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Abstract

In this paper, we construct a family of symmetric vortex patches for the 2D steady incompressible
Euler equations in a disk. The result is obtained by studying a variational problem in which
the kinetic energy of the fluid is maximized subject to some appropriate constraints for the
vorticity. Moreover, we show that these vortex patches “shrink” to a given minimum point of
the corresponding Kirchhoff-Routh function as the vorticity strength parameter goes to infinity.
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1. Introduction

In this paper, we prove a result of existence of steady symmetric vortex patch for a planar
ideal fluid moving in a disk. More specifically, by maximizing the kinetic energy subject to some
appropriate constraints for the vorticity, we construct a steady flow in which the vorticity has
the form

ωλ = λI{ψλ>µλ} − λI{ψλ<−µλ} (1.1)

for some µλ ∈ R. Here IA denotes the characteristic function of some measurable set A, i.e.,
IA(x) ≡ 1 for x ∈ A and IA ≡ 0 elsewhere, λ is the vorticity strength parameter that is given,
and ψλ is the stream function satisfying

−∆ψλ = ωλ. (1.2)

In addition, ωλ and ψλ are both even in x1 and odd in x2.
In history, the construction for dynamically possible steady vortex flows has been extensively

studied. Roughly speaking, there are mainly two methods dealing with this problem. The first
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one is called the stream-function method. It consists in finding a solution to the following
semilinear elliptic equation satisfied by the stream function:

−∆ψ = f(ψ), (1.3)

where the nonlinearity f is given. To obtain a solution of (1.3), one can use the mountain pass
lemma (see [1, 18, 20]), the constrained variational method (see [4, 5, 17, 21, 22]), or a finite
dimensional reduction (see [11, 12]). The second one is called the vorticity method. It was put
forward by Arnold (see [2, 3]) and further developed by many authors; see [6, 7, 8, 9, 13, 15, 16,
23, 24] for example. The basic idea of the vorticity method is to extremize the kinetic energy
of the fluid on a suitable class for the vorticity. For this method, the distributional function for
the vorticity is prescribed, and the stream function ψ still satisfies a semilinear elliptic equation
(1.3), but the nonlinearity f is usually unknown. In this paper, we use the vorticity method to
prove our main result.

In (1.1), the vorticity is a piecewise constant function, which is usually called a vortex patch.
Such a special kind of solution has been studied by many authors. Here we recall some of the
relevant and significant results. In [23], by using the vorticity method, Turkington constructed
a family of vortex patch solutions in a planar bounded domain. Moreover, he showed that these
solutions “shrink” to a global minimum of the Kirchhoff-Routh function with k = 1 (see Section
2 for the definition). Later in [16], based on a similar argument, Elcrat–Miller constructed steady
multiple vortex solutions near a given strict local minimum point of the corresponding Kirchhoff-
Routh function. In 2015, Cao–Peng–Yan [12] proved that for any given non-degenerate critical
point of the Kirchhoff-Routh function for any k, there exists a family of steady vortex patches
“shrinking” to this point. The method used in [12] is based on a finite dimensional reduction
argument for the stream function.

Notice that both in [12] and [16], some non-degenerate condition is required for the concen-
tration point. But for a very simple domain, an open disk, every critical point of the Kirchhoff-
Routh function with k ≥ 2 must be degenerate due to rotational invariance. A natural question
arises: can we still prove existence of steady multiple vortex patches in a disk? Our main purpose
in this paper is to give this question a positive answer. The new idea here is that we improve the
vorticity method by adding extra symmetry constraints on the vorticity, such that the vortex
patches obtained as the maximizers of the corresponding variational problem “shrink” to two
given symmetric points P1 and P2, even if (P1, P2) is degenerate. Then by analyzing the limiting
behavior we can show that these vortex patches have the form (1.1) if the vorticity strength is
sufficiently large. At last by a result of Burton in [10] these vortex patches are steady solutions
of the 2D Euler equations. Note that for this problem, one may also use the stream function
method (as in [12]) to work in a suitable symmetric subspace to overcome the difficulty caused
by the degeneracy of the critical points.

This paper is organized as follows. In Section 2, we give the mathematical formulation of
the vortex patch problem and then state the main result. In Section 3, we solve a maximization
problem for the vorticity and study the asymptotic behavior of the maximizers as the vorticity
strength goes to infinity. In Section 4, we prove the main result. Finally in Section 5, we briefly
discuss the existence of steady non-symmetric vortex patches.
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2. Main Results

To begin with, we introduce some notation that will be used throughout this paper. Let D
be the unit disk in the plane centered at the origin, that is,

D = {x ∈ R2 | |x| < 1}. (2.4)

For x = (x1, x2) ∈ D, we denote x̄ = (−x1, x2) and x̃ = (x1,−x2).
Let G be the Green’s function for −∆ in D with zero Dirichlet boundary condition, that is,

G(x,y) = − 1

2π
ln |x− y| − h(x,y), x,y ∈ D, (2.5)

where

h(x,y) = − 1

2π
ln |y| − 1

2π
ln

∣∣∣∣x− y

|y|2

∣∣∣∣ , x,y ∈ D. (2.6)

Let k ≥ 1 be an integer and κ1, κ2, ..., κk be k non-zero real numbers. Define the correspond-
ing Kirchhoff-Routh function Hk as follows:

Hk(x1, · · · ,xk) := −
∑
i 6=j

κiκjG(xi,xj) +

k∑
i=1

κ2
ih(xi,xi) (2.7)

where (x1, · · · ,xk) ∈ D(k) := D ×D × · · · ×D︸ ︷︷ ︸
k

such that xi 6= xj for i 6= j. In this paper we

consider the case k = 2 and κ1 = −κ2 = κ > 0, then the Kirchhoff-Routh function can be
written as

H2(x,y) = 2κ2G(x,y) + κ2h(x,x) + κ2h(y,y), (2.8)

where (x,y) ∈ D(2) and x 6= y. It is easy to see that

lim
|x−y|→0

H2(x,y) = +∞, lim
x→∂D or y→∂D

H2(x,y) = +∞, (2.9)

so H2 attains its minimum in {(x,y) ∈ D(2) | x 6= y}. Moreover, by Proposition A.1 in the
Appendix, for any minimum point (x0,y0) of H2, there exists θ ∈ [0, 2π) such that

x0 =

√√
5− 2(cos θ, sin θ), y0 = −

√√
5− 2(cos θ, sin θ).

Now we consider a steady ideal fluid with unit density in D with impermeability boundary
condition, the motion of which is described by the following Euler equations:

(v · ∇)v = −∇P in D,

∇ · v = 0 in D,

v · n = 0 on ∂D ,

(2.10)



Existence of steady symmetric vortex patch in a disk 4

where v = (v1, v2) is the velocity field, P is the scalar pressure, and n(x) is the outward unit
normal at x ∈ ∂D.

To simplify the Euler equations (2.10), we define the scalar vorticity ω := ∂1v2 − ∂2v1. By
using the identity 1

2∇|v|
2 = (v · ∇)v + v⊥ω, where v⊥ denotes the clockwise rotation of v

through π/2, then the first equation of (1.1) can be written as

∇
(

1

2
|v|2 + P

)
− v⊥ω = 0. (2.11)

Taking the curl in (2.11) we get
∇ · (ωv) = 0. (2.12)

To recover the velocity field in terms of the vorticity, we define the stream function ψ by solving
the following Poisson’s equation with zero Dirichlet boundary condition{

−∆ψ = ω in D,

ψ = 0 on ∂D.
(2.13)

Using Green’s function we have

ψ(x) = Gω(x) :=

∫
D
G(x,y)ω(y)dy. (2.14)

Since D is simply-connected and v·n = 0 on ∂D, it is easy to check that v is uniquely determined
by ω in the following way (see also [19], Chapter 1, Theorem 2.2)

v = ∇⊥ψ, (2.15)

where ∇⊥ψ := (∇ψ)⊥ = (∂2ψ,−∂1ψ).
From the above discussion we obtain the following vorticity equation

∇ ·
(
ω∇⊥Gω

)
= 0. (2.16)

In this paper, we interpret the vorticity equation (2.16) in the following weak sense.

Definition 2.1. We call ω ∈ L∞(D) a weak solution to (2.16) if∫
D
ω∇⊥Gω · ξdx = 0 (2.17)

for all ξ ∈ C∞0 (D).

It should be noted that if ω ∈ L∞(D), then by the regularity theory for elliptic equations
Gω ∈ C1,α(D) for some α ∈ (0, 1), therefore the integral in (2.17) makes sense.

From now on, we will focus on the existence of weak solutions to (2.16). The following lemma
from [10] (see also [14]) gives a criterion for an L∞ function to be a weak solution.
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Lemma A. Let ω ∈ L∞(D). Suppose that ω = f(Gω) a.e. in D for some monotone function
f : R→ R, then ω is a weak solution to (2.16).

Now we are ready to state our main result.

Theorem 2.2. Let κ be a positive number. Then there exists λ0 > 0 such that for any λ > λ0,
there exists ωλ ∈ L∞(D) such that

(1) ωλ is a weak solution to (2.16);

(2) ωλ is even in x1 and odd in x2, that is, ωλ(x) = ωλ(x̄) and ωλ(x) = −ωλ(x̃);

(3) ωλ = ωλ1 + ωλ2 , where ωλ1 = λI{Gωλ>µλ} and ωλ2 = −λI{Gωλ<−µλ} for some µλ ∈ R+

depending on λ, and ∫
D
ωλ1 (x)dx = κ,

∫
D
ωλ2 (x)dx = −κ;

(4) ωλ1 “shrinks” to P1 :=
(

0,
√√

5− 2
)

and ωλ2 “shrinks” to P2 :=
(

0,−
√√

5− 2
)

as λ goes

to infinity. More precisely,

diam
(

suppωλ1

)
≤ Cλ−

1
2 , diam

(
suppωλ2

)
≤ Cλ−

1
2 ,

lim
λ→+∞

∣∣∣∣1κ
∫
D

xωλ1 (x)dx− P1

∣∣∣∣ = 0, lim
λ→+∞

∣∣∣∣−1

κ

∫
D

xωλ2 (x)dx− P2

∣∣∣∣ = 0,

where C is a positive number not depending on λ.

3. Variational Problem

In this section, we study a maximization problem for the vorticity and give some estimates
for the maximizers as the vorticity strength goes to infinity.

First we choose δ > 0 sufficiently small such that Bδ(Pi) ⊂⊂ D for i = 1, 2 and Bδ(P1) ∩
Bδ(P2) = ∅, where P1 and P2 are defined in Theorem 2.2. For example, we can choose δ =√√

5−2
2 . In the rest of this paper, we use Bi to denote Bδ(Pi) for i = 1, 2 for simplicity.
For λ > 0 sufficiently large, we define the vorticity class Kλ as follows:

Kλ :=
{
ω ∈ L∞(D) | ω = ω1 + ω2, suppωi ⊂ Bi for i = 1, 2,

∫
D
ω1(x)dx = κ,

0 ≤ ω1 ≤ λ, ω1(x) = ω1(x̄) and ω2(x) = ω1(x̃) for x ∈ D
}
.

(3.18)

It is easy to check that for any ω ∈ Kλ, ω is even in x1 and odd in x2. It is also clear that Kλ

is not empty if λ > 0 is large enough.
The kinetic energy of the fluid with vorticity ω is

E(ω) =
1

2

∫
D

∫
D
G(x,y)ω(x)ω(y)dxdy. (3.19)
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Integrating by parts we have

E(ω) =
1

2

∫
D
Gω(x)ω(x)dx =

1

2

∫
D
|∇Gω(x)|2 dx. (3.20)

In the rest of this section we will consider the maximization of E on Kλ and study the
properties of the maximizer.

3.1. Existence of a maximizer

First we show the existence of a maximizer of E on Kλ.

Lemma 3.1. There exists ωλ ∈ Kλ such that E(ωλ) = supω∈Kλ E(ω).

Proof. To make it clear, we divide the proof into three steps.
Step 1: E is bounded from above on Kλ. In fact, since ‖ω‖L∞(D) ≤ λ for any ω ∈ Kλ, we

have

E(ω) =
1

2

∫
D

∫
D
G(x,y)ω(x)ω(y)dxdy ≤ 1

2
λ2

∫
D

∫
D
|G(x,y)|dxdy ≤ Cλ2

for some generic constant C. Here we use the fact that G ∈ L1(D ×D). This gives

sup
ω∈Kλ

E(ω) < +∞.

Step 2: Kλ is closed in the weak∗ topology of L∞(D), or equivalently, for any sequence
{ωn} ⊂ Kλ and ω ∈ L∞(D) satisfying

lim
n→+∞

∫
D
ωn(x)φ(x)dx =

∫
D
ω(x)φ(x)dx, ∀φ ∈ L1(D), (3.21)

we have ω ∈ Kλ. To prove this, we first show that

suppω ⊂ ∪2
i=1Bi. (3.22)

In fact, for any φ ∈ C∞0
(
D \ ∪2

i=1Bi
)
, by (3.21) we have∫

D
ω(x)φ(x)dx = lim

n→+∞

∫
D
ωn(x)φ(x)dx = 0,

which means that ω = 0 a.e. in D \ ∪2
i=1Bi.

Now we define ωi = ωIBi for i = 1, 2. It is obvious that ω = ω1 + ω2. By choosing φ = IB1

in (3.21), we have∫
D
ω1(x)dx =

∫
D
ω(x)φ(x)dx = lim

n→+∞

∫
D
ωn(x)φ(x)dx = lim

n→+∞

∫
B1

ωn(x)dx = κ. (3.23)
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It is also easy to show that 0 ≤ ω1 ≤ λ in D. In fact, suppose that |{ω1 > λ}| > 0, then we
can choose ε0, ε1 > 0 such that |{ω1 > λ+ ε0}| > ε1. Denote S = {ω1 > λ+ ε0} ⊂ B1, then by
choosing φ = IS in (3.21) we have∫

S
(ω1 − ωn)(x)dx ≥ ε0|S| ≥ ε0ε1.

On the other hand, by (3.21)

lim
n→+∞

∫
S

(ω1 − ωn)(x)dx = lim
n→+∞

∫
D

(ω − ωn)(x)φ(x)dx = 0,

which is a contradiction. So we have ω1 ≤ λ. Similarly we can prove ω1 ≥ 0.
To finish Step 2, it suffices to show that ω is even in x1 and odd in x2. For fixed x ∈

D ∩ {x1 > 0}, define φ = 1
πs2

IBs(x) − 1
πs2

IBs(x̄), where s > 0 is sufficiently small. Since ωn is
even in x1 for each n and φ is odd in x1, by (3.21) we have∫

D
ω(y)φ(y)dy = lim

n→+∞

∫
D
ωn(y)φ(y)dy = 0, (3.24)

which means that

1

|Bs(x)|

∫
Bs(x)

ω(y)dy =
1

|Bs(x̄)|

∫
Bs(x̄)

ω(y)dy. (3.25)

By Lebesgue differential theorem, for a.e. x ∈ D ∩ {x1 > 0}, we have

lim
s→0+

1

|Bs(x)|

∫
Bs(x)

ω(y)dy = ω(x), (3.26)

and

lim
s→0+

1

|Bs(x̄)|

∫
Bs(x̄)

ω(y)dy = ω(x̄). (3.27)

Combining (3.25), (3.26) and (3.27) we get

ω(x) = ω(x̄) a.e. x ∈ D ∩ {x1 > 0}, (3.28)

which means that ω is even in x1. Similarly we can prove that ω is odd in x2.
From all the above arguments we know that ω ∈ Kλ.
Step 3: E is sequentially continuous on Kλ in the weak∗ topology of L∞(D), that is, for

any sequence {ωn} ⊂ Kλ such that ωn → ω weakly∗ in L∞(D) as n→ +∞, we have

lim
n→+∞

E(ωn) = E(ω).

In fact, by (3.21) as n → +∞ we know that ωn → ω weakly in L2(D), then ψn → ψ weakly in
W 2,2(D) thus strongly in L2(D), where ψn = Gωn and ψ = Gω. So we get as n→ +∞
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E(ωn) =
1

2

∫
D
ψn(x)ωn(x)dx→ 1

2

∫
D
ψ(x)ω(x)dx = E(ω).

Now we finish the proof of Lemma 3.1 by using the standard maximization technique. By
Step 1, we can choose a maximizing sequence {ωn} ⊂ Kλ such that

lim
n→+∞

E(ωn) = sup
ω∈Kλ

E(ω)

Since Kλ is bounded thus weakly∗ sequentially compact in L∞(D), we can choose a subsequence
{ωnk} such that as k → +∞ ωnk → ωλ weakly∗ in L∞(D) for some ωλ ∈ L∞(D). By Step 2,
we have ωλ ∈ Kλ. Finally by Step 3 we have

E(ωλ) = lim
k→+∞

E(ωnk) = sup
ω∈Kλ

E(ω),

which is the desired result.

3.2. Profile of ωλ

Since ωλ ∈ Kλ, we know that ωλ has the form ωλ = ωλ1 + ωλ2 with ωλ1 and ωλ2 satisfying

(1) suppωλi ⊂ Bi for i = 1, 2,

(2)
∫
D ω

λ
1 (x)dx = −

∫
D ω

λ
2 (x)dx = κ,

(3) ωλ1 (x) = ωλ1 (x̄), ωλ1 (x) = −ωλ2 (x̃) for any x ∈ D.

In fact, we can prove that ωλ has a special form.

Lemma 3.2. There exists µλ ∈ R depending on λ such that

ωλ1 = λI{ψλ>µλ}∩B1
, ωλ2 = −λI{ψλ<−µλ}∩B2

,

where ψλ := Gωλ.

Proof. First we show that ωλ1 has the form ωλ1 = λI{ψλ>µλ}∩B1
for some µλ ∈ R. To this end,

choose α, β ∈ L∞(D) satisfying
α, β ≥ 0,

∫
D α(x)dx =

∫
D β(x)dx,

suppα, suppβ ⊂ B1 ∩ {x1 > 0},
α = 0 in D \ {ωλ1 ≤ λ− a},
β = 0 in D \ {ωλ1 ≥ a},

(3.29)

where a is a small positive number, and define a family of test functions ωs = ωλ + s(g1 − g2),
where s > 0 sufficiently small and

g1(x) = α(x) + α(x̄)− α(x̃)− α(˜̄x)
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and
g2(x) = β(x) + β(x̄)− β(x̃)− β(˜̄x).

Note that g1, g2 are both even in x1 and odd in x2, and supp g1, supp g2 ⊂ B1 ∪B2. It is easy to
check that ωs ∈ Kλ if s is sufficiently small (depending on α, β and a), so we have

0 ≥ dE(ωs)

ds

∣∣∣∣
s=0+

=

∫
D
g1(x)ψλ(x)dx−

∫
D
g2(x)ψλ(x)dx. (3.30)

On the other hand ,∫
D
g1(x)ψλ(x)dx−

∫
D
g2(x)ψλ(x)dx =

∫
D1

ψλ(x)(g1 − g2)(x)dx

+

∫
D2

ψλ(x)(g1 − g2)(x)dx +

∫
D3

ψλ(x)(g1 − g2)(x)dx +

∫
D4

ψλ(x)(g1 − g2)(x)dx,

(3.31)

where
D1 = B1 ∩ {x1 > 0}, D2 = B1 ∩ {x1 < 0},

D3 = B2 ∩ {x1 < 0}, D4 = B2 ∩ {x1 > 0}.

Since ψλ is also even in x1 and odd in x2 (this can be proved directly using the symmetry of
the Green’s function), we have∫

D1

ψλ(x)(g1 − g2)(x)dx =

∫
D2

ψλ(x)(g1 − g2)(x)dx

=

∫
D3

ψλ(x)(g1 − g2)(x)dx =

∫
D4

ψλ(x)(g1 − g2)(x)dx.

(3.32)

Combining (3.30), (3.31) and (3.32) we conclude that∫
D1

ψλ(x)g1(x)dx ≤
∫
D1

ψλ(x)g2(x)dx, (3.33)

or equivalently ∫
D1

ψλ(x)α(x)dx ≤
∫
D1

ψλ(x)β(x)dx. (3.34)

By the choice of α and β, inequality (3.33) holds if and only if

sup
{ωλ<λ}∩D1

ψλ ≤ inf
{ωλ>0}∩D1

ψλ. (3.35)

Combining the continuity of ψλ in {ωλ < λ} ∩D1, we obtain

sup
{ωλ<λ}∩D1

ψλ = inf
{ωλ>0}∩D1

ψλ. (3.36)

Now we define µλ as follows
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µλ := sup
{ωλ<λ}∩D1

ψλ = inf
{ωλ>0}∩D1

ψλ. (3.37)

It is easy to see that {
ωλ = 0 a.e. in {ψλ < µλ} ∩D1,

ωλ = λ a.e. in {ψλ > µλ} ∩D1.
(3.38)

On {ψλ1 = µλ} ∩D1, ψλ is a constant, so we have ∇ψλ = 0 a.e., therefore ωλ = −∆ψλ = 0 a.e..
Hence we conclude that {

ωλ = 0 a.e. in {ψλ ≤ µλ} ∩D1,

ωλ = λ a.e. in {ψλ > µλ} ∩D1.
(3.39)

Finally by the symmetry of ωλ and ψλ we get the desired result.

3.3. Asymptotic behavior as λ→ +∞
Now we give some asymptotic estimates on ωλ as λ→ +∞. We will use C to denote various

positive numbers not depending on λ.

Lemma 3.3. Let ε =
√

κ
λπ . Suppose that ωλ is the one obtained in Lemma 3.1. Then

(1) E(ωλ) ≥ − 1
2πκ

2 ln ε− C;

(2) µλ ≥ − 1
2πκ ln ε− C;

(3) there exists a positive number R > 1, not depending on λ, such that diam(suppωλi ) < Rε
for i = 1, 2;

(4) 1
κ

∫
D xωλ1 (x)dx → x1 and − 1

κ

∫
D xωλ2 (x)dx → x2 as λ → +∞, where x1 and x2 satisfy

x1 ∈ B1,x2 ∈ B2 and H2(x1,x2) = min(x,y)∈D(2) H2(x,y).

Proof. The proofs are identical to the ones in Section 2.4, [13], therefore we omit them.

4. Proof for Theorem 2.2

In this section we finish the proof of Theorem 2.2. The key point is to show that the
maximizer ωλ obtained in Lemma 3.1 satisfies the condition in Lemma A.

Proof of Theorem 2.2. First, we show that the support of ωλi shrinks to Pi for i = 1, 2. By (3)
and (4) of Lemma 3.3, suppωλi shrinks to xi, where (x1,x2) is a minimum point of H2 in D(2).
Then by Proposition A.1 in the Appendix, there exists some θ ∈ [0, 2π) such that

x1 =

√√
5− 2(cos θ, sin θ),x2 = −

√√
5− 2(cos θ, sin θ).
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But by the symmetry of ωλ (see the definition of Kλ), we have cos θ = 0, sin θ > 0, so θ = π/2.
Consequently

x1 =

(
0,

√√
5− 2

)
,x2 =

(
0,−

√√
5− 2

)
. (4.40)

Second, we show that ωλ is a weak solution to (2.16). To begin with, we show that

|ψλ| ≤ C on ∂B1 ∪ ∂B2, (4.41)

where C is a positive number not depending on λ. In fact, by (3) and (4) of Lemma 3.3 and
(4.40), we have for large λ

dist(suppωλi , ∂Bi) > δ0, i = 1, 2, (4.42)

where δ0 ∈ (0, 1) does not depend on λ. Then for x ∈ ∂B1,

|ψλ(x)| =
∣∣∣∣∫
D
G(x,y)ωλ(y)dy

∣∣∣∣
=

∣∣∣∣∫
D
G(x,y)ωλ1 (y)dy +

∫
D
G(x,y)ωλ2 (y)dy

∣∣∣∣
=

∣∣∣∣∫
D
− 1

2π
ln |x− y|ωλ1 (y)dy −

∫
D
h(x,y)ωλ1 (y)dy +

∫
D
G(x,y)ωλ2 (y)dy

∣∣∣∣
≤
∣∣∣∣− 1

2π
ln δ0

∫
D
ωλ1 (y)dy

∣∣∣∣+

∫
suppωλ1

|h(x,y)|ωλ1 (y)dy +

∫
suppωλ2

∣∣∣G(x,y)ωλ2 (y)
∣∣∣ dy

≤ − κ

2π
ln δ0 + C.

(4.43)

Here we used the fact that |h| ≤ C on ∂B1 × suppωλ1 and |G| ≤ C on ∂B1 × suppωλ2 . Similarly
|ψλ| ≤ C on ∂B2. So (4.41) is proved.

By Lemma 3.2, ωλ has the form

ωλ = λI{ψλ>µλ}∩B1
− λI{ψλ<−µλ}∩B2

. (4.44)

Since |ψλ| ≤ C on ∂B1 ∪ ∂B2, by the maximum principle we know that

ψλ ≤ C in D \B1, ψ
λ ≥ −C in D \B2. (4.45)

On the other hand, by (2) of Lemma 3.3 we have limλ→+∞ µ
λ = +∞, so combining (4.45) we

get
{ψλ > µλ} ∩B1 = {ψλ > µλ}, {ψλ < −µλ} ∩B2 = {ψλ < −µλ} (4.46)

provided that λ is sufficiently large. So in fact ωλ has the form

ωλ = λI{ψλ>µλ} − λI{ψλ<−µλ}, (4.47)
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or equivalently,
ωλ = f(ψλ), (4.48)

where f : R→ R is a non-decreasing function defined by

f(t) =


λ, t > µλ,

0, t ∈ [−µλ, µλ],

−λ, t < −µλ.
(4.49)

By Lemma A, ωλ is a weak solution to (2.16).
Finally, combining the properties of ωλ obtained in Section 2, we finish the proof of Theorem

2.2.

5. Non-symmetric Case

In this section, we briefly discuss the existence of steady non-symmetric vortex patch.

Theorem 5.1. Let κ1, κ2 be two real numbers such that κ1 > 0 and κ2 < 0. Then there exists
λ0 > 0 such that for any λ > λ0, there exists ωλ ∈ L∞(D) such that

(1) ωλ is a weak solution to (2.16);

(2) ωλ is even in x1;

(3) ωλ = ωλ1 + ωλ2 , where ωλ1 = λI{Gωλ>µλ1}
and ωλ2 = −λI{Gωλ<−µλ2} for some µλ1 , µ

λ
2 ∈ R+

depending on λ, and ∫
D
ωλ1 (x)dx = κ1,

∫
D
ωλ2 (x)dx = κ2;

(4) ωλ1 “shrinks” to P := (0, p) and ωλ2 “shrinks” to Q := (0, q) as λ goes to infinity, where
p > 0, q < 0 depend only on κ2/κ1. More precisely,

diam
(

suppωλ1

)
≤ Cλ−

1
2 , diam

(
suppωλ2

)
≤ Cλ−

1
2 ,

lim
λ→+∞

∣∣∣∣ 1

κ1

∫
D

xωλ1 (x)dx− P
∣∣∣∣ = 0, lim

λ→+∞

∣∣∣∣ 1

κ2

∫
D

xωλ2 (x)dx−Q
∣∣∣∣ = 0,

where C is a positive number not depending on λ.

Proof. The construction of ωλ here is similar to the symmetric case in Section 2. For simplicity
we only sketch the proof.

First we choose (P,Q) as a minimum point of the corresponding Kirchhoff-Routh function

H2(x,y) := −2κ1κ2G(x,y) + κ1
2h(x,x) + κ2

2h(y,y), x,y ∈ D,x 6= y. (5.50)
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Without loss of generality, we assume that P and Q lie on the x2-axis, that is, P = (0, p) and
Q = (0, q) with p > 0, q < 0 determined by κ2/κ1 (see Proposition A.1 in the Appendix). Now
we choose δ > 0 sufficiently small such that Bδ(P ), Bδ(Q) ⊂⊂ D and Bδ(P ) ∩Bδ(Q) = ∅.

Consider the maximization of E on the following class

Mλ :=
{
ω ∈ L∞(D) | ω = ω1 + ω2, suppω1 ⊂ Bδ(P ), suppω2 ⊂ Bδ(Q),∫

D
ωi(x)dx = κi, 0 ≤ sgn(κi)ωi ≤ λ, for i = 1, 2, ω(x) = ω(x̄) for x ∈ D

}
.

(5.51)

Then by repeating the procedures in Section 2, we can prove that there exists a maximizer ωλ

and this maximizer satisfies (1)–(4) in Theorem 5.1 if λ is sufficiently large.

A. Minimum Points of H2

In this appendix we calculate the minimum points of the function H2.

Proposition A.1. Let D = {x ∈ R2 | |x| < 1}, κ1 > 0, κ2 < 0 be two real numbers, and
γ = −κ2

κ1
. Denote M the set of minimum points of H2, where

H2(x,y) := −2κ1κ2G(x,y) + κ1
2h(x,x) + κ2

2h(y,y), x,y ∈ D,x 6= y. (A.1)

Then there exists p ∈ (0, 1), q ∈ (−1, 0) depending only on γ, such that

M = {(P,Q) ∈ D(2) | P = p(cos θ, sin θ), Q = q(cos θ, sin θ), θ ∈ [0, 2π)}. (A.2)

If γ = 1, then

p = −q =

√√
5− 2.

Proof. First, it is easy to see that

lim
|x−y|→0

H2(x,y) = +∞, lim
x→∂D or y→∂D

H2(x,y) = +∞, (A.3)

so M is not empty and M ⊂ {(x,y) ∈ D(2) | x 6= y}.
For x,y ∈ D,x 6= y,

H2(x,y) = −2κ1κ2G(x,y) + κ1
2h(x,x) + κ2

2h(y,y)

= −2κ1κ2

(
− 1

2π
ln
|x− y|
|y||x− y∗|

)
− κ2

1

(
1

2π
ln |x||x− x∗|

)
− κ2

2

(
1

2π
ln |y||y − y∗|

)
=
κ2

1

π
ln

(
|y|2γ |x− y∗|2γ

|x− y|2γ |x||y|γ2 |y − y∗|γ2
)
,

(A.4)
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where x∗ = x/|x|2 and y∗ = y/|y|2. So it suffices to consider the minimum points of the
following function

T (x,y) :=
|y|2γ |x− y∗|2γ

|x− y|2γ |x||y|γ2 |y − y∗|γ2
.

By using the polar coordinates,

T (x,y) :=
(1 + ρ2

1ρ
2
2 − 2ρ1ρ2 cos(θ1 − θ2))γ

(ρ2
1 + ρ2

2 − 2ρ1ρ2 cos(θ1 − θ2))γ(1− ρ2
1)(1− ρ2

2)γ2
,

where x = ρ1(cos θ1, sin θ1) and y = ρ2(cos θ2, sin θ2).
Now we show that if (x,y) is a minimum point of H2, then θ1 − θ2 = π. In fact, it is not

hard to check that for fixed ρ1 and ρ2, T is strictly increasing in cos(θ1−θ2), so at any minimum
point we must have

cos(θ1 − θ2) = −1.

To finish the proof, it suffices to calculate the minimum points of the following function:

R(ρ1, ρ2) :=
(1 + ρ1ρ2)2γ

(ρ1 + ρ2)2γ(1− ρ2
1)(1− ρ2

2)γ2

for ρ1, ρ2 ∈ (0, 1).
Case 1: γ = 1. In this simple case, R(ρ1, ρ2) becomes

R(ρ1, ρ2) :=
(1 + ρ1ρ2)2

(ρ1 + ρ2)2(1− ρ2
1)(1− ρ2

2)
, ρ1, ρ2 ∈ (0, 1).

By direct calculation, we obtain

∂ρ1R = 0⇔ ρ1ρ2 + ρ2
1 + ρ3

1ρ2 + 2ρ2
2 = 1, (A.5)

∂ρ2R = 0⇔ ρ2ρ1 + ρ2
2 + ρ3

2ρ1 + 2ρ2
1 = 1. (A.6)

Subtracting the two expressions in (A.5) and (A.6) we get

(1 + ρ1ρ2)(ρ2
1 − ρ2

2) = 0,

which gives ρ1 = ρ2. Now we can see that ρ1 satisfies

ρ4
1 + 4ρ2

1 − 1 = 0,

so ρ1 = ρ2 =
√√

5− 2.
Case 2: γ > 0 is arbitrary. In this case, we show that R(ρ1, ρ2) has a unique minimum

point for ρ1, ρ2 ∈ (0, 1). Existence is obvious since we have proved that M is not empty. Now
we show the uniqueness. In fact, it suffices to prove that the critical point of R in (0, 1)× (0, 1)
is unique.
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Direct calculation gives

∂ρ1R = 0⇔ ρ1ρ2 + (1 + γ)ρ2
1 + γρ2

2 + ρ3
1ρ2 + (1− γ)ρ2

1ρ
2
2 − γ = 0,

∂ρ2R = 0⇔ γρ1ρ2 + ρ2
1 + ρ2

2 + (γ − 1)ρ2
1ρ

2
2 + γ2ρ2

2 + γρ1ρ
3
2 − 1 = 0.

For simplicity we write

F1(ρ1, ρ2) := ρ1ρ2 + (1 + γ)ρ2
1 + γρ2

2 + ρ3
1ρ2 + (1− γ)ρ2

1ρ
2
2 − γ

and
F2(ρ1, ρ2) := γρ1ρ2 + ρ2

1 + ρ2
2 + (γ − 1)ρ2

1ρ
2
2 + γ2ρ2

2 + γρ1ρ
3
2 − 1.

It is not hard to check that F1, F2 are both strictly monotone in ρ1 for fixed ρ2 and in ρ2 for
fixed ρ1 if ρ1, ρ2 ∈ (0, 1), which means that the system F1(ρ1, ρ2) = 0, F2(ρ1, ρ2) = 0 has at most
one solution. In other words, under the condition θ1− θ2 = π, H2 has a unique minimum point,
which completes the proof.
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