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The Fourier algebra of a Lie group
G: a Lie group with a fixed left Haar measure(
L2(G), 〈 · , · 〉

)
: the L2-Hilbert space

λ : G → B
(
L2(G)

)
: the left regular representation(

λ(s)f
)
(t) = f(s−1t), s, t ∈ G

Definition (Fourier algebra)
The Fourier algebra of G is defined as

A(G) :=
{〈

f, λ( · )g
〉
: f, g ∈ L2(G)

}
⊆ C0(G).

A(G) is a subalgebra of C0(G) w.r.t. the pointwise operations.
It beomces a Banach algebra with the norm

‖u‖A(G) = inf
{
‖f‖2 · ‖g‖2 : u =

〈
f, λ( · )g

〉}
, u ∈ A(G).
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The spectrum of A(G)

The spectrum of an algebra A is defined as

SpecA =
{
0 6= χ : A → C

∣∣∣ χ is an algebra homomorphism}.

Each point s ∈ G gives rise to an algebra homomorphism

evs : A(G) 3 u 7−→ u(s) ∈ C.

Theorem (Eymard ‘1964)
When SpecA(G) is endowed with the weak-∗ topology, the following map
is a homeomorphism.

G 3 s 7−→ evs ∈ SpecA(G)
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Motivation

If A is a topological algebra and A ⊆ A is a dense subalgebra, A
tends to have more “information” than A itself.
(Example)
M: a compact smooth manifold
A := C(M)⇝ Topology of M
A := C∞(M)⇝ Topology + Smooth structure of M

Motivation
A(G) has the information about the topology of G (Eymard’s duality).

Q. Can we find some dense subalgebras of A(G) which have more
“information” about G than A(G) itself?
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The compact case

G: comapct Lie group
The space of matrix coefficients of G is

Pol(G) :=
{〈

v, π( · )w
〉 ∣∣∣ G π−→ GL(V) f.dim’l repn and v,w ∈ V

}
.

By the Peter-Weyl theorem, Pol(G) is a dense subalgebra of A(G).
The spectrum of Pol(G)?
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Complexification of a compact connected Lie group
G: a compact connected Lie group with Lie algebra g.

Theorem (Chevalley)
There exsits an embedding G ↪→ GC into a (unique) complex Lie group
GC such that:
for any Lie group homomorhpism π : G → H into a complex Lie group H,
there exsits a unique holomorphic homomorphism π̃ : GC → H s.t.

GC

G H

π̃

π

The Lie algebra of GC is given by gC = g⊗ C.
The following map is a diffeomorphism (Cartan Decomposition):

G × g 3 (s,X) 7−→ s expGC(iX) ∈ GC
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The spectrum of Pol(G)
Let u :=

〈
v, π( · )w

〉
∈ Pol(G) with π : G → GL(n,C) a f.dim’l repn.

By the universal property,

GC

G GL(n,C)

∃!π̃

π

The map ũ : GC 3 z 7−→
〈
v, π̃(z)w

〉
∈ C is an extension of u.

Every point z ∈ GC gives rise to an algebra homomorphism

evz : Pol(G) 3 u 7−→ ũ(z) ∈ C.

Theorem
Spec

(
Pol(G)

)
= {evz : z ∈ GC} ∼= GC
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Remarks

So, the dense subalgebra Pol(G) ⊆ A(G) indeed has more
“information” than A(G) itself, namely the complexification of the
group.
However, if G is noncompact, then Pol(G) isn’t that useful.
(For example, it is not dense in A(G).)
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Motivation made precise

Let G be a noncompact Lie group. We seek to find other dense
subalgebras of the Fourier algebra whose spectra can reveal the structure
of the complexification of the group.
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Complexification of Lie group

G: connected Lie group with Lie algebra g

Definition (Complexification)
A complex Lie group GC is called a complexification of G if

1 G ⊆ GC
2 The Lie algebra of GC is gC := g⊗ C
3 G is the connected subgroup of GC corresponding to the subalgebra

g ≤ gC

(Example)

TC = C×, SU(2)C = SL(2,C), RC = C, SL(2,R)C = SL(2,C)

Not every connected Lie group possesses a complexification.
(e.g., the double cover of SL(2,R))
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Weighted Fourier algebras (Giselsson/Turowska ‘22)
W is called a weight of the Lie group G if

1 W is a positive (unbounded) operator on L2(G)
2 W is invertible and W−1 ∈ VN(G)+
3 W−2 ⊗ W−2 ≤ Γ(W−2)

where Γ is the comultiplication Γ : VN(G) → VN(G)⊗VN(G).

Definition (Weighted Fourier algebras)
The weighted Fourier algebra with weight W is defined as

A(G,W) :=
{〈

f, λ( · )g
〉
: f ∈ L2(G), g ∈ D(W)

}
⊆ A(G).

A(G,W) is a dense subalgebra of A(G).
It is a Banach algebra with the norm∥∥∥〈f, λ( · )g〉∥∥∥

A(G,W)
:=

∥∥∥〈f, λ( · )Wg
〉∥∥∥

A(G)
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The spectrum of A(G,W): the compact case

Ludwig/Spronk/Turowska ‘12
G: compact connected Lie group
For any weight W of G, the following dense inclusions hold.

Pol(G) ⊆ A(G,W) ⊆ A(G)

Hence, for any weight W,

G ∼= SpecA(G) ⊆ SpecA(G,W) ⊆ SpecPol(G) ∼= GC.

GC is covered by the spectra of weighted Fourier algebras. I.e.,

GC =
⋃
W

SpecA(G,W).
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The spectrum of A(G,W): a few noncompact cases

Ghandehari/Lee/Ludwig/Spronk/Turowska, ‘22
G = H3,H3

r ,E(2), or Ẽ(2)
∃A ⊆ A(G) a dense subalgebra s.t.

1 Every u ∈ A admits a holomorphic extension to GC.
2 The following correspondence is a bijection.

GC 3 z 7−→ evz ∈ SpecA

3 For some weights W, the dense inclusions A ⊆ A(G,W) ⊆ A(G) hold.
Thus, G ∼= SpecA(G) ⊆ SpecA(G,W) ⊆ SpecA ∼= GC.

GC is covered by the spectra of weighted Fourier algebras. I.e.,

GC =
⋃
W

SpecA(G,W).
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A limitation

The definition of A in this work was highly dependent on the
representation theory of each group.
As a result, it could not be generalized to more general class of Lie
groups.
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The spectrum of A(G,W): general case

L./Lee, ‘24
G: any connected Lie group which has a complexification GC

We constructed a family of subalgebras Ar ⊆ A(G) (0 < r ≤ ∞),
called analytic subalgebras with the following properties:

There exists 0 < R ≤ ∞ such that for all 0 < r ≤ R,
1 Every u ∈ Ar admits a holomorphic extension to a neighborhood Gr in

GC containing G.
2 The following correspondence is an injection.

Gr 3 z 7−→ evz ∈ SpecAr

3 For a class of weights W depending on r, the following dense inclusions
hold.

Ar ⊆ A(G,W) ⊆ A(G)
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The spectrum of A(G,W): general case

L./Lee, ‘24
For this class of weights W,

SpecA(G,W) ⊆ Gr ⊆ SpecAr.

Gr =
⋃!

W SpecA(G,W).
If G is simply-connected nilpotent, we can choose R = ∞ and thus

GC =
⋃
r>0

Gr =
!⋃

W
SpecA(G,W).

Heon Lee (李宪) (SNU) Analytic subalgebras April 17, 2024 19 / 37



Table of Contents

1 Basic notions

2 Motivation

3 The spectra of weighted Fourier algebras

4 Technical details

5 Generalization to compact quantum groups

Heon Lee (李宪) (SNU) Analytic subalgebras April 17, 2024 20 / 37



The construction of analytic subalgebras
Motivation

When G is compact, each u =
〈
v, π( · )w

〉
∈ Pol(G) admits a

holomorphic extension

GC 3 s expG(iX) 7−→
〈
v, π̃(s expG(iX))w

〉
=

〈
v, π(s)eiπ∗Xw

〉
∈ C.

Is there a subalgebra A ⊆ A(G) consisting of u =
〈
f, λ( · )g

〉
∈ A(G)

s.t. the following expression makes sense?

G × g 3 (s,X) 7−→
〈
f, λ(s)ei∂λ(X)g

〉
∈ C

Here, ∂λ(X) is the infinitesimal generator of the one-parameter group of
unitaries R 3 t 7−→ λ

(
expG(tX)

)
∈ U

(
L2(G)

)
. E.g.,(

∂λ(X)g
)
(s) = d

dt

∣∣∣∣
t=0

g
(

expG(−tX)s
)
, g ∈ C∞

c (G) ⊆ L2(G).
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The construction of analytic subalgebras

G: connected Lie group which has a complexification GC

For 0 < r ≤ ∞, define

Ha
r :=

{
g ∈ L2(G) : Es(g) < ∞, 0 <∀ s < r

}
where Es : L2(G) → [0,∞] is defined as, for g ∈ L2(G),

Es(g) :=
∞∑

n=0

sn

n!

 ∑
1≤j1,··· ,jn≤d

‖∂λ(Xj1) · · · ∂λ(Xjn)g‖22

 1
2

.

There exists 0 < R ≤ ∞ such that Ha
r is dense in L2(G) for all

0 < r ≤ R (Nelson, 1959).
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The construction of analytic subalgebras

Let g be the Lie algebra of G with a basis {X1, · · · ,Xd}.
Define a norm | · | : g → [0,∞) by

∣∣a1X1 + · · ·+ adXd
∣∣ =

 d∑
j=1

a2j

 1
2

, aj ∈ R

and denote gr := {X ∈ g : |X| < r}.

Proposition
For each f ∈ Ha

r , the map

gr 3 X 7−→ ei∂λ(X)f ∈ L2(G)

is well-defined.
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The construction of analytic subalgebras
Definition (Analytic subalgebras)
Fix 0 < r ≤ ∞. Let

A′
r :=

{〈
f, λ( · )g

〉
: f ∈ L2(G), g ∈ Ha

r

}
⊆ A(G).

Its completion, denoted as Ar, w.r.t. a certain locally convex topology
becomes a subalgebra of A(G), called the analytic subalgebra of A(G)
with radius r.

Each element u =
〈
f, λ( · )g

〉
∈ A′

r with g ∈ Ha
r admits an extension

G × gr 3 (s,X) 7−→
〈
f, λ(s)ei∂λ(X)g

〉
∈ C.

* Why completion? For all f, f′ ∈ L2(G) and g, g′ ∈ Ha
r ,〈

f, λ( · )g
〉 〈

f′, λ( · )g′
〉
=

∫
G

〈
Ft, λ( · )Gt

〉
dt

where Ft(·) = f(· t)f′(·) ∈ L2(G), Gt(·) = g(· t)g′(·) ∈ Ha
r .
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The spectrum of Ar: holomorphic evaluations
L./Lee ‘24
There exists 0 < R ≤ ∞ such that for all 0 < r ≤ R,

The following subset is a neighborhood of G in GC.

Gr :=
{

s expGC(iX) ∈ GC : s ∈ G, X ∈ gr
}

u =
〈
f, λ( · )g

〉
∈ A′

r with g ∈ Ha
r admits a (unique) holomorhpic

extension to Gr given by

ũ : Gr 3 s expGC(iX) 7−→
〈
f, λ(s)ei∂λ(X)g

〉
∈ C.

Each element of Ar admits a (unique) holomorphic extension to Gr.
Thus, each element z ∈ Gr gives rise to a homomorphism
evz : Ar 3 u 7→ ũ(z) ∈ C and we get an embedding

Gr 3 z 7−→ evz ∈ SpecAr.
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The spectra of some weighted Fourier algebras

L./Lee ‘24
For each X ∈ g, the operator e|∂λ(X)| is a weight of G.
For all 0 < r ≤ R,

Ar ⊆ A
(
G, e|∂λ(X)|)

densely for all X ∈ gr.
Hence, for all X ∈ gr, we get an embedding provided by the restriction
map

SpecA
(
G, e|∂λ(X)|) ↪−→ SpecAr.
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The spectra of some weighted Forier algebras

L./Lee ‘24
In this identification,

SpecA
(
G, e|∂λ(X)|) ∼= {

s expGC(itX) : s ∈ G, −1 ≤ t ≤ 1
}

⊆ Gr ⊆ SpecAr

for all X ∈ gr.
Hence,

Gr =
⋃

X∈gr

SpecA
(
G, e|∂λ(X)|).

If G is simply-connected nilpotent, we can choose R = ∞ and thus

GC =
⋃
X∈g

SpecA
(
G, e|∂λ(X)|).
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Restrictions on R

Here, I collect some issues that impose restrictions on the choice of
0 < R ≤ ∞ such that the above statements hold.

1 Ha
R must be dense in L2(G).

2 The following map is a diffeomorphism.

G × gR 3 (s,X) 7−→ s expGC
(iY) ∈ GR

3 There exists a neighborhood 0 ∈ U ⊆ g such that for all X ∈ U and
Y ∈ gR,

expGC
(X) expGC

(iY) = expGC

(
Φ(X, iY)

)
holds where Φ : U × igR → gC is given by the
Baker-Campbell-Hausdorff formula.

If G is simply-connected nilpotent, all these conditions are satisfied for
R = ∞.

Heon Lee (李宪) (SNU) Analytic subalgebras April 17, 2024 28 / 37



Table of Contents

1 Basic notions

2 Motivation

3 The spectra of weighted Fourier algebras

4 Technical details

5 Generalization to compact quantum groups

Heon Lee (李宪) (SNU) Analytic subalgebras April 17, 2024 29 / 37



Generalization to compact quantum groups
C(G): compact quantum group.
The Fourier algebra of G is defined as

A(G) :=
{

VN(G) 3 T 7→ 〈ξ,Tη〉
∣∣∣ ξ, η ∈ L2(G)

}
= VN(G)∗.

The definition of weight carries over to the quantum case. So,

A(G,W) :=
{
〈ξ, (·)η〉

∣∣∣ξ ∈ L2(G), η ∈ D(W)
}
.

The following is the matrix coefficients algebra:

Pol(G) :=
{
〈v, π(·)w〉

∣∣∣G π−→ GL(V) f. dim’l repn and v,w ∈ V
}

For any weight W of G, the following dense inclusions hold.

Pol(G) ⊆ A(G,W) ⊆ A(G)
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Generalization to compact quantum groups

Hence, for any weight W of G,

G ∼= SpecA(G) ⊆ SpecA(G,W) ⊆ SpecPol(G) ∼= GC.

And
GC =

⋃
W

SpecA(G,W).

Problems
A(G) being noncommutative, SpecA(G) doesn’t give us useful
information about the quantum group G.
What would be “the complexification of G”?
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The case SUq(2)
C(SUq(2)) is the universal C∗-algebra generated by the generators
α, γ and the relations(

α −qγ∗
γ α∗

)
∈ M2

(
C(SUq(2))

)
is a unitary matrix.

The “quantum double” of SUq(2), which, as a C∗-algebra, is

C0(SLq(2,C)) := C(SUq(2))⊗ c0(ŜUq(2)).

It was introduced in [Podleś & Woronowicz ’1990] and is widely
considered as “the complexification of SUq(2)”.
Can we recover the following set from A(SUq(2),W) for some classes
of weights W?

spC0(SLq(2,C))

:= {[π] : C0(SLq(2,C))
π−→ B(H) is an irreducible ∗-repn}
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The case SUq(2)

The set

C(SLq(2,C))
:= {The “unbounded elements affiliated to C0(SLq(2,C))}

is a ∗-algebra that contains C0(SLq(2,C)) as a ∗-subalgebra.
There is an algebra embedding

i : Pol(SUq(2)) ↪→ C(SLq(2,C)).

Every π ∈ spC0(SLq(2,C)) extends to a ∗-representation
π̃ : C(SLq(2,C)) → B(Hπ), inducing an algebra representation

ϕπ : Pol(SUq(2))
i−→ C(SLq(2,C))

π̃−→ B(Hπ).
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The case SUq(2)
Fix a weight W on SUq(2). We say that π ∈ spC0(SLq(2,C)) is
W-extendible if

A(SUq(2),W)

Pol(SUq(2)) B(Hπ).

∃φ̃π

φπ

such that ϕ̃π is completely-bounded.

Franz/Lee ’21
For any weight W on SUq(2),

spC(SUq(2)) ⊆ {π ∈ spC0(SLq(2,C)) : π W-extendible} ⊆ spC0(SLq(2,C))

and

spC0(SLq(2,C)) =
⋃
W
{π ∈ spC0(SLq(2,C)) : π W-extendible}.
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The general case

Let K be a compact semisimple Lie group and G its complexification.
One can analogously define the compact quantum group C(Kq) and
its “complexification” C0(Gq).
There is an algebra embedding i : Pol(Kq) → C(Gq) and every
π ∈ spC0(Gq) extends to C(Gq), inducing an algebra representation

ϕπ : Pol(Kq)
i−→ C(Gq)

π̃−→ B(Hπ).
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The general case
Fix a weight W on Kq. We say that π ∈ spC0(Gq) is W-extendible if

A(Kq,W)

Pol(Kq) B(Hπ).

∃φ̃π

φπ

such that ϕ̃π is completely-bounded.

L./Voigt ’24
For any weight W on Kq,

spC(Kq) ⊆ {π ∈ spC0(Gq) : π W-extendible} ⊆ spC0(Gq)

and
spC0(Gq) =

⋃
W
{π ∈ spC0(Gq) : π W-extendible}.
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Thank you for your attention
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