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CONVEX HYPERSURFACES WITH PRESCRIBED SCALAR
CURVATURE AND ASYMPTOTIC BOUNDARY IN
HYPERBOLIC SPACE

ZHENAN SUI

ABSTRACT. The existence of a smooth complete strictly locally convex hyper-
surface with prescribed scalar curvature and asymptotic boundary at infinity
in H3 is proved under the assumption that there exists a strictly locally convex
subsolution.

1. INTRODUCTION

In this paper, we are concerned with the asymptotic Plateau type problem in
hyperbolic space H"t!: to find a complete strictly locally convex hypersurface X
with prescribed curvature and asymptotic boundary at infinity. For hyperbolic
space, we will use the half-space model

H™ = {(2,2n11) €R™ |2 = (21,...,20) € R, Zpy1 > 0}

equipped with the hyperbolic metric

1

2 IR 2

ds” = — E dz;.
Tnt1 i

The ideal boundary at infinity of H"*! can be identified with
Do H" ™ = R" = R" x {0} c R*T!

and the asymptotic boundary T' of X is given at O, H"T!, which consists of a
disjoint collection of smooth closed embedded (n — 1) dimensional submanifolds
{T'y,...,T;n}. Given a positive function 1 € C(H"*!), we are interested in
finding a complete strictly locally convex hypersurfaces ¥ in H"t! satisfying the
curvature equation

(L1) F(w) = o/ (k) = 0 H ()

as well as with the asymptotic boundary

(1.2) ox. =T,

where x is a conformal Killing field which will be specified in section 6, K =
(K1,-..,kn) are the hyperbolic principal curvatures of ¥ at x, and

(N = > Aiy + - Aiy

1<ii <. <ip<n
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is the k-th elementary symmetric function defined on k-th Garding’s cone
FkE{)\ERn|Uj()\) >0, jzl,,k}

or(k) is the so called k-th Weingarten curvature of 3. In particular, the 1st, 2nd
and n-th Weingarten curvature correspond to mean curvature, scalar curvature and
Gauss curvature respectively. We call a hypersurface X strictly locally convex (lo-
cally convex) if all principal curvatures at any point of ¥ are positive (nonnegative).

In this paper, all hypersurfaces are assumed to be connected and orientable. We
will see from Lemma 27 that a strictly locally convex hypersurface in H**! with
compact (asymptotic) boundary must be a vertical graph over a bounded domain
in R™. We thus assume the normal vector field on ¥ to be upward. Write

Y = {(z, u(z)) e R} ‘x € 0},

where € is the bounded domain on 0., H"*!' = R"™ enclosed by I. Consequently,
(CI)-(@2) can be expressed in terms of u,
{f(n[u]) =¢t@,w) @ Q
(1.3)
u=20 on TI.

The essential difficulty for the Plateau type problem ([L3]) is due to the singularity
at w = 0. When ¢ is a positive constant, problem (3] has been extensively
investigated in [10] 141 12} 13} [15] (see also the references therein for some previous
work). Their basic idea is: first, to prove the existence of a solution u¢ to the
approximate Dirichlet problem

(1.4) {f(’f[u]) = ¢ (z, u) in Q,

=

U = € on I,
and then, to show these u¢ converge to a solution of (3] after passing to a subse-
quence. For general ¢, Szapiel [25] studied the existence of strictly locally convex
solutions to (LA) for f = 0711/ " but he also assumed a very strong assumption on f

(see (1.11) in [25]) which excluded the case f = or/™. As far as the author knows,
there is no literature which gives an existence result for the asymptotic Plateau

type problem (3] for general ).
Our first task in this paper is to improve the result of [25]. As in [II], we assume

the existence of a strictly locally convex subsolution u € C*(Q2), that is,

(1.5) {f(ﬁ[u]) > (2, u) in Q
u=20 on T.

Different from [14} [12] 13} [15] [25], we take a new approximate Dirichlet problem
16) {f(ﬁ[u]) = ¢F@uw) i O
u = € on I,

where the e-level set of u and its enclosed region in R™ are respectively

Pe={zeQ|u) =¢} and Q= {zecQ|ulx) > e}

We may assume the dimension of I'c is (n — 1) by Sard’s theorem, and in addition,
. e C*

A crucial step for proving the existence of a strictly locally convex solution
to (6] is to establish second order a priori estimates for strictly locally convex
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solutions u of (LO) satisfying u > u on €. An essential difference from [14] [12] T3]
[15] is that we allow the C? bound to depend on e. This looser requirement gives
us more flexibility to apply techniques for general Dirichlet problem and with less
technical assumptions (for example, there is no prescribed upper bound for ). For
C? boundary estimates, we change the variable from u to v by u = /v (see [24]
for a similar idea for radial graphs), which is the main difference from [14], 25] and
fundamentally improves the result in [25].

One reason that we purely study strictly locally convex hypersurfaces is due to
C? boundary estimates. In [12], Guan-Spruck assumed I" to be mean convex. Then
the solution u behaves nicely near I' and therefore k-admissible solutions can be
studied in their framework. However, without any geometric assumptions on I'c, C?
boundary estimates can only be obtained for strictly locally convex hypersurfaces.

In order to apply continuity method and degree theory to prove the existence of a
strictly locally convex solution to ([IL6l), the strict local convexity has to be preserved
during the continuity process. This is true when & = n in view of the nondegeneracy
of (6], while for 1 < k < n, we have to impose certain assumptions on 2, u and
1 to guarantee the full rank of the second fundamental form on locally convex X
up to the boundary. In this paper, we want to apply the constant rank theorem
developed in [I9 [I7, [16] to Dirichlet boundary value problems when assuming a
subsolution. For this, we assume

a0 ()., 2

(1.8)
wZQwI w0 Vu z
B — o, — B Oap + Gr0ap e — g — e
> 0.
k+1 wmwu — _ Vg k+1 w - kv wu -
]i} Tl u uu u2

Besides, we also need a condition which can guarantee that locally convex solutions
to the associated equations of (LG)) are strictly locally convex near the boundary
T'.. However, we did not find such a condition. Therefore, our existence results are
limited to k = n.

Theorem 1.9. Under the subsolution condition (LX), for k = n, there exists a
smooth strictly locally convex solution u® to the Dirichlet problem (L6l with u® > u
in Q.

Our second task in this paper is to solve ([[3)). A central issue is to provide
certain uniform C? bound for u¢. Different from [14, 12, I3} [15], where the authors
derived uniform bound for certain quantities regarding solutions of (4] under
certain assumptions, we use (LL0) as an approximate Dirichlet problem and tolerate
the e-dependent C? bound for solutions to ([LH)), since we are able to use the idea of
Guan-Qiu [I8], who established C? interior estimates for convex hypersurfaces with
prescribed scalar curvature in R™*t!. We extend their estimates to H"*!, which,
together with Evans-Krylov interior estimates (see [0, [20]) and standard diagonal
process, lead to the following existence result. Since the pure C? interior estimates
can only be derived up to scalar curvature equations (see Pogorelov [22] and Urbas
[28] for counterexamples when k > 3), we hope to investigate the cases k > 3
in future work by other means. Meanwhile, interior C? estimates are limited to
hypersurfaces satisfying certain convexity property (see [18]), which also explains
why we only focus on strictly locally convex hypersurfaces.
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Theorem 1.10. In H3, for f = 03/2, under the subsolution condition ([L3l), there
exists a smooth strictly locally convex solution uw > u to [L3) on Q, equivalently,
there exists a smooth complete strictly locally convex vertical graph solving ([LI)—

(2.

This paper is organized as follows: in section 2, we provide some basic formulae,
properties and calculations for vertical graphs. The C? estimates for strictly locally
convex solutions of (L6l are presented in section 3 and 4. In section 5, we prove
Theorem via continuity method and degree theory. Section 6 provides the
interior C? estimates for convex solutions to prescribed scalar curvature equations
in H"*!, which finishes the proof of Theorem [[.T0l

Acknowledgements The author would like to thank Dr. Zhizhang Wang and
Dr. Wei Sun for many useful and enlightening discussions. The author also wish to
express the deep thanks to the reviewer, who pointed out a mistake in the previous
version and gave many helpful suggestions, which help the author have a better
understanding of the problem.

2. VERTICAL GRAPHS

Suppose ¥ is locally represented as the graph of a positive C? function over a

domain 2 C R™:
2= {(z, u(z)) e R |z € Q}.
Since the coordinate vector fields on X are
0

8171' ’
thus the upward Euclidean unit normal vector field to ¥, the Euclidean metric, its
inverse and the Euclidean second fundamental form of ¥ are given respectively by

—Du 1
V:( uv_)v w:\/1+|Du|25

w w

0; + i Opy1, i=1,...,n where 0; =

Gij = 0ij + uiuy, g7 =8;j — —, hij = —2.

Gij ij il g ij ) ij w

Consequently, the Euclidean principal curvatures £[X] are the eigenvalues of the
symmetric matrix:

i .
aij = —" uy,
w

where o
ik _ 5o itk
7 ik w(l +w)
and its inverse o
Yik = O+ VikVkj = Gij-
1+w J J

For geometric quantities in hyperbolic space, we first note that the upward hy-
perbolic unit normal vector field to X is

(—Du 1)
n=uv=u , —
w w
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and the hyperbolic metric of ¥ is
1
(2.1) 9ii = 3 (03 + uiuy).

To compute the hyperbolic second fundamental form h;; of 3, applying the Christof-
fel symbols in H" !,

1
(2.2) Iy = (= 0ikbnt1j — OkjOnt1i + Oknt10ij),
Tn+1
we obtain
U U 0ij Uil
Do, 40,1, (0 +1jOpg1) = ——— 0 — —— 9; + ( Ui — —— ) On+1,
Tn41 Tn41 Tn41 Tn41

where D denotes the Levi-Civita connection in H*t!. Therefore,

1

hij = —u2w (5” + UiUy + UUU)

The hyperbolic principal curvatures k[X] are the eigenvalues of the symmetric ma-
trix Afu] = {ai;}:

. 4 1 . 4 1 . ,
aij = uPyFhyyt = - Y (St + upug + uugg) Y9 = E(isij + uyFugyt).
Remark 2.3. The graph of u is strictly locally convex if and only if the symmetric

matrix {a;;}, {hi;} or {0i; + wiuj + wu,;} is positive definite.

Remark 2.4. From the above discussion, we can see that

1 - I/n-i-l _
(2.5) hij = — hij + —5= Gij

where vt = 1. On+1 and - is the inner product in R™*!. This formula indeed
holds for any local frame on any hypersurface ¥ (which may not be a graph). The
relation between £[X] and £[X] is

(2.6) ki = uf; + v 1=1,...,n.

We observe the following phenomenon for strictly locally convex hypersurfaces
in H" ™! (see also Lemma 3.3 in [14] for a similar assertion).

Lemma 2.7. Let ¥ be a connected, orientable, strictly locally convex hypersurface
in H"*Y with a specially chosen orientation. Then ¥ must be a vertical graph.

Proof. Suppose X is not a vertical graph. Then there exists a vertical line (of
dimension 1) intersecting ¥ at two distinct points p; and ps. Since ¥ is orientable,
we may assume that "1 (p1) - "1 (py) < 0. Since ¥ is connected, there exists a
1-dimensional curve v on ¥ connecting p; and pa. Among the tangent hyperplanes
(of dimension n) to X along v, choose a vertical one which is tangent to X at a
point p3. At p3, v"T! = 0 and u > 0. By (28], #; > 0 for all i at p3. On the
other hand, let P be a 2-dimensional plane passing through p1, p2 and p3. If PNX
is 1-dimensional and has nonpositive (Euclidean) curvature at ps with respect to
v, we reach a contradiction; otherwise we take a different orientation of X, then
3 is either not strictly locally convex or we reach a contradiction. If P N3 is
2-dimensional, then any line on P N X through ps leads to a contradiction. O
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Equation ([II)) can be written as

(2.8) Fr[u]) = fFNA[u]) = F(A[u]) = ¢*(z, u).
Recall that the curvature function f satisfies the fundamental structure conditions
(2.9) fi(h) = 07\ >0 inly, i=1,...,n,
O\
(2.10) f is concave in Ty,
(2.11) f>0 inTy, f=0 ondl.

3. SECOND ORDER BOUNDARY ESTIMATES

In this section and the next section, we derive a priori C? estimates for strictly
locally convex solution u to the Dirichlet problem ([6]) with v > u in .. By
Evans-Krylov theory [6] 20], classical continuity method and degree theory (see
[21]) we prove the existence of a strictly locally convex solution to (Ll). Higher-
order regularity then follows from classical Schauder theory.

Let u > u be a strictly locally convex function over €2, with v = v on I'.. We
have the following C° estimate:

(3.1) u <u< e+ (diamQ)? in Q.
In fact, by Remark 23] for any x¢ € Q, the function u? + |x — 2¢|? is Euclidean
strictly locally convex in ., over which, we have

u? <u? 4|z — 20 < mpax(u2 + |z — 20]?) < €% + (diam®)?.

Therefore we obtain ([B.1]).
For the gradient estimate, we perform a transformation v = y/v. Denote

W = +/4v + |Dvl|2.

The geometric quantities in section 2 can be expressed in terms of v,

ik g5, _ Yk N S ViVk
T T ek rw)y R TR T B+ W)
2 1 20, 1 4
hij = NG (6ij + B vij), @ij = 37 k((skl + 3 Ukl)'Yl]'

Since the graph is strictly locally convex, v satisfies

{Av+2n>0 in Q,

v =€ on I,

where A is the Laplace-Beltrami operator in R™. Let ¥ be the solution of

{AU+2n=O in Q.

2

U=¢€ on I'..

By the comparison principle,

g2:y§v§5 in Q..
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Consequently,
(3.2) |Dv| < C on T,

where C' is a positive constant depending on €. Hereinafter in this section, C' always
denotes such a constant which may change from line to line. Equivalently,

(3.3) |Du| <C on T..
For global gradient estimate, consider the test function
W = /Io T D,
Assume its maximum is achieved at an interior point xg € Q. Then at z,
WW; = (vki + 26ki) v, = 0, i=1,...,n.
Since the matrix (vki + 25ki) is positive definite, thus vy = 0 for all k at x¢. Along

with B1) and [B.2]), we obtain
(3.4) max |Dv| < max+/4v + |Dv|? < max { max \/4€% + |Dv|?, 2m_ax\/5} <C.
e Qe

Q. Q.
Equivalently,
(3.5) max |Du| < C.

€

For second order boundary estimate, we change equation (Z8) under the trans-
formation v = /v into

(3.6) G(D*v, Dv,w) = F(a;) = f(Maij)) = ¥(, v).
By direct calculation, we obtain the following formulae.

Lemma 3.7.

oG \/5 S .
Gst — — Y piias tg
Dvar W R )
oG 1 2 i Vilq i
Go=5, = (55— 72) Flau + s P aar
oG Vs i W vy 4 2v/07% ;i 5
G = =5 pu i — q F -
o, w2 YT T AWy wy L e

In addition,
|IG°| < C and |G,| < C.
Proof. Since
G(D*v, Dv,v) = F(%Vk (6 + %’Ukl)'}/lj)a
we have,

- 6aij (%St w
To compute G, note that

OF day; -
Gst Qij _ @F”’}/ZS’}/U.

ow 2 Vik V; Uk
o —w M o T T aeew
Consequently,
3’7”6 _ _ip  YpYq qk

v aerw
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Hence,
2V, 1 L A oyk 1 ,
G F”( F (o + S + E T (G + o))
81;( )7 (Ot + 2Ukl)'7 + W ou (Ot + 2%1)7
1 2 ~Py,v
_ 17 p~q ZJ i
_(2v 2)F aij + 5 st Fay,.

We then obtain G, in view of

p o
7 Up W
For GG*, note that
ik
W _ v DT Dea ek g
(%s w 8’05 a’Us
OVpg  OpsVg + 0gsvp UpUqUs _ Opsvg +vpy?°

dvs 20020+ W) 22Vu+ W)W 2002y + W)
It follows that

ik
G :Fzg( 2\/—1)5 zk( 4\/— 8’7

1
Skt + zop)YY +

1 .
(Ot + —Ukz)Vlj)

2 W Ov, 2
_ iFijaij _ WrSvg 4 2/oy%y; Filay,.
w2 VW (2y/v + W)

O

For an arbitrary point on I'¢, we may assume it to be the origin of R™. Choose
a coordinate system so that the positive x,, axis points to the interior normal of ',
at the origin. There exists a uniform constant r > 0 such that I'. N B,(0) can be
represented as a graph

1
T, = p(a') = 3 Z Bagrars + O(|x'|3), ¥ = (T1,...,Tpn_1).
a,B<n
Since

or equivalently

v(@, p(a')) = &,

we have
(3.8) Vo + Un pa =0
and

Vap + Vanpp + (Vng + Vnnppg)pa + Vnpap = 0.
Therefore,

Uaﬁ(o) = —v,(0) Paﬁ(o)a o, B < n.

Consequently,
(3.9) lvap(0)] < C, o, B <n,

where C' is a constant depending on e.
For the mixed tangential-normal derivative vay,(0) with @ < n, note that the
graph of u is strictly locally convex on €).. Hence we have

1
I+§DQQ > 3¢l



CONVEX HYPERSURFACES OF PRESCRIBED CURVATURE 9

for some positive constant cg. Let d(x) be the distance from x € Q. to I'. in R™.
Consider the barrier function

U =AV + B|z|?
with
V=v—v+7d— Nd?
where the positive constant N, 7, B and A are to be determined.

Define the linear operator L = G Dy + G® D,. By the concavity of G with
respect to D?v,

=G"Dy(v—v—Nd*)+7G"Dyd +G*Dy(v—v+7d— Nd?)
< G(D?*v, Dv,v) — G(D2 (y + Nd2) — 2¢ol, Dv, v)
+(CT = 200) Y G + C(1+ 7+ N9).
Note that
1
I+ 5D?(g+z\fd2) —col > 2¢9l + NDd ® Dd — CN6I :=H
Denote v = (v*). We have
2 2 2\/— 2 2
G(D*(u+ Nd?) = 2a0l, Dv,v) = F(5 (I+ D2(u+ N d?) - col)7)

> F(zI}//EvHv) - F(% 7—[1/2777-11/2) > FEH),

where ¢ is a positive constant. Hence

LV < —F(EH) + (CT —2c0) G + C(1 + 7+ N9).

Note that H = diag(2co —CNO, ..., 2cg—CN§$, 2¢o— CN5+N). We can choose
N sufficiently large and 7, § sufficiently small (§ depends on N) such that

Cr<cy, CN6<cy, —F@CH)+C+2c<-1.

Hence the above inequality becomes
(3.10) LV <—cy G"—1
We then require ¢ < £ so that

V>0 in QnBs(0).
By Lemma 3.7

L(jzl*) < C(1+>_G").
This, together with (BI0) yields,
(3.11) LY < A(=c» G"=1)+BC(1+> G") in QN Bs(0).

Now, we consider the operator

T = &l =+ Z Bag(:rgan — xnaﬁ)

B<n
Note that for § > 0 sufficiently small,

[Tv| < C in QN Bs(0).
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Also, in view of [3.8)),
|Tv| < C |z|? on TN Bs(0).
To compute L(Tv), we need the following lemma (see [14]).
Lemma 3.12. For1<14,5 <n,
(L + Gy — o) (w05 — 250;) = Tithe; — 25,

Proof. For 6 € R, let

y; =x;cosf —x;sind,

y; =x;sinf + x; cos 0,

Yk =Tk, kF14,].
Since G — v is invariant for the rotations of R", we have

G(D*u(y), Du(y), v(y)) = ¥(y, v(y)).
Differentiate with respect to 6 and change the order of differentiation,

v y; Ay,
L+ Gy — )|y — =1, — 2
Set 8 = 0 in the above equality and notice that at § = 0,
_ i _ o W OV
Yy =z, 90 = % 50 = 50 = Tivi ~ Tjvi-
We thus proved the lemma. 0
By Lemma B.12] and Lemma B we have
(3.13) |L(Tv)| < C.

Choose B sufficiently large such that

U+Tv>0 on 9I(Q2 N Bs(0)).
From (I1) and BI3) we have

LT +Tv) < A(—co» G"—1)+BC(1+> G")+C.

Choose A sufficiently large such that

LW +Tv) <0 in Q.NBs0).
By the maximum principle,

U+Tv>0 in QN Bs(0),
which implies
(3.14) [van(0)] < C.
Up to now, we have proved that
lven()] <O, Jogy(2)| <C, ¥V zel,

where £ and n are any unit tangential vectors and + the unit interior normal vector
to I'c on Q.. It suffices to give an upper bound
(3.15) Uyy <C on T..

Motivated by [B] (see also [9] 28]), we derive (B15).

First recall some general facts. The projection of I'y, C R™ onto R™~! is exactly
D= {0, A1) €R oy A, ooy A1) >0, G=1,...,k—1}.
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/

Let ' = (k,...,K],_1) be the roots of

(3.16) det(n'c JaB — hag) =0,

where (hqg) and (gap) are the first (n — 1) x (n — 1) principal minors of (h;;) and
(gij) respectively. Then k[v] € Ty implies x'[v] € T}, and this is true for any
local frame field. Note that &’[v] may not be (K1, ..., kn—1)[v].

For z € T, let the indices in (BI6) be given by the tangential directions to I,
and £'[v](x) be the roots of (BI). Define

d(z) = VoW dist(k'[v)(z), 8T, ;) and  m= min d(z).

Choose a coordinate system in R” such that m is achieved at 0 € I'. and the positive
T, axis points to the interior normal of I'c at 0. We want to prove that m has a
uniform positive lower bound.

Let &,...,&.—1,7 be a local frame field around 0 on )., obtained by parallel
translation of a local frame field &;,...,&,-1 around 0 on I', satisfying

9ap =0ap,  hap(0) = r5(0)das,  K1(0) < ... <k _4(0)

and the interior, unit, normal vector field 7y to I, along the directions perpendicular
to I'c on Q.. We can see that this choice of frame field has nothing to do with v (or
equivalently, u). In fact, if we denote

n—1
{a:aneg, a=1,...,n—1,
B=1

where €7, ...,e,_1 is a fixed local orthonormal frame on I', and consider a general
boundary value condition, say v = ¢ on [, then on T,

1 1
Jos == (ﬁa €5+ De,u Dgﬂu) =5 (éa &+ De, (V) Dﬁﬁ(\/@)
n—1

- De, pDe o
Z n (&q + Tc) ng.
7.e=1 7

1
4

Note that there exist n], for a,7 = 1,...,n — 1 such that gog = dop on I'c. By a
rotation, we can further make (hag(0)) to be diagonal.

By Lemma 6.1 of [2], there exists u = (1, .-, ftn—1) € R* ™ with pg > ... >
fn—1 > 0 such that

n—1
dpi=1, T, c{NeR"p-N>0} and
a=1

(317)  m=d(0) = VOW Y 1okt (0) = D pa (Deneat + 280 - a)(0).

a<n a<n

Since v is strictly locally convex near T'c and > pq > 1,

3 ha(Desev+ 260 -€)(0) > 21

a<n
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for a uniform positive constant ¢;. Consequently,

(3. 18)
(v—) Z Ha de e, (0) = Z taDe, e (v —0)(0)
a<n a<n
=Y pa(Deneat+280 - £a)(0) = Y pta(Denenv + 280 - £a)(0) > 21 — d(0).
a<n a<n

The first line in (BI]) is true, since we can write v — v = w d for some function w
defined in a neighborhood of T'¢ in §2.. Differentiate this identity,
(v—2); = w; d+wd;, (v—1v)y = wyd+wd,,
(v—0)ij = wij d+w; dj +w; d; +wd;;.
Note that de, (0) = 0 and d,(0) = 1. Thus,

De.eo (v = 2)(0) = (v = 2)5(0) dg,.£,. (0)-
We may assume d(0) < ¢y, for, otherwise we are done. Then from (BIR),

(v—v) Zua dee, (0) > cq.

a<n

Since 0 < (v —2)4(0) < C,

> tade,e, (0) < =205
a<n
for some uniform constant co > 0. By continuity of de e, (x) at 0 and 0 < po <1,
Z ey (dgaga( —de e, (0 ) Z ey f < c2 in QN Bs(0)
a<n a<n
for some uniform constant 6 > 0. Thus
(3.19) D hadee.(x) < —ca  in QN Bs(0).
a<n
On the other hand, by Lemma 6.2 of [2], for any = € T'. near 0,

> o (Deoev+ 26060 ) (@) = 3 1av/TW hoa(a)

a<n a<n

> VoW Y pamylol(@) > d(x) > d(0).

a<n

Thus for any = € I'c near 0,

(@) > padee, (¥) = Y pra Deoea (v — 9)(2)

a<n a<n
(3.20) = Zﬂa(DéaéaH?’ia fa) Zua(DgagasaH&a éa)( )
a<n a<n
> d(0) = > tta(Deuato + 2600 ) (@):

a<n

In view of (BI9), define in Q. N Bs(0),

1 -
P = m (d(O) - Zﬂa(Dgaga(p+2§a '50[)) _ (’U_(P)'y-

a<n a<n
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By B13) and B20), ® > 0 on I'. N Bs(0). In addition, we have in 2. N Bs(0),
(3.21) L@) < c(1+Y.G6%) - L(D(v — ) Dd) < o1+ @)
This is because 0 < o < 1 and

’L(D(v — ) Dd)‘ - ‘Dd L(D(w = ¢)) + D(v — @) - L(Dd) + 2G° (v — @);adiy

<C(1+ Z G") + ‘2 G* djy (%%ﬂszam - 251’5)

=C(1+ Y GY) + [290din FY i — 4G du| < C(1+ ) GY).

By (11) and 21I), we may choose A >> B >> 1 such that ¥ +® > 0 on
9(Q N Bs(0)) and L(¥ + &) < 0 in Q. N Bs(0). By the maximum principle,
U4+ & >0in QN Bs(0). Since (¥ + ®)(0) = 0 by B20) and EIT), we have
(U4®),,(0) > 0. Therefore, v,,,(0) < C, which, together with (39 and BI4), gives
a bound |D?v(0)| < C, and consequently a bound for all the principal curvatures

at 0. By (ZII),

dist(k[v](0), OTk) > c3
and therefore on I,
d(z) > d(0) = /o W dist(x'[v](0), T, _,) > ca,

where c3 and ¢4 are positive uniform constants.
By a proof similar to Lemma 1.2 of [2], we know that there exists R > 0 depend-
ing on the bounds (39) and BI4) such that if vy, (zo) > R and z¢ € I, then the

principal curvatures (K1, ..., k,) at xg satisfy
Ko = Ky, + 0(1), a<n,
o hnn - glnhnl R gnnflhnnfl 9nn — g%n e T 972171—1
Fn = D) 2 140
nn —91n — -+ — Ynn-1 hnn - glnhnl e T gnn—lhnn—l
in the local frame &;,...,&,-1,7 around xo. When R is sufficiently large, we have

G(Dzva va ’U)(IO) > 1/)(:1705 62)7
contradicting with equation (3.0). Hence v,y < R on T'c. (BI3) is proved.

4. GLOBAL CURVATURE ESTIMATES

For a hypersurface ¥ C H"*!, let g and V be the induced hyperbolic metric
and Levi-Civita connection on ¥ respectively, and let § and V be the metric and
Levi-Civita connection induced from R"™*! when ¥ is viewed as a hypersurface in
R™ 1. The Christoffel symbols associated with V and V are related by the formula

~ 1 B B
Fi—cj = Ffj — a(uiékj + ujéik — gklulgij).
Consequently, for any v € C%(%),
- 1 B B
(4.1) Vijv = (vi); — Tive = Viju + - (ugvj + ujvi = "Mk gig).
Note that (@) holds for any local frame.
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Lemma 4.2. In R" ™! we have the following identities.

(4.3) Puguy = |Vul? =1 — ("2,

(44) 617"[1, = ilijVn+1 and ﬁijxk = }Nliij, k= 1, e,y
(45) (V"+1)i = —Bij f]jkuk,

(46) @ijanLl = —gkl(l/nJrliLuiij + ul@kﬁij),

where Ty, ..., T, is any local frame on X.

Proof. To prove (£3), we may write

n
(4.7) Ont1 = Zaka + bu.
k=1
Taking inner product of (7)) with v in R"*!, we obain
" =0, v =0.

Taking inner product of X)) with 7; in R"™!, we have
uj = (X Ony1)j = Ony1 - 7j = axTh - Tj = Ak

where X is the position vector field of ¥ (note that this is different from the con-
formal Killing field when using half space model for H"*!). Thus,

ap = Ujgjk.
Therefore,
Ony1 = uj g, + "y = Vu + vy,
which implies (Z3).
For (@), note that

Vig (X - 0x) = (X - 0k);), = Ti(X - 9k
=(7j-O)i = Tiym -0k = Dyrj - O = Tiym- 0
= (Vo1j +higv) - O = Tiym -0 = hyv -0, k=1,...,n+1.

Here we have applied the Gauss formula for ¥ as a hypersurface in R?*1.
For ([A35)), by the Weingarten formula for ¥ as a hypersurface in R**! we have

W) = (v - Ony1)i = Dryv - Oni1 = —hir 11 - Onyr = —harg™ .

Finally, ([@4]) follows from (@A), (E4)) and the Codazzi equation for ¥ as a
hypersurface in R"+!. In fact,

@ijun—’_l = —g’“l(uﬁiﬁjk + Bjk@ilu) = —g’“l(uﬁkﬁij + V"+1]~7,iliij).
O

Lemma 4.8. Let ¥ be a strictly locally convex hypersurface in H"™ ! satisfying
equation 28). Then in a local orthonormal frame on X,

Fijvijyn-‘rl _ Vn+1Fijhik;hkj 4 (1 4 (Vn+l)2)Fijhij _ Vn+1 Zfl

(49) 2 . 2 n+1
— EF”hjkuiuk + Y

.. Uk
7,

B} FJ’U,Z"LLJ' — —1/)k.

u u



CONVEX HYPERSURFACES OF PRESCRIBED CURVATURE 15

Proof. By (@), (@3,
FijVijV”“
o 1 ) . )
(4.10) = (Vz‘j’/"H S GG TR e P +1)k9ij)>
n+1

v i Uk i 7 2 i Uk,
= — 5 Fhighi; — 5 FYNhij — = F by, — (v kD i

u

Since ¥ can also be viewed as a hypersurface in R"*1,
il 21z yrt ~il T, n+1
F(g"hj) = F(U g (a hij + 7913')) = F(Ug hij +v 51'3') = 1.
Differentiate this equation with respect to Vi and then multiply by %=
u o Uk —vx = UL UL
u—g FUhij + FF”thij + ?(anLl)k Z fl = 7 1/)k.
Take this identity into (ZI0),

ij n+1 p iiT 7 2 iz Ui ij7 Uk
F Vijl/ =——3 F hikhkj — —3F hjkuiuk + —3F hij - — Y.
U U U U
In view of (2.3]), we obtain (£9). O

For global curvature estimates, we use the method in [13]. Assume
> 240>0 on X

for some constant a. Let Kmax(X) be the largest principal curvature of ¥ at x.
Consider

K X
My = sup %()
xeEX vl —gq
Assume My > 0 is attained at an interior point xg € X. Let 7,...,7, be a local
orthonormal frame about xg such that h;;(xo) = k; d;;, where k1,..., K, are the

hyperbolic principal curvatures of ¥ at xo. We may assume K1 = Kmax (Xo). Thus,
Inhy; — In(v™* — a) has a local maximum at xg, at which,
hi; V!

4.11 - =0
( ) h11 yrtl — g ’

hii Vv
4.12 - <0.
( ) h11 yrtl — g —
Differentiate equation (Z8) twice,
(4.13) F"hipy + F9 " hijihesy = b1 > —Chy.

By Gauss equation, we have the following formula when changing the order of
differentiation for the second fundamental form,

(4.14) hiijj = Njjii + (ki Kj — 1) (ki — Iij).
Combining (Z12), (@I3), @I4) and @3] yields,

n+1
(- L 1+1)mez (g Y fird)

FU’TS hz]l h'rsl + Z fl 2 2 "+1) - Cﬁl <0.

(4.15)



16 ZHENAN SUI

Next, take [@H), (23) into (@I,

R1 Uj
hiii = 1 —(VnJr1 — Ki)s
vl —a w

and recall an inequality of Andrews [I] and Gerhardt [7],

Flj e hz]l hT‘Sl > Z fl f] hzgl - Z

K
i#j Rj = R i>2

fz fl 2
111
L — i
Therefore, [@.I5]) becomes,

(4.16)

n+1
Oz(n%—l:;li#m—l—l) D fiki = Cry (D fit Y fin?)
2 K3

fi—f %2 yntl 2 2K4 ui n+1
+ (vntl — q)? Zm—m u2 ki) +V"+1—azfiﬁ(m_y )

For some fixed 6 € (0, 1) which will be determined later, denote

J={i: fL >0f;, r;<v"T L={i: fi <0fi, k;<v"T}.
The second line of [@I6) can be estimated as follows.

2
2 k7 fi—fi ul yntl N2 261 ui n+1
nt1 —5 — i)+ fi—g (ki = v ™)
(v —a) Kl —Ki U v —a U
i>2
> Z fi—Jiu} )2 } : } : fl n+1)
1/"+1 K1 — K; u2 ! V"+1
el ZEL 1€J
Hl 1 1
> Z pH - Z EADEE>Y
> yn+1 ki) + Vnﬂ = 9a 2 Jiti
i€l zeL
1 2
- 2/11 Z—ui (VnJr — Hi) Tk VnJrl
Cyntl—g Z u? ytl — g !
29%1 1 n+1 2 2
T —RKi)"—— ) fiki
(vl —aq) fa
ZEL
- 2K1 luf v 40K, 1
__Vn+l—CLEZL w2 'Vn'f‘l_aﬂl_ V"+1—CL Zfl +fi — Zfz/ﬁ
(2

49/11

A —a) Zf11+“ _(_ 4H1)Zf1“1

Here we have applied §*upw = %upu = 1 — (v"1)? due to (3) in deriving the
above inequality. Choosing 6 = “4—2 and taking the above inequality into (£I6]), we
obtain an upper bound for k1.

5. EXISTENCE OF STRICTLY LOCALLY CONVEX SOLUTIONS TO (L6

The convexity of solutions is a very important prerequisite in this paper, due
to the following two reasons: first, the C? boundary estimates derived in section 3
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require the condition of convexity; second, the C? interior estimates for prescribed
scalar curvature equations in section 6 need certain convexity assumption (see [18]).
Therefore, the preservation of convexity of solutions is vital in order to perform
the continuity process. In this section, we first give a constant rank theorem in

hyperbolic space (see [4, 19, 17, [T6]).

Theorem 5.1. Let ¥ be a C* oriented connected hypersurface in H" " satisfying
the prescribed curvature equation

(5.2) op(k) = VU(z1,...,25,u) > 0.

Assume that the second fundamental form {h;;} on ¥ is positive semi-definite, and
for any x € ¥ and a local orthonormal frame T1,...,7, around x with {h;;j(x)}
diagonal,

(5.3) Z(\If—k—?%juw)( ) <0,
i€B

where the symbol < is defined in [I7] and B is the set of bad indices of x. Then the
second fundamental form on X is of constant rank.

Let X be a locally convex hypersurface to equation ([2.2) for & < n with boundary
0%. If we can find a condition (we call it Condition I) to guarantee that X is
strictly locally convex in a neighbourhood of the boundary 9%, then together with
condition (53)) in Theorem [B1] we can prove that ¥ is strictly locally convex up to
the boundary. However, we did not find a suitable Condition I. Still, we proceed to
prove the existence as if we have had Condition I in order to show how (53) and
Condition I play the roles in the continuity process.

Now we prove the existence. We use the geometric quantities in section 2 which
are expressed in terms of u and write equation ([2.8) as

(5.4)  G(D%, Duyu) = Fla) = f(A\aiy) = o/" () = 4% (a, u).
For convenience, denote

Glu] = G(D*u, Du,v), GY[u]=G"(D?u, Du,u), etc.
Let § be a small positive constant such that
(5.5) Glu] = G(D*u, Du, u) >6u in Q..

For t € [0, 1], consider the following two auxiliary equations.
-1

o . u 1 .
G(D*u, Du,u) = ((1 t)—G[y] +to ) u in Q,
u =€ on I'..
2 - “1/k -1 .
(5.7) G(D?u, Du,u) = ( (1-1t)6 +t (x,u)) in Q.
U =€ on I'..

Lemma 5.8. Let ¢(z) be a positive function defined on Q.. For x € Q. and a
positive C? function u which is strictly locally convex near x, if

Glul(z) = F(aij[u])(z) = f(r)(2) = ¥(z) u,
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then
Gulul(z) — ¢(z) <0.

Proof. By direct calculation,

1 | 1
_ g — Atk lj — — e .
Gu—F ’LUFY Ukl U(Zflfiz wal)
Since > firi < p(x)u by the concavity of f and f(0) =0,

Gulul(z) — w(a) < —— 3" f; <0.
(I

Lemma 5.9. For any t € [0,1], if U and u are respectively any positive strictly
locally convex subsolution and solution of (B.0), then w > U. In particular, the
Dirichlet problem ([B.8) has at most one strictly locally convex solution.

Proof. We only need to prove that v > U in Q.. If not, then U — u achieves a
positive maximum at xy € €, at which,

(5.10) U(zo) > u(zo), DU(xo) = Du(zg), D?*U(xo) < D*u(zo).

Note that for any s € [0, 1], the deformation u[s] := sU + (1 — s) u is strictly locally
convex near xg. This is because at z,

8ij + uls] - v* [uls]] - (u[sw 7Y [uls]] > 6i; + uls] v*[U] - Uy, -7 [U]
=(1- s)(l - %)&j + %(6@‘ +U-y*[U] - Uy -W[Q]) > 0.

Denote
u

-1
11 O(z,t) = ((1—t to?
(5.11) (0,0 = (1 =D)grg +157")
and define a differentiable function of s € [0, 1]:

a(s) := G{u[s]](xo) — O(zg,t) uls](xo).
Note that

a(0) = Glul(xzo) — O(xo,t) u(xo) =0
and

a(l) = G[U](zo) — O(zo,t) U(zg) > 0.

Thus there exists sg € [0, 1] such that a(sg) = 0 and a’(s¢) > 0, i.e.,
(5.12) Glulso]] (z0) = 6(x0, t) u[so](xo)
and

G [ulso]] (z0) Dij(U — u)(wo) + G [uso]] (x0) Di(U — u)(wo)
+ (Gu[ulsol] (z0) = B(z0,1) ) (U = w)(z0) = 0.
However, the above inequality can not hold by (510), (512) and Lemma B8 O

(5.13)

Theorem 5.14. Under assumption (L) and Condition I, for any t € [0, 1], the
Dirichlet problem ([B.0) has a unique strictly locally convex solution w, which satisfies
wu>uin Q.
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Proof. Uniqueness is proved in Lemmal[5.9l For existence of a strictly locally convex
solution, we first verify that ¥ = (0(z,t) u)* = O(z,t) u* satisfies condition (5.3
in the constant rank theorem. By direct calculation,

k41 w2
U, — ——— L+ kU
kv *
- k+1 6,0, r
= 2 (O = T walias)int + 3 O ()
a,f=1 a=1

-2 Z Oz (Ta)i ub Ty, — 2k (9uk_2uz2 +O0 kv uy; + kO UF,
a=1

By @), (£4), Z3) and (@3), for i € B and o = 1,...,n, we have

2 1<
(e =" o = 33

(5.15) . o) —uS (T ooy 2y
w (V- Opy1) (V- On) u;(u B"H)(u (’9(3¢)—|—u(9co¢)luZ
:E(xa)iui
and
2 5
(5.16) Wig ~ UG U

Therefore by (L),

3 (\11 - % %2 + k\I/) S TIY zn: (@*%) (2a)i(g); u* <0.

i€B i€B a,f=1 Top

Next, we use the standard continuity method to prove the existence. Note that
u is a subsolution of (5.8) by (55). We have obtained the C? bound for strictly
locally convex solution w (satisfying v > u by Lemma [5.9) of (B.0), which implies
the uniform ellipticity of equation (&.6]). By Evans-Krylov theory [6l 20], we obtain
the C%“ estimate which is independent of ¢,

(517) ||u||C2’a(Q_e) S C
Denote

Cg’a(Q_e) ={weC?*(Q.)|w=0onT.},

U= {w € Cg’o‘( Q¢ ) | u+ w is strictly locally convex in Q_e} .
We can see that C5*(9Q.) is a subspace of C>*(Q,) and U is an open subset of
C2*(92). Consider the map £ : U x [0,1] — C*(Q,),
L(w,t) = Glu+w] — O0(x,t) (u+ w).

Set
S={te[0,1]]| L(w,t) =0 has a solution w in U }.
Note that S # 0 since £(0,0) = 0.
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We claim that S is open in [0,1]. In fact, for any ¢y € S, there exists wg € U
such that L(wo,t9) = 0. The Fréchet derivative of £ with respect to w at (wo,to)
is a linear elliptic operator from C3** (%) to C*(Q,),

Lu| (s 10y (M) = G+ w0 Dish + Gl + wo] Do + (Gl + wo] = 0(a, o) )

By Lemma B8] Lw’ (worto) is invertible. By implicit function theorem, a neighbor-
hood of tj is also contained in S.

Next, we show that S is closed in [0, 1]. Let ¢; be a sequence in S converging to
to € [0,1] and w; € U be the unique (by Lemma [5.9) solution corresponding to ¢;,
ie. L(w;,t;) =0. By Lemma B9, w; > 0. By (BI7), u; := u+ w; is a bounded
sequence in C%%( Q. ), which possesses a subsequence converging to a locally convex
solution ug of (&.0). By Condition I and Theorem Bl we know that ug is strictly
locally convex in Q.. Since wg := ug —u € U and L(wo,to) = 0, thus tg € S. [l

From now on we may assume u is not a solution of (L.0]), since otherwise we are
done.

Lemma 5.18. If u > w is a strictly locally convex solution of (B.1) in Q., then
u>u in Qe and (u—u)y >0 on ..

Proof. To keep the strict local convexity of the variations in our proof, we rewrite

1) in terms of v,

5.19
( ) v=¢€ on I'.

{G( v, Dv,v) = ¢! (z,v) in Q,

Since w is a subsolution but not a solution of (1), equivalently, v is a subsolution
but not a solution of (519, thus,

(5.20) Gv] — G[v] > ¥'(z,v) — ¥ (z,v).
Denote v[s] := sv+(1—s) v, which is strictly locally convex over €, for any s € [0, 1]
since

0ij + %(”[3])@' = S(éij + %yij) +(1-5s) (57;]‘ + %’Uij) >0 in Q..
From (520) we can deduce that
a;j()Dy;(v — v) + bj(x)Di(v — v) + c(x) (v —v) >0 in Q,
where

I 1
a;;(z) :/0 G" [U[SH (x) ds, bi(a:):/o G [v[sﬂ (z) ds,

@)= [ Gulols] @) = 'y (o0l ds.

Applying the Maximum Principle and Lemma H (see p. 212 of []]) we conclude
that v > v in Q¢ and (v —v), > 0 on I'c. Hence the lemma is proved. O

Theorem 5.21. Under assumption (L), (L8) and Condition I, for any t € [0, 1],
the Dirichlet problem (B1) possesses a strictly locally convex solution satisfying
u>wu in Q.. In particular, the Dirichlet problem (LG has a strictly locally convex
solution u® satisfying u® > w in Q..
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Proof. We first verify that

U= (=00 a™ T )

satisfies condition (B3)) in the constant rank theorem. In fact, by assumption (L)),

EG.I5) and (E.I0),
DY ((d]_%)ii _¢—%)

i€B
k+1 wza"/}mg ¢mamg ud)z;de 5(1,8 k% 1¥s wwu - ¢wau - wza >0
NZT k+1wzawu ) _ Yea kiw_i_¢ kb v |7 ’
i€B Tal u kE uu 2 W
and consequently,
k+1 w?
T kw)
> (v
i€B
— kU Z ((1 —t)0 ! ((u_l)“— — u_l) + t((1/)_1/k)ii - 1/)_1/k)) < 0.

i€B
We have established ' estimates for strictly locally convex solutions u > u of
(&7), which further imply C*< estimates by classical Schauder theory,
(5.22) ||u||c4,a(m) < Cy.
In addition, we have
(5.23) dist(k[u], dT%) > ca >0 in Q,
where Cy, co are independent of ¢. Denote
Co () i={we C*(Q)|lw=0o0nT.}
and
w>0inQe, wy>0o0nTe, [wloaomy <Ca+llulcsem

O:={we Cg’a(Q_€) {6 + (u+w)i(u+w)j + (w+w)(u+w);} >0 in Q, ,
dist(k[u + w], 0y) > c2 in Qe

which is a bounded open subset of Cy** (9. ). Define M, (w) : Ox[0,1] — C>*(Q),
-1
Mi(w) = Gu+ w| — ((1 —t)6t (ut+w) T+ tw_l/k(:t,y—i-w)) .

Let u° be the unique strictly locally convex solution of (5.8]) at t = 1 (the existence
and uniqueness are guaranteed by Theorem [F.14] and Lemma[5.3)). Observe that u”
is also the unique solution of (5.7) when ¢t = 0. By Lemma 59 w° := u® —u >0
in Q.. By LemmaEI8 w° > 0 in Q. and w’, > 0 on I'.. Also, u + w" satisfies
(22) and (G23). Thus, w® € O. By Condition I, Theorem 5.1l Lemma 518, (5.22)
and (B23), M;(w) = 0 has no solution on 9O for any t € [0,1]. Besides, M, is
uniformly elliptic on O independent of ¢t. Therefore, we can define the ¢-independent
degree of M; on O at 0:
deg(My, 0,0).

To find this degree, we only need to compute deg(My, O,0). By the above dis-
cussion, we know that Mg(w) = 0 has a unique solution w® € ©. The Fréchet
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derivative of Mg with respect to w at w® is a linear elliptic operator from C’g Q)
to (),
(5.24) Mo wlwo (h) = G7[u’] Dijh + G [u’] Dih + (G [u’] — §)h.
By LemmaBE8 G, [u’]— § < 0in Q. and thus Mg 4|0 is invertible. By the degree
theory established in [21],

deg(MOa Ov O) = deg(MO,w07 Bla O) ==+l # Oa

where By is the unit ball in Cy**(Q,). Thus deg(M,,©,0) # 0 for all ¢ € [0,1],
which implies that the Dirichlet problem (B.7) has at least one strictly locally convex
solution u > w for any ¢ € [0, 1]. O

6. INTERIOR SECOND ORDER ESTIMATES FOR PRESCRIBED SCALAR
CURVATURE EQUATIONS IN H"t!

Let u® > u be a strictly locally convex solution over €2, to the Dirichlet problem
([T6). For any fixed ¢y > 0, we want to establish the uniform C? estimates for u*
for any 0 < e < ¢ on (), namely,

¢ €0
(61) H’LL ||C2(Qeo) SO, V O<€< Z

In what follows, let C' be a positive constant which is independent of € but depends
on €g. By (B, we immediately obtain the uniform C? estimate:
(6.2) € <u* < C on Q, vV 0<e<e.

For uniform C! estimate on Q.,, we make use of the Euclidean strict local con-
vexity of (u€)? + |z|? (see [27] for a similar idea) to obtain

C(?"L)lﬂfliau/X ((u)? + |2f?)

dlSt (Feo/27 Q_eo)

€0
, V 0<e< —
€S

max D ((u)? + laf?)| <

€0

It follows that,

(6.3) [ oy < V 0<e< %0
We are now in a position to prove

(6.4) |D*u| < C on Q, V 0<e< %0,

which is equivalent to

(6.5) max|rifu]| < C, vV 0<e< %0

€0

Choose r = dist(2e,, ', /2), and cover Q, by finitely many open balls By with
radius 5 and centered in (),. Note that the number of such open balls depends on
€o- In addition, the corresponding balls B, are all contained in {1 /o, over which,
we are able to apply the gradient estimate due to (G3):

€ €0
[[u ||cl(m) <G, vV 0<e< R



CONVEX HYPERSURFACES OF PRESCRIBED CURVATURE 23

If we are able to establish the following interior C? estimate on each B,.:

0]
swp [ fu]| € CQlesy). V¥ 0<e<
/2
then (6X) can be proved. Since the principal curvatures x;[uf], ¢ = 1,...,n and

the gradient Du® are invariant under the change of Euclidean coordinate system,
we may assume the center of B, is 0. For convenience, we also omit the superscript
in u¢ and write as w.

In what follows, we will use Guan-Qiu’s idea [I8] to derive the interior C? esti-
mate

(6.6) sup |ki(x)] < C
BT/2

for strictly locally convex hypersurface ¥ in H**! to the following equation

(6.7) 02(“) = ¢(X)=
where B, C R” is the open ball with radius r centered at 0 and C is a positive
constant depending only on n, r, [[X|c1(s,), |¥|c2(s,) and infp, .

For z € B, and £ € S"™' N T(2,u)>, consider the test function

O(zr,u,&) = 2Inp(x) + a(%)z - (%) +Inln hee,

where p(z) = r? — |z* with |z = Y1, 27 and «, 8 are positive constants to

be determined later. At this point, we remind the readers that - means the inner
product in R"*! while { , ) represents the inner product in H"*!,

The maximum value of © can be attained in an interior point 2° = (z1,...,2,) €
B,. Let 71, ..., 7, be anormal coordinate frame around (z°, u(z°)) on ¥ and assume
the direction obtaining the maximum to be £ = 7. By rotation of 72,...,7, we

may assume that (h;;(2°)) is diagonal. Thus, the function

21In p(x) —i—a(%)z -8 (%) +1Inlnhqyq

also achieves its maximum at 0. Therefore, at 29,

2pi U U XV hivi
6.8 Py (o) -8 (55) =0,
(6.8) P T T\ o ), B o), T hi1 Inhiy
208 pii 208 p} ii u_\? u u
2 _ 22 + 20004 ( n+1)_+( n+1)( n+1)__
(6 9) P P 174 7 14 174 i
' i (XU o8 hi1i; ay'hiy;
_ —(1+Inhy)———
Boy (VnJrl)ii hi11nhig (1+In 11)(h11111h11)2 -

To compute the quantities in ([68]) and ([G9), we first convert them into quantities
in H"*!, and apply the Gauss formula and Weingarten formula

D, 7 =V, 7; + hijn,
n; = _hij Tj-
We also note that in H*+!,

1
Dy Ony1 = T Yy,
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where y is any vector field in H"*!. This implies that ,,,; is a conformal Killing
field in H"*!. By straightforward calculation, we obtain

u 1 Ti '8n+1
6.10 (o) = (). = m ol
(6.10) il ), (n, Ony1) /i k (v t1)2
u - Tj -8n+1 2 U u Q(Ti '8n+1)2
(6.11) (V"“)u‘ = iy (v tl)? T T T (e 2 u(vnti)s

Now we choose the conformal Killing field x in H"** to be
_ - B) 1 2 2 o
X = Tnt1 Z 2i0i + 5 (In+1 = || ) -
i=1

We can verify that

2 2
Tpi1 £ |2
Dyx = ¢y, o=
Y 2 Tn41
where y is any vector field in H"*+!,
Again, by straightforward calculation, we find that

R - oy (UL

yn-i-l i - uy”+1 yn-i-l

(X-I/)“: _(¢u . X v )Ki+2f<ai(n-8n+1)(x-u)‘

n+1 n+1 n+1)2 n+1 n+1
(6.13) v v | (v 1) uv v
+ u(pn )2 ((X V(7 Opg1) — (x Tj)VnH)hiij-
Also, since

|$|2 _ 1— 2<X, 8n+1>
<an+laan+1> ,
by direct calculation we obtain
pPi = 2u3<ﬁ-, 8n+1)<x, 8n+1) — 2U<X, Ti>

(6.14) :%((Ti'anﬂ)(X'anH) _X'Ti)’

Pii = fii((UQ — [P —2x V)

(6.15) 9 9
du” — 2|z 4
%(Ti . 6n+1)2 — _2(7_1’ 'X)(Ti . 6n+1) — 2u2.
u u
Differentiate (67) twice,
(6.16) o hiik = Vg,
(6.17) > hinhjj = Y hZy 4 obhinn = ¢ > —Chy.

i#] i#]
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Now taking (€I5), @.I0), @.II), @.13), @.8), @.16), @.14), EI7) into EI),

we obtain
¢ 20?%’? u’ ii .2 20?’%(%‘ “Opt1) b1
e T i R T T
' 2 i i
+Zi;ﬁj hiji — Zi;éj hiiihijjn _ Coy ) Ky _ (1 —i—lnm) oy hiy, <0
k1 Inky Ink; Ink; (k1lnkg)2 =

By Theorem 1.2 of [3] (see also Lemma 2 of [18]), we have

2
P S B [ L e X
Wil = 95, (n—1)K% +2(n — 2)o2 209"

7]
Also,
L 209Ri(T O ) s Wt s (T 0n)® odhiy
wv™lg Ink,  — (pnth)2 2 u? (k1Inky)2
Thus, when £ is sufficiently large, (GI8]) reduces to
C 20k p? u? y ol h?,,
6.19 — =01 - =51+ (2a - 2)———0y K + 1 <.
( ) p 01 p2 + ( «@ )(Vn+l)202 Ky + 20 Ii% In P

As in [I8], we divide our discussion into three cases. We show all the details to
indicate the tiny differences due to the outer space H"*!.

Case (i): when |z]? < é, we have % < 2. Then (6.19) reduces to

2

—Coy + (20— 2) o201 — 303) < 0.

(EaE

Choosing « sufficiently large we obtain an upper bound for x;.

Next, we consider the cases when |z|? > g, which implies p < § We observe
that
2 2 <
(620) pPi = —— (X — (X . 8n+1) 8n+1) Ty = —— Z(X . (%) (8J . Ti).
u u i
Therefore,
4
> o= el D (x-05)(x - 0k) > (0 7i) (O - Ti)
i ik i
TiNTi
=43 606 (L @ )7) o
i i
(6.21) = 4Y (- 9)(x - 00) (9 = (0 - v)v) - O
ik
> a( D00 0,2 = Do 0,2 D (05 v)?)

J j [
=43 (- 9,20 = 4P 2 202 (),
J
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Case (ii): if for some 2 < j < n, we have |p;| > d, where d is a small positive
constant to be determined later.

By (6.8)), (610) and (612), we have

hitj :_%4_(B(x'y)(Tj'an-i-l)_(x'Tj)I/H_l _2au(7—j'an+l))ﬁ,
k1 Inky p u(vntlh)? (prt1)3 J
It follows that
h?,. 2p? d> 4d*> Cla+p)? _ &
wf (Ink)? = p? (atB)"rj = pr ot KE T p?

when £ is sufficiently large. Consequently, (GI9) reduces to

CUl d2
- +

Jj
g 20p202 Ink; <0.

Since 037 > % 01 when k; is sufficiently large, we obtain an upper bound for k1.

Case (iii): if |p;] < d for all 2 < j < n, from (62T we can deduce that |p1]| >

co > 0. By (6.8), @I0) and @I2), we have

(6.22) han _ Babi o 21 20um (71 -Oni)
' k1 Inkq (V"+1)2 p (Vn+l)3 )
where
by = (x-v) (E-anﬂ) _ (x- T_l) it
U U
yntl -
= (B (x (v = v+ 00s)0ur))
ytl 1 T1

A + m(z '3n+1)(1/ “Opt1) Z(V - 0;)(x - 0y)

3

n+1
= p1+%z (G 0ns1) 0 ) - (0501w (x- 00)
n+1 1
e (B S 0a) - (- S B2
i j k
n+1 1
X< e T 200 )0 )
i ik
n+1

P1 P1 1 T1 Tk
= 2 +2yn+l_2yn+lzk(z.aj)(aj';)pk'
J

Note that in the last equality we have applied ([6.20). Hence

n+1

v 1
5 il = 5 > okl =1 >0
KA

|b1] >

and ([@22) can be estimated as

‘ hi11 ’> ok  C Be Ky
kilnky | = 2w th)2 p 7 4(pnt1)2
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when 8 >> « and k1p is sufficiently large. Taking this into ([€I9) and observing
that

as k1 is sufficiently large, we then obtain an upper bound for p?In ;.
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