullet\,$ normal if $\tau(\sup_{k\ge 1}A_k)=\sup_{k\ge 1}\tau(A_k)$ for every bounded increasing sequence $\{A_k\}_{k\geq 1} \subset \mathcal{M}_+$.

5 semifinite if $\forall A \in \mathcal{M}_+$, $\exists 0 \neq B \in \mathcal{M}_+$ s.t. $B \leq A$ and $\tau(B) \leq \infty$.

 \bullet A von Neummann algebra $\mathcal M$ equipped with a normal semifinite faithful (n.s.f.) trace τ will be a called a semifinite von Neumann algebra. We will only consider semifinite von Neumann algebras.

Example

When $\mathcal{M} = B(\mathcal{H}),$ the matrix trace $\tau(A) = \text{Tr}(A) = \sum_{k \geq 1} \langle Ae_k, e_k \rangle, \quad A \geq 0,$ is a trace, here ${e_k}_{k>1}$ is any C.O.N.S of H.

 Ω

\n- For
$$
x \in \mathcal{M}
$$
:\n $l(x)$ is the projection onto $\overline{x(\mathcal{H})}$, left support of x \n $r(x)$ is the projection onto $(\ker x)^{\perp}$, right support of x \n $s(x) = l(x) \vee r(x)$, support of x \n $x \in \mathcal{M}_{sa} \Rightarrow s(x) = l(x) = r(x)$ \n
\n- $\mathcal{P}(\mathcal{M}) := \{\text{projections in } \mathcal{M}\}.$ \n $\mathcal{F}(\mathcal{M}) := \{T \in \mathcal{M} : \tau(l(T)) < \infty\}$, operators with τ -finite support $\mathcal{K}(\mathcal{M}) := \overline{\mathcal{F}(\mathcal{M})}^{\|\cdot\|}$, τ -compact operators
\n

Kロト K個 K K ミト K ミト 「ミ」 の Q (^

Non-commutative symmetric function spaces

- \bullet $S(\mathcal{M}, \tau)$: the set of τ -measurable operators.
- For $a\in S(\mathcal{M},\tau)_{sa},$ let e^a be the spectral measure corresponding to $a.$ For any Borel function $f : \mathbb{R} \to \mathbb{C}$, the normal operator $f(a)$ is defined by the spectral integral $f(a) = \int_{\mathbb{R}} f(\lambda)de^a(\lambda) = \int_{\sigma(a)} f(\lambda)de^a(\lambda).$
- For $x \in S(\mathcal{M}, \tau)$, $d_x(s):=\tau(e^{|x|}(s,\infty)), s\geq 0,$ distribution function of x $\mu_x(t) := \inf\{s \geq 0 : d_x(s) \leq t\}, t \geq 0$, singular value function of x μ_x is decreasing, right-continuous, $\mu_x(0) = ||x||_{\mathcal{M}}$ if $x \in \mathcal{M}$.

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

• A symmetric function space E is a Banach function space on the semiaxis $(0, \infty)$ with Lebesgue measure satisfying: If $y \in E$ and $x^*(t) \leq y^*(t)$ for all $t \in (0, \infty)$, then $x \in E$ and $||x||_E < ||y||_E.$

• Let E be a symmetric function space on $(0, \infty)$. Define $E(\mathcal{M}) := \{a \in S(\mathcal{M}, \tau) : \mu_a \in E\},\$ with norm $\|a\|_{E(\mathcal{M})}:=\|\mu_a\|_E, a\in E(\mathcal{M}).$ We have $L_1 \cap L_\infty \subset E$, so $\mathcal{F}(\mathcal{M}) \subset E(\mathcal{M})$. $E^{(0)}(\mathcal{M}):=\overline{\mathcal{F}(\mathcal{M})}^{\|\cdot\|_{E(\mathcal{M})}}.$ If E is separable, then $E^{(0)}(\mathcal{M})=E(\mathcal{M})$.

Example

Let
$$
1 \le p \le \infty
$$
 and $E = L_p$ be the Lebesgue L_p space on $(0, \infty)$,
\n $L_p(\mathcal{M}) := \{a \in S(\mathcal{M}, \tau) : \mu_a \in L_p\}$,
\nwith norm $||a||_{L_p(\mathcal{M})} := ||\mu_a||_{L_p}$, $a \in L_p(\mathcal{M})$.
\nWhen $p = \infty$, $L_\infty(\mathcal{M}) = \mathcal{M}$.

 200

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Diagonality modulo non-commutative symmetric function spaces

\n- \n
$$
D \in \mathcal{M}
$$
 is diagonal\n $\stackrel{\text{def}}{\Leftrightarrow} \exists \{e_n\}_{\geq 1} \subset \text{.0.N}.$ S of \mathcal{H} s.t. $Te_n = \lambda_n e_n$ \n $\Leftrightarrow \exists \{p_n\}_{n \geq 1} \subset \mathcal{P}(\mathcal{M}), \sum_{n \geq 1} p_n = 1, \text{ s.t. } D = \sum_{n \geq 1} \lambda_n p_n.$ \n
\n- \n Let \mathcal{M} von Neumann algebra equipped with an n.s.f. trace τ .\n $\alpha = (A_1, \ldots, A_n) \in \mathcal{M}_{sa}^n$ be a commuting self-adjoint n -tuple.\n $\text{Let } E_1, \ldots, E_n$ be symmetric function spaces on $(0, \infty)$, set\n $\Phi(\mathcal{M}) := E_1(\mathcal{M}) \times \cdots E_n(\mathcal{M}).$ \n
\n

Definition

If \exists commuting diagonal n-tuple $\delta = (D_1, \ldots, D_n) \subset \mathcal{M}$ s.t. $A_i - D_i \in E_i(\mathcal{M})$, we say that α is diagonal modulo $\Phi(\mathcal{M})$.

If $E_1 = \ldots = E_n = E$, we say α is diagonal modulo $E(\mathcal{M})$.

 200

K ロト K 御 ト K 君 ト K 君 K

The case when M is abelian (trivial)

Example

Suppose M is abelian and E_1, \ldots, E_n are given symmetric function spaces.

 \forall commuting n -tuple $\alpha \in (\mathcal{M}_{sa})^n$ and $\forall \varepsilon > 0,$ \exists commuting diagonal n -tuple $\delta \in (\mathcal{M}_{sa})^n$ s.t.

$$
\max\{\|\alpha-\delta\|_{\mathcal{N}}, \|\alpha-\delta\|_{\Phi(\mathcal{M})}\} \leq \varepsilon,
$$

where $\Phi(\mathcal{M}) = E_1(\mathcal{M}) \times \cdots \times E_n(\mathcal{M}).$

Proof.

$$
\exists \{p_k\}_{k\geq 1} \subset \mathcal{P}(\mathcal{M}), \sum_{k\geq 1} p_k = 1, \tau(p_k) < \infty.
$$

$$
\exists \delta_k \subset p_k \mathcal{M} p_k \text{ s.t. } \|\alpha p_k - \delta_k\|_{\mathcal{M} \cap \Phi(\mathcal{M})} \leq \frac{\varepsilon}{2^k}. \text{ Set } \delta = \sum_{k\geq 1} \delta_k.
$$

 Ω

イロト イ押ト イヨト イヨト

Perturbation of self-adjoint operators in a factor

• A semifinite factor is called properly infinite if $\tau(1) = \infty$. Let $\mathcal{N} \subset B(\mathcal{H})$ be a properly infinite factor.

Theorem 1.1 (Zsido '75, Akemann-Pedersen '77, Kaftal '78) $\forall A \in \mathcal{N}_{sa}, \forall \varepsilon > 0$, then \exists diagonal $D \in \mathcal{N}_{sa}$ s.t. $A - D \in L_2(\mathcal{N}) \cap \mathcal{N}$ and $||A - D||_{L_2(N)} < \varepsilon$.

Theorem (Li-Shen-Shi, 2020)

Let $n \geq 2$. \forall commuting self-adjoint $\alpha \in (\mathcal{N}_{sa})^n$, $\forall \varepsilon > 0$, \exists commuting diagonal n -tuple $\delta \in (\mathcal{N}_{sa})^n$ s.t. $\alpha - \delta \in L_n(\mathcal{N}) \cap \mathcal{N}$ and $\max\{\|\alpha-\delta\|_{\mathcal{N}}, \|\alpha-\delta\|_{L_{\infty}(\mathcal{N})}\}\leq \varepsilon.$

 Ω

Quasicentral modulus

Let M be a semifinite von Neumann algebra, E_1, \ldots, E_n be symmetric function spaces on $(0, \infty)$, set $\Phi(\mathcal{M}) := E_1(\mathcal{M}) \times E_2(\mathcal{M}) \times \cdots \times E_n(\mathcal{M}),$ $\alpha = (A_1, \ldots, A_n) \in \mathcal{M}^n$, $\|\alpha\|_{\Phi(\mathcal{M})} := \max_{1 \leq i \leq n} \|A_i\|_{E_i(\mathcal{M})}$. $\mathcal{F}_1^+ := \{ R \in \mathcal{M} : 0 \le R \le 1, \tau(s(R)) < \infty \}.$

Quasicentral modulus:

$$
k_{\Phi(\mathcal{M})}(\alpha) := \inf \{ \limsup_{k \to \infty} ||[R_k, \alpha]||_{\Phi(\mathcal{M})} : R_k \in \mathcal{F}_1^+, R_k \uparrow \mathbf{1} \}.
$$

If
$$
E_1 = \ldots = E_n = E
$$
, $k_{\Phi(\mathcal{M})}(\alpha) = k_{E(\mathcal{M})}(\alpha)$.

KED KARD KED KED E VOOR

Let $\mathcal{N} \subset B(\mathcal{H})$ be a properly infinite factor.

Theorem 2.1 (Ber-Sukochev-Zanin-Zhao, 2022, under review)

Let E_1, \ldots, E_n be symmetric function spaces on $(0, \infty)$ s.t. $E_i \nsubseteq L_\infty, 1 \leq i \leq n,$ $\varPhi(\mathcal{N}) := E_1^{(0)}$ $I_1^{(0)}(\mathcal{N}) \times \cdots \times E_n^{(0)}(\mathcal{N}).$ \forall commuting self-adjoint n -tuple $\alpha\in (\mathcal{M}_{sa})^n,$ T.F.A.E. $\textbf{1}$ $k_{\varPhi(\mathcal{N})}(\alpha) = 0$; $2~~$ $\forall \varepsilon >0, \, \exists$ diagonal commuting $n\text{-tuple}~\delta \in (\mathcal{N}_{sa})^n$ s.t. $\alpha - \delta \in \Phi(\mathcal{N}) \cap \mathcal{N}$ and $\max\{\|\alpha - \delta\|_{\mathcal{N}}, \|\alpha - \delta\|_{\Phi(\mathcal{N})}\} < \varepsilon$.

Hongvin Zhao (UNSW) March, 2023 11 / 34

 Ω

イロト イ押ト イヨト イヨト

In the remaining part we will assume $E_j \nsubseteq L_\infty, 1 \leq j \leq n$, $\varPhi(\mathcal{N}) := E_1^{(0)}$ $I_1^{(0)}(\mathcal{N}) \times \cdots \times E_n^{(0)}(\mathcal{N}).$

Proposition

Let $p \in \mathcal{M}$ be a projection that commutes with α , then

\n- \n
$$
k_{\Phi(\mathcal{M})}(p\alpha) \leq k_{\Phi(\mathcal{M})}(\alpha).
$$
\n
\n- \n $k_{\Phi(\mathcal{M})}(\alpha) \leq k_{\Phi((1-p)\mathcal{M}(1-p))}((1-p)\alpha) + k_{\Phi_{(p\mathcal{M}p)}}(p\alpha).$ \n
\n- \n $k_{\Phi(\mathcal{M})}(\alpha) \leq k_{\Phi(p\mathcal{M}p)}(\alpha) = k_{\Phi(\mathcal{M})}(\alpha).$ \n
\n

 \equiv \cap α

イロト イ押ト イヨト イヨト

Techniques of proof of Theorem [2.1](#page-10-0)

The hard part of the proof of Theorem [2.1](#page-10-0) is $(1) \Rightarrow (2)$, i.e. the following theorem:

Theorem 2.2

Suppose $k_{\varPhi(\mathcal{N})}(\alpha)=0$. $\forall \varepsilon>0,\,\exists$ commuting diagonal n-tuple $\delta\in (\mathcal{N}_{sa})^n$ s.t. $\alpha - \delta \in \Phi(\mathcal{N}) \cap \mathcal{N}$ and $\max\{\|\alpha - \delta\|_{\mathcal{N}}, \|\alpha - \delta\|_{\Phi(\mathcal{N})}\} < \varepsilon$.

A general way to construct a commuting diagonal n -tuple, is to construct a monomorphism $\psi:C^*(\alpha)\to \mathcal{N}$ s.t.

$$
\delta := (\psi(\alpha(1)), \ldots, \psi(\alpha(n)))
$$

is a commuting diagonal n -tuple.

The problem is then reduced to prove that α is approximately equivalent to $\psi(\alpha)$ modulo $\Phi(\mathcal{N})$. Precise definitions will be given.

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Approximately equivalence of ∗-homomorphisms

- Let $\alpha \in (\mathcal{N}_{sa})^n$ be a given commuting self-adjoint n -tuple, $C^*(\alpha) \subset \mathcal{N}$ be the C^* -subalgebra generated by α and $\mathbf{1}.$ Let π,ψ be unital $*$ -homomorphism from $C^*(\alpha)$ into ${\cal N}.$ We say that $\pi(\alpha)$ is approximately equivalent to $\psi(\alpha)$ modulo $\Phi(\mathcal{N})$, denoted by $\pi \sim_{\Phi(\Lambda)} \psi$, if \exists $(U_k)_{k\geq 1}$ $\subset \mathcal{U}(\mathcal{N})$ s.t. **1** $\pi(A_j) - U_k \psi(A_j) U_k^* \in E_j(\mathcal{N}), \quad 1 \le j \le n, \ k \ge 1.$ **2** $\lim_{k \to \infty} \|\pi(A_j) - U_k \psi(A_j)U_k^*\|_{E_j(\mathcal{N})} = 0, \quad 1 \le j \le n.$
- If U_k in the above definition is only an isometry (or partial isometry), we write

$$
\pi \sim_{isometry, \Phi(\mathcal{N})} \psi \quad \text{or} \ \pi \sim_{U_k, \Phi(\mathcal{N})} \psi.
$$

KOD KAP KED KED E VAA

Construction of diagonal representations

Let $\Omega := \{ \rho : \rho : C^*(\alpha) \to \mathbb{C} \text{ is a nonzero *-homomorphism} \}.$ $C^*(\alpha) \cong \overline{C(\Omega)}$. (Gelfand representation) Ω is weak- $*$ compact Hausdorff topological space. $C(\Omega)$ is separable, so by Riesz's theorem, Ω is metrizable. Ω metrizable and compact $\Rightarrow \Omega$ is separable, so $\exists {\lbrace \rho_k \rbrace_{k\geq 1}} \subset \Omega, {\lbrace \rho_k \rbrace_{k\geq 1}} = \Omega,$ then the representation $\oplus_k \rho_k$ is faithful on $C^*(\alpha).$ $\mathcal N$ is properly infinite $\Rightarrow \exists \{q_n\}_{n\geq 1}\subset \mathcal P(\mathcal N)$ s.t. $\mathbf 1_{\mathcal N}=\sum_{n\geq 1}q_n$ and $\tau(q_n) = \infty.$

Suppose $W^*(\alpha) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}$. (Technical assumption) Set

$$
\psi(x) = \sum_{k \ge 1} \rho_k(x) q_k, \quad x \in C^*(\alpha).
$$

Clearly, $\psi: C^*(\alpha) \to \mathcal{N}$ is a unital $*$ -monomorphism. $W^*(\psi(\alpha)) \subset W^*(\{q_k\}_{k \geq 1})$ and $\tau(q_k) = \infty$ for any $k \geq 1 \Rightarrow$ $W^*(\psi(\alpha)) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}.$ $W^*(\psi(\alpha)) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}.$ $W^*(\psi(\alpha)) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}.$ $W^*(\psi(\alpha)) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}.$

An important step to prove Theorem [2.2](#page-12-0) is the following theorem:

Theorem 2.3

Let
$$
\psi : C^*(\alpha) \to \mathcal{N}
$$
 be a unital *-monomorphism, s.t.
\n $W^*(\alpha) \cap \mathcal{K}(\mathcal{N}, \tau) = W^*(\psi(\alpha)) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}$, and
\n $k_{\Phi(\mathcal{N})}(\alpha) = k_{\Phi(\mathcal{N})}(\psi(\alpha)) = 0$. Then
\n $\forall \varepsilon > 0$, $\exists u \in \mathcal{U}(\mathcal{N})$ s.t. $\alpha - u\psi(\alpha)u^{-1} \in \Phi(\mathcal{N})$ and

$$
\|\alpha - u\psi(\alpha)u^{-1}\|_{\Phi(\mathcal{N})} < \varepsilon.
$$

 4 ロ } 4 4 9 } 4 \equiv } 4

G.

 QQ

Hongyin Zhao (UNSW) **March, 2023** 16 / 34

The first step for proving Theorem [2.3](#page-15-1) is to establish the existence of a smooth partition of the identity with good properties.

Theorem (Step 1)

Suppose $k_{\varPhi(\mathcal{M})}(\alpha)=0.$ For every $\varepsilon>0,$ there is a sequence ${e_m}_{m\geq 1} \subset \mathcal{F}^+_1(\mathcal{M})$ s.t.

$$
\sum_{m\geq 1}e_m^2=\mathbf{1}_{\mathcal{M}},\quad \sum_{m\geq 1}\|[\alpha,e_m]\|_{\Phi(\mathcal{M})}\leq \varepsilon,
$$

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and \mathcal{B}

 Ω

where the first series converges in strong operator topology.

Theorem (Step 2)

Let $\psi: C^*(\alpha) \to \mathcal{N}$ be a unital $*$ -monomorphism. Suppose $C^*(\alpha) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}.$ $\forall \varepsilon > 0$, \exists an isometry $v \in \mathcal{N}$ s.t. $\|v\psi(\alpha) - \alpha v\|_{\mathcal{N}} < \varepsilon$.

It follows from the following extension of Voiculescu's theorems to properly infinite factors.

Theorem (Ciuperca et al, 2013)

Let A be a nuclear C^* -subalgebra of N . Suppose that $\psi : \mathcal{A} \to \mathcal{N}$ is a unital *-homomorphism s.t. $\psi|_{\mathcal{A} \cap \mathcal{K}(\mathcal{N})} = 0$. \forall finite subset $\mathfrak{F} \subset \mathcal{A}$ and $\forall \varepsilon > 0$, \exists a partial isometry v s.t.

 $\|\psi(a) - v^*av\|_{\mathcal{N}} < \varepsilon, \quad a \in \mathfrak{F}.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 『 YO Q @

• Let $\mathcal{N} \bar{\otimes} B(\ell_2)$ be the von Neumann algebra generated by the algebraic tensor product $\mathcal{N} \otimes B(\ell_2)$. Let ${E_{i,j}}_{i,j\geq 1}$ be a matrix unit of $B(\ell_2)$ such that $Tr(E_{1,1}) = 1$.

Theorem (Step 3, Technical result)

Suppose $W^*(\alpha) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}.$ \exists a sequence of isometries $\{v_i\}_{i\geq 0} \subset \mathcal{N} \bar{\otimes} B(\ell_2)$ s.t.

> $v_{j_1}^* v_{j_2} = \delta_{j_1, j_2} \mathbf{1}_{\mathcal{N}} \otimes \mathbf{1}_{B(\ell_2)}, \quad v_j v_j^* \leq \mathbf{1}_{\mathcal{N}} \otimes E_{1,1}, \quad j, j_1, j_2 \geq 0,$ $||v_j(b \otimes \mathbf{1}_{B(\ell_2)}) - (b \otimes E_{1,1})v_j||_{\mathcal{N}} \to 0, \quad b \in \alpha.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Step 4 and 5 for proving Theorem [2.3](#page-15-1)

Theorem (Step 4)

Suppose $W^*(\alpha) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}.$ If $\psi: C^*(\alpha) \to \mathcal{N}$ is a unital *-homomorphism s.t. $k_{\Phi(\mathcal{N})}(\psi(\alpha)) = 0$, then $\forall \varepsilon > 0, \exists$ an isometry $v \in \mathcal{N} \bar{\otimes} B(\ell_2)$ s.t. $||v(\psi(\alpha) \otimes \mathbf{1}_{B(\ell_2)}) - (\alpha \otimes \mathbf{1}_{B(\ell_2)})v||_{\Phi(\mathcal{N} \bar\otimes B(\ell_2))} \leq \varepsilon.$

Theorem (Step 5)

Suppose $W^*(\alpha) \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}$ and $k_{\Phi(\mathcal{N})}(\alpha) = 0$. $\forall \varepsilon > 0$, \exists an isometry $v \in \mathcal{N} \bar{\otimes} B(\ell_2)$ s.t.

$$
v(\alpha\otimes \mathbf{1}_{B(\ell_2)}) - (\alpha\otimes E_{1,1})v \in \Phi(\mathcal{N} \bar\otimes B(\ell_2)),
$$

 $||v(\alpha \otimes \mathbf{1}_{B(\ell_2)}) - (\alpha \otimes E_{1,1})v||_{\Phi(\mathcal{N} \bar{\otimes} B(\ell_2))} \leq \varepsilon$, $vv^* \leq \mathbf{1}_{\mathcal{N}} \otimes E_{1,1}$.

 Ω

イロト イ団 トイミト イモト 一毛

Combine all the pieces

Proof of Theorem [2.3.](#page-15-1)

$$
\psi^{\oplus \infty} \sim_{isometry, \Phi(\mathcal{N})} \text{id} \text{ (Step 4 and 5)},
$$

$$
\Rightarrow \text{id} \sim_{isometry, \Phi(\mathcal{N})} \text{id} \oplus \psi,
$$

i.e. $\alpha \sim_{isometry, \Phi(\mathcal{N})} \alpha \oplus \psi(\alpha).$

Swap $\psi(\alpha)$ with $\alpha,$ repeat the above process for ψ^{-1} on $C^*(\psi(\alpha)),$

$$
\psi(\alpha) \sim_{isometry, \Phi(\mathcal{N})} \psi(\alpha) \oplus \alpha.
$$

Obviously $\psi(\alpha) \oplus \alpha$ is unitarily equivalent to $\alpha \oplus \psi(\alpha)$, thus

$$
\alpha \oplus 0 \sim_{w,\Phi(\mathcal{N})} \psi(\alpha) \oplus 0,
$$

for some partial isometry w satisfying $w^*w = \mathbf{1}_{\mathcal{N}} \oplus 0, \, ww^* = \mathbf{1}_{\mathcal{N}} \oplus 0.$ Thus $w = u \oplus 0$ for some $u \in \mathcal{U}(\mathcal{N})$, i.e. $\alpha \sim_{\Phi(\mathcal{N})} \psi(\alpha)$.

Corollary 2.4

Suppose $k_{\varPhi(\mathcal{N})}(\alpha)=0$ and $W^{*}(\alpha)\cap\mathcal{K}(\mathcal{N},\tau)=\{0\}.$ \forall $\varepsilon>0$, \exists a diagonal n-tuple $\delta \subset \mathcal{N}$ s.t.

 \bullet $\alpha - \delta \in \Phi(\mathcal{N}) \cap \mathcal{N}$;

$$
\quad\textbf{0}\quad \|\alpha-\delta\|_{\varPhi(\mathcal{N})}<\varepsilon.
$$

Proof.

Let ψ be the diagonal representation constructed above, so $\psi(\alpha)$ is diagonal in $\mathcal N$, this implies $k_{\varPhi(\mathcal N)}(\psi(\alpha))=0.$ By Theorem [2.3,](#page-15-1) id $\sim_{\Phi(\mathcal{N})} \psi$.

 \equiv \cap α

イロト イ押ト イヨト イヨト

Proof of Theorem [2.2](#page-12-0)

Proof of Theorem [2.2.](#page-12-0)

Let $\mathcal{W}=W^*(\alpha)$ be the von Neumann subalgebra in $\mathcal N$ generated by α and 1, W is abelian.

Set

$$
p_{\mathcal{W}} = \bigvee \{s(x) : x \in \mathcal{W} \cap \mathcal{K}(\mathcal{N}, \tau)\}.
$$

 $p_W \mathcal{W} p_W$ is semifinite and p_W commutes with α . Note that

$$
k_{\Phi(p_{\mathcal{W}}\mathcal{N}p_{\mathcal{W}})}(p_{\mathcal{W}}\alpha) = k_{\Phi((\mathbf{1}_{\mathcal{N}}-p_{\mathcal{W}})\mathcal{N}(\mathbf{1}-p_{\mathcal{W}}))}((\mathbf{1}-p_{\mathcal{W}})\alpha) = 0,
$$

it suffices to consider the case $p_W = 1$ and $p_W = 0$ respectively. **Case 1.** $p_W = 1$, this is just the commutative semifinite case. **Case 2.** $p_W = 0$, then $x = xp_W = 0$ for any $x \in W \cap K(\mathcal{N}, \tau)$, so $W \cap \mathcal{K}(\mathcal{N}, \tau) = \{0\}$. Thus Corollary [2.4](#page-21-0) can be applied.

 Ω

Noncommutative Lorentz $(p, 1)$ -ideals

\n- \n
$$
L_{p,1} := \{ f \in L_1 + L_\infty : \int_0^\infty f^*(t) t^{\frac{1}{p}-1} dt < \infty \}, \quad 1 \leq p \leq \infty.
$$
\n Here f^* denotes the decreasing rearrangement of $f \in L_1 + L_\infty$.\n
\n- \n
$$
L_{p,1}(\mathcal{M}) := \{ g \in (L_1 + L_\infty)(\mathcal{M}) : \int_0^\infty u_0(t) t^{\frac{1}{p}-1} dt < \infty \}.
$$
\n
\n

\n- \n
$$
L_{p,1}(\mathcal{M}) := \left\{ a \in (L_1 + L_{\infty})(\mathcal{M}) : \int_0^\infty \mu_a(t) t^{\frac{1}{p}-1} dt < \infty \right\},
$$
\n with norm\n
$$
\|a\|_{L_{p,1}(\mathcal{M})} := \frac{1}{p} \int_0^\infty \mu_a(t) t^{\frac{1}{p}-1} dt
$$
\n for any\n $a \in L_{p,1}(\mathcal{M})$.\n Recall that:\n
\n

Theorem (Voiculescu, 1979 & 2018)

Let
$$
M = B(H)
$$
. Let $\Phi = C_{p_1,1} \times \cdots \times C_{p_n,1}$, where
\n
$$
\sum_{i=1}^n \frac{1}{p_i} = 1, 1 \le p_i < \infty, 1 \le i \le n.
$$
\n $k_{\Phi}(\alpha) = 0 \Leftrightarrow$ the spectral measure of α is singular.

Spectral measure of α is singular \Leftrightarrow α is diagonal modulo $\mathcal{C}_{p_1,1} \times \cdots \times \mathcal{C}_{p_n,1}$.

 Ω

イロト イ押ト イヨト イヨト

Singularity implies vanishing of quasicentral modulus

Theorem 3.1 (Ber-Sukochev-Zanin-Zhao, 2022, under review)

Let
$$
n \ge 1
$$
. Let $\Phi(\mathcal{M}) = L_{p_1,1}(\mathcal{M}) \times \cdots \times L_{p_n,1}(\mathcal{M}),$
where $1 \le p_i \le \infty, 1 \le i \le n$ and $\frac{1}{p_1} + \cdots + \frac{1}{p_n} \le 1$.
Let $\alpha \in (\mathcal{M}_{sa})^n$ be a commuting self-adjoint *n*-tuple.
The spectral measure of α is singular $\Rightarrow k_{\Phi(\mathcal{M})}(\alpha) = 0$.

Corollary

The spectral measure of α is singular $\Rightarrow k_{L_{n,1}(\mathcal{M})}(\alpha) = 0$.

The converse is not true, i.e.

 $k_{L_{n,1} (\mathcal{M})} (\alpha) = 0 \not\Rightarrow$ the spectral measure of α is singular.

 Ω

イロト イ押ト イヨト イヨ

Proposition

Le p_1, \ldots, p_L be orthogonal projections in M s.t. $p_1 + \cdots + p_L = 1$ and $p_l\alpha_l=\alpha_lp_l=\alpha_l$ for any $1\leq l\leq L.$ Let $\theta_l\in\mathbb{R}^n,\,1\leq l\leq L.$ We have $k_{\Phi(\mathcal{M})}(\sum_{l=1}^{L}\alpha_{l})=k_{\Phi(\mathcal{M})}(\sum_{l=1}^{L}\alpha_{l}-\theta_{l}p_{l})).$

Let $\alpha\in (\mathcal{M}_{sa})^n$ be a commuting self-adjoint n -tuple with singular spectral measure.

Proposition (Technical result)

Let $p, q \in \mathcal{P}(\mathcal{M})$ s.t. $\alpha p = \alpha, p \leq q$. Suppose there exists a τ -finite projection e in $\mathcal M$ s.t. $[W^*(\alpha)e(\mathcal H)]=q(\mathcal H)$. We have

$$
k_{\Phi(\mathcal{M})}(\alpha) \leq c_{\Phi} \max_{1 \leq j \leq n} \tau(e)^{\frac{1}{p_j}} \cdot ||\alpha||_{\mathcal{M}},
$$

where c_{Φ} is a constant depends only on p_1, \ldots, p_n .

KOD KAR KED KED E VAN

Theorem (Strong continuity)

Let $\{p_j\}_{j\geq 1}$ be a sequence of projections in M s.t. $p_i \alpha = \alpha p_i$ and $p_i \rightarrow 1$ in strong operator topology. Then $k_{\Phi(\mathcal{M})}(\alpha) = \lim_{j \to \infty} k_{\Phi(\mathcal{M})}(\alpha p_j)$.

Proposition

Suppose \exists a τ -finite projection $e \in \mathcal{M}$ s.t. $\text{span}\{W^*(\alpha)e(\mathcal{H})\} = \mathcal{H}$. Then $k_{\Phi(\mathcal{M})}(\alpha)=0.$

\n- \n
$$
\mathcal{B}(\mathbb{R}^n) := \{\text{Borel sets in } \mathbb{R}^n\}.
$$
\n $e^{\alpha} : \mathcal{B}(\mathbb{R}^n) : \rightarrow \mathcal{P}(\mathcal{M})$ be the spectral measure of α .\n
\n- \n Set $\mu_{\xi}(B) := \langle e^{\alpha}(B)\xi, \xi \rangle, B \in \mathcal{B}(\mathbb{R}^n)$.\n
\n- \n Separability of $\mathcal{H} \Rightarrow \exists$ a vector $\xi \in \mathcal{H}$ such that $\mu_{\eta} \prec \mu_{\xi}, \quad \forall \eta \in \mathcal{H}.$ \n
\n

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Proof.

W.L.O.G, assume that $0 \leq \alpha \leq 1$. Let $\xi \in \mathcal{H}$ s.t. $\mu_{\eta} \prec \mu_{\xi}, \forall \eta \in \mathcal{H}$. μ_{ξ} is singular $\Rightarrow \exists B \in \sigma(\alpha)$, s.t. $\lambda(B) = \mu_{\xi}(\mathbb{R}^n \backslash B) = 0$. For every $j\in\mathbb{N},$ \exists disjoint cubes $\{A_{k,j}:1\leq k\leq n_j\}$ in \mathbb{R}^n with same side length s.t. $\mu_{\xi}([-2,2]^n\backslash \cup_{k=1}^{n_j} A_{k,j})\to 0$ as $j\to\infty$ and $\lambda(\bigcup_{k=1}^{n_j} A_{k,j}) \to 0$ as $j \to \infty$. Then $\mu_{\eta}([-2,2]^n\backslash\cup_{k=1}^{n_j}A_{k,j})\to 0$ as $j\to\infty, \forall \eta\in\mathcal{H}.$ i.e. $e^{\alpha}(\cup_{k=1}^{n_j} A_{k,j}) \stackrel{s.o.t.}{\rightarrow} \mathbf{1}.$ $\alpha_j := \alpha e^{\alpha}(\cup_{k=1}^{n_j} A_{k,j}) = \sum_{k=1}^{n_j} \alpha e^{\alpha} (A_{k,j})$ choose proper $c_{k,j}, A'_{k,j} := A_{k,j} - c_{k,j}$ so that $\{A'_{k,j}\}_{j=1}^{n_j}$ are disjoint and $\text{diam}(\cup_{k=1}^{n_j} A'_{k,j}) \to 0$ as $j \to \infty$. $\alpha'_{j} := \sum_{k=1}^{n_{j}} (\alpha - c_{k,j} \mathbf{1}) e^{\alpha} (A_{k,j}).$ $k_{\Phi(\mathcal{M})}(\alpha_j) = k_{\Phi(\mathcal{M})}(\alpha'_j) \leq c_{\Phi} \max_{1 \leq i \leq n} (\tau(e))^{\frac{1}{p_i}} \text{diam}(\cup_{k=1}^{n_j} A'_{k,j}) \to 0.$ Strong continuity $\Rightarrow k_{\Phi(\mathcal{M})}(\alpha) = \lim_{j \to \infty} k_{\Phi(\mathcal{M})}(\alpha_j) = 0.$

 QQ

K ロ ト K 何 ト K ヨ ト K ヨ

Proof of Theorem [3.1.](#page-24-0)

Let $W^{*}(\alpha)$ be the von Neumann subalgebra in ${\mathcal M}$ generated by ${\bf 1}$ and $\alpha.$ By Zorn's Lemma, $\exists~\{e_k\}_{k\geq 1}$ of τ -finite projections s.t. $\sum_{k\geq 1}q_k=\mathbf{1}$ where

$$
q_k = \bigvee_{a \in W^*(\alpha)} (l(a e_k)) = \bigvee_{B \in \mathscr{B}(\mathbb{R}^n)} l(\chi_B(\alpha) e_k).
$$

 e_k is a τ -finite cyclic projection of αq_k on $q_k(\mathcal{H}) \Rightarrow k_{\varPhi(q_k\mathcal{M}q_k)}(\alpha q_k) = 0.$ Subadditivity of $k_{\varPhi(\mathcal{M})}\Rightarrow k_{\varPhi((\sum_{j=1}^{k}q_j)\mathcal{M}(\sum_{j=1}^{k}q_k))}(\alpha\sum_{j=1}^{k}q_k)=0.$ Strong continuity of $k_{\varPhi(\mathcal{M})} \Rightarrow k_{\varPhi(\mathcal{M})}(\alpha) = 0.$

Ongoing project – Extension of Kato-Rosenblum theorem to von Neumann algebras

Let $\alpha \in (\mathcal{M}_{sa})^n$ be a commuting self-adjoint n -tuple.

- A projection $P \in \mathcal{M}$ is called norm absolutely continuous w.r.t. α if $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $\sum_{j=1}^k \|PE_\alpha(Q_j)P\|_{\mathcal{M}} < \varepsilon$ whenever $\{Q_j\}_{j=1}^k\subset \mathfrak{B}(\mathbb{R}^n)$ are pairwise disjoint s.t. $\sum_{j=1}^k \lambda(Q_j)\leq \delta.$ $\mathscr{P}_{ac}^{\infty}(\alpha):=\{P:P\text{ is norm absolutely continuous w.r.t. }\alpha\}.$
	- $P_{ac}^{\infty}(\alpha) = \bigvee \{P : P \in \mathscr{P}_{ac}^{\infty}(\alpha)\}, P_{ac}^{\infty}(\alpha) \leq P_{ac}(\alpha).$
- In some cases, $P_{ac}^{\infty}(\alpha)$ is totally different to $P_{ac}(\alpha)$, there is an example that $P_{ac}(T) = 1, P_{ac}^{\infty}(T) = 0.$

つへへ

イロト イ押ト イヨト イヨト

The following theorem extends [Li-Shen-Shi-Wang, 2018] to the case when $n \geq 1$.

Theorem (Ber-Sukochev-Zanin-Zhao, ongoing) $\alpha, \beta \in (B(\mathcal{H})_{sa})^n, \beta - \alpha \in (L_1(\mathcal{M}))^n \Rightarrow \forall t \in \mathbb{S}^{n-1}, \exists \text{ a limit}$ $W_t = \textsf{s.o.t.-}\lim_{r\to\infty} e^{irt\beta}e^{-irt\alpha}P_{ac}^{\infty}(\alpha).$ For almost every $t \in \mathbb{S}^{n-1}$, **1** $W_t^* W_t = P_{ac}^{\infty}(\alpha)$, $W_t W_t^* = P_{ac}^{\infty}(\beta)$. 2 $e^{\beta}(\Delta)W_t = W_t e^{\alpha}(\Delta), \Delta \in \mathfrak{B}(\mathbb{R}^n)$.

KED KARD KED KED E VOOR

How far we've got?

- Can we define quasicentral modulus $k_{\varPhi(\mathcal{M})}(\alpha)$ for $\alpha\in\mathcal{M}^n?$ Yes
- Is is true that $k_{\varPhi(\mathcal{M})}(\alpha)=0 \Leftrightarrow \alpha$ is diagonal modulo $\varPhi?$ Yes
- What can we say about α_s and α_{ac} ? $k_{\varPhi(\mathcal{M})}(\alpha_s)=0$ for $\varPhi(\mathcal{M})=L_{p_1,1}(\mathcal{M})\times\cdots\times L_{p_n,1}(\mathcal{M}), \sum_j\frac{1}{p_j}$ $\frac{1}{p_j} \leq 1.$ $P_{ac}^{\infty}(\alpha)$ is preserved (up to equivalence) under trace class perturbations.
- Spectral multiplicity function does not work well for α_{ac} in von Neumann algebras.

Let \bar{U} be the corresponding unitary operator such that $U\alpha U^*$ is the tuple of multiplication operators of coordinate functions, the obstacle is that $U \notin \mathcal{M},$ so it is meaningless to calculate $k_{\varPhi(\mathcal{M})}(U \alpha U^*).$ What is the proper analogue of spectral multiplicity theory in von Neumann algebras?

We do not know yet.

 Ω

References

F

F

Akemann, C.A. and Pedersen, G.K., Ideal perturbations of elements in C∗-algebras, Math. Scand., 41, no.1 (1977), 117–139.

- Ciuperca, A. and Giordano, T. and Ng, P. and Niu, Z., Amenability and uniqueness, Advances in Mathematics 240 (2013), 325–345.
- Connes, A., TRACE DE DIXMIER, MODULES DE FREDHOLM ET GEOMETRIE RIEMANNIENNE, NuclearPhysics B 5B (1988), 65–70.
- Kaftal, V., On the theory of compact operators in von Neumann algebras.II, Pacific Journal of Mathematics 79, no.1 (1978), 129–137.
	- Kato, Tosio, Perturbation theory for linear operators, Classics in Mathematics (1995), 525-527.

- Kuroda, S., On a theorem of Weyl-von Neumann. Proc. Japan Acad. 34 (1958), 11–15.
- Li, Q and Shen, J and Shi, R., A generalization of Voiculescu's theorem for normal operators to semifinite von Neumann algebras, Advances in Mathematics 375 (2020), 107347.
- Li, Q. and Shen, J. and Shi, R. and Wang, L., Perturbations of self-adjoint operators in semifinite von Neumann algebras: Kato-Rosenblum theorem, J. Funct. Anal., 275, no.2 (2018), 259–287.
	- Voiculescu, D. A non-commutative Weyl-von Neumann theorem, Rev. roum. math. pures et appl 21 (1976), 97–113.
	- Voiculescu, D., Some results on norm-ideal perturbations of hilbert space operators, Journal of Operator Theory (1979), 3–37.

 QQQ

イロト イ部 トイモ トイモト

Zsidó, L., The Weyl-von Neumann theorem in semifinite factors. J. Functional Analysis 18 (1975), 60–72.

Thanks for your attention!

 200