Noncommutative ergodic theory of lattices in higher rank simple algebraic groups

Cyril HOUDAYER

Université Paris-Saclay & Institut Universitaire de France

Functional Analysis Seminar Institute for Advanced Study in Mathematics Harbin Institute of Technology April 20, 2022

Introduction and motivation

Let k be any local field i.e. k is a nondiscrete locally compact field.

Definition

Let \mathbb{G} be any (affine) connected algebraic k-group. We say that

- G is semisimple if its radical (i.e. maximal connected algebraic solvable normal subgroup) is trivial.
- G is absolutely almost simple (resp. almost k-simple) if G is semisimple and if the only proper normal algebraic (resp. k-closed) subgroups are finite.

Denote by $\operatorname{rk}_k(\mathbb{G})$ the dimension of a maximal *k*-split torus in \mathbb{G} .

Let k be any local field i.e. k is a nondiscrete locally compact field.

Definition

Let \mathbb{G} be any (affine) connected algebraic k-group. We say that

- G is semisimple if its radical (i.e. maximal connected algebraic solvable normal subgroup) is trivial.
- G is absolutely almost simple (resp. almost k-simple) if G is semisimple and if the only proper normal algebraic (resp. k-closed) subgroups are finite.

Denote by $\operatorname{rk}_k(\mathbb{G})$ the dimension of a maximal *k*-split torus in \mathbb{G} .

Example

For every $n \ge 2$, SL_n is an absolutely almost simple connected algebraic k-group. Moreover, we have $rk_k(SL_n) = n - 1$.

Let \mathbb{G} be any almost *k*-simple connected algebraic *k*-group with $\mathsf{rk}_k(\mathbb{G}) \geq 2$.

Denote by $G = \mathbb{G}(k)$ the locally compact group of its *k*-points. Let $\Gamma < G$ be any **lattice** i.e. $\Gamma < G$ is a discrete subgroup with finite covolume. Let \mathbb{G} be any almost *k*-simple connected algebraic *k*-group with $\mathsf{rk}_k(\mathbb{G}) \geq 2$.

Denote by $G = \mathbb{G}(k)$ the locally compact group of its *k*-points.

Let $\Gamma < G$ be any **lattice** i.e. $\Gamma < G$ is a discrete subgroup with finite covolume.

Examples (Borel-Harish-Chandra, Behr, Harder)

Let $n \geq 3$ and $\mathbb{G} = SL_n$.

- $SL_n(\mathbb{Z}) < SL_n(\mathbb{R})$
- $SL_n(\mathbb{Z}[i]) < SL_n(\mathbb{C})$
- $\mathsf{SL}_n\left(\mathbb{F}_q[t^{-1}]\right) < \mathsf{SL}_n\left(\mathbb{F}_q((t))\right)$ where $q = p^r$ with $p \in \mathcal{P}$ a prime and $r \geq 1$

In this talk, we simply say that $\Gamma < G$ is a higher rank lattice.

Motivation

Let $\Gamma < G$ be any higher rank lattice.

Margulis' Normal Subgroup Theorem (1978)

Any normal subgroup $N \triangleleft \Gamma$ is either finite or has finite index.

Let $\Gamma < G$ be any higher rank lattice.

Margulis' Normal Subgroup Theorem (1978)

Any normal subgroup $N \triangleleft \Gamma$ is either finite or has finite index.

Margulis' strategy: assuming that $N \lhd \Gamma$ is an infinite normal subgroup, to prove that Γ/N is a finite group, one shows that

- F/N has property (T) (Kazhdan). Indeed, G has property (T) and property (T) is inherited by lattices and quotients.
- **2** Γ/N is **amenable** (Margulis). This follows from:

Let $\Gamma < G$ be any higher rank lattice.

Margulis' Normal Subgroup Theorem (1978)

Any normal subgroup $N \triangleleft \Gamma$ is either finite or has finite index.

Margulis' strategy: assuming that $N \lhd \Gamma$ is an infinite normal subgroup, to prove that Γ/N is a finite group, one shows that

- F/N has property (T) (Kazhdan). Indeed, G has property (T) and property (T) is inherited by lattices and quotients.
- **2** Γ/N is **amenable** (Margulis). This follows from:

Margulis' Factor Theorem (1978)

Let $\mathbb{P} < \mathbb{G}$ be any minimal parabolic k-subgroup and set $P = \mathbb{P}(k)$. Then any measurable Γ -factor of G/P is Γ -isomorphic to G/Q for some unique parabolic k-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ where $Q = \mathbb{Q}(k)$. In this talk, we present a new framework to study **higher rank lattices** using operator algebras.

Main Problem

Given a higher rank lattice $\Gamma < G$, we want to understand:

- Point stabilizers for ergodic/minimal actions $\Gamma \curvearrowright X$
- **2** Structure of group C^{*}-algebras $C^*_{\pi}(\Gamma)$ where $\pi : \Gamma \to \mathscr{U}(\mathscr{H}_{\pi})$
- **③** Dynamical properties of the affine action $\Gamma \curvearrowright \mathscr{P}(\Gamma)$
- Rigidity aspects of the group von Neumann algebra $L(\Gamma)$

The present talk is based on two joint works:

[BH19] R. BOUTONNET, C. HOUDAYER, Stationary characters on lattices of semisimple Lie groups. Publications mathématiques de l'IHÉS 133 (2021), 1-46. arXiv:1908.07812

[BBH21] U. BADER, R. BOUTONNET, C. HOUDAYER, Charmenability of higher rank arithmetic groups. arXiv:2112.01337

The noncommutative Nevo–Zimmer theorem

Structure theory of G/P

Let \mathbb{G} be any almost *k*-simple connected algebraic *k*-group with $\operatorname{rk}_k(\mathbb{G}) \ge 2$ and set $G = \mathbb{G}(k)$. Let $\mathbb{P} < \mathbb{G}$ be any minimal parabolic *k*-subgroup and set $P = \mathbb{P}(k)$. Then $G/P = (\mathbb{G}/\mathbb{P})(k)$.

Example

If $\mathbb{G} = SL_n$, take $\mathbb{P} < \mathbb{G}$ the subgroup of upper triangular matrices.

Structure theory of G/P

Let \mathbb{G} be any almost *k*-simple connected algebraic *k*-group with $\operatorname{rk}_k(\mathbb{G}) \ge 2$ and set $G = \mathbb{G}(k)$. Let $\mathbb{P} < \mathbb{G}$ be any minimal parabolic *k*-subgroup and set $P = \mathbb{P}(k)$. Then $G/P = (\mathbb{G}/\mathbb{P})(k)$.

Example

If $\mathbb{G} = SL_n$, take $\mathbb{P} < \mathbb{G}$ the subgroup of upper triangular matrices.

Theorem (Furstenberg 1962, Bader–Shalom 2004)

For every admissible measure $\mu \in Prob(G)$, there exists a unique μ -stationary measure $\nu \in Prob(G/P)$ such that $(G/P, \nu)$ is the (G, μ) -Poisson boundary *i.e.*

$$L^{\infty}(G/P, \nu) \cong_{G-equiv.} \operatorname{Har}^{\infty}(G, \mu)$$

Recall that ν is μ -stationary if $\nu = \mu * \nu = \int_G g_* \nu \, d\mu(g)$.

Let $\Gamma < G$ be any **higher rank lattice**. Let *M* be any von Neumann algebra and $\sigma : \Gamma \frown M$ any action by automorphisms. Let $\Gamma < G$ be any **higher rank lattice**. Let M be any von Neumann algebra and $\sigma : \Gamma \frown M$ any action by automorphisms.

Definition (Boundary structure)

Let $\Theta: M \to L^{\infty}(G/P)$ be any normal unital completely positive Γ -map. We simply say that Θ is a Γ -boundary structure on M.

Let $\Gamma < G$ be any **higher rank lattice**. Let M be any von Neumann algebra and $\sigma : \Gamma \frown M$ any action by automorphisms.

Definition (Boundary structure)

Let $\Theta: M \to L^{\infty}(G/P)$ be any normal unital completely positive Γ -map. We simply say that Θ is a Γ -boundary structure on M.

This notion is well adapted to induction. Indeed, to any Γ -boundary structure $\Theta : M \to L^{\infty}(G/P)$, one can naturally define the **induced** *G*-boundary structure $\widehat{\Theta} : \operatorname{Ind}_{\Gamma}^{G}(M) \to L^{\infty}(G/P)$. Recall that $\Gamma \curvearrowright M$ is **ergodic** if

$$M^{\mathsf{\Gamma}} \coloneqq \{x \in M \mid orall \gamma \in \mathsf{\Gamma}, \ \sigma_{\gamma}(x) = x\} = \mathbb{C}1$$

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C*-algebra and $\Gamma \curvearrowright A$ any action.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C*-algebra and $\Gamma \curvearrowright A$ any action. Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ -map $\beta : G/P \rightarrow \mathfrak{S}(A) : b \mapsto \beta_b$. By duality, we obtain a ucp Γ -map $E : A \rightarrow L^{\infty}(G/P)$ defined by $E(\cdot)(b) = \beta_b$ for a.e. $b \in G/P$.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let *A* be any unital separable C*-algebra and $\Gamma \curvearrowright A$ any action. Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ -map $\beta : G/P \to \mathfrak{S}(A) : b \mapsto \beta_b$. By duality, we obtain a ucp Γ -map $E : A \to L^{\infty}(G/P)$ defined by $E(\cdot)(b) = \beta_b$ for a.e. $b \in G/P$. Consider the normal extension $E^{**} : A^{**} \to L^{\infty}(G/P)$ and denote by $z \in \mathscr{Z}(A^{**})$ its central support. Letting $M = A^{**}z$, $\Theta = E^{**}|_M : M \to L^{\infty}(G/P)$ is a Γ -boundary structure.

Note that the action $\Gamma \curvearrowright G/P$ is amenable and ergodic.

Examples (Boundary structures)

Let A be any unital separable C^{*}-algebra and $\Gamma \curvearrowright A$ any action. Since $\Gamma \curvearrowright G/P$ is amenable, there exists a measurable Γ -map $\beta: G/P \to \mathfrak{S}(A): b \mapsto \beta_b$. By duality, we obtain a ucp Γ -map $E: A \to L^{\infty}(G/P)$ defined by $E(\cdot)(b) = \beta_b$ for a.e. $b \in G/P$. Consider the normal extension $E^{**}: A^{**} \to L^{\infty}(G/P)$ and denote by $z \in \mathscr{Z}(A^{**})$ its central support. Letting $M = A^{**}z$, $\Theta = \mathsf{E}^{**}|_M : M \to \mathsf{L}^{\infty}(G/P)$ is a Γ -boundary structure. We apply the above construction to the following situations: • A = C(X) where X is a compact metrizable Γ -space. **2** $A = C^*_{\pi}(\Gamma)$ where $\pi : \Gamma \to \mathscr{U}(\mathscr{H}_{\pi})$ is a unitary representation and $\Gamma \curvearrowright C^*_{\pi}(\Gamma)$ is the conjugation action.

Let $\Gamma < G$ be any higher rank lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure.

Then the following dichotomy holds:

Let $\Gamma < G$ be any higher rank lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure.

Then the following dichotomy holds:

- Either $\Theta(M) = \mathbb{C}1$.
- Or there are a proper parabolic k-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ and a Γ -equivariant normal embedding $\iota : L^{\infty}(G/Q) \hookrightarrow M$ such that $\Theta \circ \iota : L^{\infty}(G/Q) \hookrightarrow L^{\infty}(G/P)$ is the canonical embedding.

Let $\Gamma < G$ be any higher rank lattice. Let M be any von Neumann algebra, $\Gamma \frown M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure.

Then the following dichotomy holds:

- Either $\Theta(M) = \mathbb{C}1$.
- Or there are a proper parabolic k-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ and a Γ -equivariant normal embedding $\iota : L^{\infty}(G/Q) \hookrightarrow M$ such that $\Theta \circ \iota : L^{\infty}(G/Q) \hookrightarrow L^{\infty}(G/P)$ is the canonical embedding.

In case $M = L^{\infty}(X)$ and $k = \mathbb{R}$, and considering *G*-actions instead of Γ -actions, the above theorem was proven by Nevo–Zimmer (2000).

Let $\Gamma < G$ be any higher rank lattice. Let M be any von Neumann algebra, $\Gamma \frown M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure.

Then the following dichotomy holds:

• Either $\Theta(M) = \mathbb{C}1$.

• Or there are a proper parabolic k-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ and a Γ -equivariant normal embedding $\iota : L^{\infty}(G/Q) \hookrightarrow M$ such that $\Theta \circ \iota : L^{\infty}(G/Q) \hookrightarrow L^{\infty}(G/P)$ is the canonical embedding.

In case $M = L^{\infty}(X)$ and $k = \mathbb{R}$, and considering *G*-actions instead of Γ -actions, the above theorem was proven by Nevo–Zimmer (2000). \sim In [BH19], we extended NZ theorem to **noncommutative** von Neumann algebras *M* and to Γ -actions.

Let $\Gamma < G$ be any higher rank lattice. Let M be any von Neumann algebra, $\Gamma \curvearrowright M$ any ergodic action and $\Theta : M \to L^{\infty}(G/P)$ any Γ -boundary structure.

Then the following dichotomy holds:

• Either $\Theta(M) = \mathbb{C}1$.

• Or there are a proper parabolic k-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ and a Γ -equivariant normal embedding $\iota : L^{\infty}(G/Q) \hookrightarrow M$ such that $\Theta \circ \iota : L^{\infty}(G/Q) \hookrightarrow L^{\infty}(G/P)$ is the canonical embedding.

In case $M = L^{\infty}(X)$ and $k = \mathbb{R}$, and considering *G*-actions instead of Γ -actions, the above theorem was proven by Nevo–Zimmer (2000). \sim In [BH19], we extended NZ theorem to **noncommutative** von Neumann algebras *M* and to Γ -actions.

 \sim In [BBH21], we further generalized NZ theorem to deal with lattices in simple algebraic groups defined over an arbitrary local field *k*.

About the proof of the nc Nevo-Zimmer theorem

Using induction, we prove the theorem for ergodic *G*-von Neumann algebras \mathscr{M} and *G*-boundary structures $\Theta : \mathscr{M} \to L^{\infty}(G/P)$.

About the proof of the nc Nevo-Zimmer theorem

Using induction, we prove the theorem for ergodic *G*-von Neumann algebras \mathscr{M} and *G*-boundary structures $\Theta : \mathscr{M} \to L^{\infty}(G/P)$.

Assume $\Theta(\mathscr{M}) \neq \mathbb{C}1$. Then we construct a *G*-invariant **abelian** von Neumann subalgebra $\mathscr{Z} \subset \mathscr{M}$ such that $\Theta(\mathscr{Z}) \neq \mathbb{C}1$.

About the proof of the nc Nevo-Zimmer theorem

Using induction, we prove the theorem for ergodic *G*-von Neumann algebras \mathscr{M} and *G*-boundary structures $\Theta : \mathscr{M} \to L^{\infty}(G/P)$.

Assume $\Theta(\mathscr{M}) \neq \mathbb{C}1$. Then we construct a *G*-invariant **abelian** von Neumann subalgebra $\mathscr{Z} \subset \mathscr{M}$ such that $\Theta(\mathscr{Z}) \neq \mathbb{C}1$.

This is the hard part! We exploit Ge-Kadison's splitting theorem.

Using induction, we prove the theorem for ergodic *G*-von Neumann algebras \mathscr{M} and *G*-boundary structures $\Theta : \mathscr{M} \to L^{\infty}(G/P)$.

Assume $\Theta(\mathscr{M}) \neq \mathbb{C}1$. Then we construct a *G*-invariant **abelian** von Neumann subalgebra $\mathscr{Z} \subset \mathscr{M}$ such that $\Theta(\mathscr{Z}) \neq \mathbb{C}1$.

This is the hard part! We exploit Ge-Kadison's splitting theorem.

Letting $\mathscr{Z} = L^{\infty}(Z)$, we moreover show that the ergodic action $G \curvearrowright Z$ has a large stabilizer G_z for a.e. $z \in Z$.

Using induction, we prove the theorem for ergodic *G*-von Neumann algebras \mathscr{M} and *G*-boundary structures $\Theta : \mathscr{M} \to L^{\infty}(G/P)$.

Assume $\Theta(\mathscr{M}) \neq \mathbb{C}1$. Then we construct a *G*-invariant **abelian** von Neumann subalgebra $\mathscr{Z} \subset \mathscr{M}$ such that $\Theta(\mathscr{Z}) \neq \mathbb{C}1$.

This is the hard part! We exploit Ge-Kadison's splitting theorem.

Letting $\mathscr{Z} = L^{\infty}(Z)$, we moreover show that the ergodic action $G \curvearrowright Z$ has a large stabilizer G_z for a.e. $z \in Z$.

Exploiting the tension between algebraic geometry and ergodic theory, we show that there exist a proper parabolic *k*-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ and a measurable *G*-factor map $Z \to G/Q$. This yields a *G*-equivariant embedding $L^{\infty}(G/Q) \hookrightarrow \mathscr{Z} \subset \mathscr{M}$.

Using induction, we prove the theorem for ergodic *G*-von Neumann algebras \mathscr{M} and *G*-boundary structures $\Theta : \mathscr{M} \to L^{\infty}(G/P)$.

Assume $\Theta(\mathscr{M}) \neq \mathbb{C}1$. Then we construct a *G*-invariant **abelian** von Neumann subalgebra $\mathscr{Z} \subset \mathscr{M}$ such that $\Theta(\mathscr{Z}) \neq \mathbb{C}1$.

This is the hard part! We exploit Ge-Kadison's splitting theorem.

Letting $\mathscr{Z} = L^{\infty}(Z)$, we moreover show that the ergodic action $G \curvearrowright Z$ has a large stabilizer G_z for a.e. $z \in Z$.

Exploiting the tension between algebraic geometry and ergodic theory, we show that there exist a proper parabolic *k*-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ and a measurable *G*-factor map $Z \to G/Q$. This yields a *G*-equivariant embedding $L^{\infty}(G/Q) \hookrightarrow \mathscr{Z} \subset \mathscr{M}$. This part is a generalization of Nevo–Zimmer's Gauss map trick.

We derive the following topological analogue of Stuck–Zimmer's stabilizer rigidity theorem (1992).

Theorem (BH19, BBH21)

Let $\Gamma < G$ be any higher rank lattice. Assume that $\mathscr{Z}(\mathbb{G}) = \{e\}$. Let $\Gamma \curvearrowright X$ be any minimal action on a compact metrizable space. The following dichotomy holds: We derive the following topological analogue of Stuck–Zimmer's stabilizer rigidity theorem (1992).

Theorem (BH19, BBH21)

Let $\Gamma < G$ be any higher rank lattice. Assume that $\mathscr{Z}(\mathbb{G}) = \{e\}$. Let $\Gamma \curvearrowright X$ be any minimal action on a compact metrizable space. The following dichotomy holds:

- Either X is finite.
- Or $\Gamma \curvearrowright X$ is topologically free *i.e.* for every $\gamma \in \Gamma \setminus \{e\}$, Fix $(\gamma) := \{x \in X \mid \gamma x = x\}$ has empty interior.

This solves a question raised by Glasner–Weiss (2014).

Dynamics of positive definite functions and character rigidity

For any countable discrete group Λ , set

 $\mathscr{P}(\Lambda) \coloneqq \{\varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function}\}$

Then $\mathscr{P}(\Lambda) \subset \ell^{\infty}(\Lambda)$ is a weak-* compact convex set.

For any countable discrete group Λ , set

 $\mathscr{P}(\Lambda) \coloneqq \{\varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function}\}$

Then $\mathscr{P}(\Lambda) \subset \ell^{\infty}(\Lambda)$ is a weak-* compact convex set.

To any $\varphi \in \mathscr{P}(\Lambda)$, one associates the GNS triple $(\pi_{\varphi}, \mathscr{H}_{\varphi}, \xi_{\varphi})$:

 $\forall \gamma \in \Lambda, \quad \varphi(\gamma) = \langle \pi_{\varphi}(\gamma) \xi_{\varphi}, \xi_{\varphi} \rangle$

For any countable discrete group Λ , set

 $\mathscr{P}(\Lambda) \coloneqq \{\varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function}\}$

Then $\mathscr{P}(\Lambda) \subset \ell^{\infty}(\Lambda)$ is a weak-* compact convex set.

To any $\varphi \in \mathscr{P}(\Lambda)$, one associates the GNS triple $(\pi_{\varphi}, \mathscr{H}_{\varphi}, \xi_{\varphi})$:

$$\forall \gamma \in \Lambda, \quad \varphi(\gamma) = \langle \pi_{\varphi}(\gamma) \xi_{\varphi}, \xi_{\varphi} \rangle$$

Consider the affine conjugation action $\Lambda \curvearrowright \mathscr{P}(\Lambda)$ defined by

$$\forall \gamma \in \Lambda, \quad \gamma \varphi \coloneqq \varphi \circ \mathsf{Ad}(\gamma^{-1})$$

For any countable discrete group Λ , set

 $\mathscr{P}(\Lambda) \coloneqq \{\varphi : \Lambda \to \mathbb{C} \mid \text{normalized positive definite function}\}$

Then $\mathscr{P}(\Lambda) \subset \ell^{\infty}(\Lambda)$ is a weak-* compact convex set.

To any $\varphi \in \mathscr{P}(\Lambda)$, one associates the GNS triple $(\pi_{\varphi}, \mathscr{H}_{\varphi}, \xi_{\varphi})$:

$$orall \gamma \in ig \Lambda, \quad arphi(\gamma) = \langle \pi_arphi(\gamma) \xi_arphi, \xi_arphi
angle$$

Consider the affine conjugation action $\Lambda \curvearrowright \mathscr{P}(\Lambda)$ defined by

$$\forall \gamma \in \Lambda, \quad \gamma \varphi \coloneqq \varphi \circ \mathsf{Ad}(\gamma^{-1})$$

Definition

A character $\varphi \in \mathscr{P}(\Lambda)$ is a fixed point for $\Lambda \curvearrowright \mathscr{P}(\Lambda)$.

Denote by $Char(\Lambda) \subset \mathscr{P}(\Lambda)$ the convex subset of all characters.

Cyril HOUDAYER (Paris-Saclay & IUF) Noncommutative ergodic theory of higher rank lattices

Denote by Sub(Λ) the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$. Consider the Λ -equivariant continuous map

 $\mathsf{Sub}(\Lambda) \to \mathscr{P}(\Lambda) : H \mapsto 1_H$

Denote by Sub(Λ) the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$. Consider the Λ -equivariant continuous map

 $\mathsf{Sub}(\Lambda) o \mathscr{P}(\Lambda) : H \mapsto 1_H$

Examples

- If N ⊲ Λ is a normal subgroup, then φ = 1_N ∈ Char(Λ).
 Its GNS unirep π_φ = λ_{Λ/N} is the quasi-regular representation.
 - When $N = \Lambda$, then 1_{Λ} is the trivial character.
 - When $N = \{e\}$, then $1_{\{e\}}$ is the regular character.

Denote by Sub(Λ) the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$. Consider the Λ -equivariant continuous map

 $\mathsf{Sub}(\Lambda) o \mathscr{P}(\Lambda) : H \mapsto 1_H$

Examples

- If N ⊲ Λ is a normal subgroup, then φ = 1_N ∈ Char(Λ).
 Its GNS unirep π_φ = λ_{Λ/N} is the quasi-regular representation.
 - When $N = \Lambda$, then 1_{Λ} is the trivial character.
 - When $N = \{e\}$, then $1_{\{e\}}$ is the regular character.

② If $\Lambda \curvearrowright (X, \nu)$ is pmp, then $\varphi_{\nu} : \gamma \mapsto \nu(\mathsf{Fix}(\gamma)) \in \mathsf{Char}(\Lambda)$. → When $\varphi_{\nu} = 1_{\{e\}}$, the action $\Lambda \curvearrowright (X, \nu)$ is essentially free.

Denote by Sub(Λ) the compact metrizable space of all subgroups of Λ endowed with the conjugation action $\gamma \cdot H = \gamma H \gamma^{-1}$. Consider the Λ -equivariant continuous map

 $\mathsf{Sub}(\Lambda) o \mathscr{P}(\Lambda) : H \mapsto 1_H$

Examples

- If N ⊲ Λ is a normal subgroup, then φ = 1_N ∈ Char(Λ).
 Its GNS unirep π_φ = λ_{Λ/N} is the quasi-regular representation.
 - When $N = \Lambda$, then 1_{Λ} is the trivial character.
 - When $N = \{e\}$, then $1_{\{e\}}$ is the regular character.
- ② If $\Lambda \curvearrowright (X, \nu)$ is pmp, then $\varphi_{\nu} : \gamma \mapsto \nu(\operatorname{Fix}(\gamma)) \in \operatorname{Char}(\Lambda)$. → When $\varphi_{\nu} = 1_{\{e\}}$, the action $\Lambda \curvearrowright (X, \nu)$ is essentially free.
- **③** If $\pi : \Lambda \to \mathscr{U}(n)$ is a finite dim unirep, then $\operatorname{tr}_n \circ \pi \in \operatorname{Char}(\Lambda)$.

Our noncommutative Nevo–Zimmer theorem yields new applications regarding **existence** and **classification** of characters.

Theorem (BH19, BBH21)

Let $\Gamma < G$ be any higher rank lattice. Then

- Any nonempty Γ-invariant weak-* compact convex subset
 C 𝒫(Γ) contains a character.
- **②** Γ is character rigid i.e. any extremal character φ ∈ Char(Γ) is either supported on *X*(Γ) or π_φ is finite dimensional.

Our theorem strengthens results by Margulis (1978), Stuck–Zimmer (1992), Bekka (2006), Creutz–Peterson (2013), Peterson (2014).

Structure theorem for group C^{*}-algebras $C^*_{\pi}(\Gamma)$

When $\pi: \Gamma \to \mathscr{U}(\mathscr{H}_{\pi})$ is a unirep, we may regard

 $\mathfrak{S}(\mathsf{C}^*_{\pi}(\Gamma)) \hookrightarrow \mathscr{P}(\Gamma) : \psi \mapsto \psi \circ \pi$

as a Γ -invariant weak-* compact convex subset. We obtain:

Theorem (BH19, BBH21)

Let $\Gamma < G$ be any higher rank lattice. Let $\pi : \Gamma \to \mathscr{U}(\mathscr{H}_{\pi})$ be any unirep. Then $C^*_{\pi}(\Gamma)$ admits a trace.

Structure theorem for group C^{*}-algebras $C^*_{\pi}(\Gamma)$

When $\pi: \Gamma \to \mathscr{U}(\mathscr{H}_{\pi})$ is a unirep, we may regard

 $\mathfrak{S}(\mathsf{C}^*_{\pi}(\Gamma)) \hookrightarrow \mathscr{P}(\Gamma) : \psi \mapsto \psi \circ \pi$

as a Γ -invariant weak-* compact convex subset. We obtain:

Theorem (BH19, BBH21)

Let $\Gamma < G$ be any higher rank lattice. Let $\pi : \Gamma \to \mathscr{U}(\mathscr{H}_{\pi})$ be any unirep. Then $C^*_{\pi}(\Gamma)$ admits a trace. Assume that $\mathscr{Z}(\mathbb{G}) = \{e\}$. If π is weakly mixing, then $\lambda \prec \pi$ i.e. there is a *-homomorphism $\Theta : C^*_{\pi}(\Gamma) \to C^*_{\lambda}(\Gamma)$ such that $\Theta(\pi(\gamma)) = \lambda(\gamma)$ for every $\gamma \in \Gamma$. Moreover

- $\tau_{\Gamma} \circ \Theta$ is the unique trace on $C^*_{\pi}(\Gamma)$.
- **2** ker(Θ) is the unique maximal proper ideal of $C^*_{\pi}(\Gamma)$.

This extends results by Bekka–Cowling–de la Harpe (1994) for $C^*_{\lambda}(\Gamma)$.

The noncommutative factor theorem and Connes' rigidity conjecture

Connes' rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of L(Λ) are at most countable. He conjectured that L(Λ) should retain Λ for property (T) groups.

Connes' rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of L(Λ) are at most countable. He conjectured that L(Λ) should retain Λ for property (T) groups. \rightsquigarrow CIOS (2021): first class of W*-superrigid property (T) groups.

Connes' rigidity conjecture for higher rank lattices

Connes (1979) showed that whenever Λ is an icc group with property (T), the symmetry groups of L(Λ) are at most countable. He conjectured that L(Λ) should retain Λ for property (T) groups. \rightsquigarrow CIOS (2021): first class of W*-superrigid property (T) groups.

In view of Mostow–Margulis' rigidity results, we state the following version of **Connes' rigidity conjecture** for lattices in higher rank simple real Lie groups.

Connes' rigidity conjecture

For $i \in \{1, 2\}$, let G_i be any real connected simple Lie group with trivial center and $\operatorname{rk}_{\mathbb{R}}(G_i) \geq 2$, and let $\Gamma_i < G_i$ be any lattice.

$$\begin{aligned} \mathsf{L}(\mathsf{\Gamma}_1) &\cong \mathsf{L}(\mathsf{\Gamma}_2) &\Rightarrow \quad \mathsf{G}_1 &\cong \mathsf{G}_2 \\ &\Rightarrow \quad \mathsf{rk}_{\mathbb{R}}(\mathsf{G}_1) = \mathsf{rk}_{\mathbb{R}}(\mathsf{G}_2) \end{aligned}$$

Let $\Gamma < G$ be any higher rank lattice. Assume that $\mathscr{Z}(\mathbb{G}) = \{e\}$. Consider the ergodic action $\Gamma \curvearrowright G/P$ and its associated **group measure space** von Neumann algebra $L(\Gamma \curvearrowright G/P)$.

Our noncommutative Nevo–Zimmer theorem yields the following **noncommutative factor theorem**.

Let $\Gamma < G$ be any higher rank lattice. Assume that $\mathscr{Z}(\mathbb{G}) = \{e\}$. Consider the ergodic action $\Gamma \curvearrowright G/P$ and its associated **group measure space** von Neumann algebra $L(\Gamma \curvearrowright G/P)$.

Our noncommutative Nevo–Zimmer theorem yields the following **noncommutative factor theorem**.

Theorem (BBH21)

For every von Neumann subalgebra $L(\Gamma) \subset M \subset L(\Gamma \frown G/P)$, there exists a unique parabolic k-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ such that

 $M = L(\Gamma \curvearrowright G/Q)$ where $Q = \mathbb{Q}(k)$.

Let $\Gamma < G$ be any higher rank lattice. Assume that $\mathscr{Z}(\mathbb{G}) = \{e\}$. Consider the ergodic action $\Gamma \curvearrowright G/P$ and its associated **group measure space** von Neumann algebra $L(\Gamma \curvearrowright G/P)$.

Our noncommutative Nevo–Zimmer theorem yields the following **noncommutative factor theorem**.

Theorem (BBH21)

For every von Neumann subalgebra $L(\Gamma) \subset M \subset L(\Gamma \frown G/P)$, there exists a unique parabolic k-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ such that

 $M = L(\Gamma \curvearrowright G/Q)$ where $Q = \mathbb{Q}(k)$.

There are exactly $2^{\mathsf{rk}_k(\mathbb{G})}$ parabolic *k*-subgroups $\mathbb{P} < \mathbb{Q} < \mathbb{G}$.

Corollary (BBH21)

The inclusion $L(\Gamma) \subset L(\Gamma \frown G/P)$ retains the k-rank $rk_k(\mathbb{G})$.

Let $\Gamma < G$ be any higher rank lattice. Assume that $\mathscr{Z}(\mathbb{G}) = \{e\}$. Consider the ergodic action $\Gamma \curvearrowright G/P$ and its associated **group measure space** von Neumann algebra $L(\Gamma \curvearrowright G/P)$.

Our noncommutative Nevo–Zimmer theorem yields the following **noncommutative factor theorem**.

Theorem (BBH21)

For every von Neumann subalgebra $L(\Gamma) \subset M \subset L(\Gamma \frown G/P)$, there exists a unique parabolic k-subgroup $\mathbb{P} < \mathbb{Q} < \mathbb{G}$ such that

 $M = L(\Gamma \curvearrowright G/Q)$ where $Q = \mathbb{Q}(k)$.

There are exactly $2^{\mathsf{rk}_k(\mathbb{G})}$ parabolic *k*-subgroups $\mathbb{P} < \mathbb{Q} < \mathbb{G}$.

Corollary (BBH21)

The inclusion $L(\Gamma) \subset L(\Gamma \frown G/P)$ retains the k-rank $rk_k(\mathbb{G})$.

 \bigcirc It gives hope to prove that L(Γ) retains the *k*-rank rk_k(\mathbb{G}).

Cyril HOUDAYER (Paris-Saclay & IUF)

Noncommutative ergodic theory of higher rank lattices

About the proof of the nc factor theorem

Set $\mathscr{B} = L(\Gamma \curvearrowright G/P)$. Since $\mathscr{L}(\mathbb{G}) = \{e\}$, one can show that $L(\Gamma)' \cap \mathscr{B} = \mathbb{C}1$. Thus, the conjugation action $\Gamma \curvearrowright \mathscr{B}$ is ergodic.

Denote by $E : \mathscr{B} \to L^{\infty}(G/P)$ the Γ -equivariant conditional expectation. Let $L(\Gamma) \subset M \subset \mathscr{B}$ be any von Neumann subalgebra.

Denote by $E : \mathscr{B} \to L^{\infty}(G/P)$ the Γ -equivariant conditional expectation. Let $L(\Gamma) \subset M \subset \mathscr{B}$ be any von Neumann subalgebra.

Consider the boundary structure $\Theta = E|_M : M \to L^{\infty}(G/P)$.

Denote by $E : \mathscr{B} \to L^{\infty}(G/P)$ the Γ -equivariant conditional expectation. Let $L(\Gamma) \subset M \subset \mathscr{B}$ be any von Neumann subalgebra.

Consider the boundary structure $\Theta = E|_M : M \to L^{\infty}(G/P)$.

If Θ(M) = C1, then any element x ∈ M has all its Fourier coefficients in C. Then we infer that M = L(Γ).

Denote by $E : \mathscr{B} \to L^{\infty}(G/P)$ the Γ -equivariant conditional expectation. Let $L(\Gamma) \subset M \subset \mathscr{B}$ be any von Neumann subalgebra.

Consider the boundary structure $\Theta = E \mid_M : M \to L^{\infty}(G/P)$.

- If Θ(M) = C1, then any element x ∈ M has all its Fourier coefficients in C. Then we infer that M = L(Γ).
- If Θ(M) ≠ C1, then there exists a proper parabolic k-sugbroup P < Q < G such that L(Γ ∼ G/Q) ⊂ M.

Denote by $E : \mathscr{B} \to L^{\infty}(G/P)$ the Γ -equivariant conditional expectation. Let $L(\Gamma) \subset M \subset \mathscr{B}$ be any von Neumann subalgebra.

Consider the boundary structure $\Theta = E \mid_M : M \to L^{\infty}(G/P)$.

- If Θ(M) = C1, then any element x ∈ M has all its Fourier coefficients in C. Then we infer that M = L(Γ).
- If Θ(M) ≠ C1, then there exists a proper parabolic k-sugbroup P < Q < G such that L(Γ ∩ G/Q) ⊂ M.
 Since Γ ∩ G/Q is ess. free, by Suzuki's theorem (2018), up to taking a smaller P < Q < G, we have M = L(Γ ∩ G/Q).

Thank you for your attention!