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Abstract

Starting from an age-structured diffusive population growth law for single species in a dis-
crete and periodic habitat, we formulate a stage structured population model with spatially
periodic dispersal, mortality and recruitment. With a KPP type setting, after establishing
the fundamental solution of a discretized heat equation with spatially periodic dispersal,
we apply some recently developed dynamical system theories to obtain the existence of the
spreading speed and its coincidence with the minimal speed of pulsating waves, as well as
the variational characterization of the speed, by which we further analyze how the habitat
periodicity influences the speed. In particular, there is a unique optimal dispersal strategy
to maximize the speed.
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1 Introduction

How does the spatial heterogeneity influence the species invasion is a challenging question. Many
works have been devoted to the study of the dramatic influence of spatial heterogeneity on the
complex invasive dynamics. Among the various kinds of heterogeneities, a typical one is the
periodically fragmental habitat [12], such as corn and paddy fields. Recent studies also reveal
that river bottom may provide a periodical habitat for the benthos due to the water drifts [19].
Traveling waves and spreading speed are two useful mathematical objectives for the study of
invasion phenomena [9, 14, 2]. In heterogeneous habitat, new mathematical objective arise, such
as pulsating waves, generalized transition waves and global mean speed, see [20, 26, 25, 5, 6]
and references therein.

In this paper, we are interested in the scenario that how a periodic discrete habitat influences
the invasion speed of a stage-structured species. For this purpose, we ideally assume that the
one-dimensional discrete habitat Z can be classified into two classes: even locations are referred
to good and odd locations bad. With such an assumption, we will formulate the following model®

u′i(t) = α[ui−1(t) + ui+1(t)]− 2βui(t)− γui(t) + f(ui(t− τ)), i is even,
u′i(t) = β[ui−1(t) + ui+1(t)]− 2αui(t)− ηui(t), i is odd,

(1.1)
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where ui(t) represents the density of the matured population at time t and location i, α is
the dispersal rate from bad locations to their adjacent good locations, β is the dispersal rate
from good locations to their adjacent bad locations, γ and η are the mortality rates, f is the
recruitment for mature population in good locations, and τ is the maturation age. The derivation
details of (1.1) will be given in the next section.

Models in discrete habitat are known as ”patchy models”, which had been widely established
for the study of disease spread and species invasion, for instance we refer to [1, 7, 8, 10, 15, 24].
Below we review some studies on patchy models of the Fisher-KPP type, by which our study is
highly motivated. In 1993, Zinner, Harris and Hudson [27] studied the invasion dynamics of the
following model

u′i = d(ui−1 − 2ui + ui+1) + ui(1− ui), (1.2)

which is a discretized version of the Fisher-KPP equation. Weng, Huang and Wu [22] introduced
global interactions (induced by time delay) into (1.2) by modeling the invasion of a stage-
structured species:

u′i(t) = d(ui−1(t)− 2ui(t) + ui+1(t))− ui(t) +
∑
k∈Z

βkf(ui−k(t− τ)), (1.3)

where βk ≥ 0 and
∑
k∈Z βk = 1. Guo and Hamel [11] investigated the spatially periodic Fisher-

KPP equation in discrete habitat:

u′i = di+1(ui+1 − ui) + di(ui−1 − ui) + fi(ui), (1.4)

where dj = di−N for some N > 0 and all i ∈ Z. Wu and Hsu [23] combined the spatially periodic
heterogeneity in (1.4) and the global interactions in (1.3) to obtain a general model

u′i(t) = di+1(ui+1(t)− ui(t)) + di(ui−1(t)− ui(t)) + fi(ui(t),
∑
k∈Z

βk(ui−k(t− τ))). (1.5)

For (1.3)-(1.5), with suitable assumptions the Fisher-KPP structure can be verified, and the
authors have proved the existence of the spreading speed and its coincidence of the minimal wave
speed, as well as the variational characterization of the spreading speed[22, 11, 23]. Moreover,
for (1.4) the authors [11] also showed the convergence of the spreading speed in discrete habitat
to that in continuous habitat in a certain sense. For (1.5), the authors [23] also showed that the
periodicity in the recruitment term can increase the speed in a certain sense when diffusion is
homogeneous (i.e. di ≡ d, i ∈ Z) and τ = 0. The exponential stability of the pulsating waves
is also obtained in [23]. But it is still unclear how the spatially periodic diffusion influences the
speed. Hu and Li [13] studied spatial dynamics for a lattice equation in shifting environment, in
which the fundamental solution to a linear lattice equation in homogeneous media is established
by using modified Bessel functions. Liang and Zhou in [18] characteized the spreading speeds
of the KPP type lattice equation in a class of general heterogeneous media by generalized
eigenvalues.

In (1.1), the species’ dispersal is assumed to have a preference to good locations. And the
resulting diffusion strategy in (1.1) is different from (1.4) and (1.5). With such a directional
diffusion, we intend to study how it influences the invasion speed under a KPP type setting.
In particular, we note that in bad locations, there is no birth. As such, large dispersal to
bad locations (i.e., β > β0 for some positive β0) may lead to the species distinction, while no
diffusion to bad locations (i.e., β = 0) leads to disconnection of locations, which immediately
implies invasion failure. This intuition then gives rise to the question that how to choose an
appropriate dispersal strategy to maximize the invasion speed, which is increasing in both the
population density ui and diffusion coefficient β, while ui is decreasing in β.
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Define

Γ := γ +
2βη

2α+ η
. (1.6)

Assume that f ∈ C1 and there exists w∗ > 0 such that

f(w)− Γw

{
= 0, w = 0 or w∗,

> 0, w ∈ (0, w∗)
(1.7)

and
f ′(w) ≥ 0, (f(w)/w)′ ≤ 0, w ∈ (0, w∗]. (1.8)

From condition (1.7) we see that 0 is a steady state of (1.1). From condition (1.8) we see that
f is nondecreasing and sublinear, which, combining with condition (1.7), further implies that
state 0 is linearly unstable and there is a unique positive steady state

U∗ := {u∗i }i∈Z with u∗i = u∗i+2 for i ∈ Z. (1.9)

A typical example satisfying (1.7) and (1.8) is f(w) = pw
q+w , p > Γ, q > 0.

Recall that a positive number c∗ is the spreading speed of (1.1) provided that for any initial
value φ ∈ C([−τ, 0]× Z,R) with 0 ≤ φ(θ, i) ≤ u∗i and φ(θ, i) ≡ 0 when (θ, i) ∈ [−τ, 0]× [−L,L]
for some L > 0, the following limits hold:

lim
t→∞

max
|i|≥(c∗+ε)t

|u(t, i)| = 0 = lim
t→∞

max
|i|≤(c∗−ε)t

|u(t, i)− u∗i |, ∀ε ∈ (0, c∗). (1.10)

A function W (i, ξ), i ∈ Z, ξ ∈ R is a pulsating wave of (1.1) with average speed c ∈ R provided
that W (i, i− ct) is a solution of (1.1) and

W (i,−∞) = u∗i , W (i,+∞) = 0, W (i, ξ) = W (i+ 2, ξ), i ∈ Z, ξ ∈ R. (1.11)

By (1.11), we see that if the average speed c 6= 0 then the solution u(t, i) := W (i, i− ct) has the
recurrence property u(t + 2n

c , i + 2n) = u(t, i) for all t ∈ R and i, n ∈ Z. If c = 0 then u(t, i)
reduces to a steady state of (1.1).

Theorem 1.1. Assume that (1.7) and (1.8) hold. Then (1.1) admits the spreading speed c∗,
which coincides with the minimal speed of pulsating waves. Moreover,

c∗ = min
µ>0

λ(µ)

µ
, (1.12)

where λ(µ) is the unique positive solution of −(λ+ 2β + γ) + αβ(eµ+e−µ)2

λ+2α+η + f ′(0)e−λτ = 0.

By Theorem 1.1, we see that with the KPP structure if the population growth is big enough
(f ′(0) > Γ), then the species can spread out and the spreading speed coincides with the minimal
speed of the pulsating waves.

By conditions (1.7) and (1.8), we infer that f ′(0) = limw→0
f(w)
w ≥ f(w

∗
2
)

w∗
2

> Γ. In view of the

definition of Γ, we see that f ′(0) > Γ is equivalent to β < β0, where β0 is defined by

β0 :=
(f ′(0)− γ)(2α+ η)

2η
. (1.13)

Theorem 1.2. There exists β1 ∈ (0, β0) such that c∗ = c∗(β) increases in β ∈ (0, β1) and
decreases in β ∈ (β1, β0). Further,

max
β∈(0,β0)

c∗(β) = c∗(β1) =
λ∗

cosh−1
(»

λ∗+2α+η
2α

) , (1.14)

where λ∗ is the unique positive solution of the transcendental equation −(λ+γ)+f ′(0)e−λτ = 0.

3



By Theorem 1.2, we see that bad locations are not good for the population growth, but to
spread out the species has to disperse to bad locations, scarificing a part of the population. To
maximize the invasion speed, the species has an optimal dispersal strategy in terms of β = β1.
Further, for the classical KPP equation ut = uxx + f(u), it is well-known that the spreading

speed is 2
»
f ′(0), which has the same order as

»
f ′(0) when f ′(0)→ +∞. But for the case we

studied in spatially periodic habitat, if the species always choose the optimal dispersal strategy
β = β1 then the speed has a higher order than

»
f ′(0) when f ′(0)→∞. Indeed, β1 depends on

f ′(0) and limf ′(0)→∞ β1 =∞. By (1.14) we can infer that

lim
f ′(0)→∞

lnλ∗

λ∗
c∗(β1) = 2, (1.15)

where λ∗ increases in f ′(0) with limf ′(0)→∞ λ
∗ =∞. Meanwhile, assuming τ = 0 for the sake of

simplicity, we have λ∗ = f ′(0)− γ, and hence,

lim inf
f ′(0)→∞

lnλ∗

λ∗

»
f ′(0) = lim inf

x→∞
lnx√
x

= 0. (1.16)

Therefore, by (1.15) and (1.16) we see that if the initial growth rate is sufficiently large (i.e.,
f ′(0) � 1) and τ is small, then the species may sacrifice a large number of population to

reach a spreading speed having higher order than
»
f ′(0), by taking the advantage of habitat

periodicity. This is not seen in heterogeneous habitat. For the case τ > 0, one may obtain a
similar conclusion.

Remark 1.3. β1 is the unique zero of an implicit function, see (5.31), which provides a way to
numerically calculate the optimal dispersal rate.

Note that Γ = Γ(η) decreases in η and limη→∞ Γ(η) = 2β + γ. Define

η0 :=


2α(f ′(0)−γ)
2β+γ−f ′(0) , if f ′(0) ∈ (Γ, 2β + γ),

+∞, if f ′(0) ≥ 2β + γ.
(1.17)

Theorem 1.4. c∗ = c∗(η) decreases in η to zero as η increases to η0.

By Theorems 1.4 we see that if the population growth is big enough (f ′(0) > 2β+γ), then no
matter how big the death rate η in bad locations is, the species can always successfully invade,
though the speed decreases in η.

In a companion paper [3], we study the scenario that a strong Allee effect is assumed in
birth. Then a bistable structure and propagation failure may appear if the diffusion rate β is
in appropriate ranges. In another companion paper [4], the first author and her collaborators
studied the bifurcation dynamics of the model (1.1) when the birth function is of unimodal type.

The rest of this paper is organized as follows. In section 2, model derivation details are
presented. In section 3, the fundamental solution of a discretized heat equation with periodic
diffusion is obtained. Sections 4 and 5 are devoted to the proofs of the main theorems.

2 Model formulation and preliminary

Let ρ(t, i, a) be the population density of the species with age a and at time t ≥ 0 and location
i ∈ Z. Assume that the evolution of the species obeys the following growth law:Å
∂

∂t
+

∂

∂a

ã
ρ(t, i, a) =

∑
j 6=i,j∈Z

dij(a)ρ(t, j, a)−
∑

j 6=i,j∈Z
dji(a)ρ(t, i, a)−r(i, a)ρ(t, i, a), t > 0, i ∈ Z,

(2.1)
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where r(i, a) is the death rate at location i, and dji(a) is the diffusion rate from location i to
location j. The derivation of diffusive delayed population models based on the age-structured
growth law may go back to the work [21] . But for readers’ convenience, we give the details
below.

The biological scenario of interest is the one-dimensional periodic habitat Z. For this purpose,
we ideally divide Z into two classes. If i is even, then we call location i good; if i is odd, then
we call location i bad. We assume that population has very distinct behaviors in good and bad
locations, which will be specified later.

Let τ > 0 be the maturation time of the species. Then the population can be classified into
two stages by age: mature and immature. An individual is assumed to belong to mature stage
if and only if its age is not less than τ . Hence, the improper integral

ui(t) =

∫ ∞
τ

ρ(t, i, a)da (2.2)

denotes the density of mature population at time t and location i.
We make the following biological assumptions:

(A1) All individuals in the same stage and the same class of locations share the same charac-
teristics and behaviors;

(A2) Diffusion only happens in mature stage and symmetrically between adjacent locations;

(A3) There are no newborns in bad locations.

By (A1), we accordingly assume that

di,j(a) =

{
dMi,j , a ≥ τ,
dIi,j , 0 < a < τ,

r(i, a) =

{
rMi , a ≥ τ,
rIi , 0 < a < τ,

(2.3)

where dMi,j , d
I
i,j and rMi , r

I
i are some constants depending on locations. Combining with (A2), we

further assume that

dIi,j = 0, ∀i, j ∈ Z, dMi,j =


0, |i− j| ≥ 2,

βM , i is odd and j = i± 1,

αM , i is even and j = i± 1

(2.4)

and

rMi =

{
ηM , i is odd,

γM , i is even,
rIi =

{
ηI , i is odd,

γI , i is even,
(2.5)

where αM , βM , γM , ηM , γI and ηI are all positive constants. By (A3), we assume that

ρ(t, i, 0) =

{
0, i is odd,

b(ui(t)), i is even,
(2.6)

where b is assumed to be birth function. A typical example is the Ricker type function b(s) =
pse−qs, p, q > 0. With the aforementioned assumptions, we differentiate the density u(t, i) of
mature population with respect to time t, yielding

u′i(t) =

∫ +∞

τ

∂

∂t
ρ(t, i, a)da

=

∫ +∞

τ

− ∂

∂a
ρ(t, i, a)−

∑
j 6=i,j∈Z

dMji (a)ρ(t, i, a)+
∑

j 6=i,j∈Z
dMij (a)ρ(t, j, a)−rMi ρ(t, i, a)

 da
=

®
ρ(t, i, τ) + βM [ui+1(t) + ui−1(t)]− 2αMui(t)− ηMui(t), i is odd

ρ(t, i, τ) + αM [ui+1(t) + ui−1(t)]− 2βMui(t)− γMui(t), i is even,
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where the biologically reasonable assumption ρ(t, i,∞) = 0 was made and used. To get a closed
form of the model, we next calculate ρ(t, i, τ) in term of u(t, i) in a certain way. Indeed, ρ(t, i, τ)
represents the newly matured population at time t and location i. It is the evolution result of
newborns at t− τ and location i since immature population does not move. That is, there is an
evolution relation between the quantities ρ(t, i, τ) and ρ(t− τ, i, 0). More precisely, the relation
is the time-τ solution map of the following evolution equation

∂

∂s
z(s, i) = −rIi z(s, i), 0 ≤ s ≤ τ

z(0, i) = ρ(t− τ, i, 0),
(2.7)

which, combining with (2.4)-(2.6), implies that

ρ(t, i, τ) =

{
0, i is odd,

e−γ
Iτ b(ui(t− τ)), i is even.

(2.8)

Consequently, we obtain the following system modeling the mature population in discrete peri-
odic habitat subject to the biological assumptions (A1)-(A3):{

u′i(t) = β[ui+1(t) + ui−1(t)]− 2αui(t)− ηui(t), i is odd,

u′i(t) = α[ui+1(t) + ui−1(t)]− 2βui(t)− γui(t) + µb(ui(t− τ)), i is even,
(2.9)

where the superscript M was dropped and

µ = µ(τ) := e−γ
Iτ (2.10)

is the survival rate from newborn to being adult in good locations. Setting µb(u) = f(u) we
obtain the model (1.1).

Let R+ = [0,+∞). Define

X = C([−τ, 0],R), X+ = C([−τ, 0],R+). (2.11)

For u ∈ X, define
‖u‖X = max

θ∈[−τ,0]
|u(θ)|. (2.12)

For any u and v in X we write u ≥ v if u − v ∈ X+, u > v if u ≥ v but u 6≡ v, and u � v if
u− v ∈ IntX+, where IntX+ denotes the interior of X+. Then (X,X+, ‖ · ‖) is a Banach lattice.
For r2 > r1 in X, define the order interval [r1, r2]X by

[r1, r2]X := {u ∈ X : r2 ≥ u ≥ r1}.

For the sake of convenience, we often write Xr instead of [0, r]X for r > 0 in X.
Let C be the space of all uniformly bounded functions from Z to X. We equip C with the

compact open topology, that is, φn converges to φ in C if and only if φn(i) converges to φ(i) in
X for each i ∈ Z. Such a topology can be induced by the following norm

‖φ‖C :=
∞∑
k=1

max|i|≤k |φ(i)|X
2k

. (2.13)

For any φ and ψ in C, we write φ ≥ ψ if φ(i) ≥ ψ(i) for all i ∈ Z, φ > ψ if φ ≥ ψ but φ 6= ψ,
and φ � ψ if there exists Γ = Γ(φ, ψ) > 1 such that φ(i) > Γψ(i) for all i ∈ Z. For β2 > β1 in
C, we define the order interval [β1, β2]C by

[β1, β2]C := {φ ∈ C : β2 ≥ φ ≥ β1}. (2.14)
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For the sake of convenience, we often write Cβ instead of [0, β]C for β > 0 in C.
Define

O := {all uniformly bounded functions from Z to R }. (2.15)

Since any real number is a constant function in X, we regard O as a subspace of C, inheriting
the topology and ordering of C.

In the following we define a class of infinite dimensional matrices and their actions on O in
the way that we will used. For any sequence of nonnegative real numbers pi,j , i, j ∈ Z with∑

j∈Z
pi,j < +∞, uniformly in i ∈ Z, (2.16)

we define P : O → O by
P [φ](i) =

∑
j∈Z

pi,jφ(j). (2.17)

For such pi,j and P , we will use (P )i,j to denote pi,j and (pi,j)i,j∈Z to denote P for the sake
of convenience. For such two operators P = (pi,j)i,j∈Z and Q = (qi,j)i,j∈Z, we may define
PQ : O → O by (PQ)i,j =

∑
k∈Z pi,kqk,j .

Let

aij =


β, j = i± 1 and i is even

α, j = i± 1 and i is odd

0, elsewhere

and bij =


−2β − γ, j = i is even

−2α− η, j = i is odd

0, elsewhere.

(2.18)

Clearly, both ai,j and bi,j satisfy (2.16). Hence, we may similarly define linear operators A and
B from O → O by

A[φ](i) =
∑
j∈Z

aijφ(j), B[φ](i) =
∑
j∈Z

bijφ(j). (2.19)

Further, we may define the n-th iterations of A and B, respectively. For example,

(A2)i,j =
∑
k∈Z

(A)i,k(A)k,j =
∑
k∈Z

ai,kak,j . (2.20)

For t ≥ 0, define U(t) ∈ O with

U(t)(i) = ui(t), i ∈ Z. (2.21)

Define F : O → O by

F [U(t)](i) :=

{
f(ui(t)), i is even,

0, i is odd.
(2.22)

Then, with these notations we can write (1.1) as the following form:

U ′(t) = A[U(t)] +B[U(t)] + F (U(t− τ)), (2.23)

which consists of countably many coupled delayed differential equations.

3 Fundamental solution matrix of U ′ = AU

The linear system of countably many ordinary differential equations U ′ = AU can be regarded
as a discrete analogue of ut = 1

d(x)(d(x)ux)x, x ∈ R with periodic diffusion coefficient d(x). The

purpose of this section is to find the fundamental solution matrix of U ′ = AU .
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We will extend the concept of matrix exponential from finite to infinite dimensional matrix.
Surprisingly it is not as obvious as we expect. We first formally define etA using the addition
of a series of matrices. Then we prove that etA maps O to O, where O is defined as in (2.15).
Finally we show that etA is linear, strongly positive and continuous with respect to the compact
open topology. Further, it is the fundamental solution matrix of U ′ = AU .

Define formally etA by

etA[φ](i) :=
∑
j∈Z

∞∑
n=0

tn(An)i,j
n!

φ(j) (3.24)

and (etA)i,j by

(etA)i,j :=
∞∑
n=0

tn(An)i,j
n!

, (3.25)

where A0 is naturally understood as the identity map from O to O. More precisely, (A0)i,j = 1
if i = j and (A0)i,j = 0 if i 6= j. By the definition of A and An, we can infer that

(An)i,j =
∑
k=i±1

(A)i,k(A
n−1)k,j ≤ sup{α, β}[(An−1)i−1,j + (An−1)i+1,j ], (3.26)

and inductively,
0 ≤ (An)i,j ≤ 2n(sup{α, β})n, (3.27)

from which we see that
∑∞
n=0

tn(An)i,j
n! < +∞ and (etA)i,j is well-defined for any i, j ∈ Z and

t ≥ 0.
The main result of this section is as follows.

Theorem 3.1. For t ≥ 0, etA is a linear, strongly positive and continuous map from O to O.
Further, etA is the fundamental solution matrix of U ′ = AU .

Such a result has its own interest and will also be essentially helpful to define the solution
semiflow of the nonlinear problem (2.23) in the next section, where we apply some dynamical
system theories to study the propagation dynamics of (2.23).

To prove Theorem (3.1), we proceed with a series of lemmas. The first one is the explicit
expression of (An)i,j .

Lemma 3.2. (An)i,j , n ≥ 1 has the following expression:

(An)i,j =

Å
β

α

ã (−1)i+n+(−1)i

4

(αβ)
n−1
2

n−1∑
m=0

Ç
n− 1

m

å
ai−(n−1−2m),j , i, j ∈ Z. (3.28)

Proof. We proceed with the induction argument.
We first prove the case where n is odd. Since (A)i,j = ai,j , i, j ∈ Z, it then follows that (3.28)

holds for n = 1. Fix k ∈ Z with k ≥ 1. Suppose (3.28) holds for n = 2k − 1, i.e.,

(A2k−1)i,j = (αβ)k−1
2k−2∑
m=0

Ç
2k − 2

m

å
ai−(2k−2−2m),j . (3.29)

Below we prove (3.28) also holds for n = 2k + 1. Note that

(A2k+1)i,j = (A2k−1A2)i,j =
∑
r∈Z

(A2k−1)i,r(A
2)r,j (3.30)
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and

(A2)r,j =
∑
s∈Z

ar,sas,j = ar,r−1ar−1,j + ar,r+1ar+1,j = ar,r−1[ar−1,j + ar+1,j ] (3.31)

in virtue of the definition of ai,j in (2.18). Combining (3.29)-(3.31) leads to

(A2k+1)i,j =
∑
r∈Z

(αβ)k−1
2k−2∑
m=0

Ç
2k − 2

m

å
ai−(2k−2−2m),rar,r−1[ar−1,j + ar+1,j ]. (3.32)

By again the definition of ai,j , we see that

ai−(2k−2−2m),rar,r−1 =

{
αβ, r = i− (2k − 2− 2m)± 1,

0, elsewhere,
(3.33)

which, combining with (3.32), implies that

(A2k+1)i,j

= (αβ)k
2k−2∑
m=0

Ç
2k − 2

m

å ∑
r=i−(2k−2−2m)±1

[ar−1,j + ar+1,j ]

= (αβ)k
2k−2∑
m=0

Ç
2k − 2

m

å
[ai−(2k−2m),j + 2ai−(2k−2−2m),j + ai−(2k−4−2m),j ], (3.34)

which consists of a linear combination of the following terms:

ai−(2k−2s),j , s, k ∈ Z with 0 ≤ s ≤ 2k.

Reorganizing the order of sums in (3.34) we obtain the coefficients (denoted by cs) for ai−(2k−2s),j , 0 ≤
s ≤ 2k. They read

cs(αβ)−k =



(2k−2
0

)
, s = 0,(2k−2

1

)
+ 2

(2k−2
0

)
, s = 1,(2k−2

s

)
+ 2

(2k−2
s−1

)
+
(2k−2
s−2

)
, 2 ≤ s ≤ 2k − 2,

2
(2k−2
2k−2

)
+
(2k−2
2k−3

)
, s = 2k − 1,(2k−2

2k−2
)
, s = 2k.

After computing these binomial coefficients we arrive at

cs(αβ)−k =

Ç
2k

s

å
, 0 ≤ s ≤ 2k, (3.35)

and hence,

(A2k+1)i,j = (αβ)k
2k∑
s=0

Ç
2k

s

å
ai−(2k−2s),j , (3.36)

which is exactly (3.28) with n = 2k + 1.
Next we prove (3.28) when n is even. From (3.31) and the definition of ai,j we see that

(A2)i,j = ai,i−1[ai−1,j + ai+1,j ] =

{
α(ai−1,j + ai+1,j), i is odd;

β(ai−1,j + ai+1,j), i is even.
(3.37)
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Therefore, (3.28) is true for n = 2. Fix k ∈ Z with k ≥ 1. Suppose (3.28) holds for n = 2k, that
is,

(A2k)i,j =

Å
β

α

ã (−1)i

2

(αβ)
2k−1

2

2k−1∑
m=0

Ç
2k − 1

m

å
ai−(2k−1−2m),j . (3.38)

Below we prove it is also true for n = 2k + 2. Indeed, note that

(A2k+2)i,j

= (A2kA2)i,j

=
∑
r∈Z

(A2k)i,r(A
2)r,j

=
∑
r∈Z

Å
β

α

ã (−1)i

2

(αβ)
2k−1

2

2k−1∑
m=0

Ç
2k − 1

m

å
ai−(2k−1−2m),rar,r−1[ar−1,j + ar+1,j ] (3.39)

From the definition of aij , we have

ai−(2k−1−2m),rar,r−1 =

{
αβ, r = i− (2k − 1− 2m)± 1,

0, elsewhere.

Hence, (3.39) becomes

(A2k+2)i,j

=

Å
β

α

ã (−1)i

2

(αβ)
2k+1

2

2k−1∑
m=0

Ç
2k − 1

m

å ∑
r=i−(2k−1−2m)±1

[ar−1,j + ar+1,j ]

=

Å
β

α

ã (−1)i

2

(αβ)
2k+1

2

2k−1∑
m=0

Ç
2k − 1

m

å
[ai−(2k−2m),j + 2ai−(2k−2−2m),j + ai−(2k−4−2m),j ],

which consists of a linear combination of the following terms:

ai−(2k+1−2s),j , s, k ∈ Z with 0 ≤ s ≤ 2k + 1.

Reorganizing the order of sums in (5.16) we obtain the coefficients (denoted by ds) for ai−(2k+1−2s),j
with 0 ≤ s ≤ 2k + 1. They read

ds =

Å
β

α

ã (−1)i

2

(αβ)
2k+1

2



(2k−1
0

)
, s = 0,(2k−1

1

)
+ 2

(2k−1
0

)
, s = 1,(2k−1

s

)
+ 2

(2k−1
s−1

)
+
(2k−1
s−2

)
, 2 ≤ s ≤ 2k − 1,

2
(2k−1
2k−1

)
+
(2k−1
2k−2

)
, s = 2k,(2k−1

2k−1
)
, s = 2k + 1.

After computing these binomial coefficients we arrive at

ds =

Å
β

α

ã (−1)i

2

(αβ)
2k+1

2

Ç
2k + 1

s

å
, 0 ≤ s ≤ 2k + 1, (3.40)

and hence,

(A2k+2)i,j =

Å
β

α

ã (−1)i

2

(αβ)
2k+1

2

2k+1∑
s=0

Ç
2k + 1

s

å
ai−(2k+1−2s), (3.41)

which is exactly (3.28) with n = 2k + 2.
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With the expression of Ani,j , we can give a bound for (etA)i,j .

Lemma 3.3. There exists C1, C2 > 0, depending only on α and β, such that

0 < (etA)i,i ≤ 1 + C1te
αβt2 + C2(e

αβt2 − 1), i ∈ Z, t > 0 (3.42)

and

0 < (etA)i+l,i ≤ C1t
2
∑

k≥ |l|−1
2

t2k

k!
(αβ)k + C2

∑
k≥ |l|

2

t2k

k!
(αβ)k, i ∈ Z, l ∈ Z \ {0}, t > 0. (3.43)

Before the proof, we remark that such a bound suggests that etA tends to the identity map
in a certain sense as t→ 0 and etA is strongly positive.

Proof. We first show that (etA)i,j > 0 for any i, j ∈ Z and t > 0. Indeed, from (3.28) and
(2.18) we can infer that (An)i,j ≥ 0 for any i, j, n and (An)i,j > 0 for n = |i − j|. Therefore,
(etA)i,j =

∑
n≥0

tn

n! (A
n)i,j ≥ tn

n! (A
n)i,j |n=|i−j| > 0.

Next we derive the upper bound for (etA)i,j . From the expressions of (An)i,j obtained in
Lemma 3.2 we can infer that

0 ≤ (An)i,j ≤ (αβ)
n−1
2 max

{ 
β

α
,

 
α

β

}
n−1∑
m=0

Ç
n− 1

m

å
ai−(n−1−2m),j . (3.44)

By the definition of ai,j we see that

ai−(n−1−2m),j = 0, for |i− j| > n and 0 ≤ m ≤ n− 1. (3.45)

Consequently, we have

n−1∑
m=0

Ç
n− 1

m

å
ai−(n−1−2m),j = 0, when |i− j| > n (3.46)

and

n−1∑
m=0

Ç
n− 1

m

å
ai−(n−1−2m),j ≤ 2 max{α, β} max

0≤m≤n−1

Ç
n− 1

m

å
, when |i− j| ≤ n. (3.47)

Note that

max
0≤m≤n−1

Ç
n− 1

m

å
=


(n−1
n−1
2

)
, n− 1 is even(n−1

n
2

)
, n− 1 is odd.

(3.48)

Define

C1 := 2 max

{ 
β

α
,

 
α

β

}
max{α, β}. (3.49)

Then for k ≥ 1 we obtain

(A2k)i,j

{
= 0, |i− j| > 2k,

≤ C1(αβ)
2k−1

2
(2k−1

k

)
, |i− j| ≤ 2k

(3.50)

and

(A2k−1)i,j

{
= 0, |i− j| > 2k − 1,

≤ C1(αβ)k−1
(2k−2
k−1

)
, |i− j| ≤ 2k − 1

(3.51)
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In the following, we proceed with two cases: (i) i = j; (ii) i 6= j.
Case (i). Note that

(etA)i,i =
∑
n≥0

tn

n!
(An)i,i = 1 +

∑
k≥1

t2k

(2k)!
(A2k)i,i +

∑
k≥1

t(2k−1)

(2k − 1)!
(A2k−1)i,i. (3.52)

Combining with inequalities (3.50), (3.51) and

1

(2k)!

Ç
2k − 1

k

å
≤ 1

k!
,

1

(2k − 1)!

Ç
2k − 2

k − 1

å
≤ 1

(k − 1)!
, (3.53)

we obtain

(etA)i,i ≤ 1 + C1(αβ)−
1
2

∑
k≥1

t2k

k!
(αβ)k + C1t

∑
k≥1

t2k−1

(k − 1)!
(αβ)k−1

≤ 1 + C1(αβ)−
1
2 (eαβt

2 − 1) + C1te
αβt2 . (3.54)

Denoting C1(αβ)−
1
2 by C2 we obtain (3.42).

Case (ii). Using the first part of inequalities (3.48) and (3.51), for l 6= 0 we obtain

(etA)i+l,i =
∑
n≥0

tn

n!
(An)i+l,i =

∑
k≥|j|/2

t2k

(2k)!
(A2k)l+j,l +

∑
k≥(|j|+1)/2

t2k−1

(2k − 1)!
(A2k−1)l+j,l, (3.55)

which, together with the second part of (3.48) and (3.51) as well as (3.53), implies that

(etA)i+l,i ≤ C1(αβ)−
1
2

∑
k≥ |l|

2

t2k

k!
(αβ)k + C1t

∑
k≥ |l|+1

2

t2k−1

(k − 1)!
(αβ)k−1

= C2

∑
k≥ |l|

2

t2k

k!
(αβ)k + C1t

2
∑

k≥ |l|−1
2

t2k

k!
(αβ)k. (3.56)

The proof is complete.

Lemma 3.4. etA : O → O.

Proof. It suffices to show that etA[φ] ∈ O for any φ ∈ O, that is,
∑
j∈Z(etA)i,jφ(j) < +∞

uniformly in i ∈ Z. Since φ ∈ O is uniformly bounded, it remains to prove that there exists
C3 = C3(t) > 0 (independent of i ∈ Z) such that

∑
j∈Z(etA)i,j < C3. Indeed, by the upper

bound obtained in Lemma 3.3 we can infer that∑
j∈Z

(etA)i,j =
∑
l∈Z

(etA)i,i+l =
∑
l∈Z

(etA)i+l,i

≤ 1 + C1te
αβt2 + C2(e

αβt2 − 1) + (C2 + C1t
2)
∑
l∈Z

∑
k≥ |l|−1

2

t2k

k!
(αβ)k

= 1 + C1te
αβt2 + C2(e

αβt2 − 1) + (C2 + C1t
2)
∑
k≥0

(4k + 2)
t2k

k!
(αβ)k

= 1 + C1te
αβt2 + C2(e

αβt2 − 1) + (C2 + C1t
2)(4αβt2 + 2)eαβt

2

:= C3(t). (3.57)

Clearly, C3(t) is independent of i ∈ Z.
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Lemma 3.5. There exists C4(t) such that

C4(t) is continuous and increasing in t > 0 with lim
t→0

C4(t) = 1 (3.58)

and
‖etAφ‖O ≤ C4(t)‖φ‖O, ∀φ ∈ O. (3.59)

Proof. Clearly, etA is linear. It then suffices to prove that the norm of etA is bounded by some
C4(t) > 0 with limt↓0C4(t) = 1. Indeed, by the definition of ‖ · ‖O and Fatou’s Lemma, we have

‖etA[φ]‖O =
∑
k≥1

2−k max
|i|≤k
|
∑
j∈Z

(etA)i,i+jφ(i+ j)|

≤
∑
k≥1

2−k
∑
j∈Z

max
|i|≤k

¶
(etA)i,i+j |φ(i+ j)|

©
:=
∑
k≥1

2−k
∑
j∈Z

I(j). (3.60)

To estimate the term I(j), we introduce variable change l = i+ j. Consequently,

I(j) = max
|i|≤k

¶
(etA)i,i+j |φ(i+ j)|

©
= max
|l−j|≤k

¶
(etA)l−j,l|φ(l)|

©
≤ max
|l|≤k+|j|

¶
(etA)l−j,l|φ(l)|

©
, (3.61)

which, combining with Lemma 3.3, implies that

I(0) ≤
î
1 + C1te

αβt2 + C2(e
αβt2 − 1)

ó
max
|l|≤k
|φ(l)| (3.62)

and

I(j) ≤

C1t
2

∑
m≥ |j|−1

2

t2m

m!
(αβ)m + C2

∑
m≥ |j|

2

t2m

m!
(αβ)m

 max
|l|≤k+|j|

|φ(l)|, j 6= 0. (3.63)

Hence,∑
k≥1

2−k
∑

j∈Z\{0}
I(j)

≤ 2C1t
2
∑
k≥1

2−k
∑
j≥1

∑
m≥ j−1

2

t2m

m!
(αβ)m max

|l|≤k+j
|φ(l)|+ 2C2

∑
k≥1

2−k
∑
j≥1

∑
m≥ j

2

t2m

m!
(αβ)m max

|l|≤k+j
|φ(l)|

:= 2C1t
2S1 + 2C2S2. (3.64)

We first derive an upper bound for S1. It is then similar for S2. Introducing the variable change
j̃ = k + j and dropping the tilde, we obtain

S1 =
∑
k≥1

2−k
∑

j≥k+1

∑
m≥ j−k−1

2

t2m

m!
(αβ)m max

|l|≤j
|φ(l)|, (3.65)

for which we use Fubini’s theorem to the order of sum, yielding

S1 =
∑
j≥2

j−1∑
k=1

2−k
∑

m≥ j−k−1
2

(αβt2)m

m!
max
|l|≤j
|φ(l)|. (3.66)
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Introducing the variable change k̃ = j − k − 1 and dropping the tilde, we obtain

S1 =
∑
j≥2

j−2∑
k=0

2−(j−k−1)
∑

m≥k/2

(αβt2)m

m!
max
|l|≤j
|φ(l)| ≤ 2

Ñ∑
k≥0

2k
∑

m≥k/2

(αβt2)m

m!

é
‖φ‖O. (3.67)

To estimate the term in the bracket, we exchange the sum order to obtain

∑
k≥0

2k
∑

m≥k/2

(αβt2)m

m!
=
∑
m≥0

2m∑
k=0

2k
(αβt2)m

m!
≤ 2e4αβt

2
, (3.68)

where we have used the inequality
∑2m
k=0 2k ≤ 22m+1. Therefore,

S1 ≤ 4e4αβt
2‖φ‖O. (3.69)

Similarly, S2 ≤ 2
(∑

k≥1 2k
∑
m≥k/2

(αβt2)m

m!

)
‖φ‖O and hence,

S2 ≤ 4
Ä
e4αβt

2 − 1
ä
‖φ‖O. (3.70)

To conclude,

‖etA[φ]‖O

=
∑
k≥1

2−k
∑
j∈Z

I(j) =
∑
k≥1

2−k

I(0) +
∑

j∈Z\{0}
I(j)


≤
î
1 + C1te

αβt2 + C2(e
αβt2 − 1)

ó
‖φ‖O + 2C1t

2S1 + 2C2S2

≤
î
1 + (C1t+ 8C1t

2)eαβt
2

+ 9C2(e
αβt2 − 1)

ó
‖φ‖O

:= C4(t)‖φ‖O, (3.71)

where
C4(t) := 1 + (C1t+ 8C1t

2)eαβt
2

+ 9C2(e
αβt2 − 1). (3.72)

Clearly, C4(t) satisfies (3.58).

Proof of Theorem 3.1. From Lemmas 3.4 and 3.5 we see that etA is a well defined linear
operator from O to O and etA[φ] is jointly continuous in (t, φ). It then remains to verify that
d
dt

Ä
etA[φ]

ä
= A[etAφ] for any φ ∈ O. Indeed, for any T > 0,

∑
j∈Z

∑
n≥0

d

dt

®
tn(An)i,j

n!
φ(j)

´
=
∑
j∈Z

∑
n≥0

tn(An+1)i,j
n!

φ(j) =
∑
j∈Z

(AetA)i,jφ(j) = AetA[φ](i) (3.73)

uniformly in t ∈ [0, T ] and i ∈ Z. Then by Fubini’s theorem we may exchange the order of
derivative and limits to obtain

d

dt

∑
j∈Z

∑
n≥0

tn(An)i,j
n!

φ(j)

 =
∑
j∈Z

∑
n≥0

d

dt

®
tn(An)i,j

n!
φ(j)

´
, (3.74)

which, combining with (3.73) implies that

d

dt
{etA[φ](i)} = AetA[φ](i) = A[etA[φ]](i), ∀i ∈ Z, t > 0. (3.75)

Therefore, etA, as defined in (3.24), is the fundamental solution matrix of U ′ = AU .
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4 Proof of Theorem 1.1

We apply the dynamical system theory developed in [17] to prove Theorem 1.1. For this purpose,
we first show that (2.23) generates a solution semiflow fitting the framework in [17, Theorems
5.2 and 5.3] and [16, Theorem 3.10].

By Theorem 3.1, we can rewrite (2.23) as the following integral equation.®
U(t) = e(A+B)tU(0) +

∫ t
0 e

(A+B)(t−s)F (U(s− τ))ds, t > 0,
U(t) = φ(t), t ∈ [−τ, 0],

(4.1)

where φ ∈ C is the given initial value1. In (4.1) one may directly solve U(t) for t ∈ (0, τ ], and
inductively for t ∈ (nτ, (n+ 1)τ ], n ≥ 0. For t ≥ 0, define Qt : C → C by

Qt[φ](θ) := U(t+ θ). (4.2)

For integers a, b with a < b, we use the interval [a, b]Z to denote the set of all integers between
a and b (including a and b). For φ ∈ C, we define φ[a,b]Z ∈ C([a, b]Z , X) by φ[a,b]Z(i) = φ(i), i ∈
[a, b]Z. For any bounded set U ⊂ C, we define U[a,b]Z := {φ[a,b]Z : φ ∈ U}. Let κ(U[a,b]Z) be the
Kuratowski measure (see [28, Section 1.1]) of non-compactness for U[a,b]Z in C([a, b]Z , X). More
precisely,

κ(U[a,b]Z) := inf{r : U[a,b]Z has a finite open cover of diameter less than r}.

Lemma 4.1. {Qt}t≥0 is a monotone semiflow on CU∗ with the following properties:

(i) 0 and U∗ are the only 2-periodic equilibria in CU∗.

(ii) Qt[φ](i+ 2) = Qt[φ(·+ 2)](i) for any t ≥ 0, i ∈ Z, φ ∈ CU∗.

(iii) For any I := [0, a]Z with a ∈ Z+, there exists γ(t) ∈ (0, 1) such that

κ(Qt[U ])I ≤ γκ(UI), ∀U ⊂ CU∗ . (4.3)

Proof. We first prove that Qt[φ] is continuous in (t, φ). By (4.1) and (4.2), we have

Qt[φ](θ) =

{
e(A+B)(t+θ)φ(0) +

∫ t+θ
0 e(A+B)(t+θ−s)F (Qs[φ](−τ))ds, t+ θ > 0,

φ(t+ θ), t+ θ ≤ 0.
(4.4)

For any T > 0, by Lemma 3.5 we can take the norm in both sides of (4.4) to obtain

eδt‖Qt[φ]‖C ≤ max{C4(T ), e−δT }‖φ‖C + p

∫ t

0
C4(t− s)eδs‖Qs[φ]‖Cds, ∀t ∈ (0, T ], (4.5)

where δ := max{2α+ η, 2β + γ} and C4(t) is as in (3.58). By using the Gronwall inequality we
obtain

‖Qt[φ]‖C ≤ max{C4(T ), e−δT }e−δt+
∫ t
0
pC4(s)ds‖φ‖C , t ∈ (0, T ]. (4.6)

Further, by the triangle inequality we can obtain the continuity of Qt[φ] in (t, φ) ∈ R+ × CU∗ .
Next we prove (iii). We employ the same idea as in [17, section 4]. Define

L(t)[φ](θ) =

{
φ(t+ θ)− φ(0), t+ θ < 0

0, t+ θ ≥ 0
S(t)[φ](θ) =

{
φ(0), t+ θ < 0

U(t+ θ), t+ θ ≥ 0.
(4.7)

1Note that C = C(Z, X) and X = C([−τ, 0],R) as defined in section 3. Here by φ(t) we mean that φ(·)(t).
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Then Qt[φ] = L(t)[φ] + S(t)[φ]. By the same argument as in [17, section 4] we see that for any
U ∈ CU∗ , the set (S(t)[U ])I is compact in C(I,X) and κ(L(t)[U ])I ≤ e−δtκ(UI) for some δ > 0.
Thus,

κ((Qt[U ])I) ≤ κ((L(t)[U ])I) + κ((S(t)[U ])I) = κ((L(t)[U ])I) ≤ e−δtUI . (4.8)

Thus, statement (iii) is proved.
Other statements are obvious and we omit the details.

Proof of Theorem 1.1: It suffices to show that the conditions (E1)-(E5) imposed in [17,
Theorems 5.2 and 5.3] hold for the solution semfilow generated by model system (1.1). For this
purpose, we choose H = Z, H̃ = 2Z, β = U∗,M = Y = CU∗ in [17, Theorems 5.2 and 5.3].
Then the continuity condition (E2) and monotonicity assumption (E4) follow from the fact that
model system (1.1) generates a monotone semiflow on CU∗ , as proved in Lemma 4.1. The spatial
periodicity condition (E1) follows from Lemma 4.1(ii), the compactness condition (E3) follows
Lemma 4.1(iii), and the monostability condition (E5) follows from Lemma 4.1(i). Further, by
the symmetry and the sublinearity of the semiflow, we see from [17, Theorems 5.2] that system
(1.1) admits the spreading speed c∗ ≥ 0. Then by [17, Theorems 5.3], we see that c∗ is also the
minimal speed of pulsating waves, which was defined in (1.11).

Next we give the variational characterization of c∗. Indeed, by using [16, Theorem 3.10], we

can infer that c∗ = infµ>0
λ(µ)
µ , where λ(µ) is the principle eigenvalue of the following problem

{
λeµ·φ = (A+B + e−λτDF (0))[eµ·φ]

φ(i) = φ(i+ 2) > 0, i ∈ Z.
(4.9)

In virtue of the properties of operators A,B and DF (0), we compute to have an equivalent
eigenvalue problem{

λφ(0) = α(eµ + e−µ)φ(1) + (−2β − γ + f ′(0)e−λτ )φ(0)

λφ(1) = β(eµ + e−µ)φ(0) + (−2α− η)φ(1).
(4.10)

Since φ(i) > 0, i ∈ Z as assumed, we further simplified (4.10) by solving its second equation,
yielding that λ = λ(µ) is the unique positive solution of

F (λ, µ, β) = 0, (4.11)

where

F (λ, µ, β) := −(λ+ 2β + γ) +
αβ(eµ + e−µ)2

λ+ 2α+ η
+ f ′(0)e−λτ . (4.12)

Finally we show that c∗ > 0. Indeed, since limµ↓0 λ(µ) = λ(0) > 0 is the unique positive

solution of F (λ, 0, β) and λ(µ, β) ∼ αβeµ as µ → ∞, we can infer that c∗ = infµ>0
λ(µ,β)
µ is

attained at some µ∗ = µ∗ > 0. Therefore, c∗ > 0. The proof is complete.

5 Proof of Theorems 1.2 and 1.4

In the previous section, we have established c∗ = infµ>0
λ(µ)
µ , where λ(µ) is the unique positive

zero of F (λ, µ, β). In this section, to investigate the influence of β we write c∗(β) and λ(µ, β)
instead of c∗ and λ(µ), respectively.

Before proving Theorem 1.2, we first ensure that the maximum of c∗ = c∗(β) exists when β
varies in (0, β0), where β0 is defined in (1.13).

Lemma 5.1. limβ↓0 c
∗(β) = 0.
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Proof. By (4.11), we can infer that

λ(λ+ γ − f ′(0)) ≤ αβ(eµ + e−µ)2, (5.1)

from which we see that λ = λ(µ, β) satisfies

lim sup
β↓0

λ(µ, β) ≤ f ′(0)− γ, ∀µ > 0. (5.2)

Consequently, in view of c∗(β) = infµ>0
λ(µ,β)
µ and (5.2), we have

lim sup
β↓0

c∗(β) ≤ lim sup
β↓0

λ(µ, β)

µ
≤ f ′(0)− γ

µ
, ∀µ > 0, (5.3)

which, together with the fact c∗(β) > 0 for β ∈ (0, β0), implies that limβ↓0 c
∗(β) = 0.

Lemma 5.2. limβ↑β0 c
∗(β) = 0.

Proof. For small µ, (eµ + e−µ)2 = 4 + 4µ2 + o(µ). Then there exists µ0 > 0 such that

(eµ + e−µ)2 < 4 + 5µ2, ∀µ ∈ (0, µ0), (5.4)

which, together with

(λ+ 2α+ η)(λ+ 2β + γ − f ′(0)) < αβ(eµ + e−µ)2

implies that

(λ+ 2α+ η)(λ+ 2β + γ − f ′(0)) < αβ(4 + 5µ2), µ ∈ (0, µ0). (5.5)

Solving this inequality yields

λ ≤ 1

2
(−b+

√
b2 − 4c) =

−2c

b+
√
b2 − 4c

(5.6)

with
b = 2α+ η + 2β + γ − f ′(0), c = (2α+ η)(2β + γ − f ′(0))− αβ(4 + 5µ2).

By direct calculations and the definition of β0 in (1.13), we obtain

c = [γ − f ′(0)](2α+ η) + 2ηβ − 5αβµ2 = −2η(β0 − β)− 5αβµ2 < 0, β ∈ (0, β0), (5.7)

from which we immediately see that

λ ≤ −c
b

=
1

b

Ä
2η(β0 − β) + 5αβµ2

ä
, ∀µ ∈ (0, µ0), β ∈ (0, β0). (5.8)

On the other hand, for aforementioned µ0, there exists β1 ∈ (0, β0) such that√
2η(β0 − β)

5αβ
∈ (0, µ0), β ∈ (β1, β0). (5.9)

As such, when β ∈ (β1, β0) we choose in particular µ =
√

2η(β0−β)
5αβ in (5.8). Then we obtain

c∗(β) = inf
µ>0

λ(µ, β)

µ
≤ λ(µ, β)

µ

∣∣∣∣∣
µ=
»

2η(β0−β)
5αβ

≤ 2

b

»
10αβη(β0 − β), β ∈ (β1, β0), (5.10)

which implies that limβ↑β0 c
∗(β) = 0.
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Proof of Theorem 1.2: Introducing the variable change c = c(µ, β) = λ(µ,β)
µ , we see that

(4.11) becomes
F (cµ, µ, β) = 0. (5.11)

Since infµ>0
λ(µ,β)
µ is attained at some µ∗ > 0, we see that (c∗, µ∗), depending on β ∈ (0, β0), is

determined by the following system of transcendental equations

F (cµ, µ, β) = 0,
d

dµ
F (cµ, µ, β) = 0. (5.12)

Next we employ the implicit function theorem to calculate d
dβ c
∗(β). Indeed, if the matrix

J :=

(
d
dcF (cµ, µ, β) d

dµF (cµ, µ, β)
d2

dcdµF (cµ, µ, β) d2

dµ2
F (cµ, µ, β)

)∣∣∣∣∣
(c∗,µ∗)

(5.13)

is invertible, then

d

dβ
c∗(β) = −

d
dβF (cµ, µ, β)

d
dcF (cµ, µ, β)

∣∣∣∣∣∣
(c∗,µ∗)

(5.14)

thanks to d
dµF (cµ, µ, β)|(c∗,µ∗) = 0. In the following we check that J is invertible. It suffices to

verify that none of the diagonal entries of J is zero, thanks again to d
dµF (cµ, µ, β)|(c∗,µ∗) = 0.

By direct computations, we have

d

dc
F (cµ, µ, β) = µ∂1F |(cµ,µ,β),

d

dµ
F (cµ, µ, β) = (c∂1F + ∂2F )|(cµ,µ,β). (5.15)

Since at (c∗µ∗, µ∗, β) we have d
dµF (cµ, µ, β) = 0, and ∂2F = 2αβ(e2µ−e−2µ)

λ+2α+η , it then follows that

d

dc
F (cµ, µ, β)|(c∗,µ∗) = −µ

∗

c∗
∂2F |(c∗µ∗,µ∗,β) = − 2αβµ∗

c∗(c∗µ∗ + 2α+ η)
(e2µ

∗ − e−2µ∗) < 0. (5.16)

Combining (5.12) and (5.15) we derive c∗ = −∂2F
∂1F
|(c∗µ∗,µ∗,β), by which we further compute to

obtain

d2

dµ2
F |(c∗µ∗,µ∗,β∗) =

1

(∂1F )2
[(∂2F )2∂21F − 2∂2F∂12F∂1F + ∂22F (∂1F )2]|(c∗µ∗,µ∗,β). (5.17)

Note that

∂12F = −2αβ(e2µ − e−2µ)

(λ+ 2α+ η)2
, ∂22F =

4αβ(e2µ + e−2µ)

λ+ 2α+ η
(5.18)

and

∂21F = τ2f ′(0)e−λτ +
2αβ(eµ + e−µ)2

(λ+ 2α+ η)3
≥ 2αβ(eµ + e−µ)2

(λ+ 2α+ η)3
. (5.19)

It then follows that

(2∂2F∂12F )2 − 4∂22F (∂2F )2∂21F

≤ (2∂2F∂12F )2 − 4∂22F (∂2F )2
2αβ(eµ + e−µ)2

(λ+ 2α+ η)3

= −64α2β2(e2µ − e−2µ)2

(λ+ 2α+ η)6
(eµ + e−µ)4

< 0, at (c∗µ∗, µ∗, β), (5.20)
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from which we infer that the polynomial ∂22Fx
2−2∂2F∂12Fx+(∂2F )2∂21F is positive for all x ∈ R.

Consequently, d2

dµ2
F |(c∗µ∗,µ∗,β∗) > 0. Thus, J is invertible, and hence, (5.14) holds. Combining

(5.14) and (5.16) we see that the sign of d
dβ c
∗(β) is the same as that of d

dβF (cµ, µ, β)|(c∗,µ∗).
Moreover, µ = µ∗(β) is continuous in β, due to the implicit function theorem.

Define

B :=

ß
β ∈ (0, β0) :

d

dβ
F (cµ, µ, β)|(c∗,µ∗) = 0

™
. (5.21)

By Lemmas 5.1 and 5.2 we see that B 6= ∅. In the following, we show that B is a singleton.
Indeed, note that

0 = F (c∗µ∗, µ∗, β) = −(c∗µ∗ + 2β + γ) +
αβ(eµ

∗
+ e−µ

∗
)2

c∗µ∗ + 2α+ η
+ f ′(0)e−c

∗µ∗τ , β ∈ (0, β0), (5.22)

which, combining with the equality

0 =
d

dβ
F (cµ, µ, β)|(c∗,µ∗) = −2 +

α(eµ
∗

+ e−µ
∗
)2

c∗µ∗ + 2α+ η
, β ∈ B, (5.23)

implies that for any β ∈ B the number λ∗(β) := c∗(β)µ∗(β) is the unique solution of

−(λ+ γ) + f ′(0)e−λτ = 0. (5.24)

Thus, λ∗ = λ∗(β) is independent of β ∈ B. To show that B is a singleton, we first observe from
(5.15) that

0 =
d

dµ
F (cµ, µ, β)|(c∗,µ∗) = (c∂1F + ∂2F )|(c∗µ∗,µ∗)

=

®
−c∗
Ç

1 + τf ′(0)e−c
∗µ∗τ +

αβ(eµ
∗

+ e−µ
∗
)2

(c∗µ∗ + 2α+ η)2

å
+

2αβ(e2µ
∗ − e−2µ∗)

c∗µ∗ + 2α+ η

´
,

which, for β ∈ B, can be simplified into the following relation:

h(µ∗(β)) = C(λ∗, β), β ∈ B, (5.25)

where
h(µ) = µ(eµ − e−µ) (5.26)

and

C(λ, β) =
λ»

2α(λ+ 2α+ η)
+

1

β
√

8α
λ(1 + τf ′(0)e−λτ )

√
λ+ 2α+ η. (5.27)

To derive (5.27), we have used the fact (e2µ
∗ − e−2µ

∗
) = (eµ

∗
+ e−µ

∗
)(eµ

∗ − e−µ
∗
) and then

replaced (eµ
∗

+ e−µ
∗
) by

»
2(c∗µ∗ + 2α+ η)/α in view of (5.23) as well as c∗ by λ∗/µ∗.

Note that h is strictly increasing in µ ≥ 0, so is its inverse h−1. It then follows that

µ∗(β) = h−1(C(λ∗, β)), β ∈ B. (5.28)

On the other hand, by (5.23) we have

µ∗(β) = cosh−1
( 

λ∗ + 2α+ η

2α

)
, β ∈ B. (5.29)

Therefore, combining (5.28) and (5.29) yields that

h−1(C(λ∗, β)) = cosh−1
( 

λ∗ + 2α+ η

2α

)
, β ∈ B. (5.30)
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As such, any β ∈ B is the zero of the strictly decreasing function

h−1(C(λ, β))− cosh−1
( 

λ∗ + 2α+ η

2α

)
, β ∈ (0, β0). (5.31)

Hence, B = {β1} for some β1 ∈ (0, β0), and

c∗(β1) =
λ∗(β1)

µ∗(β1)
=

λ∗

cosh−1
(»

λ∗+2α+η
2α

) . (5.32)

Moreover, since c∗(β) > 0 for β ∈ (0, β0), by Lemmas 5.1 and 5.2 we obtain that c∗(β1) =
maxβ∈(0,β0) c

∗(β). The proof is complete.
Proof of Theorem 1.4: Recall that λ(µ, β) is the unique positive zero of F (λ, µ, β), which

is defined in (4.11). Since here the parameter η is of interest, we write λ(µ, η) instead of λ(µ, β).
Note that F is decreasing in λ and η. It follows that λ(µ, η) is decreasing in η, so is c∗(η) due

to c∗(η) = λ(µ1,η)
µ1

for some µ1 = µ1(η) > 0. It then remains to show the limit is zero.

Next we proceed with two cases: (i) f ′(0) ∈ (Γ, 2β + γ); (ii) f ′(0) ≥ 2β + γ.
(i) Fix ε ∈ (0, η0). For η ∈ [η0 − ε, η0), by the monotonicity of F in η and λ, we have

λ(µ, η) ≤ λε0(µ), (5.33)

where λε0(µ) is the unique positive solution of

−(λ+ 2β + γ) +
αβ(eµ + e−µ)2

λ+ 2α+ η0 − ε
+ f ′(0) = 0. (5.34)

Since f ′(0) ∈ (Γ, 2β + γ), by the definition of η0 we obtain the relation f ′(0) = γ + 2βη0
2α+η0

, by
which we further compute to obtain

λε0(µ) =
2a2

a1 +
»
a21 + 4a2

, (5.35)

where a1 = 2α + η0 − ε + 4αβ
2α+η0

and a2 = αβ[(eµ − e−µ)2 + 4ε
2α+η0

]. Note that eµ−ε
−µ ≤ 4µ for

µ ∈ (0, 1). It then follows that

λε0(µ) ≤ a2
a1
≤ αβ

a1

Å
16µ2 +

4ε

2α+ η0

ã
, ∀µ ∈ (0, 1). (5.36)

As such, for any µ ∈ (0, 1) and ε ∈ (0, η0), we have

lim
η↑η0

c∗(η) ≤ c∗(η0 − ε) = inf
µ∈(0,1)

λ(µ, η0 − ε)
µ

≤ λε0(µ)

µ
≤ αβ

a1

Ç
16µ+

4ε

µ(2α+ η0)

å
. (5.37)

Since µ and ε can be independently arbitrary small, it then follows that limη↑η0 c
∗(η) = 0.

(ii) By inequality

(λ+ 2α+ η)(λ+ 2β + γ − f ′(0)) < αβ(eµ + e−µ)2,

we can infer that λ(µ, η) ≤ λ1(µ, η), where λ1(µ, η) is the positive solution of (λ+ 2α+ η)(λ+
2β + γ − f ′(0)) = αβ(eµ + e−µ)2. Note that λ1(µ, η) decreases in η to f ′(0)− 2β + γ as η →∞
for any µ > 0. It then follows that

lim
η→∞

c∗(η) = lim
η→∞

inf
µ>0

λ(µ, η)

µ
≤ lim

η→∞
λ(µ, η)

µ
≤ f ′(0)− 2β + γ

µ
, ∀µ > 0, (5.38)

in which passing µ→ +∞ we obtain limη→∞ c
∗(η) = 0. The proof is complete.
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