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Abstract
In this paper, we study the boundedness and Hélder continuity of local weak solutions to the
following nonhomogeneous equation

Oru(z,t) + P.V. /RN K(z,y,t)|u(z,t) — u(y, t)|p72(u(w,t) — u(y, t))dy = f(z,t,u)

in Qr = Q x (0,T), where the symmetric kernel K (z,vy,t) has a generalized form of the fractional
p-Laplace operator of s-order. We impose some structural conditions on the function f and
use the De Giorgi-Nash-Moser iteration to establish the boundedness of local weak solutions in
the a priori way. Based on the boundedness result, we also obtain Holder continuity of bounded
solutions in the superquadratic case. These results can be regarded as a counterpart to the elliptic
case due to Di Castro, Kuusi and Palatucci (Ann. Inst. H. Poincaré Anal. Non Linéaire, 2016).
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1 Introduction

In this paper, we aim at investigating the local properties of the following integro-differential equations
Oyu(x,t) + Lu(x,t) = f(x,t,u) (1.1)

in Qr = Q x (0,T), where 2 is a bounded open domain in RY. Here the operator L is a nonlinear
and nonlocal operator of fractional p-Laplace type, which is formally given by

Lu(z,t) =P.V. - K(z,y,t)|u(z,t) — uly, t)|p72 (u(z, t) — u(y, t))dy, (1.2)

where P.V. stands for the Cauchy principal value. The symmetric kernel K satisfies K(z,y,t) =
K(y,xz,t) and

A—l
< K(z,y,t)

1.3
|z —y|[NFep (1.3)

e
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with A > 1 and s € (0,1) for any z,y € RY and t € (0,7). The source function f is assumed to
satisfy
\f(x,t,u)\ < C0|U|’371 + h(l’,t) (14)

for all z € RN, ¢t € (0,T) and u € R, where 8 > 1, ¢y > 0 and the nonnegative function h possesses
certain integrability.
It is well-known that the operator L can be written in the divergence form. Denote

E(u,v,t) /]RN /]RN u(zx,t) ,t)|p_2(u(sc,t) — u(y,t)) (v(x,t) — v(y,t))K(x,y,t)dscdy.

Then it can be verified that

Lu(z, t)v(z,t)de = E(u,v,t)
RN

for suitable functions u, v.
Before stating the definition of weak solutions in this paper, we need to recall a tail space as
below

NY . N
Li(R).—{veLme ‘/RN1+|CE|N+adx<+oo}, g>0and a > 0.
Then a nonlocal tail of the supremum version is defined by

Tails (v; o, 7, I) = Taile (v; o, 7, to — T1, to + T2)

1
t)[pt o
= ess sup rsp/ %dw , (1.5)
tel RN\ B, (z0) |z — zo|" "

where (z9,t0) € RY x (0,7) and the interval I = [to — Ty, to + T2] C (0,7). From these definitions, it
is easy to deduce that Tailo (v; 2o, 7, 1) is well-defined for any v € L>(I, L7 (RY)). Now we present
the definitions of the weak sub(super)-solutions to Eq. (1.1) as follows.

Definition 1.1. Suppose that f satisfies (1.4) with 8 € (1, max{2,p(2s+N)/N}) and h € Ll‘;cl (Qr).
The function v € LP (I;W5¥ (Q)) N C(I; L (@) N L(1, L2 Y (RY)) is a local weak sub(super)-

solution to (1.1) if for any closed interval I := [t1,t3] C (0,T), inequality

to

to
/u(m,tg)go(x,tg)das—/ /u(w,t)@tgo(a?,t)d:cdt—i— E(u, p, t)dt
Q t1 JQ

t1

< (2)/ﬂu(a:,t1)<p(x,t1)dx+/tz [ tuyote. s (1.6)

holds for every nonnegative function ¢ € LP (I; WP (Q)) N WL2(I; L? () with the property that ¢
has spatial support compactly contained in Q.

Remark 1. In Definition 1.1, we can invoke Lemma 2.3 to deduce that u € LP(I, Lﬁ)c( )) because

of the fact u € LP (I; WP (Q)) N C(I; L . (). This guarantees that the last integral in (1.6) makes

loc
sense.

Definition 1.2. A function u is a local weak solution to (1.1) if and only if u is a local weak sub-
solution and a local super-solution.

Before addressing our theorems for weak solutions to (1.1), we will introduce some related results
provided by the existing literature in the coming subsection.



1.1 Overview of related literature

The integro-differential operator in (1.1) emphasizes the Lévy process which indicates the emergence
of the jump diffusion. In the last decades, the study for the equations of this type has attracted
extensive attentions not only in the field of pure mathematical analysis but also in the real world
applications (see e.g. [23, 33, 11, 39, 20, 1, 21]). Consider the elliptic Dirichlet problem as below

PV. [ K(z,y)lu(z) —u(y)P~*(u(z) - uly))dy = fz,u)  nQ,
RN (1.7)
u(z) = g(x) in RV\Q.

Under the condition that K satisfies (1.3) and f = 0, Di Castro, Kuusi and Palatucci [15] obtained the
existence of weak solutions by constructing a variational functional, and then investigated the local
boundedness and Hélder continuity of weak solutions by utilizing the De Giorgi-Nash-Moser theory.
Based on the boundedness result, they also established a nonlocal Harnack inequality involving the
negative part of the solution (the tail term) in [16]. Here it is noteworthy that without the global
nonnegative assumption on the solutions, the classical Harnack inequality fails for the nonlocal elliptic
operators, which was proved by Kassmann [25]. This fact indicates that the tail term exhibited
in the Harnack inequality [16, Theorem 1.1] enters in a crucial way. For the equation involving a
general source term f(xz,u), Cozzi [12] introduced the fractional De Giorgi classes and proved the
local boundedness, Holder continuity and Harnack inequality of weak solutions to (1.7).
Let us turn to the equation given by the following form

PY. | K@yl - u) () - ul)dy = f(z) 0. (18)
When f(x) = 0 and K(z,y) = |z — y|~"~*P, Brasco, Lindgren and Shikorra [4] obtained Holder
continuity with an explicit exponent condition for (1.8) in the superquadratic case. Before that,
Lindgren [34] studied the Holder estimate for (1.8) with the nonhomogenous term f € C°. The
results given in [34] cover more general kernels than the one appearing in (1.8). In fact, there both p
and s are allowed to vary with the space variables. In sharp contrast with what happens in the local
variational setting, no regularity assumptions are imposed on p(-) and s(-) apart from boundedness
and measurability. Analogous results have been obtained in [13], where operators of double phase type
were studied and also, in this case, the constraints linking the various parameters of the problem are
much weaker than those considered in the local variational setting. For nonlinear integro-differential
equations involving measure data, Kuusi, Mingione and Sire [30] established Calderén-Zygmund type
estimates, continuity and boundedness criteria via Wolff potentials. Meanwhile, it is worth mentioning
that Sobolev regularity for fractional elliptic equations has also been performed in [6] and [31].

In the linear case that p = 2 and K(z,y) = |z — y|~V =2, the nonlocal operator L boils down
to the well-known fractional Laplacian (—A)®. The regularities of weak and viscosity solutions to the
corresponding equations have been extensively developed by Bass-Kassmann e.g. [2, 24, 26, 27] and
Caffarelli-Silvestre e.g. [9, 10, 40, 41].

Next, we proceed to introduce some known results on the linear parabolic equation as below

Opu(z,t) + P.V. K(z,y,t)(u(z,t) —u(y,t))dy = f(z,t) in Qr. (1.9)

RN
When f(z,t) = 0, Caffarelli, Chan and Vasseur [7] studied the Cauchy problem (1.9) under the
condition that the symmetric kernel K (z,y,t) satisfies (1.3) with p = 2. It has been shown in [7]
that (1.9) is solvable in the classical sense with any initial value ug € H'(RY) and weak solutions are



Hblder continuous in (tg, T') x RN with any to € (0,7). Also for the homogeneous equation posed in
the whole space, Bonforte, Sire and Vézquez [3] established a theory of solvability and regularity for
the fractional Laplacian equation (1.9). More precisely, the authors utilized a convolution formula to
obtain the existence and uniqueness of the very weak solution emanating from nonnegative measure .
They also discussed the regularity (including the boundedness, Holder continuity, Harnack inequality)
and the behaviors (such as stability, self-similar property, asymptotic behavior) of these very weak
solutions. By imposing conditions on K(z,y,t) in the integral form, Felsinger and Kassmann [18]
established a weak Harnack inequality for the nonnegative super-solution to (1.9) with f € L*(Qr),
and also proved the local Holder continuity for bounded weak solutions to (1.9) with f = 0. Similar
to the elliptic case, the Harnack inequality for the parabolic nonlocal operators is normally presented
with the negative part of the solution. In [18], the global positivity assumption on the solution
guarantees that the weak Harnack inequality can hold without adding any tail term. The regularity
results exhibited in [18] were extended by Schwab and Kassmann [28] to the equation (1.9) with
a(z,y,t)du(z,y) in place of K (z,y, t)dxdy, where p is a measure, not necessarily absolutely continuous
w.r.t. Lebesgue measure. Recently, Stromqvist [42] and Kim [29] investigated the Harnack inequality
for the Cauchy problem and Dirichlet problem, respectively. In their results, the weak solutions do
not need to be globally positive, but the tail terms are inevitably involved.

Finally, we turn to the general nonlinear and nonlocal parabolic equation. The theory for this
part seems incomplete. Consider the problem

opu(z,t) + Lu(z,t) =0 in Qp, (1.10)

where L is associated with the kernel K(z,y,t) as specified in (1.2). In [44], Vézquez provided the
existence and uniqueness of strong solutions to (1.10) under the assumption that v = 0 in RV \ ,
and investigated the large-time behaviors of solutions by using a special separate variable solution
Ul(z,t) =t~/ P=2) F(x). Besides, the well-posedness for the equation (1.10) subject to the Dirichlet
condition, Neumann condition or defined on RY was discussed by Mazén, Rossi and Toledo [37], where
they also studied the asymptotic behaviour of strong solutions. Recently, Stromqvist [43] investigated
the problem (1.10) with u = g in RY \ Q and obtained the existence and local boundedness of weak
solutions provided that K (x,y,t) satisfies (1.3) with p > 2. Under the assumption that L = (—A)?,
Brasco, Lindgren and Stromqvist [5] worked with the local weak solution of (1.10) and established
the Holder continuity with specific exponents for all p > 2. Very recently, a theory involving the
fundamental solution and asymptotic behaviour for equation (1.10) posed in RY was developed by
Vézquez [45, 46] for the superquadratic and subquadratic case, respectively.

1.2 Statements of the main results and strategy of the proof

As far as we know, there is no theory yet for the nonlinear and nonlocal equation (1.10) with a
nonzero source function. Even for the homogenous equation, the existing boundedness result only
focused on the case p > 2. Thus, one purpose of this work is to find the conditions on f such that
the local boundedness holds for the local weak solutions to (1.1) with all p > 1. Another motivation
is to establish Hélder regularity for the equation with a general nonhomogeneous term. In order to
simplify our presentation, we introduce some notation, which is needed later.

Notation. As usual, the domain B,(x) is a ball with radius p > 0 and center z € RY, the parabolic
cylinders are given by Q, - (x,t) := B,(2) X (t—r,t+1), Q,(x,t) := Qp por (2, 1) = By(x) X (t—p°?, t+p°P)
and Q, (z,t) := Q, yon(x, 1) = By(x) X (t—p*?,t) with r, p > 0 and (z,t) € RV x (0, T). These symbols
can be simplified by writing B, = B,(x), Qpr = Qpr(z,t), Q) = Qp(z,t) and Q, = Q, (z,t)



when there is no confusion. We also need define notation of the scaling domain: if B = B,(z) and
Q = B,(z) x (t —t1,t +t2), then we denote AB := Bj,(x) and AQ := By,(z) % (t — At1,t + At2) with
any A > 0. For g € L'(V), the mean average of g is given by

1
(9)v 32]{/9(96)@3 = m/vg(x)dx

We denote
aVb:=max{a,b}, ay:=max{a,0}, a_ :=—min{a,0}

and
JIp(a,b) =|a — b|P~2(a — b)

for any a,b € R. The continuous measure y in this work admits the presentation

dp = dp(z,y,t) = K(z,y,t)dzdy.
In the next four sections, we use C to denote a general positive constant which only depends on
s$,p, A\, B,co and N.

Now, we present the boundedness results in the a priori way.

Theorem 1. (Local boundedness) Let p > 2N/(2s + N) and u be a local weak sub-solution to
(1.1). Assume that the nonhomogeneous function f satisfies (1.4), where

25+ N : N
TN and WP e LE (Qr) with ¢> ~ P,

Sp

max{p,2} < B <p

Let (zo,t0) € Qr, R € (0,1) and Qz = Bg (z0) x (to — R*F,ty) such that Bg (zo) C Q and [ty —
R*P tg] C (0,T). Then we have

Non=B)
esssup u < Tailo (ug;xo, R/2,t0 — R*P,tg) + C <][ uf_dxdt) V1, (1.11)
Qr/2 Qr

where k =1+ 2s/N and C > 0 only depends on s,p, 8, A, N,co and h.

For the case 1 < p < 2N/(2s+N), we need assume that our weak sub-solution can be constructed
as follow: there is a sequence of functions {uy }ren+ whose components are bounded sub-solutions of
(1.1) such that

lurllzes 0,750z @y < € (1.12)
and
up — u in Lin.(Qr) as k — oo, (1.13)

where the constant m is taken to satisfy m > max{2, N(2 —p)/sp}.

Theorem 2. (Local boundedness) Let 1 < p < 2N/(2s + N), k := 1+ 2s/N and m > 2 be such
that m > N(2—p)/sp. Assume that u € L (Qr) with the properties (1.12) and (1.13) is a local weak

loc
sub-solution to (1.1), where the nonhomogeneous function f satisfies (1.4) with

1<p<2 and he L (Qr).



Let (zo,t0) € Qr, R € (0,1) and Qz = Bg (z0) x (to — R*F,ty) such that Bg (zo) C Q and [ty —
R*P tg] C (0,T). Then we have

esssup u < Taily (uq; 20, R/2,t0 — R°P, to)

Qr/2
—_sp —___sp
GPFM) (m—Am) GPFN)(m—2=2m)
+C ][ ul'dxdt \Y ][ uly'dxdt , (1.14)
Q Qr

where A\, == (m —pk)N/(sp+ N) and C > 0 only depends on s,p, 3,m, A, N,co and h.

R

Based on the above boundedness result, we can further obtain Holder continuity of weak solutions
in the superquadratic case.

Theorem 3. (Holder continuity) Let p > 2 and u be a local weak solution to (1.1). Assume that
the nonhomogeneous function f satisfies

f(z,t,u) = h(z,t) in Qr xR with h € Ly, (Qr).
Let (wg,t0) € Qr, R € (0,1) and Qr = Bgr (20) X (to — R*P,to + R°P) with the property Qp C Qr.
Then there exists d € (0,1) such that for every p € (0, R/2],

a 1
essosc u < C (ﬁ) [TailoO (u; 29, R/2,t0 — R*P,tg + R°P) 4+ (][ |u|pdacdt) *v 1} )
R Qr

Qp,dpSp
where constants o € (0,sp/(p — 1)) and C € [1,00) only depend on s,p, A, N and h.

Proposition 1.1. (Holder continuity) Let p > 2 and u be a local weak solution to (1.1). Assume
that the nonhomogeneous function f satisfies (1.4) with

2s+ N

1<B<p and h e L= (Qr).
Let (w9,t0) € Qr, R € (0,1) and Qr = Bgr (20) X (to — R*P,to + R°P) with the property Qp C Qr.
Then there exists a constant « € (0,sp/(p — 1)) such that u € Ca’ﬁ(QRm).

Profile of this paper. This paper is organized as follows. Section 2 is used to collect Sobolev
imbedding and Poincaré-type inequalities as essential ingredients in our proof. In Section 3, we
follow the arguments provided in [15] to establish the Caccioppoli estimates for the nonlocal parabolic
operators. Based on the Caccioppoli inequality, Section 4 is devoted to proving the boundedness
results by using the De Giorgi-Nash-Moser iteration. Here, we remark that the requirements on
parameters 8, and m in Theorems 1 and 2 are the nonlocal counterpart of those appearing in [17,
Chapter V]. More precisely, let 8(s) := p(2s + N)/N be the upper bound condition on 8, ¢(s) :=
(N + sp)/sp and m(s) := N(2 — p)/sp be lower bound conditions on ¢, m. When we take s — 17,
it is obvious that 8(s) — p(2 + N)/N, 4(s) — (N + p)/p and m(s) — N(2 — p)/p, where the limits
are restrictions on corresponding exponents for the p-Laplace equation discussed in [17]. With the
help of this boundedness result, we further consider Holder continuity of weak solutions in Section
5. The idea of the proof in this part is motivated by [15], in which Hélder regularity was established
for the elliptic counterpart. Although the existing arguments for elliptic equations can be adapted to
parabolic ones, we have to perform more careful estimates and choose proper cylinders to solve the
difficulties caused by the space-time anisotropy.



2 Sobolev & Poincaré inequalities

This section collects some imbedding inequalities as preliminary ingredients.

Lemma 2.1. Let 5,60 € (0,1) and 1 < p,ps < p1 < 00 satisfy

N N
5> — — —
p P
and N N N N
(-2 MY s (B2
p b1 P1 P2

Then there exists a constant C' > 0 only depending on s,p,p1,p2 and N such that

1N zer 82 < CUF oo 1F I Era ) (2.1)
for all f € W*P(By) N LP2(By).

Proof. By using the extension theorem [14, Theorem 5.4], we can find f € W*?(RN)N LP2(RN) such
that

flg, = f W lwes@y) < Cllflweris,) and [|flloe@y) < Cllfloes,) (2.2)

with C > 0 only depending on s, p,p2 and N. The restrictions on the parameters s, 8, p, p1, p2 enable
us to apply the interpolation inequality [35, Theorem 1] and obtain that

17 lg, ey < CUFIG, e 1l asy

where BA denotes the homogeneous Besov space. Then it follows by the embeddings Bgl,l(RN ) —
Ly (RN ) L (RN) — BY, (RN) and W*?(RY) — B3 (RV) that

1 Flzes @y < ClFISyem @y 1| Eos vy
which along with (2.2) implies the claim. O

Lemma 2.2. (see [14, Theorem 6.7]) Let s € (0,1) and p € [1,00) satisfy sp < N. Then for any
f e WP (By), we have

<C 5.1
% oy < Cl oo
with C > 0 only depending on s,p and N.
Lemma 2.3. Let ty >t > 0. Suppose s € (0,1) and p € [1,00). Then for any
f € LP (tl’ t27 WSJ) (BT)) N L <t17t2; L2 (BT)) 3

we have

t)|P 2
/ ][ (z,t) PO R dadt < c( ‘?P/ / ][ Nfs’ ) da:dydt+/ ][ If(a:,t)pdwdt>
t1 ty |:c—y| P t1 J B,

WP
X (esssup][ |f(z,1)] da:) , (2.3)
t1 <t<to B,

where C > 0 only depends on s,p and N.




Proof. We prove the imbedding inequality with » = 1. For any r > 0, we get the desired inequality
by using a scaling argument.

Case 1: sp < N. We have by Hélder’s inequality that

t2 2s t2 2sp
[ tsptt Ods = [ f () e rdea:
t1 B ty By
to % PN NESP
S/ (][ |f(x,t)2da:> (][ |f(x,t)|Nspdx> dt
t1 B4 By
. " TR
< <esssup][ |f(x,t)|2dx) / (][ |f(ac7t)|Nsvda:> dt, (2.4)
t1<t<tz JB, t1 By

which in conjunction with Lemma 2.2 gives us the desired estimate.

Case 2: sp > N. The condition sp > N ensures that

N N 2s

§>— = ——— p(l+ ) >2
P op(l+ %) 3
and N N N N
0<s+2§ )+(19) <2S > =0
P op(1+3%) p(l+%) 2
with 6 = N+25 € (0,1). These allow us to utilize Lemma 2.1 and obtain
11 pcss30s gy < U T I,y for all £ € (b1, 12),
namely,

p
][ |f (, ) |POF ) x<C /][ ‘ -~ fv.) dxdy+][ If(x,t)lpdw)
B, ByJ B z B

Sp

X (]{9 |f(gc,t)|2d;c)W for all t € (1, ). (2.5)

An integration w.r.t the time-variable to (2.5) yields that

x(][ £, 8)] dx) dt

Sy, )P t2
<C / / ][ dxd dt+/ ][ x,t pd:cdt)
( B/ B |33—3/|N+Sp Y t JB £ (@0

sp

~
X (esssup][ f(x,t)|2dx> . (2.6)
t1<t<t: J B,
Thus, we can conclude the proof by virtue of (2.4) and (2.6). O

Lemma 2.4. Let ty >t > 0. Suppose s € (0,1) and p € [1,00). Then for any

f e LP (tl,tQ; Wwe-p (Br)) NL*>® (tl,tg; L? (Br)) s



there holds that

(2
(1+ s yat p
/ ][ Fa b d:cdt<c( p/ /][ |x7y|N+Sp dxdydtJr/tl ]{BTIf(x,ﬂlpdwdt)

sp

N

X (esssup][ |f(x,t)|pdx> ,
ti<t<ts J B,

where C' > 0 only depends on s,p and N.

Proof. According to Lemma 2.1, we can see

N
1Al e g2y ) < Cllflléﬁff(gl)l\fllffﬁl (2.7)

for all f € W#*P(By) with C' > 0 only depending on s,p and N. By using a scaling argument, we have
from (2.7) that

1+ s y7t)|p
£, waper s <c(er [ f VD=L iy f i1 pas)

T

(]i \f(gc,t)|pdgc>W for all t € (t1,t2). (2.8)

Integrating (2.8) w.r.t the time-variable gives that

to
APO+) ddt < /][ f(y, )ldd ][ AP
/tl ][rlf(m? P dadt <0 | , |x—y|N+9P wdy+ 7 1f(@,1)] w)

"

9?

(][ I, t)|de) at
( /tz/][ I:c— |N+i; pdxdydtJr/:?]{gr|f($,t)|pd:ndt)

sp

N
X (esssup][ |f(x,t)|pd:ﬂ> ,
t1<t<to

s

as desired. 0

We end this section with a statement of a Poincaré-type inequality.

Lemma 2.5. (see [38, Formula (6.3)]) Let s € (0,1) and p € [1,00). Then for any f € W*P (B,),

there holds that P
p sp—N
]{3’7. f@)— (B[P de < Cr / / |x—y|N+9p S 2 drdy

with C > 0 only depending on s,p and N.

3 Fundamental estimates

This section is devoted to establishing the Caccioppoli estimates and logarithmic form estimates. We
begin with a preliminary lemma which can be found in [15, Lemma 3.1].

Lemma 3.1. Let p > 1. For a,b € R and € > 0, we have that
[al? < [ + Cyelbl” + (1 + Cpe) ' ~Pla — bf?

with Cp, == (p — 1)I'(max{1,p — 2}). Here T is the standard Gamma function.



Before giving our desired Caccioppoli estimates, we invoke the technique provided in [5, Section
3.2] to regularize test functions w.r.t the time-variable. Let the function ¢ : R — R be a nonnega-
tive, even smooth function with compact support in (f%, %) For any ¢ € L'((a,b)), we define the
convolution

o5 (t) == 1/:+g g(t_T)ga(T)dT - 1/; C(z)ga(t—a)do, t € (a,b), (3.1)

g _& e € e g

2 2

where 0 < & < min{b — t,t — a}. The properties of convolutions exhibited in the forthcoming lemma
are necessary ingredients when we proceed the regularization procedure. The results in Lemma 3.2
can be immediately proved by applying fundamental inequalities and utilizing the property of (. Here
we omit the details.

Lemma 3.2. Let s >0 and p,q > 1. Assume that 0 < Ty <Th and 0 < e < gg < L2510

(i) If p € C([T1,T2]; L9(SY)), then we have ¢°(-,t) converges to ¢(-,t) in L1(Q) for every t €
(T + 5,1, — %) ase — 0.

(ii) Suppose that ¢ € C ([T1,To]; LY(S2)). Then there holds that ¢°(-,t + 5) converges to ¢(-,t) in
L1(Q) for each t € (T1,T> —€g) as € — 0.

(iii) Assume that o € LY(Ty,To; LP (Q)). Then there is C > 0 only depending on p,q such that

HSDEHLq(Tﬁ%o,TZ_i o) = C  for any e < ¢gg.

(iv) If o € LY(Ty,To; WP (Q)), then we can find C > 0 only depending on s,p,q such that

H@eHLq(Tﬁ%ﬂ,Tr%ﬂ;ww(Q)) <C foralle < .

Lemma 3.3. (Caccioppoli estimates) Let p > 1 and u be a local sub-solution to (1.1). Suppose
that f satisfies (1.4) with some 8> 1 and h € LB “(Qr). Let zg € Q, r >0, B, = B,.(z0) satisfying

loc

B, CQand 0 < 11 < 7, £ > 0 satisfying [11 — ¢, 7] C (0,T). For all nonnegative functions
P € C(By) and n € C*°(R) such that n(t) =0 if t < 7 — € and n(t) = 1 if t > 71, there exists a
constant C' > 0 only depending on s,p, 3,1\, co and N such that

T1<t<T2

/ ) / / [w (2, v (@) = wy (y, ) (y)|"n* (H)dudt + ess sup / w} (2, )¢" (z)dz
71— J B, J B, B,
= C/Tle /B /B max {wy (z,1), w4 (y, 1)} [1(x) — P (y)["n* (t)dpdt

w?
+ C esssu / + bt / / wy (z, )PP ( t)dzdt
- £<t<I32 RN\ B, \:c - y|N+5p =2 + w ) ( )

zrEs

e / / (Ju(z, 1% + h7T (2, 8) + 0 (2,8)) X qusi (@ 0P (@) (£)dardt
Tl—l

/ W2 (@, 9P (2)() By (1) derdt, (3.2)

7’]@

where w := u — k with a level k € R.

Remark 2. If the source function f(m t,u) = h(z,t), then the third integral on the right-hand side
in (3.2) can be replaced by f o S Pa, tywy (2, )P (2)n? (t)dadt.
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Proof. We begin this proof with regularizing the test function by invoking ideas introduced in [5,
Lemma 3.3 and Appendix B]. With taking

1
O<e< %0 = Zmin{’ﬁ*g,T*TQ,Tgf’ﬁ + 0}

and abbreviating
5! Z:Tl—f—g(), To 1= Ty + €,

we arbitrarily choose ¢ € LP(1,79; WP (B,.)) N W2(#,72; L? (B,)) whose spatial support is com-
pactly contained in B,, and then define ¢°(-,t) according to (3.1). Now we choose ¢ as the test
function in (1.6) to obtain that

to ta
/U(l‘,tz)@s(l',tg)dx—/ / u(x,t)@taps(x,t)dasdt—&—/ E(u, °, t)dt
B, t1 B, t1
ta
< [ uwtyetdes [ [ fetug e dat (3.3)
B 11 B,

r

here we fix t; = 71 — £ and let t5 € (71, 72| be determined later. It is clear that t; —e,t2 + & € (71, 72)
for any € < €9/2, which ensures any integral in (3.3) and all the terms below make sense. Then it
follows by the elementary properties of convolutions and Fubini’s Theorem that

/: /BT u(z, t)0pp® (z, t)dzdt = —/ /: w(z, 1) (000)° (x, 1) dtda
/ /ttQ 1/tt2 t)0-¢(z, T)C(t_TT)detdx
/ /tH (i /f (f”vt)C(T;t>dt) Orp(x,7)drdz
/B/tf+ (i /: u(z,t)C<T€t)dt> 8, o(x, 7)drdzs

/ /:2_; u(x,7)0rp(x, T)drdx. (3.4)

1+5

With taking

/ /+ (i— /;;W’M (T;t)dt> Orip(a, 7)drdz
LT e

an integration by parts to the last integral of (3.4) infers that

ta 2—5
7/ / u(x,t)atgoe(a:,t)dxdt:/ / Opus (z, t)p(z, t)dxdt + 3(e)
t1 B, t1+2
e _c £
/Bru (z,t2 2)g0<z,t2 2)dx
e € €
Jr/BTu (a:,tl + 2)g0<:zr,t1 + 2)dx. (3.6)

11

- t)dt) Orp(x, T)drdx, (3.5)



Combining (3.3) and (3.6), we have
/ / Opus (x,t)p (xtdardt—&—/ E(u, %, t)dt + X(e)
t1+5

12
< —/ u(x7t2)g05(x7t2)dx+/ u(z, t1)p®(x, t1) dx—i—/ fz, t,u)p(x, t)dxdt

e s t1 B,

—|—/Byu5(x,t2—;)cp(x,tg—Q)dx—/BTua(x,tl—i—Q)go(x t1 + )dw (3.7)

Now abbreviate v¢(x,t) := (u — k)4 (x,t) and choose p(x,t) = v¢(z, )P (z)n?(t) in (3.7) to get

to—%
/ / O (2, ) (0 P2 (2, ) dedt +53()
1+5 B,

t

+ % /tl2 /r /’r Jp (w(x,t) — w(y,t)) X ((Ugipan)E(xj) _ (1)6’1/117772)5(y,t))d/1dt
I3

i /tl /]RN\BT /Br Tp(w(@,t) —w(y,t)) x (v9Pn*)" (z, t)dpdt

€

to
£.1.D..2\E
< / /B St )0 ) o, e
13

+/B u® (:E,tg — %)(anp7]2)(l'7t2 - %)dz —/B u(z, ta) (vSYPn?)e (z, to)dx

T r

I

5

+/ u(g;,tl)(vww)e(x,tl)dx—/ (x t+ )( Sy )(x,t1+%>dx, (3.8)

s r

1§

where the quantity X (e) is as specified in (3.5) with ¢ selected as v (x, t)iP (x)n?(t).
Before proceeding for our desired estimates, we need to take ¢ — 0 and find the limits of
I§,15,. .., I5. Clearly, it can be obtained by integrating by parts that

/:v/ Ou(uF (w,t) — k)1 (u (2, 1) — k) 40P () (1) ddlt

1+5

/ttg/ Or(u® (w, ) — k)2 9P (x)n? () dzdt

1+5
= ;/BT (u (x to — 5) —k) wp(:c)n2<t2 - %)daj
_1/ ( (x t1+2) k)iwp(ag) <t1+ )dm

/t s / k)P ()0 (t)Dn(t)dzdt. (3.9)

12



Due to the fact u € C ([f1,72]; L?(€2)) and Lemma 3.2 (i)&(ii), we can see that

I — = / wi (z, t2)YP (x )dz—%/ w3 (z, )Y (z)dz

B,
t2
/ / )0 (t)YP (v)w?i (z, t)dedt  as e — 0, (3.10)
t1

and then we denote the limit of I{ by I;. Let us turn to the term 5. A simple calculation infers that

1 [tz . .
~2 /t /B /B Tp(w(@,t) —w(y, 1)) x (v7¢"n*)" (1) — (wyh™n®) (2, ) dpdt
i ;/t /B /B Ty (w(a, 1) = w(y, 1)) < ((wed"n*)(y, £) = (U0°) (1)) dpudt + L, (3.11)

where we set

=5 [ ) - w) < (007 @) — v ) . (312)

In light of Lemma 3.2 (iv), it can be obtained that {(1151/}1’772)5}66(0’%0) admits an e-independent bound
in the space LP(t1,t2; W*P(B,)), which implies that

(vYPn?)* (2, t)

<c.
o —yl > -

Lp(tl,tQ;Lp(BTXBr))

This combined with (1.3) gives that

<c. (3.13)
Lp(tl,tg;Lp(B7-><B7-))

| K3 @y, )0y (.|

Considering the convergence (v:1Pn?)¢ — (u — k) 1Pn? a.e. in B, x (t1,t2) and recalling the fact
(u— k)4 = wy, we thus derive from (3.13) that as ¢ — 0,

K7 (2,9, ) (0" n*)" (w,1)
— K%(x,y,t)er(x,t)wp(x)nQ(t) in LP(t1,te; LP (B, x B,)). (3.14)

On the other hand, we have

/t 2 / / Ty (w(z,1) — w(y, 1)) x (CUPP) (2, 1) — (wy PP (. £)) dpde

[T ] et - wtny g
X (0°9Pn?)° (2, t) — (wiPn?) (x, 1)) K7 (2, y, t)dedydt. (3.15)
By utilizing (1.3), we can check
Ty (w(z,t) — w(y, t)) K77 (2,y,t) € L71 (t1, t9; L77 (B, x B,)). (3.16)

Thus, a combination of (3.14)-(3.16) leads to the convergence that
ta
[ w0 —wt) < (50 .0 - (i) e 0)dpdt 0 (317)
B, JB,
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as € — 0. Similar arguments performed on the second integral on the right-hand side of (3.11) tells
that

to
L[] awet) - w.0) % (@) 0.0 - G0 ) dude >0 (319
B, /B,
as ¢ — 0. Hence, we can conclude from (3.11), (3.17) and (3.18) that

IS5 1, ase—0.

For the term I5, by utilizing similar arguments as those used for I5, we can derive that

I5 — /:2 /]RN\B /B Jp(w(z,t) - w(y,t)) x (wipPn?)(z, t)dpdt =: Is  as e — 0. (3.19)

The explicit reasoning of proving (3.19) can be found in [5, Section B, P44], thus we omits the
8

details here. As for the term I§, the condition (1.4) and the assumption h € L' (Qr) ensure that

flu,z,t) € L7 (t1,t2; L%(BT)). Thanks to Lemma 3.2 (iii), the integrability u € L?(71, 72; L?(B,))

yields that

H( PP EHLﬁ(tl,tz;Lﬁ(B ) =C

which implies that
(05 YPn?)" (2, 8) = w (2, )PP (@) (1) in L (11, t0; L7 (By)) as e — 0.

Hence, we obtain that
I %/ / fx, t,w)wy (z, )P (2)n*(t)dedt =: I ase — 0. (3.20)

By employing the arguments used on [5, Lemma 3.3, Formula (3.6)], we also can verify 3(g) — 0 as
¢ — 0. An application of Lemma 3.2 (ii) permits us to derive that I¢ — 0 and I§ — 0 as ¢ — 0.
Finally, by virtue of the above convergence properties and (3.8), we obtain that

L+ 1+ I3 < Iy (321)

The rest part as the last step of our proof is devoted to establishing the desired estimates of
Il, [2,]3 and I4.
The estimate of I;. Noticing the assumption that n(¢1) = 0 and n(t) = 1 on the interval [, 72|, we
directly have

I = %/B w+(m to)P (x dx—/ / t)0en ()P (z )wi(x,t)dxdt (3.22)

because of (3.10).

The estimate of I5. The pointwise estimate used in the part is derived from [15, pp. 1285-1287].
For the sake of completeness, we give every detail here. The following arguments (3.23)-(3.27) are
performed based on the assumption that w(z,t) > u(y,t) with some ¢ € (0,7). Otherwise, when the
case u(z,t) < u(y,t) happens, the desired inequality (3.27) below can be obtained by exchanging the
roles of  and y. Since u(x,t) > u(y,t), it can be verified that

[w(a,t) = w(y, )" (w(w,t) — w(y, ) [w (2, Y7 (2) — wy (8" ()]

14



> (wa, t) — wly, )" s (@, 0P (@) — wi (3, )07 (). (3.23)

When w(z,t) > 0 and w(y,t) > 0, we clearly have

~1
(’LU(I, t) - w(y7 t))p [w-i- (.’,E, t)q)/)p(x) — W4 (y7 t)i/’p(y)}
~1
Z (w+ ((E, t) — W4 (ya t))p [w+ (1’, tﬁ/)p(ff) — W4 (ya t)¢p(y)] ) (324)
where the two sides are actually equal in this case. If w(x,t) > 0 and w(y,t) < 0, it can be verified
p—1 p—1 o p—1 . P .
that (w(z,t) — w(y,t)) > wh(z,t) = (wi(z,t) — wi(y,t)) which ensures that (3.24) still
holds. When w(z,t) < 0 and w(y,t) < 0, the both sides of (3.23) equal zero. Thus, all of these
guarantee that (3.24) is true whenever u(z,t) > u(y,t).

Now we further assume that ¥(y) > ¥(z) and wy(z,t) > wi(y,t) > 0, and then continue to
estimate the right-hand side of (3.24). It follows from Lemma 3.1 that

UP() > PP (y) — Cped®(z) — (1 + Cpe) e Plip(x) — (y)|”
> YP(y) — Cpet?(y) — (L+ Cpe) e Plip(@) — v (y)I” (3.25)
for any € € (0,1] with C,, = (p — 1)I'(max{1, p — 2}). We choose

— 1 . w+(x7t)_w+(y7t)
max {1,2C,} w4 (z,t)

in (3.25) to get that

(e (,8) = wa (3, 1) ws (80P (2)

> (wy(x,t) - w+<y,t))”‘lw+<x,t)(max{wx),wy)})”

wy (2, 8) = wy (y,1))" (max{y (), & (y)})"

max {w+ (@, ), wi (y,0)}) |9 (x) — b(y)[". (3.26)

For the other cases 9(y) > (x) with wy(z,t) = wy(y,t) > 0, or ¥(y) < ¢(z), the above inequality
(3.26) apparently holds. A combination of (3.23)—(3.26) shows that

wy
1
2
-C

(
(

|w(z, t) — w(y, )" (wlz, ) — w(y,t)) [wy (@, )07 () — wi (y, )PP (y)]
> (wy (@, t) —wy (y,)" " [wp (2, )07 () — wo (g, )¢ (y)]
> (wy (@, 8) —ws (5, )" [ (, £) (max{e(z), ¥ (y) P — w(y, )PP (y)]

(1w (21) = w(9.))" (max{(2),6(9)))’
— O (ma fury (o 1), (9, 0))) o) — ()P
> 2 (we (1) — (9, 0))" (max{(e), (1))
— O (ma fuy (o 1), (9,00} ) o) — ()P (3.27)

whenever wy (z,t) > wy(y,t). For the case that wy(y,t) > w4 (z,t) in the integrand, the above
estimate can be obtained by interchanging the roles of x and y. Finally, we can derive from (3.12)
and (3.27) that

Bz g [0 ) < ) (s o), v 0P 0 du
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to
o [T [ (max s 0,04 (00} 0G@) — SR Odur
t1 B, J B,
This combined with an elementary inequality

|U)+(£C,t)’(ﬁ(x) - w+(y,t)¢(y)‘p §2p71|w+(l’at) - w+(y,t)|p(max{1/)(m),w(y)})p
+ 207 (max {wy (2, ), wy (y,)}) " [0 (x) — D (y)[P (3.28)

gives that

1 [t 2
L25m /t /B /B lwy (2, ) (x) — wy (y, )P (y) [Py (t)dudt
B C/: /BT /BT (max {wy (z, 1), wy (y,0)})" | (x) — YY) [Pn?(t)dpdt.

The estimate of Is. When w(x,t) > 0, it is easy to verify that
-2
|U)(J},t) _w(y7t)|p (’U)(Qf,t) —w(y,t))w+(m,t)
-1
> — ( (y,t)*’LU(l‘,t))i w-‘r(x?t)
> —wh” Yy, wy (2,1). (3.29)

If w(x,t) <0, then we can check that (3.29) is still valid because both sides of (3.29) are zero. It
follows by (3.19) and (3.29) that

Iy = / B A R U R O P E I S TRO

> C’/T1 4/ /]R wi (%;S)pdy)w_,_(x,t)wp(:c)UQ(t)d:L’dt

N\B,. |(I) —

w+

—C esssu vt / / wy (x, )P ( 2(t)dzdt.
- é<t<Izz /]RN\B \x—y|N+SP 20 +@, Oy @)

The estimate of I,. By using the structural condition on f and Young’s inequality, we have

v

flz, t,w)wy (z,t) < colu(z, t)|P~wy (z,t) + h(z, t)w,y (z,t)
B
< wa_(l‘, t) + O|U(3§‘, t)‘ﬁX{qu} ('Tv t) + Ch?=1 (1‘, t)X{qu}(xa t)7

which in conjunction with (3.20) directly gives the estimate of I, as below

L <C /w+mtw1’ (z)n?(t)dxdt

Tlf

e / (@, V)X gusy (2, 9P (2) (¢ dadlt
T1—4

B

e / L 0 o 0 P e,

Hence, we can conclude from the estimates of I;-I4 and (3.21) that

/ 2 / / i (s )b ) — s (3, ()P (2 dadt + / W2 (2, t2)yP (2)de
1 B, J B,

T
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=¢ /e /B /B max {w (2, 1), wy (5,0} [0(x) — (o) PP (¢ dpdt

p—
+ C esssup / w+ |N’+sp / e/ w (z, )P (x)n? (t)dxdt
T1—

- 1’<f<7—2
zESs

e /e [ a1 + 0175 08 o) oy (007 @ (s
b 2 P(x T
w0 [7 [k @ntofom(o s (3.30)

In (3.30), we separately take to = 79 and to € (71, 72] with the property

/ w3 (z,t2) YP(x)dx = ess sup/B w (z, )Y (v)dz

T1<t<T2

[d

to obtain the desired estimate exhibited in (3.2). O

Lemma 3.4. Let p > 1. Then there exists a constant 0 < C, < min{(p —1)/2,1/2} only depending
on p such that for all s € (0,1),

Proof. We divide the proof into two cases.

Case 1: s < 1/2. Let h(z) = z — log(z? + 1)/(2p) defined on [1,00). The fact h'(z) > 1/2 ensures
that h(z) > h(1) > 0 for all z > 1. Thus we have

p—

1 1
z>2—plog(zp—|—l): log((z”—l—l)p%l), Vz2>1.

With the translation t = (2P 4+ 1)ﬁ for t > 2, the above inequality directly yields that

1
=1y > 2 Zlogt, vi>2.

2p

This allows us to find a positive constant C,, < min{(p — 1)/2,1/2} such that

p—
4p

=

>

(1 —1-Cp) ! logt, Vit>2. (3.32)

Now we take s = 1/t with s € (0,1/2) and derive from (3.32) that

(T ) 2 g (0 1-6)

-5 2p

p—1 1\* 1
log — v -. 3.33
(Pt os3) + vo<g (3.33)
We arrive at the claim for the case s < 1/2.

Case 2: s > 1/2. Now, consider the function s — g(s) given by

st -1 p—1 [t _ 1
g(s) = T :1_3/87'pdT, Vse[i,l).
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Since the integrand is a decreasing function, it can be deduced that g(s) also decreases w.r.t s. Thus
we have 1
g(s) >p—1, Vseb,l),

which directly tells that

-p 1 1 1
it BN St SVIPRE Y 534
2 2
where we used the assumption C,, < (p—1)/2. Moreover, we set k(s) := 2(1 —s) —log (1) on [1/2,1],
and then verify that k/'(s) = —2+1/s < 0 for s € [1/2,1]. Thus, there holds that k(s) > k(1) =0 for
all s € [1/2,1]. This results in the estimate

1-s) > (% log %)p Vse [%, 1). (3.35)

A combination of (3.34) and (3.35) gives that
st=P—1 p— P 1
(175)1’(17_870,,)> 2p+1<1g ) . Wse[50). (3.36)
Hence, we complete the proof by virtue of (3.33) and (3.36). O

What follows is the Logarithmic estimate for the parabolic nonlocal equation. The elliptic version
can be found in [15, Lemma 3.1]. Here, in the technical level, it is necessary to impose the condition
p > 2 for controlling the term I; below by a desired form CrNd?~P. As a consequence, this restriction
prevents an extension of Theorem 3 to the subquadratic case.

Lemma 3.5. (Logarithmic Lemma) Let p > 2 and u be a local solution to (1.1). Assume that
flz, t,u) = h(z,t) in Qr x R and h € LZ.(Qr). Let (xo,t0) € Qr, To > 0, 0 < r < R/2 and
Q= Br(zo) x (to — 2T0,to + 2Ty) such that Br(xo) C Q and [to — 2To,to + 2Tp] C (0,T). Assume
that u € L>°(Q) and u > 0 in Q. Then the following estimate holds for B, = B,.(x) and any d > 0,

[ 1, e G

< CT()’I“N_Spdl_p (%) [Talloo(u, Zo, R, to — 21—’07 t() + 2T0)]p

dudt

-1

+ CTyrN =P + CrVNd?=? + CTyrVd* 7, (3.37)
where C' > 0 only depends on s,p, A\, N and h.

Proof. The first step of the proof should be the regularization procedure, which can be performed
by straightforward adaptation of standard reasonings used in Lemma 3.3. In order to avoid repeating
the arguments, we omit this part. Let d be a positive constant and ¢ € C§° (Bs,/2) be such that
0<% <1, |Vy| < Cr~tin By and ¢ = 1 in B,. Let n € C§°(to — 2Ty, to + 2Tp) be such that
0<n<1,|0m| < CT(;1 in (tg — 270, t0 + 2Tp) and n = 1 in (tg — Tp, to + To). The test function ¢ in
(1.6) is given by

pla,t) = (u(z,t) +d) PP ()P (L).

This test function is well-defined since w > 0 in the supports of ¢ and 1. We deduce from (1.6) that

to+2To 1—
/t O ((u(x,t) +d) "n*() Y (z)u(z, t)dzdt

0—2To J Bar
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to+2Th
—u p—2 wlz _u
L a0 - a0t - )

l YP(z)  yP(y)
(u(

u x,t) + d)p_l (u(y,t) + d)pfl n (t)d,lldt

to+2To - p— QM Py 9
/RN\B% /Bzr lu(z,t) — u(y,t)] (. ) + d)P— TP (x)n” (t)dpdt

to—2T0

to+2T, 1_
/t Flat,u) (ule, £) + ) Pyr (o) (t)dadt

0—2Ty J Bar
= Il +12+13—|—I4 (338)

The estimate of I;. By integrating by parts, we obtain

to+2To 1
L = / / (w(z,t) +d) "0 ()Y (z)Opu(w, t)dudt
to—2Ty Bo
to+2To 5
O (u(z,t) +d)” "yP(z)n? (t)dzdt
2 — D Jtg—219 JBa,
to+2To

<c [ wlet)+ o) dedt

to—2To

<crVa?r. (3.39)

The estimate of . As performed in Lemma 3.3, we first consider the time point ¢ € (to — 270, to +
2Tp) with the property that u(z,t) > u(y,t). The assumption u(y,t) > 0 in supp ¢ x (tg—2T0, to+27Tp)
ensures that (u(z,t) —u(y,t))/(u(z,t) +d) € (0,1). With § € (0,1) to be determined later, we choose
a= ¢(3«")7 b=1(y) and

— 6““(3:7 t) — u(y7 t)

u(z,t) +d €©.1)
in Lemma 3.1, and then deduce from Lemma 3.1 that
W) <0t(y) + Gty
1+ 0yl (92 5 f‘; )] [5“(2’(2701(3’ t)]lp () = ()P
<)+ G B ) 1 [sH D)), (a0

where Cp, = (p — 1)I'(max{1,p — 2}). It can be obtained by (3.40) that
et ORI 0)
e ) O 2(ule. )~ .0 | T d),,_l}

(u(w,t) —u(y, )" u(a,t) —u(y,t)  (u(z,t) +d\p-1
: (u(z,t) +d)" w(y)[uca u(z,t) +d <u(y,t)+d) }

+(Cp +1)8 () — Py

1—
uw ) — )], [1- () ,,
_[(:vt)er] VW |~ agara TG0+ (Gt DITIRE) — v (341)
u(z,t)+d
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Let C, > 0 be as given in Lemma 3.4. It follows by choosing s = (u(y,t) + d)/(u(x,t) + d) in Lemma
3.4 that

1-p
D ([ uly,t)+d
w(e,t) — uly, ) |71~ (S059) col < _(P;l)p log 40z +d\ 1" (3.42)
w(z,t)+d 1— 58313 Pl = 8p u(y,t) +d ' '

With taking 6 = C,,/Cp, we derive from (3.41) and (3.42) that

u(z,t) —u P=2(y(x,t) —u ¥P(x) _ VP (y)
)=l (y’t)){( (967t)+d)p_1 (u(y,t)+d)p_l}

p—1\? . u(z,t) +d )
= _( 8p ) WP (y) |log <()+d> + Cl(z) — ¥ (y)| (3.43)

whenever u(x,t) > u(y,t). For the case u(z,t) = u(y,t), the above estimate holds trivially. If
u(y,t) > u(z,t), then (3.43) can be proved by exchanging the roles of z and y. Finally, we have

to+2To )—I—d
L<-c [ e ( ) ) (1) dput
to—2To B, J B, ) + d (
to+2T0
+C’/ / / () |Pn? (t)dpdt, (3.44)
to—2Ty Bz, J Ba,
where the last term can be estimated by utilizing the assumption (1.3) on K,
to+2T0
[ 1wt = v @du
to—2Ty Bz, J Ba,
to+2To 1
< Crv / / / L ayar
to—2Ty JBay JBo, |7 —y[N7PTP
< CTorV =P, (3.45)
Observe that n = 1 on (tg — To,to + To) and ¢ = 1 in B,.. A combination of (3.44) and (3.45) shows
that
to+To + d\ P
L<-C / / ( T d) dadydt + CToyr™N =P, (3.46)

The estimate of I3. Recall that u(y,t) > 0 for (y,t) € Br x (to — 27, to + 21p). Then it follows
that for y € Bp,

(u(z,t) —uly, )"
(d + u(x, t))pi1

1

<1 withany x € By, t € (t() — 2T, to + 2T0)

Moreover, for y € RV\ Bg, we can see
p—1 -1 -1 p—1 .
(u(z,t) — uly, t))+ < 2P [up (z,t) + (u(y, )" ] with any x € Ba,, t € (to — 270, to + 210).

Thus it can be obtained that

fo+2To —u(y, 1))
we [Tt EJLS—
to—2Ty J Br\Baz, J Ba d+ u T t))
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(u(o.) =l )"
/ / 2Vt I
to—2Ty JRN\Bp /By,  (d+u(z,1))

to+2To

<C / WP (z)dpdt
to—2To RN\BQT Bs,.
to+2To 1
+Cd'~ p/ / / (u(y,t))zi PP (x)dudt. (3.47)
to—2Ty RN\BR Ba,
Applying the assumption (1.3) on K and noticing supp 1 C Bs,./2, we have
to+2To
/ PP (x)dpdt
to—2Tp JRN\Ba, J By,
1
< CT, sup ’I"N/ TN, dydt < CTorN =P, (3.48)
TEB3, /2 RN\ Ba, |.’L' - y| P
Since there holds
ly — 2o |z — o 3r/2 N
< <14+ ———— <4 A € B3, d y € R\ Bg,
TEE oy = +R73r/2_ or any x 3r/2 and y \Br

we can see

to+2To p—1
Lo ] o) v @au
to—2To RN \BR Ba,

u(y,t Pl
< CTp |Bayr| ess sup / %d

te (to—2Th to+2T0) JRN\ B |y — |~ T°F
CTor _ p—1
Rep [Tall (u, o, R, tg — 210, to + 2T0)] (349)
Substituting (3.48) and (3.49) into (3.47) implies that
CT, _
Iy < CTyrV—*P + ROT d"~P[ Tailo (u; 20, R, to — 2T, to + 2To)] " (3.50)

The estimate of I. Noticing that f(x,t,u) = h(z,t) in Q7 x R and h € LS (Qr), we immediately
have

to+2To
/ B, t) (u(z, £) + d) PP (@) () dadt < CTyr™ d'. (3.51)
to—2To Ba,-
Together with (3.39), (3.46) and (3.50), this guarantees the claim. O

Corollary 1. Letp > 2 and u be a local solution to the problem (1.1). Assume that f(z,t,u) = h(z,1)
in Qr x R and h € L{S.(Qr). Let (xo,t0) € Qr, To > 0, 0 < r < R/2 and Q= Bpr(zg) x (tg —
270, to + 2T0) such that Br(xo) C Q and [to — 2Ty, to + 2Tp] € (0,T). Assume that u € L‘X’(Q) and
w>01inQ. Let a,d > 0,b>1 and

v 1= min {(log(a +d) —log(u + d))+, log b}.

Then the following estimate holds for B, = B,.(x¢),

to+To
/ ]l (x,t) B, (t)|F dzdt
to
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1— T\ P . p—1
<CTyd'~? (E) [ Tailoo (u; 70, B to — 2T, to + 2Th) ]
+ CTy + CrPd*=? 4 CTyr*Pd P, (3.52)
where C' > 0 depends only on s,p, A\, N and h.

Proof. The fractional Poincaré inequality exhibited in Lemma 2.5 and the assumption (1.3) on K
indicate that

]{BT [o(,8) — ()5, (&) dz < Crr- N/ / n- |N+y;pt)| dady

<o N [ ] Koyt - o ldedy (353)
B, J B,

for all t € (tg — To,to + To). An integration of (3.53) w.r.t the time variable leads to

to+To
/ ][ lv(z,t) — (v)p, (t)|F dzedt
to
to+To
< CrP~ N/ / / K(x,y,t)v(x,t) — vy, t)|[Pdedydt (3.54)
to

with C = C(s,p, A, N) > 0. Noticing that v is a truncation function of a constant and log(u + d), we

have
to+To
/ / / K(z,y,t)|v(z,t) — v(y,t)["dedydt
to

[ L o2z

Now we apply Lemma 3.5 to estimate the right-hand side of (3.55), and then immediately arrive at
the desired result by a combination of (3.54) and (3.55). O

dxdydt. (3.55)

4 Local boundedness

This section is devoted to obtaining the local boundedness of weak solutions to (1.1).

4.1 Recursive inequalities

In this subsection, we give the recursive inequalities for the cases p > 2N/(N + 2s) and 1 < p <
2N/(N + 2s), respectively. Before this, some preparations need to be performed as below. Let
(0,t0) € Qr, r > 0 and Q, = B,(x¢) x (to — 7P, t9) such that B,.(x¢) C Q and [to — P, o] C (0, 7).
Take decreasing sequences

roi=r, ri=or+279(1—o)r, 7= L;J“ j=0,1,2,... (4.1)

with some o € [1/2,1). Then, set the domains
Q]_ = Bj X Fj = Brj (ﬂfo) X (to — T;p,to), j = 0, ]., 2, ey (42)
Qj = B; x T = By (x0) x (to —7F,t0), j=0,1,2,.... (4.3)
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For
Taily (uy; o, o, tog — 7P, 10)

k>

5 )
we choose sequences of increasing levels as

kji=(1—-27)k, k= ]%L;kf j=0,1,2,.... (4.4)
Let

wi=(u—k;),, W= (u-kj)y, j=012. ... (4.5)

In the two coming lemmas, we deal with the Caccioppoli inequality written for the function w; over
the domain @)} . To this end, the cut-off functions 1; € C§°( B;) and 1, € C§°(T';) are taken to satisfy
the condltlons as follows:
c2 . - o
ngj <1, |v¢j| < m mn Bj» wj =1lin Bj+1
and

c2svi

0 S ’I’]j S 1, |8t’l7]‘ S ( m Fj, 7’]]' =1in Fj-ﬁ—l-

1—o)sprsp
Lemma 4.1. Let p > 1 and u be a local sub-solution to (1.1). Suppose that f satisfies (1.4), where

N + sp

B>1 and h77 € LL (Qr) with >
Let (zo,t0) € Qr, r € (0,1) and Q;” = B,(z0) X (to —7°P, t) such that B,(x¢) C Q and [t 0 =P ,to] C

(0,T). Assume that q is a parameter with the property ¢ > max{p,2,5}. Let B, B ,I;,T; be given
n (4.2)-(4.3) and w;j,w; be defined in (4.5). Then we have for all j € N that

t) — w;(y, P ~
/ / ][ [y (e, xi(sy 2l dxdydt + ess sup][ w; 2(x,t)dx
Fjy1 I Bjt1Y Bt |x - | P telj1 41
1)j

J

1 o(sp+q—2)j  9(N+spt+q—
S rSP |:Jsp(]_ — O—)NJrsp + (1 _ O.)p:| |: I’%q_2 + :| / ][ $ t dxdt
szurz\r(l+ e

29 23N
k’l ﬂ/ ][ (z,t)dedt + ———— ¢ Ry / ][ (z,1) dxdt) , (4.6)
k§p+N

where k1= 14 2s/N and ko :=1— (sp+ N)/(spg) € (0,1] and C > 0 only depends on s,p, 3, A, N, cq
and h.

Proof. By simple calculations, there holds that 1/§ = (1 — ko)sp/(sp + N). Before estimating the
forthcoming integral terms, we first show that for any 0 < 7 < ¢,

(u = k) X (ust,y (@, 1)

> (ky — k)" (u — ki) X fus i,y (5 1)

B2 (0 )Ty (1)

R =iy _ E)T in O
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This directly tells that

C2(a—7)J
W} (2,t) < —=——

q .
= wi(z,t) in . 4.7
o (1) Qr (4.7)
Now we choose r = 1,79 = tg, 71 = to — rjsﬁl and ¢ = f‘Jp — rsﬁl in Lemma 3.3 to get

/ / ][ = wj|x_) ﬁiﬁi Do) ()dwdydtJresssup]é W2 (x, t)y? (z)dw

telja 7

<cf / | ][ ma 13, ), 5, 01 45 (2) — () P 1)l

—&-C’estse?up /RN\B |x— |N+Sp /][ wj(z, ) )?(t)da:dt
J

zEsupp ¥

+C /fj ]i’j (v’ (z, X usi,y (@) + ﬁ}f(m, t))wf(x)n?(t)dxdt
+C/fj]{3j B (2, )X i, (@ DV (@) (0 dadt

+ C/f ]{3 ﬂ)?(x,t)lpf(a:)nj(tﬂamj (t)|dzdt
= Il+12+13+14+15~ (48)

The estimate of I;. Based on the assumption on ¢; and (4.7), we have

I - / / ][ e {1 (2, £), 10 (3, )} |5 () — 5 (9) P2 ()t

C2opi
S(l—a)przeB/B o= |N+Spp /][ Pz, t)dxdt
C'opi
a W p/][ P(z,t)dxdt
— 0— TS

qj
< 2 / ][ (x,t)dxdt. (4.9)
ka—» (1 —o)prsp

The estimate of I5. For the term I, there holds that

C2(a—1)j
Wj (@, )P (2)n? (t)dedt < ———r wi(x,t)dxdt 4.10
J J J J
r,/B; k=t Jr, /B,
because of (4.7). Notice that
— P 2J+2
|iyy_l;o| <1 = _l‘yo| <1l+ —— — <4+ 1_5 for any x € suppy; andye]RN\Bj.
7T

Thus we obtain that

s sup / T
wer,  Jrw\p, T —y[NTEP
'J‘,EsuPP"P]‘
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Co(N+sp)i / Wy, t)
R

< ——————esssup —dy
(1 —o)Ntsp tel; N\ B; |wo — y[NHep
C2(N+sp)j @ (y, t)
< ——————ess sup/ —0 7
(1 —o)N+ep = cp” Jrm\B,, |wo —y[NTeP
C2(N+sp)j _
[ Tailos (u; o, om,tg — 1P, 10) ]p ' (4.11)

= pergep(1— g)Ntep

Recalling the choice of k, we derive from (4.10) and (4.11) that

I, = esssu / /][th 2(t)dzdt
2 tefjp \/RN\B |.Z‘— |N+sp ! ) ]()

T Esupp 1/)‘
CQ(N+sp+q 1)j
T p/ ][ (z,t)dxdt. (4.12)

The estimate of I3. It is easy to check that
(u— ky)ﬁ 2 (u— kj)iX{quj}(l’a t)
ki\B
> uﬁ(x,t)<1 - Tj) X{u>,;j}(m,t)
kj -
> C’2_5juﬁ(x,t)x{u21~€j}(x,t) in Qr
and

(u— kj)i_ﬂ > (u— kj)i_BX{uzigj}(wy t)
> Cé4*52*(Q*ﬁ)jX{u2kj}(x, t) in Qr,

which ensure that
uP ()X, o7 2 (1) < ?—wq(x t). (4.13)
P A uzk )N = pg g TN

Hence, it follows from (4.13) that

L<cC / ][ (2. )X s (@ 02 ()2 () e

aj
k0q2 5 / ][ (x,t)dzdt, (4.14)

where we also utilized the fact that wf(a:, t) < uf(x, t)X{uzkj} due to k > 0.

The estimate of ;. By (4.7) and the Holder inequality, we have

_B_
= [ W@ (o 00 @ ()
r;JB;
h5=T | Laor /][Xuadxdt
1075 lagam ( T, X2k )

C b (15 e (14 3550

; ~
kjSP+N (1+ SPK/D / f x t dxdt) . (4.15)
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The estimate of 5. Still by using (4.7), we can see

b= [ f, waouem ool
spj
- / ][ (x,t)dzdt
(T —o)rrov

sp+q—2)j
o2 / ][ (z,t)dzdt. (4.16)

~ (1 —o)sprepka—2

Based on the facts that ¢; =1in B,4; and n; = 1 and I'; 11, we can conclude from (4.8), (4.9), (4.12)
and (4.14)-(4.16) that

t e p
/ / ][ [0, (- jvui_(sy’ l dxdydt + ess sup][ W5 (x, t)dx
Tjy1 / Bjt1Y Bjta |z —y[ e telj+1 J By

+1

1 9(sp+q—2)j  9(N+sp+q—1)j dnd

< — = t) t
= psp {gsp(l — J)N+sp + (1 — U)p:| |: kq—2 + :| / ][ .Z‘ x

C2q‘7 3P+N (1+SPI\';O)
4.17
kq 6/ ][ (z,t)dedt + —F—5e— ksp+N(1+Sm°) / ][ (z,t) dxdt) ) ( )

as desired. O

Lemma 4.2. Let p > 2N/(N + 2s) and u be a local sub-solution to (1.1). Suppose that f satisfies
(1.4), where

25+ N : N
TN and WP e L8 (Qr) with > ;Sp.

Let (x9,t0) € Qr, 7 € (0,1) and Q,” = B,.(wg) x (to —1°P, to) such that B,(x9) C Q and [to —r*P,to] C

0,T). Let the notations B;, B;,T;.,T; and w;, w; be giwen in (4.2), (4.3) and (4.5). Then we have
s Pir il 7> Wy
for all j € N that

C2bi [ 1 1 ]
B
w? o (z, t)dxdt < + -
/r]i i) r ¥ awu_a)% (1-0) "
! 1+42
. t)d dt)
: {kww;w ,;%Wﬁ 1o } /][ (&)
C2b 1+
/][ (z tdmdt) :
kﬁ(lfﬁ)

bj 1+5N9{B
ﬁff / ][ xtdxdt) A (4.18)
7

where b= (1+sp/N)(N +sp+B), k :=14+2s/N, ko :=1— (sp+ N)/(spd) € (0,1] and C > 0 only
depends on s,p, 3, A, N,co and h.

max{p,2} < B <p

Proof. Since 8 < pk, we have by the Holder inequality that

/ ][ ]+1xtdxdt</ ][ W (x,t)dwdt
J+1 J+1 J+1 J+1
1—-L
/ ]l w5 (z,1) dxdt / ]l X{usk; y(@ t)dxdt) e (4.19)
J+1 J+1 J+1 J+1
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Thanks to the estimate given in (4.7), there holds

Bj
/ ][ 02 / ][ (z,t)dxdt (4.20)
Pij+1/ Bj+1 r;JB;
Q(ﬁ p)J
/ ][ (z,t)dedt < ——— / ][ (z,t)dxdt. (4.21)
J+1 J+1

By using (4.21) and applying Lemma 2.3, Lemma 4.1 with ¢ = 3, we can see

~ P
/ ][ " (x, t)dxdt < C’< gp/ / ][ [2;(z x](% ol dxdydt
Ljt1Y Bt Lj+1 Y Bjt17/ Bjta |x _y‘ op
%
/ ][ (x,t dxdt) <ess sup][ tb?(x,t)dm)
Fj+1/ Bj+1 teljv1 By
2’)]

1
— + .
L*”N“”u— )M (1—a>”NN+‘”]

+32 142
(z,t) dajdt)
kﬂ 2 kb’ P
+C2bﬂ / ][ (z,1) dmdt)

and

2% 1+
+ oy / ][ (z,1) dxdt) (4.22)
with b = (1 + sp/N)(N + sp + ). Substituting (4.22) and (4.20) into (4.19), we can arrive at the
claim. O

Lemma 4.3. Let 1 < p < 2N/(N + 2s) and u € L{S.(Qr) be a local sub-solution to (1.1). Let
Kk:=1+2s/N and m > 2 satisfy m > N(2 —p)/sp. Suppose that [ satisfies (1.4) with

1<p<2 and he L (Qr).

Let (z0,t0) € Qr, r € (0,1) and Q,. = B,(z0) X (to —7°P, t9) such that B,(x¢) C Q and [ty — P, to) C

(0,T). Assume that the notations B, B;,I';,I'; and wj, w; are given in (4.2), (4.3) and (4.5). Then
we have for all j € N that

/ ’ + d dt < 2 +
1 x t)ax ) . . 2 S
1By ] 1\17) o p(z\]rv+ p) (| J)(N+ p) (] )p(N+ p)

1 1 \¥ -
m— pn
X (];:mz + l;mp) ;7 - / ][ (z,t) dxdt)
C2" m—pr 4%
+ m” J”Loo@j;l) / ][ (2,1) dfﬂdt) , (4.23)

where b := (14 sp/N)(N + sp+ ) and C > 0 only depends on s,p, 3,m, A, N,cq and h.
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Proof. Let m be such that the assumption holds. Without loss of generalization, we suppose 8 = 2
to perform the proof. Apparently, there holds that

/ ][ J+1xtdxdt</ ][ M (x, t)dadt
J+1 J+1 ]+1 J+1

< ||4p. ||>—PR =Dk ) )
<Nl | /F N ]i e (4.24)

Based on (4.7), we can find that

/ ][ (x,t)dzdt < - / ][ (x,t)dxdt. (4.25)

Observe that h € LS (Qr) entails ko = 1 in Lemma 4.1. By using (4.25), Lemma 2.3 and Lemma 4.1
with ¢ = m and 8 = 2, there holds that

- p
[ o xtdmt<o<sp/ / [ ez nenr,,
Fjt1/Bjt1 Pj41 v Bjt1Y Bjta |(E - y‘
/ ][ (x,t)dxdt ess sup][ d}?(m,t)da:
Fjt1/Bjt1 teljy1 J B
C2%

1 1

= - 2152 {Uep(wwp)(l _ )<N+sp) + (1 _ )p<N+p)]

1+ ~N 1+
(z,t) dxdt)
km 2 km p

C2b
+ /][ xtdmdt) ¥ (4.26)

with b as given in the statement of lemma. Finally, we complete the proof by substituting (4.26) into
(4.24). O

sp
N

sp

4.2 Proof of boundedness results

We start the subsection with a classical technical lemma. The particular case of do = §; in the next
lemma can be found in [32, Chapter II, Lemma 5.6] and [17, Chapter I, Lemma 4.1].

Lemma 4.4. ([19, Lemma 4.3]) Let {Y;}
inequalities

jeN be a sequence of positive numbers, satisfying the recursive

Vi S KV 4y ) =012,
where K > 0,b> 1 and 02 > 61 > 0 are given numbers. If

1
Yo < min {1, (QK)_ﬁb o }

or

3 L 1 %2-4
Yogmin{(QK)‘alb T (2K) b 3 }
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then Y; <1 for some j € N. Moreover,
1 —-L J
Y; < min{l,(2K)_51b o b‘él} for all §j > jo,

where jo is the smallest j € NU{0} satisfying Y; < 1. In particular, Y; converges to zero as j — oo.
Now we are ready to give the proof of boundedness results.

Proof of Theorem 1. Let the assumption of Theorem 1 hold. Now we take r = R, 0 = 1/21in (4.1),
and then set

yj:/][ (u—ky)" dedt, j=0,1,2,....

Further assuming k> 1 and recalling r < 1, we can deduce from Lemma 4.2 that

1B L1438
Y < 2% 3;‘ n C2%y J "
< = , + T
TP T psp (RO ER(RHR-F) o432 pR (R H1-3)

Cobiy TR ooy IR
J J
rop kP58 pepB+REE)
2% (Yj )14—%’1 2% (Yj >1+S%~LB
T B2 \rep EB(=a0) \rep

, (4.27)

where b = (14+sp/N)(N+sp+ ), s =14+2s/N, kg =1—(sp+N)/(spg) € (0,1] and C only depends
on s,p, 3, N, A, co and h. With setting W; =Y, /r*? for any j € N, the estimate (4.27) indicates that

C2bj 14+ 38 14 550
Wi < W(WJ Ne o Wj Nw ) (4.28)
Let k be chosen to satisfy that
~ to . —
k> max { Taila (us; 0, R/2,to — R, to) C’<][ ][ uidxdt) NER=D 1}, (4.29)
to—R?J By

where the large constant C' only depends on s, p, 8, h, co and N. This along with Lemma 4.4 guarantees
that W; — 0 as j — oo. Thus, we can derive that

Sp
N(pr—B)
esssup u < Taily (uq;xo, R/2,t9 — R tg) + C <][ uidmdt) V1, (4.30)
Qr/z Qr

as intended O

Proof of Theorem 2. Let the assumptions required in Theorem 2 hold. On the basis of the condi-
tions (1.12) and (1.13), we may assume that u is qualitatively locally bounded, which can be achieved
by working with a suitable approximation procedure: All the arguments performed below are reason-
able when we replace u with uy, due to the fact that approximation sub-solutions uj are bounded
ones. Thus, the estimate (4.36) below holds with u replaced by uy. This together with (1.12) and
(1.13) results in a k-independent bound of wuy in L, which combined with the a.e. convergence of wy,
ensures that u is qualitatively locally bounded.
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Now let us define that Ry = R/2 and R,, = R/2+ ), 27*"'R with n € N*. We set the domains
Q,, = Br, (z0) x (to — R:P,to) and the quantities

M, =esssupus, n=20,1,23,....
Qn

For any chosen n € N, we choose r = R,,11 and or = R,, in (4.1), and thus

1240 2_i_1
124 e

| \%

1
5"

With r; taken in (4.1), we set

Y, = /][ Tdwdt, j=0,1,2,....

According to Lemma 4.3, we can see
bj 1 1
. = m—pkK
YJ+1 < 22,2 ”u'*‘”L“(Q;_H){ sp(N+sp) (N+sp)2 + 1 p(N+sp)
R (o) S (1)
1 1 \H+F_ qq C2b 1432
< (ot =) T e o v
m—2 fm—p Jem (145 L>=(Q,41)
O2bj+dn C2b]+dn

MY TN MY (4.31)

- 52172 ~ 3 57°pP” ~ s
Rmk(m—2)(l+%> Rmkm(u%)

where we used the fact p < 2. By taking W; = Y;/R:P, d = max{(sp + N)?/N,p(sp + N)/N} and
b= (sp+ B8+ N)(1+ sp/N), we derive from (4.31) that

. 1 1
W.: bj+dn m—pk
1 S 02 (;;<m—2><1+%> + ;;m<1+%>)Mn+1 ”ﬂ

This in conjunction with Lemma 4.4 indicates that Y; — 0 as j — oo, provided that
_dnN _ 71\7(’” pr) 1 1\
Wy < C2” % “M ( +~7) v
km72 km

In order to make sure the above inequality holds, we take

- dnN to ey x5y A Gies 1) N
k > max { C2m=2)Gpr+N) ][ ][ qu dt ) i M7§$I2)(sp+N)7
B
to—

Ry 41
W N(m—pkr)
m(sp 5
C2 st p+N> ][ . ][ dmdt MG
to— p BRn+1
Taﬂoo (U+; o, Rn, to — Rn+1’ to)
2

with C only depending on s,p, 3, m, N, cy and h. With this choice, we have

Tails (us; 2o, antO — R} to)

esssup uq <
Qr,,
fo DTN s
+ C2m=2)(sp+N) 2)(sp+N> ][ ][ dxdt M,
n+l
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v [0 TEPTN) , o bed
+ CQ m(sp+N) f f dIdt Mﬂr:»(;p#» ) . (432)
to— Br

n+1
An application of Young’s inequality to (4.32) implies
Talloo (U+; 2o, R/2, to - RSP, to)

M, <nM,4+1 + B
—|—02(8P+N)(m 2— >\7n)’[7 m— 2 >\m ][ ][ dl‘dt ep+N)(m aAm)
—RsPJBRr
+ C2(5‘p+N)(7‘n X - Am ][ ][ dl‘dt ST , n=0,1,2,..., (4.33)
—RsrJBpRr

where A\, = (m — pr)N/(sp+ N). In order to clarify the iteration clearly, let us abbreviate
Ay = 2Ty | Ay 1= 2GRN AR

Tailoo (uy; g, R/2,tg — R°P, t0)
2

to sp
_ Am (sp+N)(m—2—2Am)
By = Cy w3 (][ ][ u’fdmdt) e
to—RsPJ B

to
(SP+N)(m Am)
By = O~ 5 ][ ][ " dt 7
—RsPJ Bpr

where C'is as specified in the right-hand side of (4.33). These definitions along with (4.33) tell that

BQ =

)

and

Mn S T]Mn+1 +B0+A711Bl +A72LB2, n:0,1,2,.... (434)
Now we first claim that

M() S ’I’]n+1Mn+1 +B]_ Z(’UAI)Z"_BQ Z(’I]AQV-FBQZ?’]I, n = 071,27..., (435)
=0 =0 =0

which is obviously true for n = 0 thanks to a direct application of (4.34). To verify (4.35) for any
n > 0, we assume this inequality holds for some k € N, then by using (4.34) with n = k + 1, we have

K k k
Mo <n*"'Miiy + B Y (nA1)' + B2 Y _(nAz)' + Bo Y '
=0 =0 =0
K K ko
<y (nMygz + AV B+ AST By + Bo) + Bi Y (A1)’ + Ba Y (nAs)' + Bo Y '
=0 =0 =0
k1 _ k1 _ 1
=0 Myo+ By (nA1)' + B2 Y (nds)' + Bo Y ',
=0 =0 =0

which clearly yields that (4.35) holds for n = k£ + 1. In conjunction with an induction argument, this
guarantees the claimed inequality (4.35). Inserting our definitions of A;, As, By, By and By to (4.35)

shows that

n

to
GpFrN)(m—2—Xm) +N)(m 2—Am) ____dN :
My < " Mgy + O~ 75 ][ ][ dxdt v > (@t )
—RsPJ BRr i=0
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to sp n

__Am (sp+N)(m—Am) _______daN ;

+ C’l’] m—Am (][ ][ qu.’L'dt) sp m—Am E (2 (serN)('mf)\m)n)z
to—RPJ Br i=0

Tailoo (uy; 20, R/2,t0 — R°P, 1) <=~
+ 5 S, n=0,1,2,....

=0

dN
We choose n = 1/2GrFMm=2=3m) *1 to deduce that the sum on the right-hand side can be majorised
by a convergent series, and then take n — oo to obtain

esssup u < Tails (ug;xo, R/2,tg — R, o)

Qk/2
+C (]é

The proof is complete. O

sp sp —
u’jfdxdt) M=) | (][ quxdt) PRI 2% (4.36)
Q

R R

5 Local Holder continuity

This section is devoted to exhibiting the Holder continuity of weak solutions to (1.1) based on the
boundedness of weak solutions when p > 2. The proof of the crucial lemma, Lemma 5.1 is performed
by using the argument provided in [36, Lemma 2.107] and [15, Lemma 5.1]. Different from the elliptic
case, the appearance of the time-variable requires us to borrow the ideas from [17, Chapter III] and
work with cylinders whose dimensions are suitably rescaled to reflect the degeneracy exhibited by the
equation.

We first find a small constant o, > 0 only depending on p and s such that o*?/(?=1) < 1/4 for
all o € (0,0,]. Assume that (Zg,%y) € Qr and r € (0, R) for some R € (0,1) satisfy Br(Zy) C Q and
[to — R*P, %o + R°P] C (0,T). Now let us take a decreasing radii

rj::%, j=0,1,2... (5.1)

with ¢ < min{o,,1/4} to be determined later, and denote
M = C |Tailoo (u; To, /2,10 — P, to + r*P) + (][ \u|pdzdt> BRY; 1} (5.2)
Qn

with some C' > 0 only depending on s,p, A, N and h. Under the condition that f(z,t,u) = h(z,t)
in Qr x R with h € LS. (Qr), Theorem 1 enables us to find a sufficiently large constant C > 1 in

(5.2) ensuring the L>°(Q,/2)-norm of u can be controlled by M/2. Let a < sp/(p — 1) be a positive
constant to be chosen later. Then we define

w(rg) =w(r/2) =M, w(rj):= (Tj) w(rg), j=1,2,3...
To
and
o [ecUDap?P  if j > 1,
R | if j =0,
where




With taking
Bj = By, (Z9) and t;:= d;r3",

we shall use an iteration argument to study the oscillation of weak solutions over the domains
Qj = er,tj (Lf()ﬂf_()) = Bj X (1?() — tj,t_o + tj). (53)

It follows by simple calculations that

1
dj1

= [Ew(rj)]p_2 for all 7 > 0. (5.4)

Besides, the restriction o < o, ensures that
4(0%*“)2_1)7{1’ <ry? and 4aa(2_p)rji1 <ri? forall j>1,
which along with the definitions of d; and t¢; imply that
dtj1q <t; forall j >0. (5.5)

Lemma 5.1. Let p > 2 and u be a local solution to (1.1). Assume that f(x,t,u) = h(z,t) in
Qr x R with h € LS.(Qr). Let (Zo,tp) € Qr, 0 < r < R with some R € (0,1) and Qr =

B(Zo) x (to — R*?,to + R°P) with the property Qr C Qr. Suppose that Q; and w(r;) are introduced
as above. Then we have

essgseu <w(r;) forallj=0,1,2,.... (5.6)

J

Proof. The claim is proved by using an induction argument. Based on Theorem 1, the choice of w(rg)
ensures that the assertion (5.6) holds for j = 0. Now, we suppose that (5.6) is true for all ¢ € {0,...j}
with some j > 0, and then aim at proving it for i = j 4+ 1. Apparently, one of the following two

assertions
12Q;4+1 N {u > essinfg, u+w(r;) /2}| - 1 (5.7)
2Qj 41| T2 '
or
{2Qj+1 N {u < essinfg, u+ w(r;) /2}| 1 (5.8)
2Qj 11 T2 '

must hold. We set u; := u — essénfu for the case (5.7), or take u; := w(r;) — (u — essqi?nf u) for the
case (5.8). In all cases, we can deduce from (5.7), (5.8) and the definitions of u; that .

|2Qj+l ﬂ{uj ZW(TJ) /2}| > 1 (59)
12Q; 411 2
and
0 <essinfu; <esssupu; <2w(r;) forall i=0,...,7. (5.10)
Qi Ql
Besides, u; is a local weak solution to the equation (1.1) apparently.
We first prove that

[Talloo (Uj; (fo, T, 1?0 - tj, EO + tj) ]p71 < CO’ia(pil) [w (’l"j)]p71 (511)
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under the induction assumption. It is obvious the claim trivially holds for j = 0. For j > 1, we have
. _ - — p—1
[Talloo (u]'; To,Tj,to —tj,to + tj) }
J p—1
ui(x,t
=r;"  esssup / s @, O - )]LJFSP dx
te(fo—tj,fo+t;) 53 J Bii\Bi |T — Zol

-1
|uj(z, £)[”

sp

+7; ‘esssup / — N7 dx
te(fo—t;,fo+t;) JRN\Bo |T — T
J
p—1 1

<riP E (ess sup uj) / ,7N+spdl'

i Qi1 RN\ B;

P

(z,t
+ 77 esssup / %dw. (5.12)
te(fo—t;,Fo+t;) JRN\ By |& — To|

It can be obtained by (5.10) that

esssup u; ! ;d < Cr;°P Pt 5.13
P Uj — Nisp T 2 LT [w (ri-)]” (5.13)
Qi—1 RN\B |l‘ — .Z‘0|

In light of (5.2) and (5.10), the definition of u; infers that

) ¢ p—1 ¢ p—1
ess sup / de < esssup / Mdm
R

_ - _ |N+s N+s
te(Fo—t, fo+t;) JRN\By |7 — Zo| " TP te(Fo—t; fo+t;) JRN\By |T — To| " P

+ 1y Pesssup [ulP~t + 7y [w (7“0)]17_1
Q

4]

<Ory* [w (r)]P . (5.14)

We derive from (5.12)-(5.14) that

J sp
[Talloo (’LLJ'; Zo, Tj, to t],to + t S Z ( ) Tlfl)]pil 5 (515)

where the right-hand side can be estimated as below

g(:ﬁ)sz} [w (m_l)]p‘l — v (ro)]l’—l <Z>a(p_1)é(7f>a(p_l) (Z)sp_a(p_l)

7

=[w(r ) -1 y—al— 1)2 i ep a(p— 1)

—a(p— 1)
1 g
S e

4sp—a(p—1)
- (sp —alp— 1)) log 4
because of 0 < 1/4 and o < sp/(p—1). Hence, (5.11) is proved with C' depending only on s,p, N and

the difference of sp/(p — 1) and «.
Next, let v be given as follows

v := min { {log (Wﬂ ,k} with some k > 0. (5.17)
J +

o= [ (r)) P (5.16)
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By taking a = w (r;) /2 and b = exp(k) in Corollary 1, we can see

to+2t;41 »
/7 ][ lv(z,t) — (v)2B,,, (t)|" dxdt
t 2Bj+1

0—2tj41
1— Tj4+1 P . _ — — p—1
< Ctjad p o [Talloo (Uj;l’o,’l"j,to —4t; 11,10 +4tj+1)]
J
+ Ctjpr + Cd®Prit + Ctyad ~Prih .

Since 4t; 41 < t;, we can insert (5.11) into (5.18) to get

to+2t;41 »
/ ][ [v(z,t) — (v)2p,,, (t)]" dzdt
t 2Bj+1

0—2tj41
< Ctj_Hdl_p [Ew (’I“j)]p_l + Ctj_H + CdQ_pT;il + Ctj+1d1_p7‘;i1.

By choosing d = ew (), utilizing (5.4) and recalling @ < sp/(p — 1), it can be verified that
AP =dj
and
dl—r = [w(ro)]1—p0—sp+a(p—1)gj(1—p)a
< [w(ro)]l_pa_(j+1)s”

—sp
< Tit1s

where we used w(rg) > 1 and r < 1 in the last line. Hence, for the function v given in (5.

d = cw (r;), we deduce from (5.19) that

to+2t4+1
][ ][ [v(z,t) = (v)28,., (t)| dzdt < C,
g 2Bj+1

0—2tj41

where the constant C' depends on s,p, A, N, h and the difference of sp/(p — 1) and a.
In view of (5.9), we obtain

1
k= // kdxdt
2Q 1 N {uy 2w (r)) 2} JJ2q, infu;>wir)/2)

: /1
= kdxdt
2Q 1 N{uy = w(r)) 2} J J2q, 1n(v=0)

2
= m //QQJ-+1 (k — v)dedt = 2 [k - (U)2Qj+1] :

It follows by integrating the above inequality over the set 2Q);11 N {v = k} that

12Qj+1 N {v =k} 2 //
k< k= (v)20,., ] dedt
2Q+1] 2Qj+1] JJ2q, 1 v=k} [k = ()20,

) 1 to+2t4+1
= — k — / v)ap, ., (T)dT|dzdl
12Q; 41 //QQHm{v_k} [ i1 Jig—at,., (0)25,1,(7)

1 to+2t 41
R k— (v)2p,.,(7)|drdxdt
2t;11]2Q; 11 /LQj+1ﬂ{vk} /toztjﬂ [ o (7)
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(5.21)

(5.22)



1 to+2t;41
< — v— (v)2p..,(T)|drdzdt < C, (5.23)
2t4112Q 11 Jry—2t,., //sz+1 | (1)
where we used the estimate (5.21) in the last line. Let us take

k= log (W(Tj)/2+EW(7”j))’ (5.24)

3ew (T‘j)

which directly results in the observation that

1/2 1
k = log ( /3€+ 6) ~ log <E) , (5.25)

where we take £ small enough to ensure the positivity of k. By virtue of (5.17) and (5.24), we can
verify that 2Q;41 N {v = k} = 2Q;41 N {u; < 2ew (r;)}. This combined with (5.23) leads to the
estimate

[2Qj+1 0 {u; < 2ew ()} _ Qi n{v =k} _ C (5.26)
2Q41] 2Qj 41 k
Recalling € = o7-1 % and utilizing (5.26) with (5.25), we have
2Qj41 N{uy; < 2ew ()} _ _ C* (5.27)
2Qj 1] ~log(3)’ '

where C* > 0 depends on s,p, A, N and the difference of sp/(p — 1) and a.
Based on the preparations (5.11) and (5.27), we can start a suitable iteration to deduce the

desired oscillation reduction over the domain @;41. With j € N fixed, for each i =0, 1,2, ..., we set
—i ~ i + 0
0i =Tjp1+27'Tj41, 0= B — H,
i 5 0i+0;
92' = t]'+1 + 2 1tj+1, 97, = TH,
Qi = BZ X Fi = Bg,y('fO) X (1?0 — 9,-,50 —+ 97,)7
Qi = Bi X fz = B@i (.’fo) X ({0 - éi,{() + éz) (528)

Then the corresponding cut-off functions v; € C5°(B?) and 1; € C°(T;) are taken to satisfy
0< e <1, |Viby| <27}y in BY, ¢; =1in B!

and
0<mn <1, |Om] < c2itjj}1 in T;, =11in T 4.

Let us define

ki == (1 + 2_i) EwW (Tj) , U= (kz - Uj)+ (529)
. Qi1 {u; <
A4, == J — 220
|Qsl
Thus it can be seen that Q° = 2Q;;1 and
AO = |2Qj+1 N {uj < 2ew (rj)}‘ < C* (530)

12Q;+1] ~ log (%)
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due to (5.27). By taking £ = 0; — 0,41, 71 = t9 — 6;+1 and 72 = o + 0;41 in Lemma 3.3 (see Remark

2), we have

— () IP
/L+1 /][ lvi(z,t) Z/szz Jiirzi@s/; i ()l dmdydt—i—esssup][i v? (z, ) (z)dx

tel;y1

< C/F/ - max {v; (z, 1), v; (y, )} [0 (z) — 5 () [P (£) dpdt

+ C esssu / Wl /][ v (z, )PP (x)n; (t)dzdt
tGFf RN\ Bi JJ—y|N+gp i '(/} 77()

h i(x, P Z2
+C/Fi][i (z, ) (a, )P ()02 (t)dzdt

o /p][ i vf (, ) ()n: (1) Demi (t) | dzedt.

(5.31)

We estimate the terms on the right-hand side, respectively. It follows from the definitions of v; and

k’i that
[ ] o w0000} [0sto) = )PP s
F’. 7 BZ
1
p’L
< C2P'r; +1k f:]g /Bq_ |x_y|N+sp_pdy/ ][vx{ujgki}(a:,t)da:dt
< Crip? +1 [ew (15)] / ][ X{u, <k} (T, t)ddt
and

/1‘][ i vi(e, )] (z)dedt < C'lew (W)]/F ]{ﬂ X{ujgki}(x,t)dxdt.

Besides, for y € RN /B and z € B, we have

|$—.f()|
ly — |

ly = @0l < |z — I (1+ ) <le—ul(1+ 5

2

which directly tells that

p—1
Ui (ya t)
€ess sup SRR varpnd 1)
ter; RN\Bi |x — y|N+sp
xTESupp Y,

N i fvpil(yat)
< 02 +Sp)’esssup/ T inTs W
rV\Bi [y — To| VTP

tel';
p—1 p—1
) £ t 7 t
< C2NFsP) | ogg sup/ %dy + ess sup/ %dy
tel JB\Bjy |y — Zo tels JRN\B; |y — Zo| "

From the estimate v; < 2ew (r;) in B; X (to — 2tj11,t0 + 2t;41), it follows that

p—1
£ t _ _
ess sup/ %dy <O ew (ry))P h
tels  JB\Bji |y — Tol
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(5.33)

(5.34)

(5.35)



Since v; < |uj| + 2w (r;) in RY x (fg — 2tj11,%0 + 2t;41), there holds that

p—1
: t
esssup/ Lmdy
tel; RN\ B; |y — :fg‘ P

wi(y, )[P~1
< Cry e Hw (r)P7! +esssup /RN\B %dy
i j — &0

< Cry e How (rp)P~t + Cr; P [ Tails (uy; Zo,75,t0 — 2tj41,T0 + 2t541) ]pil

o osp—alp—1) b1
<COri (1 + €p1) [ ()]
—s —1
< Crp Y lew ()P,

where we used that estimate given in (5.11), specifically,

[Tailoo (Uj;f(),’/’j,io - 2tj+1,£0 + 2tj+1) }p—l < [Talloo (Uj;fo,’/’j,io - tj,fo + tj) ]p

< Co = [y (rj)]pfl )

A combination of (5.33)-(5.36) gives that

ess ol wt) P ( t)dxdt
bfe?“up /};N\Bb ‘(E - ‘N+Sp / ][l Ul " w 771( ) !

T Esupp P,
< C2(sp+N)irj__f1f [ew (r5)]" /F]{Bl X{u, <k:} (@, t)dzdt.

By simple calculations, we can tell that

Sp

. 1 . p—1
w(rj) =o0’%w(ro) > = (7“3+1> w(rg) with any j > 0.
3 T0

This combined with w(rg) > 1 and r < 1 ensures that
rj_ff[ew (rp)P~t > 1.

Thus, there holds
/F ]l (e, £)oi(, DUP () (1) dadt < Cew (1) /F ]é X<ty (@, )t
< Clew (r)Pri¥ | | £ Xtuea e ot
As a consequence of (5.4), we obtain
| f, v ovtemiom ol
< Czsmkftj‘jl/ ][.X{ujgki}(m,t)dmdt
< C2%P'[ew ()] djilr]_ff/ ][ X{u; <k} (@, t)dxdt

< C2mlew )it [ X (o t)dadt.
T,;J Bt
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Utilizing the fact 1; = 1 in B*T!, we can see

vi(z,t) —vi(y, )" ][ 2
dxdydt + esssu vi(z,t)dx
/,+1/L+1][L+1 | — y|N+sp Y teI‘,Jr}D Bi+1 i@t

<C2 Sp+N)i[5w(Tj)]pr;ff/][ X{u,<k;} (@, t)dzdt. (5.40)
r;JBi

Still by (5.4), it can be deduced that

ess sup][ oP (x,t)de < kP 2ess sup][ vZ(z,t)dx
Bit1 Bi+t

tel;y1 teliy1

< 0d: leess sup][ vZ(x, t)dx (5.41)
teliy1 JBitl

/ ][ P (z,t)dxdt < CEP / ][ X{u;<k;}(@: t)dzdt
r;J Bit1 T;JB? B

C few (r)]” /F | ]é Xy ()t (5.42)

and

We conclude from (5.40)-(5.42) that

lvi (2, t) — vi(y,t)|”
dxdydt
J+1][1+1 /B1+1][Bz+1 |1‘ — |N+5p Y
][ ][ (z,t)dxdt + ess Sup][ ol (z,t)dx
’L+1 Bl+1 tEF,L+1 Bt
_ s (2, ) — v (y, )|”
< iy / / ][ dxdydt
J+1 Iiyq J Bit1JBit1 |;[; _ y|N+5p Y

j+17nj+1/ ][ (z,t)dzdt + d; _Hesssup][ vZ(z,t)dx
i1 BH'1 teliy1 J Bitl
< C26P Ny (1)) prjﬁ’djjl/ ][ X{u,<k;} (@, t)dwdt

< 026Ny (1) P As. (5.43)

According to Lemma 2.4, there holds that

p(1+5) [oi(x, ) — viy, )"
v; (x,t)dxdt < C / / ][ dxdydt
/1“1.“]{3@41 < Ti Tiy1 J Bit1) it |z — y|N+sp
%
—I—/ ][ P (z,t)dzdt | x | ess sup][ oz t)dx | . (5.44)
Fi+1 Bit1 teFi+1 Bit+1

By applying (5.43) and (5.44), we have
A1 (ki — ki )POTH) S][ ][ vf(H%)(sc,t)dxdt
Tip1 Bi+1ﬂ{u]-<ki+1}

vi(z, ) —vi(y, )
dxdydt
< J+1][1+1 /Bl+1]{31+1 |z — y|N+sp Y
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sp
N

—i—][ ][ P (x, t)dadt | x | ess sup][ P (x,t)dx
iy Bit1 teliyr JBitt

1432

< c(2<sp+N>i[gw (rj)]pAi) ,
which leads to the recursive inequality that

Aipr < CoprsptNIA+30)i g1+
- (3 )

where C depends on s, p, A, N, h and the difference of sp/(p—1) and «. Let

Ut = C‘*N/(SP)Q*N(5P+N)(P+5P+N)/(52P2)'

Then we choose
o =min{1/4,0.,exp (-C*/v")},
and derive from (5.30) that

12Q 41 N {u; < 2ew ()} |
Ay = < v*. 5.45
" 2Q; 1] < (5:45)

This combined with Lemma 4.1 guarantees that 4; — 0 as ¢ — oo, which directly tells that

uj(z,t) > ew(r;) in Qji1. (5.46)
Recalling the definition of u;, it can be deduced by (5.46) that

e85 0SC U <A-ew(r))=01—-¢e)o *w(rjs1). (5.47)
i+
Thus, we can choose 0 < min{o.,1/4} and & < sp/(p — 1) small enough such that (5.45) holds and

b
c*>1—e=1—0gr1 ¢

)

which along with (5.47) ensures

essosc U < w (rjy1)- (5.48)
Qj+1
Finally, the estimate (5.48) proves the induction step and finishes the proof. O

Proof of Theorem 3. Assume that u is a local weak solution to (1.1) with p > 2 and f satisfies the
assumptions in Theorem 3. Let (z9,%0) € Qr, R € (0,1) and Qr = Bpg (zo) X (to — R*?,tg + R*P)
with the property Qp C Qr. By invoking Lemma 5.1 with r = R, we can find positive constants
a<sp/(p—1),0 <1/4and C > 1 only depending on s,p, A, N, h such that

. (03
F)

essosc u < C_'( ) w(g) for all j €N, (5.49)

Q; R

where r;, @; are given in (5.1), (5.3) and

R . : 3
w(g) = Taile (u; o, R/2,t0 — R*P, to + R°P) + (7[ \u|pdmdt) Vi1 (5.50)

Qr
For any p € (0, R/2], there exists jo € N such that p € (r;,41,7j,]. By taking d = [Cw(R/2)]>7P, we
can verify that Q, qps» € Qj,. Thus, it follows by (5.49) that

~ i1\ R _ P\ R
< <C a(—”* ) (—) < a(—) (—) 5.51
eQS,,S:,),SS u < essgsc u< Co R w 5) S o R w 5 ( )
This together with (5.50) clearly leads to the claim. O
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We give the proof of Proposition 1.1 as a direct application of Theorems 1 and 3.

Proof of Proposition 1.1. Assume that u is a local weak solution to (1.1) with p > 2 and [ satisfies
the assumptions in Proposition 1.1. According to Theorem 1, we clearly have u € L2 (Qr). Now,
we rewrite f(x,t) = f(x, t,u(x, t)) in RY x (0,T), which combined with the structural condition on f

and the boundedness of u implies that « can work as a local weak solution to the equation (1.1) with

[eS)
loc

Based on the oscillation estimate established in Theorem 3, we arrive at our claim. O

the nonhomogeneous term f € L2 (Qr). Thus, the assumptions required in Theorem 3 are satisfied.
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