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Abstract. We prove that amongst all real quadratic fields and all spaces of Hilbert

modular forms of full level and of weight 2 or greater, the product of two Hecke eigenforms

is not a Hecke eigenform except for finitely many real quadratic fields and finitely many

weights. We show that for Q(
√

5) there are exactly two such identities.
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1. Introduction

Let Ek be the normalized Eisenstein series of weight k on SL2(Z). There are many

classical identities between these Eisenstein series Ek for different weights k, for instance

E8 = 120E2
4(1.1)

E10 =
5040

11
E6E4(1.2)

∆16 = 240E4∆,(1.3)

where ∆16 (resp. ∆) is the unique, normalized cuspidal Hecke eigenform of weight 16

(resp. 12) on SL2(Z) (the numerical constants in the above identities are normalization

constants).

These identities provide solutions to the equation

(1.4) g = f · h

in Hecke eigenforms. For elliptic modular forms of full level, Duke [5] and Ghate [9] inde-

pendently considered this question and proved that there are precisely 16 such identities

(all of these identities were classically known). Let us note that by considering q-expansions

it is immediate that a product of two or more normalized cuspidal Hecke eigenforms cannot

be a Hecke eigenform. So in (1.4) at most one of f, h can be cuspidal. We say such an

eigenform product identity holds trivially, if the dimension of the corresponding modular

form space or the cusp form space for g is equal to one. All of the 16 identities hold

trivially. The proofs of [5, 9] use Rankin-Selberg convolution. Later Ghate [10] considered

another type of eigenform product identities, where the eigenforms are a.e. Hecke eigen-

forms of weight 3 or greater and of squarefree level, and proved that all such identities

hold trivially. Emmons [6] considered Γ0(p), with p ≥ 5 a prime, and classified eigenform

product identities for eigenforms away from the level (eigenform for Tm with m coprime to

p). Recently Johnson [12] considered such identities for Γ1(N) of weight 2 or greater and

found a complete list of 61 eigenform identities, some of which hold non-trivially. In his

thesis Beyerl [1], for the full modular group, considered the question when the quotient of

two Hecke eigenforms is a modular form.

Inspired by Johnson’s approach [12], we consider this question for Hilbert modular forms.

We show that product of two Hecke eigenforms over a fixed real quadratic field can be
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another Hecke eigenform. For instance we show that for F = Q(
√

5)

E4 = 60E2
2 ,(1.5)

h8 = 120E2 · h6,(1.6)

where E2 = E2(1, 1), E8 = E4(1, 1) are Eisenstein series of parallel weight two (resp. four)

with trivial characters, h6 (resp. h8) is the unique normalized cuspidal Hecke eigenform of

parallel weight six (resp. eight) for GL+
2 (OF ) (see Theorem 7.4).

Hence identities of the type (1.4) exist for Hilbert modular forms. So it is natural to

ask if there are only finitely many such identities amongst Hilbert modular forms. In this

paper we will only consider Hilbert modular forms for Hilbert modular groups of full levels

and answer this affirmatively.

While Johnson’s work suggests that such finiteness result holds for each fixed real qua-

dratic field, we prove a much stronger result which has not been anticipated or suggested

in the literature. Explicitly, we prove that amongst all real quadratic fields F the equation

(1.4) has only finitely many solutions in Hecke eigenforms of full level and weights 2 or

greater:

Theorem 1.7. Over all real quadratic number fields F and all Hecke eigenforms for

GL+
2 (OF ) of integral parallel weight 2 or greater, the equation g = f · h in the triple

(g, f, h) has only finitely many solutions.

Identities such as (1.4) provide relations between Fourier coefficients. One of the impor-

tant observations of [12] is that relations between Fourier coefficients at small primes (or

at powers of small primes) can be used to provide effective bounds for such identities. We

adapt methods of [12] to the Hilbert modular form situation, but there are new features:

for instance we exploit the discriminant of the real quadratic field F , which manifests itself

through its presence in the functional equation of L-functions, to effectively bound the

number of the real quadratic field for which product identities can exist. As in Johnson’s

treatment of the classical case, all bounds in this paper are effective and can be used to

obtain a complete list of eigenform product identities, provided that we have the structure

of the spaces of Hilbert modular forms of small weights for small D (discriminant of F ).

We are content with the concrete case for Q(
√

5) for the moment, and prove that there

are exactly two such identities (Theorem 7.4), using such effective bounds in the proof of
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the Theorem 1.7. As in the case of elliptic modular forms of full level, these two identities

for Q(
√

5) hold trivially.

We remark that for general levels and general narrow ray class characters, the conductors

of the characters will appear in the L-values in question. To treat such general situation,

one should consider more Fourier coefficients and obtain more equations in the weights to

get around of the conductors and finally obstruct such identities.

In Section 2 and 3, we set up the notations and provide the necessary background on

Hilbert modular forms of full levels. In Section 4, we prove some formulas on Fourier

coefficients of the product of two Hilbert modular forms and break up Theorem 1.7 into

Theorem 4.4 and Theorem 4.5, which will be proved in Section 5 and 6 respectively. In

Section 7, we obtain the complete list of such identities for Q(
√

5). Finally, in Conjec-

ture 8.1, we conjecture that our finiteness result (Theorem 1.7) should also hold Hilbert

modular forms of weights greater than or equal to two for all totally real fields of any fixed

degree and all levels and all narrow ray class characters.

2. Preliminaries

In this section, we set up the notations and recall some necessary notions and results on

real quadratic fields that will be used in later sections.

Let F = Q(
√
d) be a real quadratic field with d > 1 being a squarefree integer. Let

O = OF be the ring of integers of F , O× the group of units, d the different of F , and D

the discriminant of F . Therefore D = d if d ≡ 1 mod 4 and D = 4d otherwise. Let p

denote a prime ideal of O, and Fp and Op be the completions of F and O at p. For any

fractional ideal c, considered as a Z-lattice, we denote c∨ its dual lattice under the trace

form of F/Q; c∨ is also a fractional ideal. In particular, O∨ = d−1.

We fix one real embedding of F and for a ∈ F , we denote a′ the conjugate of a, which

gives the other real embedding. Let FR = F ⊗Q R, so a 7→ (a, a′) gives the embedding

F ⊂ FR. An element x in FR, hence in F , is called totally positive if its two components

are both positive; denoted by x� 0. For A ⊂ FR, we denote the subset of totally positive

elements by A+. Two fractional ideals a, b are in the same narrow class if a = (a)b for

some a� 0 in F×. We denote the narrow class number of F by h+.

Let A, A×, Af and A×f be the ring of adeles, the group of ideles, the ring of finite

adeles and the group of finite ideles, respectively. We recall various characters. A Hecke
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character ψ is a continuous character on A×/F× and ψ =
∏

v ψv decomposes uniquely

into local characters. We shall denote the induced character on A× also by ψ. An narrow

ideal class character ψ is a Hecke character that is trivial on the subgroup F×F+
R
∏

pO×p .

Equivalently, in terms of ideals, this is a character on the narrow ideal class group such

that ψ(aO) = 1 for all a� 0 in F . There exists a unique pair (r, r′) ∈ {0, 1}2, such that

ψ(aO) = sgn(a)rsgn(a′)r
′
, for all a ∈ F×.

Note that in general not all sign vectors are associated to a narrow ideal class character.

Since the narrow class group is abelian, we have precisely h+ narrow ideal class characters.

The Dedekind zeta function for F is defined as

ζF (s) =
∑
m

N(m)−s =
∏
p

(1−N(p)−s)−1,

where m is over all nonzero integral ideals and p is over all prime ideals in O. In general,

for any narrow ideal class character ψ, we define the Hecke L-function

L(s, ψ) =
∑
m

ψ(m)N(m)−s =
∏
p

(1− ψ(p)N(p)−s)−1.

In particular, ζF (s) = L(s, 1), where we denote the trivial character by 1. The series and

the product for L(s, ψ) are absolutely convergent for Re(s) > 1, can be continued to be a

meromorphic function on C, and satisfies a functional equation. More precisely, assuming

that the sign vector for ψ is (r, r′), we have the following functional equation

(2.1) L(s, ψ) = W (ψ)(π−2D)
1
2
−sΓ

(
1−s+r

2

)
Γ
(

1−s+r′
2

)
Γ
(
s+r

2

)
Γ
(
s+r′

2

) L(1− s, ψ),

where |W (ψ)| = 1 (See Corollary 8.6, Chapter VII in [14] for details).

The values of L(s, ψ) at 1− k with k ≥ 2, when r = r′ ≡ k mod 2, are given by

(2.2) L(1− k, ψ) = W (ψ)
2

π

(
D

4π2

)k− 1
2

Γ(k)2L(k, ψ).

In particular, L(1− k, ψ) 6= 0. Moreover, since for any ψ,

ζ(4k)/ζ2(k) ≤ ζF (2k)/ζF (k) ≤ |L(k, ψ)| ≤ ζF (k) ≤ ζ2(k), k ≥ 2,

we have the bounds

(2.3)
2

π

(
D

4π2

)k− 1
2

Γ(k)2 ζ(4k)

ζ2(k)
≤ |L(1− k, ψ)| ≤ 2

π

(
D

4π2

)k− 1
2

Γ(k)2ζ2(k).
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3. Hilbert Modular Forms

We recall the classical and adelic Hilbert modular forms of full levels. It is well-known

that the Eisenstein space vanishes if the weight is non-parallel (see, for example, [7, Corol-

lary in Section 1.4]), so we shall only consider parallel weights, since otherwise no such

identities exist. Materials in this section can be found in [7] and [15], and we note that

our notion of congruence subgroups are more restrictive.

A (Hilbert) congruence subgroup Γ is a subgroup of GL2(F ) such that there exists an

open compact subgroup K ⊂ GL2(Af ) with Γ = GL2(F ) ∩ GL+
2 (FR)K, where + means

the determinant is totally positive. It is clear that Γ and K determines each other. For a

fractional ideal c and an integral ideal n in F , we set

Γ0(c, n) =

{
γ =

(
a b

c d

)
∈

(
O c−1

nc O

)
: det(γ) ∈ O×+

}
.

Here n is called the level. It is easy to see that Γ0(c, n) is a congruence subgroup and we

denote the corresponding compact open subgroup by K0(c, n). Denote

γι =

(
d −b
−c a

)
, if γ =

(
a b

c d

)
,

and it defines an involution on Mat2(A), under which Γ0(c, n) and K0(c, n) are invariant.

We shall be only interested in the full-level groups Γ0(c,O). Denote Γ = Γ0(c,O) for

the moment. Let H2 = {z = (z1, z2) : Im(zi) > 0, i = 1, 2}, and for any element

g = (g1, g2) =

((
a1 b1

c1 d1

)
,

(
a2 b2

c2 d2

))
∈ GL+

2 (FR),

set

j(g, z) = (c1z1 + d1)(c2z2 + d2), gz =

(
a1z1 + b1

c1z1 + d1

,
a2z2 + b2

c2z2 + d2

)
.

Via the embedding Γ ⊂ GL+
2 (FR) by γ 7→ (γ, γ′), we have an action of Γ on H2; here γ′ is

obtained by taking conjugates of all entries of γ. A Hilbert modular form for Γ of parallel

weight k ∈ Z, is a holomorphic function f on H2 such that f |kγ(z) = f(z) for any γ ∈ Γ

and z ∈ H2; here the slash-k operator (denoted |k)is defined as

f |kγ(z) = (det(γγ′))
k
2 j(γ, z)−kf(γz), with γ =

(
a b

c d

)
.
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We denote the space of such forms by Mk(Γ). Any f ∈Mk(Γ) admits a Fourier expansion

of the form

f(z) =
∑

µ∈(c−1)∨

a(µ)exp (2πiTr(µz)) =
∑

µ∈(c−1)∨

a(µ)qµ,

where Tr(µz) = µz1 +µ′z2, q = (q1, q2) = (e2πiz1 , e2πiz2), qµ = qµ1 q
µ′

2 . The Koecher principle

says that a(µ) 6= 0 ⇒ µ = 0 or µ � 0. Moreover for any ε ∈ O×+ and any µ ∈ (c−1)∨,

we have a(εµ) = N(ε)
k
2 a(µ). Similar results hold for all congruence subgroups. We call

f ∈ Mk(Γ) cuspidal if aγ(0) = 0 for any γ ∈ GL+
2 (F ) with aγ(µ) the Fourier coefficient of

f |kγ (which is a Hilbert modular form for the congruence subgroup γ−1Γγ). The space of

cusp forms is denoted by Sk(Γ). The Petersson inner product is defined by

〈f, h〉Γ =
1

ν(Γ\H2)

∫
Γ\H2

f(z)h(z)(y1y2)kdν(z), dν(z) =
∏
j=1,2

dxjdyj
y2
j

, zj = xj+iyj, j = 1, 2.

With this, the Eisenstein space Ek(Γ) is defined as the orthogonal complement of Sk(Γ)

in Mk(Γ). As in the elliptic case, the Petersson inner product is well-defined if one of the

two components is cuspidal.

In general, Hecke theory is not available for Mk(Γ) unless h+ = 1. In order to explain

the Hecke theory, we need adelic Hilbert modular forms. Now we fix Γ = Γ0(O,O) and

K = K0(d,O). Note that K is not the compact open subgroup for Γ and the shift

by d is for the correct definition of the normalized Fourier coefficients (see below). Set

K+
∞ = (R×SO2(R))2 and denote also by i the element (i, i) by abuse of notation. An

adelic Hilbert modular form of weight k for Γ is a function f : GL2(A)→ C such that the

following properties hold:

(1) f(γgu) = f(g) for all γ ∈ GL2(F ), g ∈ GL2(A), and u ∈ K.

(2) f(gu∞) = (detu∞)
k
2 j(u∞, i)

−kf(g) for all u∞ ∈ K+
∞ and g ∈ GL2(A).

(3) For any x ∈ GL2(Af ), we define a function fx : Hn → C by

fx(z) = (det g)−
k
2 j(g, i)kf(xg)

for g∞ ∈ GL+
2 (R)2 such that g∞(i) = z. Then fx is a holomorphic function.

(4) Let U be the unipotent radical of ResF/QGL2. An adelic Hilbert modular form f

is called a cusp form if ∫
U(Q)\U(AQ)

f(ug)du = 0,
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for all g ∈ GL2(A), where du is a Haar measure on U(AQ).

We denote the space of holomorphic and cuspidal adelic Hilbert modular forms by Mk

and Sk respectively. Let ψ be a narrow ideal class character and we say that f ∈ Mk

has central character ψ if f(ag) = ψ(a)f(g) for each a ∈ A×. The subspace with central

character ψ is denoted by Mk(ψ) and Sk(ψ) = Sk ∩Mk(ψ).

We state the relation between these two versions of Hilbert modular forms. Let

{cν := tνO}h
+

ν=1

be a complete representatives set of the narrow class group of F , with tν being finite ideles.

We shall assume that t1O represents the identity narrow class. Set Γν = Γ0(cνd,O). The

Petersson inner product is defined by

〈f, h〉 =
∑
ν

〈fν , hν〉Γν ,

with which we define the Eisenstein subspaces Ek and Ek(ψ) to be the orthogonal comple-

ment of Sk in Mk and Sk(ψ) in Mk(ψ) respectively.

The following theorem is essentially a special case of Shimura’s result [15], where he

treated general levels and general narrow ray class characters but did not give the precise

definition of the adelic Hilbert modular forms explicitly. The proof is standard, and the

argument for elliptic modular forms ([8]) can be carried over without difficulty. See also

Dembélé and Cremona’s notes [4].

Theorem 3.1 ([15, Shimura]). There exist isomorphisms of complex vector spaces

Mk '
h+⊕
ν=1

Mk(Γν), Sk '
h+⊕
ν=1

Sk(Γν) and Ek '
h+⊕
ν=1

Ek(Γν).

Moreover,

Mk =
⊕
ψ

Mk(ψ), Sk =
⊕
ψ

Sk(ψ) and Ek =
⊕
ψ

Ek(ψ),

where in all sums ψ runs through all h+ narrow ideal class characters and some components

may vanish.
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Under such isomorphisms, we may write an element f ∈ Mk as f = (fν) with fν ∈
Mk(Γν). For each integral ideal m, assuming that m = t−1

ν (µ) with µ ∈ (tνO)+, we define

c(m, f) = N(tν)
− k

2 aν(µ),

where aν(µ) is the µ-th normalized Fourier coefficient of fν . This is clearly well-defined

and we call it the m-th Fourier coefficient of f . The normalized constant term cν(0, f), for

each ν, is defined to be

cν(0, f) = N(tν)
− k

2 aν(0).

It is the space Mk that carries the Hecke theory. More precisely, for each integral

ideal m, we have a Hecke operator Tm on Mk. The Hecke algebra generated by Tm is

commutative and normal and is also generated by Tp for prime ideals p. The subspaces Sk,
Ek, Sk(ψ) and Ek(ψ) are invariant under the Hecke algebra. A Hecke eigenform f ∈Mk is

an eigenfunction for all Tm and we call it normalized if c(O, f) = 1. For a normalized Hecke

eigenform, the eigenvalue of Tm is c(m, f) for any m. The Hecke multiplicativity properties

are similar to those in the case of elliptic modular forms. For example, if f ∈ Mk(ψ) is

a normalized Hecke eigenform, then c(mn, f) = c(m, f)c(n, f) if (m, n) = 1, and if p is a

prime ideal, then

(3.2) c(p2, f) = c(p, f)2 − ψ(p)N(p)k−1.

The following bound towards the generalized Ramanujan conjecture, best so far, was ob-

tained by Kim and Sarnak [13]: if f ∈ Sk is a normalized Hecke eigenform and p is a prime

ideal, then

(3.3) |c(p, f)| ≤ 2N(p)
k−1
2

+ 7
64 .

This will be needed for the asymptotic behavior of two sides of some equations in the

weights, which will obstruct the eigenform identities eventually.

4. Product of Two Eigenforms

Assume k ≥ 2 from now on and keep other notations in the previous sections. We first

recall a theorem of Shimura [15] on Eisenstein series. The computation of the constant

terms is due to Dasgupta, Darmon and Pollack [3].
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Theorem 4.1 ([15, Proposition 3.4],[3, Proposition 2.1]). Let k ≥ 2 and φ and ψ be two

narrow ideal class characters and assume that (φvψv)(−1) = (−1)k for both of the two real

places v. There exists an element Ek(φ, ψ) ∈Mk(φψ) such that

c(m, Ek(φ, ψ)) =
∑
r|m

φ(mr−1)ψ(r)N(r)k−1,

for all nonzero integral ideals m, and Ek(φ, ψ) is a normalized eigenform for Tm. Moreover,

for each ν,

cν(0, Ek(φ, ψ)) = 2−2φ−1(tν)L(φ−1ψ, 1− k).

Corollary 4.2. For any narrow ideal class character ψ, the following set

{Ek(ψ1, ψ2) : ψ1ψ2 = ψ}

a basis of Ek consisting of Hecke eigenforms.

Let h denote the class number of F in the following proof and note that h stands for a

Hecke eigenform elsewhere.

Proof. When k = 2, this is done by Wiles [16, Proposition 1.5]. Assume that k > 2. Since

the number of cusps is precisely h, by [7, Theorem in Section 1.8], we see that Ek(Γν) has

dimension h for each ν, so dim(Ek) = hh+, by Theorem 3.1.

On the other hand, there are precisely h narrow class characters ψ with ψ∞(−1) =

(−1)k, since it is a lift of a fixed character on F×FR
∏

pO×p to A×, where the index is

h. For each such character ψ, by Theorem 4.1, we have h+ Eisenstein series Ek(ψ1, ψ2).

Since they are distinct Hecke eigenforms, they are linearly independent. This implies that

dim(Ek(ψ)) ≥ h+, so dim(Ek) ≥ hh+. This forces that dim(Ek(ψ)) = h+ and the corollary

follows. �

We shall need the following elementary lemma on normalized Fourier coefficients of the

product of two Hilbert modular forms.

Lemma 4.3. For j = 1, 2, let kj ∈ Z and ψj be a narrow ideal class character. If

f = (fν) ∈ Mk1(ψ1) and h = (hν) ∈ Mk2(ψ2), then f · h = (fν · hν) ∈ Mk1+k2(ψ1ψ2).

Moreover,

(1) For each ν, cν(0, f · h) = cν(0, f)cν(0, h).

(2) c(O, f · h) = c(O, f)c1(0, h) + c(O, h)c1(0, f).
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(3) c((2), f · h) = c1(0, h)c((2), f) + c(O, f)c(O, h) + c1(0, f)c((2), h).

(4) If (2) is inert, then for the ideal (4),

c((4), f · h) = c1(0, h)c((4), f) + c(O, f)c((3), h) + c((2), f)c((2), h) + c(O, h)c((3), f)

+ c1(0, f)c((4), h) +

{
2c(d, f) + 2c(d, h) if D = 5

0 if D 6= 5
.

(5) For the ideal (3),

c((3), f · h) = c1(0, h)c((3), f) + c(O, f)c((2), h) + c(O, h)c((2), f)

+ c1(0, f)c((3), h) +

{
2c(d, f)c(d, h) if D = 5

0 if D 6= 5
.

(6) If (2) = p2 (ramifies) or (2) = pp′ (splits), then

c(p, f · h) = cν(0, h)c(p, f) + cν(0, f)c(p, h), p ∼ t−1
ν O.

Proof. Since it is clear that fν ·hν ∈Mk1+k2(Γν), under the isomorphism, the tuple (fν ·hν)
determines a Hilbert modular form in Mk1+k2 . On the other hand, the function f · h is

determined by

(f · h)(ανg∞) = f(ανg∞)h(ανg∞) = fν |k1g∞ · hν |k2g∞ = (fν · hν)|k1+k2g∞,

from which it follows that f · h = (fν · hν) ∈Mk1+k2 , hence in Mk1+k2(ψ1ψ2).

For ease of notations, we assume t1 = 1, so c1 = O. The formula for the constant Fourier

coefficients follows directly from the definition and that for the O-th terms follows from the

fact that 1 is minimal in the set O+ (of totally positive integers) under the partial order

�. Indeed, for the component f1 · h1, the congruence subgroup is Γ0(d,O) and d∨ = O is

the lattice where the Fourier expansion sums. Moreover, if 1 = µ1 + µ2 with µ1, µ2 ∈ O+,

then

1 = (µ1 + µ2)(µ′1 + µ′2) > µ1µ
′
1 + µ2µ

′
2 ≥ 1 + 1 = 2;

a contradiction and the formula follows. For the ideal (2), ν = 1. Then the Fourier

expansion sums over O and we show that if 2 = µ1 + µ2 inside O+, then we must have

µ1 = µ2 = 1. We see that

4 = N(2) = N(µ1 + µ2) ≥ N(µ1) +N(µ2) + 2
√
N(µ1)N(µ2) ≥ 1 + 1 + 2 = 4,

which forces N(µ1) = N(µ2) = 1 and µ1µ
′
2 = µ′1µ2. It follows that µ1 = µ2 = 1.
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We now consider the ideal (4) when (2) is inert. We first note that D = d ≡ 1 mod 4.

Assume 4 = µ1 + µ2 with µ1, µ2 � 0 and

µj = aj + bj
1 +
√
D

2
, aj, bj ∈ Z, j = 1, 2.

Since 4 = µ1 + µ2, we have b1 = −b2 and a1 + a2 = 4. Moreover, since µj � 0, we have

aj +
bj
2
>
|bj|
2

√
D, j = 1, 2.

If b1 = b2 = 0, then we have the three possibilities (1, 3), (2, 2) and (3, 1) for the pair

(µ1, µ2). Now we may assume that b1 = −b2 > 0, and the case when b1 < 0 follows by

switching µ1 and µ2. If D 6= 5, then D ≥ 13. It follows that 2a1 >
√

13 − 1 > 2 and

2a2 >
√

13 + 1 > 4, so a1 ≥ 2 and a2 ≥ 3. But a1 + a2 = 4 and we have a contradiction.

So if D 6= 5, we only have the above three possibilities. If D = 5, we first note that b1 = 1,

since otherwise a1 >
√

5 − 1 > 1 and a2 >
√

5 + 1 > 3. This implies that a1 > 0 and

a2 > 1. Therefore, we have only two cases (a1, a2) = (1, 3) or (2, 2). So in total we have

four more pairs for (µ1, µ2):(
5 +
√

5

2
,
3−
√

5

2

)
,

(
5−
√

5

2
,
3 +
√

5

2

)
,

(
3 +
√

5

2
,
5−
√

5

2

)
,

(
3−
√

5

2
,
5 +
√

5

2

)
.

This completes the case by noting that(
5 +
√

5

2

)
=

(
5−
√

5

2

)
= d,

3 +
√

5

2
,
3−
√

5

2
∈ O×.

The ideal (3) can be taken care of similarly.

Now assume that (2) = p2 ramifies or (2) = pp′ splits, and p = t−1
ν (µ) with µ ∈ (tνO)+.

Then the Fourier expansion sums over tνO and we show that µ is minimal among the

totally positive elements in tνO. Indeed, assume otherwise and µ = µ1 + µ2 with µ1, µ2

totally positive. Note first that N(µ) = N(tν)N(p) = 2N(tν). But

2N(tν) = N(µ1 + µ2) ≥ N(µ1) +N(µ2) + 2
√
N(µ1µ2) ≥ 4N(tν),

which is impossible. So µ is minimal and the formula for c(p, f · h) follows. �

We now prove Theorem 1.7. We separate the assertion of Theorem 1.7 in two separate

assertions. We assume that f and h are normalized Hecke eigenforms with the set of
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normalized Fourier coefficients

{c(m, f), cν(0, f)} and {c(m, h), cν(0, h)}

respectively. Note that we are in full level case and all Hecke eigenforms are normalizable.

Clearly, we can divide it into two cases: c1(0, f)c1(0, h) 6= 0 or c1(0, f)c1(0, h) = 0. There-

fore, we have to prove the following two theorems, whose proof will be given in the next

two sections.

Theorem 4.4. Among the solutions to the equation g = f · h in the Theorem 1.7, there

are finitely many solutions with c1(0, f)c1(0, h) 6= 0.

Theorem 4.5. Among the solutions to the equation g = f · h in the Theorem 1.7, there

are finitely many solutions with c1(0, f)c1(0, h) = 0.

5. Proof of Theorem 4.4

Assume that f and h are normalized Hecke eigenforms with c1(0, f)c1(0, h) 6= 0 and

g = f · h is also a Hecke eigenform. By Theorem 4.1 and Corollary 4.2, they must be

Eisenstein series and we may assume that

f = Ek1(φ1, ψ1) and h = Ek2(φ2, ψ2)

with φj and ψj being narrow ideal class characters, j = 1, 2. Therefore, by Theorem 4.1,

we have

c1(0, f) = 2−2L(1− k1, φ
−1
1 ψ1) and c1(0, h) = 2−2L(1− k2, φ

−1
2 ψ2).

By Lemma 4.3 we have cν(0, g) = cν(0, f)cν(0, h) and

c(O, g) = c(O, f)c1(0, h) + c(O, h)c1(0, f) = c1(0, h) + c1(0, f).

Since g is a Hecke eigenform, up to a nonzero scalar, g is equal to Ek1+k2(φ, ψ) for some

φ and ψ. By comparing the O-th terms, we have

g = (c1(0, f) + c1(0, h))Ek1+k2(φ, ψ).

Then from the ν-th constant terms, we derive that

cν(0, f)cν(0, h)

c1(0, f) + c1(0, h)
= cν(0, Ek1+k2(φ, ψ)).
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It follows, by Theorem 4.1, that for each ν,

φ1(tν)φ2(tν)

(
1

L(1− k1, φ
−1
1 ψ1)

+
1

L(1− k2, φ
−1
2 ψ2)

)
= φ(tν)

1

L(1− k1 − k2, φ−1ψ)
.

By considering the case ν = 1, we see that

(5.1) φ1(tν)φ2(tν) = φ(tν), for each ν,

(5.2)
1

L(1− k1, φ
−1
1 ψ1)

+
1

L(1− k2, φ
−1
2 ψ2)

=
1

L(1− k1 − k2, φ−1ψ)
.

It follows from (5.1) that φ1φ2 = φ, so ψ = ψ1ψ2, since φψ = φ1φ2ψ1ψ2.

We now treat the case when k1 6= k2. We may assume that k1 > k2. First note that, if

k1 is large, then∣∣∣∣L(1− k1, φ
−1
1 ψ1)

L(1− k2, φ
−1
2 ψ2)

∣∣∣∣ ≥ ( D

4π2

)k1−k2 Γ(k1)2

Γ(k2)2

ζ(4k1)

ζ(k1)2ζ(k2)2
>

(
1

4π2

)k1−k2 Γ(k1)2

Γ(k2)2

ζ(4k1)

ζ(k1)2ζ(k2)2
,

which in turn is bigger than 1; indeed, if k2 ≥ k1/2, then(
1

4π2

)k1−k2 Γ(k1)2

Γ(k2)2
≥
(
k2

2

4π2

)k1−k2
> 2,

while if k2 < k1/2, then(
1

4π2

)k1−k2 Γ(k1)2

Γ(k2)2
≥
(

1

4π2

)k1−k2 (k1 − 1)!2

(k2 − 1)!(k1 − k2)!
≥ (k1 − 1)!

(4π2)k1−k2
> 2.

From this and by (2.3) and (5.2), if k1 is large, we have for some constant C > 0 independent

of k1, k2 and D,

1 =

∣∣∣∣(L(1− k1, φ
−1
1 ψ1) + L(1− k2, φ

−1
2 ψ2))

L(1− k1 − k2, φ
−1ψ)

L(1− k1, φ
−1
1 ψ1)L(1− k2, φ

−1
2 ψ2)

∣∣∣∣
≥ C

(
D

4π2

)k2 Γ(k1 + k2)2

Γ(k1)2

∣∣∣∣∣
(
Dk2

2

4π2

)k1−k2 ζ(4k1)

ζ2(k1)ζ2(k2)
− 1

∣∣∣∣∣ ≥ C

(
D

4π2

)k2 Γ(k1 + k2)2

Γ(k1)2
,

while this last expression can be arbitrarily large if k1 is large since Γ(k1 + k2) ≥ kk21 Γ(k2).

For for each fixed pair (k1, k2), this is also large, thus exceeds 1 if D is large. This finishes

the case when k1 6= k2.

For the rest of the proof of Theorem 4.4, we assume that k1 = k2, so k = 2k1. Let us

consider more normalized Fourier coefficients to complete the proof.
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5.1. The case when (2) = p is inert. In particular, p is trivial in the narrow ideal class,

so all of the narrow ideal class characters are trivial at p. In this case, by Lemma 4.3, after

simplification and setting k1 = k2, we have

4

L(1− k1, φ
−1
1 ψ1)L(1− k1, φ

−1
2 ψ2)

+
1 + 4k1−1

L(1− k1, φ
−1
1 ψ1)

+
1 + 4k1−1

L(1− k1, φ
−1
2 ψ2)

=
1 + 42k1−1

L(1− 2k1, φ−1ψ)
,

which, together with (5.2), implies that

(5.3)
42k1−1 − 4k1−1

L(1− 2k1, φ−1ψ)
=

4

L(1− k1, φ
−1
1 ψ1)L(1− k1, φ

−1
2 ψ2)

.

However, by (2.3), for a constant C > 0 that are independent of k1 and D, we have∣∣∣∣ 4L(1− 2k1, φ
−1ψ)

L(1− k1, φ
−1
1 ψ1)L(1− k1, φ

−1
2 ψ2)

∣∣∣∣ ≥ C
√
D(k1 − 1)42k1 ≥ C(k1 − 1)42k1 ,

by the following Stirling’s bound on the binomial coefficients(
2n

n

)
≥ n−

1
2 22n−1.

Therefore, this, together with (5.3), implies that k1 is bounded. For each such k1, above

inequalities also implies that D is bounded, which finishes the proof in this case.

5.2. The case when (2) = p2 or (2) = pp′. Assume p = t−1
ν (µ). Again by Lemma 4.3,

we have

φ1(tν)
φ1(p) + ψ1(p)2k1−1

L(1− k1, φ
−1
1 ψ1)

+ φ2(tν)
φ2(p) + ψ2(p)2k1−1

L(1− k1, φ
−1
2 ψ2)

= φ(tν)
φ(p) + ψ(p)22k1−1

L(1− 2k1, φ−1ψ)
,

which, together with (5.2), implies that

(5.4)
B

L(1− 2k1, φ−1ψ)
=

A

L(1− k1, φ
−1
1 ψ1)

, with

(5.5) B = φ(tν)ψ(p)22k1−1−φ2(tν)ψ2(p)2k1−1, A = φ1(tν)ψ1(p)2k1−1−φ2(tν)ψ2(p)2k1−1,

since tνp = (µ) and φ(tν) = φ(p) and the same holds for any narrow ideal class character.

Lemma 5.6. There exists a constant C > 0, such that |A| ≥ CD−
1
2 for all D, k1, φj, ψj,

j = 1, 2.
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Proof. If h+ = 1 or 2, then A is an integer and |A| ≥ 1. If h+ > 2, we see that

|A| ≥ 2k1−1
∣∣∣1− e 2πi

h+

∣∣∣ .
If 2 < h+ ≤ 6, then clearly |A| ≥ 2. If h+ > 6, we have

|A| ≥ 2 · sin
(

2π

h+

)
≥ 2π

h+
.

Recall the well-known trivial bound of class number of real quadratic fields: there exists

a constant C > 0, such that h+ ≤ C
√
D for all D. It follows that |A| ≥ 2πC−1D−

1
2 .

Replacing 2πC−1 with C, we finish the proof. �

We continue the proof. By (2.3), we see that∣∣∣∣L(1− 2k1, φ
−1ψ)

L(1− k1, φ
−1
1 ψ1)

∣∣∣∣ ≥ C ′Dk2
Γ(2k1)2

Γ(k1)2
≥ C ′Dk2Γ(2k1),

with C ′ > 0 being a constant that is independent of k1, k2 and D. By Lemma 5.6,

|B| ≥ C ′CDk2− 1
2 Γ(2k1) ≥ C ′CΓ(2k1).

But |B| ≤ 22k1 , which forces that there are only finitely many k1. Now for each fixed k1,

such inequalities also shows that there can be only finitely many D, proving this case,

hence Theorem 4.4.

We remark that in the ramified case, A is an integer and hence |A| ≥ 1. In the split

case, we may apply the identity c(p, g)c(p′, g) = c((2), g). By lengthy but elementary

computation, we may see that if k1 is large, we must have

φ1(tν)ψ1(p) = −φ2(tν)ψ2(p),

from which we also derive |A| ≥ 1 in this case. In other words, we may avoid Lemma 5.6

and the class number bound.

6. Proof of Theorem 4.5

As before, let f, h be normalized Hecke eigenforms and assume g = f · h is also a Hecke

eigenform. To prove Theorem 4.5, assume that c1(0, f)c1(0, h) = 0. We first note that if

c1(0, f) = c1(0, h) = 0, then by Lemma 4.3, we see that c(O, g) = 0 and g is not a Hecke
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eigenform. So one of the factors is an Eisenstein series, thus consider only the parallel

weight case. So, we may assume that

c1(0, f) 6= 0 and c1(0, h) = 0

for the rest of this paper. We observe that h necessarily lie in Sk2(ψ2) and f = Ek1(φ1, ψ1)

for some narrow ideal class characters φ1, ψ1, ψ2 by Theorem 4.1.

Since c(O, g) = c1(0, f), we see that c1(0, f)−1g is a normalized Hecke eigenform. Now

by Lemma 4.3, we see that

(6.1)
c((2), g)

c1(0, f)
=

1

c1(0, f)
+ c((2), h).

By Proposition 2.2 in [15], we know that c1(0, f)−1c((2), g) and c((2), h) are algebraic

integers, so is 1
c1(0,f)

. But since (2.3) holds for any ψ, it gives a uniform bound for L(1 −
k, ψ)σ for all σ ∈ Gal(Q/Q). It follows that for some constant C > 0,∣∣∣∣ 1

c1(0, f)σ

∣∣∣∣ ≤ C

(
4π2

D

)k1− 1
2 1

Γ(k1)2
≤ C

(4π2)k1−
1
2

Γ(k1)2
→ 0, as k1 →∞.

In particular, | 1
c1(0,f)σ

| < 1 for all σ if k1 is large, in which case 1
c1(0,f)

is not an algebraic

integer. The same holds for large D with k1 being fixed. This proves that for g = f · h to

be a Hecke eigenform, there are only finitely many possibilities for D and k1, so there are

only finitely many possible φ1, ψ1 and f .

To finish the proof of Theorem 4.5, it suffices to show that for fixed f , there are only

finitely many h such that g = f ·h is an eigenform. So, with f fixed, we only have to show

that k2 is bounded. We will prove this in the following subsections.

6.1. The case when (2) = p2 ramifies. Suppose p ∼ t−1
ν O. Then by Lemma 4.3, we

have
c(p, g)

c1(0, f)
= φ1(tν)c(p, h).

This, together with (3.2) and (6.1), implies that

ψ2(p)2k2−1(1− (φ1ψ1)(p)2k1) =
1

c1(0, f)
.

Clearly, this is impossible if k2 is large.
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6.2. The case when (2) = pp′ splits. Suppose p ∼ t−1
ν O. Since c(p, h)c(p′, h) = c((2), h)

and the same identity holds for c1(0, f)−1g, we have, by Lemma 4.3 and (6.1),

φ1(tν)c(p, h)φ−1
1 (tν)c(p

′, h) =
1

c1(0, f)
+ c(p, h)c(p′, h),

and 1
c1(0,f)

= 0, which is impossible.

6.3. The final case when (2) is inert. In this case, we need the (4)-th Fourier coeffi-

cients. We first assume that D 6= 5. By Lemma 4.3, we have

c((2), g)

c1(0, f)
= c((2), h) +

1

c1(0, f)
,

c((4), g)

c1(0, f)
= c((4), h) + A, with A =

c((3), h) + c((3), f) + c((2), h)c((2), f)

c1(0, f)
.

Moreover,

c((4), g)

c1(0, f)
=

(
c((2), g)

c1(0, f)

)2

− 4k1+k2−1

and c((4), h) = c((2), h)2 − 4k2−1. It follows that

4k2−1(1− 4k1) = − 1

c1(0, f)2
− 2c((2), h)

c1(0, f)
+ A,

which is impossible when k2 is large, since the right-hand side is bounded by 9
k2
2 up to a

constant.

Finally we treat the case D = 5. By Lemma 4.3, we have c1(0, f)−1c((4), g) = c((4), h)+

B, with

B =
c((3), h) + c((3), f) + c((2), f)c((2), h) + 2c(d, h) + 2c(d, f)

c1(0, f)
.

One sees that B is bounded by 9
k2
2 up to a constant, since N(d) = 5. By the same

argument as above, we have

(6.2) 4k2−1(1− 4k1) = − 1

c1(0, f)2
− 2c((2), h)

c1(0, f)
+B,

which is again not possible if k2 is large.

This completes the proof of Theorem 4.5, hence that of Theorem 1.7.
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7. Eigenform Product Identities for Q(
√

5)

In this section, we consider the concrete case D = 5 and find the complete list of

eigenform product identities.

The class number is 1 for the field Q(
√

5), and (2) and (3) both are inert. Since the

fundamental unit is ε0 = 1+
√

5
2

which has norm −1, we have h+ = 1 and ψ = 1. We shall

drop the characters and denote Ek = Ek(1, 1). The inequality (2.3) implies

(7.1)
72

π5

(
5

4π2

)k− 1
2

Γ(k)2 ≤ |ζF (1− k)| ≤ π3

18

(
5

4π2

)k− 1
2

Γ(k)2,

since 1 < ζ(k) ≤ ζ(2) = π2

6
.

We look into the structure of Mk when k is small. We need a theorem of Gundlach

[11] and we follow the notations in [2, Theorem 1.39, 1.40]. Note that they considered

the group SL2(O) instead of Γ = Γ0(d,O). In particular, gk = Ek|α0 according to our

notations and sk is a specific cusp form of weight k for SL2(O), where

α0 =

(
1 0

0 5+
√

5
2

)
.

Proposition 7.2. (1) Mk = {0} if k is odd and Mk = Mk(SL2(O))|kα−1
0 if k is even.

(2) If k < 20 is even, then Mk = M sym
k (SL2(O))|kα−1

0 . In particular,
⊕

k<20Mk is

generated by monomials in E2, E6 and E10, and we have the following table:

weight k 2 4 6 8 10 12

dim(Sk) 0 0 1 1 2 3

Proof. We note first that Mk = Mk(Γ) (not Mk(GL+
2 (O))) and d =

(
5+
√

5
2

)
. Therefore,

Γ = α0GL+
2 (O)α−1

0 ,

and it follows that Mk = Mk(GL+
2 (O))|kα−1

0 .

Because N(ε0) = −1, from the definition ofMk by applying ε0I, we see thatMk = {0}
if k is odd. The same result holds for any Q(

√
d) with a unit of norm −1. Note that this

is not the case for SL2(O).

If k is even, we only have to prove that Mk(SL2(O)) = Mk(GL+
2 (O)). One inclusion is

trivial and we assume now f ∈ Mk(SL2(O)). For any γ ∈ GL+
2 (O), since det(γ) � 0, we
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must have det(γ) = ε2 for some unit ε. It follows that

f |kγ = f
∣∣
kγ(ε−1I)(εI) = f |k(εI) = f,

because k is even. We are done with (1).

By Gundlach’s theorem, in notations of [2, Theorem 1.40], the graded algebraM∗(SL2(O))

is generated by g2, s5, s6 and s15. From which we see that if k is even and k < 20, then

Mk = M sym
k (SL2(O)). Actually since only s5 is skew-symmetric among the four gen-

erators, the smallest even weight when we can have a nonzero skew-symmetric Hilbert

modular form happens at k = 20, that is s5s15. By the structure of M sym
2∗ (SL2(O)) given

in [2, Theorem 1.39], the rest of the proposition follows easily. �

Lemma 7.3. Let h6 and h8 be the only cuspidal normalized Hecke eigenforms of weight

6 and 8 respectively, and h10, h′10 be the two of weight 10. We have the following Fourier

coefficients for these Hecke eigenforms:

m (2) (3) d (4)

c(m, h6) 20 90 −90 −624

c(m, h8) 140 3330 150 3216

c(m, h10) 170 + 30
√

809 22590− 540
√

809 570− 60
√

809 494856 + 10200
√

809

c(m, h′10) 170− 30
√

809 22590 + 540
√

809 570 + 60
√

809 494856− 10200
√

809

Proof. We first note that

5 +
√

5

2
= µ1 + µ2, µ1, µ2 ∈ O+

has only two solutions (
3 +
√

5

2
, 1

)
,

(
1,

3 +
√

5

2

)
.

These decompositions are needed for dealing with the ideal d.

Since E2 · E4 and E6 have constant terms (4 · 30 · 4 · 60)−1 and 67 · (4 · 630)−1, we must

have

h6 =
1

60
(5360E2 · E4 − 7E6) .

The Fourier coefficients of h6 can be computed easily from Lemma 4.3. By Proposition

7.2, we have dim(S8) = 1 and h8 = 120E2 · h6. The corresponding data follows easily from

this.
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For the weight 10, it is easy to see that

h =
39624096E2 · E8 − 3971E10

30126852

is a normalized cusp form. Clearly h′ = 120E2 · h8 is also a normalized cusp form. We

have the following table:

m (2) (3) d (4)

c(m, h) 18087260
119551

2740912470
119551

72616890
119551

58400150256
119551

c(m, h′) 260 20970 390 525456

From this and the equation (3.2), we have

h10 = ah+ (1− a)h′, h′10 = a′h+ (1− a′)h′

with a = 119551(3 −
√

809)/433200 and a′ its conjugate in Q(
√

809). The normalized

Fourier coefficients follow easily from this. �

Now we are ready to provide and prove the complete list of eigenform product identities

when D = 5.

Theorem 7.4. The following two identities form the complete list of eigenform product

identities g = f · h when D = 5 and the weights are 2 or greater (only one of g = f · h and

g = h · f is counted):

E4 = 60E2
2 , h8 = 120E2 · h6.

Proof. We shall make use of the effective bounds in the proofs of Theorem 4.4 and 4.5.

We first consider products of Eisenstein series. If k1 > k2, for |ζF (1−k1)/ζF (1−k2)| > 1,

we need k1 ≥ 8, by (7.1). Using (7.1) and (5.2), we have

1 =

∣∣∣∣(ζF (1− k1) + ζF (1− k2))
ζF (1− k1 − k2)

ζF (1− k1)ζF (1− k2)

∣∣∣∣
≥
(

6

π4

)2(
5

4π2

)k2 Γ(k1 + k2)2

Γ(k1)2

∣∣∣∣∣
(

6

π4

)2(
5k2

2

4π2

)k1−k2
− 1

∣∣∣∣∣ .
Using computer, the right-hand side larger than 1 when k1 ≥ 8. So we need to verify the

cases (k1, k2) = (4, 2), (6, 2) and (6, 4). Note that

ζF (−1) =
1

30
, ζF (−3) =

1

60
, ζF (−5) =

67

630
, ζF (−7) =

361

120
, ζF (−9) =

412751

1650
,



22 KIRTI JOSHI AND YICHAO ZHANG?

and clearly (5.2) does not hold in any of these cases. Now we assume k1 = k2. Using (7.1)

and (5.3), we have

1 ≥ 1− 4−k1 = 41−2k1(42k1−1 − 4k1−1) ≥ π

2

(
6

π4

)3(
5

4π2

) 1
2

42−2k1
Γ(2k1)2

Γ(k1)2
.

The right-hand side is smaller than or equal to 1 only when k1 = k2 = 2 or 4. The former

gives the identity E2
2 = 1

60
E4 that holds trivially, while the latter case is impossible since

(5.2) does not hold by above zeta values.

Now we consider the case when h is cuspidal. Firstly, since 4ζF (1− k1)−1 is integral by

(6.1), |ζF (1− k1)| ≤ 4. By (7.1), we have

72

π5

(
5

4π2

)k1− 1
2

Γ(k1)2 ≤ 4.

Such inequality only happens when k1 = 2, 4, 6 or 8. Since 4ζF (1− k1)−1 is integral, from

the actual zeta values above, we see that k1 can only be 2 or 4.

We first assume that k1 = 2. Then f = E2 and by Theorem 4.1,

c1(0, f) =
1

4
ζF (−1) =

1

120
, c(d, f) = 6, c((2), f) = 5, c((3), f) = 10.

Then (6.2) implies

15 · 4k2−1 ≤ 1202 + 120 · (2 · 3k2−
25
32 + 5 · 2k2−

25
32 + 4 · 5

k2−1
2

+ 7
64 − 22).

This holds only if k2 ≤ 10. From Proposition 7.2, k2 can only be 6, 8 or 10. The identity

E2 ·h6 = 1
120
h8 holds trivially, while E2 ·h8 is not an eigenform by the proof of Lemma 7.3.

We need to consider 120E2 · h10 and 120E2 · h′10. Since we may obtain one from the other

by taking conjugate in Q(
√

809), we just need to consider h = 120E2 · h10. By the table in

Lemma 7.3, we easily see that (6.2) does not hold and h is not an eigenform.

Finally, let k1 = 4. We have f = E4 and similarly by Theorem 3.1,

c1(0, f) =
1

4
ζF (−3) =

1

240
, c(d, f) = 126, c((2), f) = 65, c((3), f) = 730.

Then (6.2) implies

255 · 4k2−1 ≤ 2402 + 240 · (2 · 3k2−
25
32 + 126 · 2k2−

25
32 + 4 · 5

k2−1
2

+ 7
64 − 982),

which holds only if k2 ≤ 8. Therefore, k2 can only be 6 or 8. Since E4 · h6 is a scalar

multiple of E2 · h8, it is not an eigenform from the previous case. Again, for E4 · h8 from
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the table in Lemma 7.3, we check that (6.2) does not hold, forcing E4 · h8 not to be an

eigenform. This completes the proof. �

8. A General Conjecture

In the light of Theorem 1.7 and of [12] the following conjecture is natural.

Conjecture 8.1. Let n ≥ 1 be an integer. Then amongst all totally real fields F/Q with

[F : Q] = n and all nonzero integral ideals n, there exist only finitely many solutions to

the equation

g = f · h,

where g, f, h are Hecke eigenforms of level n and integral weights 2 or greater.

It also natural to ask if the hypothesis on the degree of the totally real fields considered

in conjecture 8.1 is necessary. In other words, perhaps the total number of such identities

amongst all totally real fields is finite. But this may be too optimistic at this juncture.
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