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Abstract. In this paper, a weak type (1,1) bound criterion is established for singular integral

operator with rough kernel. As some applications of this criterion, we show some important

operators with rough kernel in harmonic analysis, such as Calderón commutator, higher or-

der Calderón commutator, general Calderón commutator, Calderón commutator of Bajsanski-

Coifman type and general singular integral of Muckenhoupt type, are all of weak type (1,1).

1. Introduction

Singular integral theory is a fundamental and important topic in harmonic analysis. It is

intimately connected with the study of complex analysis and partial differential equations. Real

variable methods of singular integral for higher dimension were original by A. P. Calderón and

A. Zygmund [6] in the 1950’s. Later, large numbers of works are developed in this area. Despite

the intensive research over the last six decades, there are still many problems in the theory of

singular integral which remain open and deserve to be explored further. For example, there

is no general L1 theory of rough singular integral, singular integral along curves and Radon

transforms (see [32]).

It is well known that the L1 boundedness is not true for many integral operators in harmonic

analysis, such as Hilbert transform, Riesz transforms, Hardy-Littlewood maximal operator, and

so on. As a substitution, we consider the weak type (1,1) bound and use interpolation and

dual argument, we can get all Lp bound for 1 < p < +∞. So it is an important problem

to establish weak type (1,1) boundedness in the L1 theory of singular integral operator and

maximal operator. Usually, the weak type (1,1) bound can be established by using the classical

Calderón-Zygmund decomposition if its kernel has enough smoothness. However, if the kernel

is rough, then the standard Calderón-Zygmund theory cannot be applied directly. In fact it

is a quite difficult problem to prove the weak type (1,1) boundedness of the integral operator

with rough kernel. We refer to see the nice works by M. Christ [10], M. Christ and J. Rubio de
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Francia [12], M. Christ and C. Sogge [13], S. Hofmann [22], A. Seeger [29] [30], P. Sjögren and

F. Soria [31] and Tao [33] about this topic.

However, the papers mentioned above are considered for some special operators. In this

paper, we are going to study the general L1 theory of rough singular integral operator. More

precisely, we try to give a criterion that could deal with weak type (1,1) boundedness of a class

of singular integrals with non-smooth kernel.

Before state our main result, let us firstly give our motivations from some basic examples.

The first example is singular integral with convolution homogeneous kernel . Suppose Ω is a

function defined on Rd \ {0} satisfying

(1.1) Ω(rx′) = Ω(x′), for any r > 0 and x′ ∈ Sd−1,

(1.2)

∫
Sd−1

Ω(θ)dθ = 0

and

(1.3) Ω ∈ L1(Sd−1),

where and in the sequel, dθ denotes the surface measure of Sd−1. Then it is easy to see that the

following singular integral is well defined for f ∈ C∞c (Rd),

(1.4) Tf(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
f(y)dy.

In 1956, Calderón and Zygmund [7] gave the Lp boundedness of T .

Theorem A ([7]). Suppose that Ω satisfies the conditions (1.1) and (1.3), then the singular

integral T defined in (1.4) extends to a bounded operator on Lp(Rd) (d ≥ 2) for 1 < p <∞ if Ω

satisfies one of the following conditions:

(i) Ω is odd;

(ii) Ω is even and Ω ∈ L log+ L(Sd−1) satisfies (1.2).

For the case p = 1, it is a very difficult problem to show that T is of weak type (1,1). In

1988, M. Christ and Rubio de Francia [12] and in 1989, S. Hofmann [22] independently gave

weak type (1,1) boundedness of T for d = 2. Later, in 1996, A. Seeger [29] established the weak

type (1,1) boundedness of T for all dimension d ≥ 2. Now let us sum up their nice results as

follows.

Theorem B. Suppose that Ω satisfies the conditions (1.1), (1.2) and (1.3).

(i) (see [12]). If Ω ∈ L log+L(S1), T is of weak type (1, 1) for d = 2. In an unpublished

paper, M. Christ and Rubio de Francia pointed out that they succeeded proving similar results

hold also for d ≤ 5;

(ii) (see [22]). If Ω ∈ Lq(S1)(1 < q ≤ ∞), T is of weak type (1, 1) for d = 2;

(iii) (see [29]). If Ω ∈ L log+L(Sd−1), T is of weak type (1, 1) for d ≥ 2.
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The second example is Calderón commutator introduced by A. P. Calderón in his famous

paper [2], which is defined by

(1.5) TΩ,Af(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
· A(x)−A(y)

|x− y|
· f(y)dy,

where A ∈ Lip(Rd), the class of Lipschitz functions.

Theorem C ([2] or see [8]). Let d ≥ 2. Suppose that Ω satisfies the conditions (1.1) and (1.3),

then the commutator TΩ,A maps Lp(Rd) to itself for 1 < p <∞ if Ω satisfies one of the following

conditions:

(i) Ω is even;

(ii) Ω ∈ L log+ L(Sd−1) is odd and satisfies

(1.6)

∫
Sd−1

Ω(θ)θαdθ = 0, for all α ∈ Zd+ with |α| = 1.

Here and in the sequel, α = (α1, · · · , αd) ∈ Zd+ is a multi-indices , |α| =
∑d

j=1 αj and xα =∏d
i=1 x

αi
i when x ∈ Rd.

For a long time, an open problem is that whether Calderón commutator TΩ,A is of weak

type (1,1) if Ω satisfies (1.1), (1.6) and Ω ∈ L log+ L(Sd−1). In Section 5, we will give a confirm

answer to this problem as an application of our main result.

By careful observation of singular integral with homogeneous kernel in (1.4) and Calderón

commutator in (1.5), we conclude that singular integrals in (1.4) and (1.5) can be formally

rewritten in the following way,

(1.7) TΩf(x) = p.v.

∫
Rd

Ω(x− y)K(x, y)f(y)dy

where Ω satisfies (1.1), (1.3) and K satisfies

(1.8) |K(x, y)| ≤ C

|x− y|d
,

and the regularity conditions: for a fixed δ ∈ (0, 1],

|K(x1, y)−K(x2, y)| ≤ C |x1 − x2|δ

|x1 − y|d+δ
, |x1 − y| > 2|x1 − x2|,

|K(x, y1)−K(x, y2)| ≤ C |y1 − y2|δ

|x− y1|d+δ
, |x− y1| > 2|y1 − y2|.

(1.9)

In this paper, we are interested in when TΩ is of weak type (1,1). Our main result is the

following.

Theorem 1.1. Suppose K satisfies (1.8) and (1.9). Let Ω satisfy (1.1) and Ω ∈ L log+ L(Sd−1).

In addition, suppose Ω and K satisfy some appropriate cancellation conditions such that TΩf(x)

in (1.7) is well defined for f ∈ C∞c (Rd) and extends to a bounded operator on L2(Rd) with bound

C‖Ω‖L log+ L. Then for any λ > 0, we have

λm({x ∈ Rd : |TΩf(x)| > λ}) . CΩ‖f‖1,
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where CΩ is a finite constant which depends on Ω (see the definition in (2.1)).

It should be pointed out that it is difficult to assume uniform cancellation conditions of

Ω in our main result, since it is dependent of K(x, y), such as the conditions (1.2) and (1.6).

Essentially, in the theory of singular integral, the cancellation conditions of Ω play a key role

in proving the L2 boundedness of a singular integral with homogeneous kernel. However, in the

present paper, the cancellation conditions actually do not need to be used in our proof of weak

type (1,1) boundedness of the singular integral once it is of strong type (2,2).

Note that the conditions in Theorem 1.1 are easily verified, therefore Theorem 1.1 gives a

weak type (1,1) bound criterion, which has its own interest in the theory of singular integral.

In fact, one will see that applying Theorem 1.1, some important and interesting integral oper-

ators in harmonic analysis, such as the famous Calderón commutator, higher order Calderón

commutator, general Calderón commutator, Calderón commutator of Bajsanski-Coifman type

and general singular integral of Muckenhoupt type are all of weak type (1,1), see Section 5 for

more details.

Since the kernel Ω(x− y)K(x, y) of TΩ is non-smooth for Ω ∈ L log+ L(Sd−1), the standard

Caldeón-Zygmund theory can not be applied to proving the weak (1,1) boundedness of TΩ.

When the dimension d = 2, M. Christ and Rubio de Francia [12] or S. Hofmann [22], used the

TT ∗ method to get the weak type (1,1) bound for rough singular integral operator defined in

(1.4). The TT ∗ method was original by C. Fefferman [17] (see [20], [14], [29], [30] and [15] for

more applications in singular integrals). However, for the higher dimensions this method may

not be useful. In this paper, our strategy to prove Theorem 1.1 is based on partly the nice

ideas in [29]. More precisely, we use the microlocal decomposition of the kernel and some TT ∗

argument in L2 estimate in one part (see the proof of Lemma 2.3 in Section 3.3), which is similar

to [29]. For the other part, we inset a multiplier operator of weak type (1,1) with a controllable

bound so that the problem can be reduced to L1 estimates of some oscillatory integrals (see the

proof of Lemma 2.4 in Section 4). Since TΩ is a non-convolution operator, the proof in this part

is more complicated and we can not apply the properties of multiplier to oscillatory integrals.

Thus we have to estimate the kernel of oscillatory integrals directly by using the method of

stationary phase.

This paper is organized as follows. In Section 2, we complete the proof of Theorem 1.1

based on some lemmas, their proofs will be given in Section 3 and Section 4. In Section 5, we

give some important applications of Theorem 1.1. Some open problems are listed in Section 6.

Throughout this paper, the letter C stands for a positive constant which is independent of the

essential variables and not necessarily the same one in each occurrence. Sometimes we use CN

to emphasize the constant depends on N . A . B means A ≤ CB for some constant C. A ≈ B

means that A . B and B . A. For a set E ⊂ Rd, we denote by |E| or m(E) the Lebesgue

measure of E. We denote by Ff or f̂ the Fourier transform of f which is defined by

Ff(ξ) =

∫
Rd
e−i〈x,ξ〉f(x)dx.
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Z+ denote the set of all nonnegative integers and Zd+ = Z+ × · · · × Z+. Moreover, ‖Ω‖q :=( ∫
Sd−1 |Ω(θ)|qdθ

) 1
q and ‖Ω‖L log+L :=

∫
Sd−1 |Ω(θ)| log(2 + |Ω(θ)|)dθ.

2. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1 based on some lemmas, their proofs will be

given in Section 3 and Section 4.

We only focus on dimension d ≥ 2. Let Ω ∈ L log+ L(Sd−1) with ‖Ω‖L log+ L < +∞. Set the

constant

(2.1) CΩ = ‖Ω‖L log+ L +

∫
Sd−1

|Ω(θ)|
(
1 + log+(|Ω(θ)|/‖Ω‖1)

)
dθ,

where log+ a = 0 if 0 < a < 1 and log+ a = log a if a ≥ 1. Since ‖Ω‖L log+ L < +∞, one can

easily check that CΩ is a finite constant. For f ∈ L1(Rd) and λ > 0, using the Calderón-Zygmund

decomposition at level λ
CΩ , we have the following conclusions (cf. see [32] for example):

(cz-i) f = g + b;

(cz-ii) ‖g‖22 . λ‖f‖1/CΩ;

(cz-iii) b =
∑

Q∈Q bQ, suppbQ ⊂ Q, where Q is a countable set of disjoint dyadic cubes;

(cz-iv) Let E =
⋃
Q∈QQ, then m(E) . λ−1CΩ‖f‖1;

(cz-v)
∫
bQ = 0 for each Q ∈ Q and ‖bQ‖1 . λ

CΩ |Q|, so ‖b‖1 . ‖f‖1 by (cz-iii) and (cz-iv);

By the property (cz-i), we have

m({x : |TΩf(x)| > λ}) ≤ m
(
{x : |TΩg(x)| > λ/2}

)
+m

(
{x : |TΩb(x)| > λ/2}

)
.

Hence, by Chebyshev’s inequality, the fact TΩ is bounded on L2(Rd) with bound C‖Ω‖L log+ L

and property (cz-ii), we get

m({x ∈ Rd : |TΩg(x)| > λ/2}) ≤ 4‖TΩg‖22/λ2 . λ−2(‖Ω‖L log+ L‖g‖2)2 . λ−1CΩ‖f‖1.

For Q ∈ Q, denote by l(Q) the side length of cube Q. For t > 0, let tQ be the cube with the

same center of Q and l(tQ) = tl(Q). Set E∗ =
⋃
Q∈Q 2200Q. Then

m({x ∈ Rd : |TΩb(x)| > λ/2}) ≤ m(E∗) +m({x ∈ (E∗)c : |TΩb(x)| > λ/2}).

By the property (cz-iv), the set E∗ satisfies

m(E∗) . m(E) . λ−1CΩ‖f‖1.

Thus, to complete the proof of Theorem 1.1, it remains to show

(2.2) m({x ∈ (E∗)c : |TΩb(x)| > λ/2}) . λ−1CΩ‖f‖1.

Denote Qk = {Q ∈ Q : l(Q) = 2k} and let Bk =
∑

Q∈Qk
bQ. Then b can be rewritten as

b =
∑
j∈Z

Bj . Taking a smooth radial nonnegative function φ on Rd such that supp φ ⊂ {x : 1
2 ≤
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|x| ≤ 2} and
∑

j φj(x) = 1 for all x ∈ Rd\{0}, where φj(x) = φ(2−jx). Define the operator Tj

as

(2.3) Tjh(x) =

∫
Rd

Ω(x− y)φj(x− y)K(x, y)h(y)dy.

Then TΩ =
∑
j
Tj . For simplicity, we set Kj(x, y) = φj(x− y)K(x, y). We write

TΩb(x) =
∑
n∈Z

∑
j∈Z

TjBj−n.

Note that TjBj−n(x) = 0 if x ∈ (E∗)c and n < 100. Therefore

m
({
x ∈ (E∗)c : |TΩb(x)| > λ

2

})
= m

({
x ∈ (E∗)c :

∣∣∣∣ ∑
n≥100

∑
j∈Z

TjBj−n(x)

∣∣∣∣ > λ

2

})
.

Hence, to finish the proof of of Theorem 1.1, it suffices to verify the following estimate:

m

({
x ∈ (E∗)c :

∣∣∣∣ ∑
n≥100

∑
j∈Z

TjBj−n(x)

∣∣∣∣ > λ

2

})
. λ−1CΩ‖f‖1.(2.4)

2.1. Some key estimates.

Some important estimates play key roles in the proof of (2.4). We present them by some

lemmas, which will be proved in Section 3 and Section 4. The first estimate shows that the

operator Tj can be approximated by an operator Tnj in measure, which is defined below.

Let lδ(n) = [2δ−1 log2 n] + 2. Here [a] is the integer part of a. Let η be a nonnegative, radial

C∞c function which is supported in {|x| ≤ 1} and
∫
Rd η(x)dx = 1. Set ηi(x) = 2−idη(2−ix).

Define

Kn
j (x, y) =

∫
Rd
ηj−lδ(n)(x− z)Kj(z, y)dz.

Notice that Kj(z, y) is supported in {2j−1 ≤ |z − y| ≤ 2j+1} and ηj−lδ(n)(x) is supported in

{|x| ≤ 2j−lδ(n)}, so Kn
j (x, y) is supported in {2j−2 ≤ |x− y| ≤ 2j+2}. Therefore

(2.5) |Kn
j (x, y)| . 2−jdχ{2j−2≤|x−y|≤2j+2}.

Define the operator Tnj by

Tnj h(x) =

∫
Rd

Ω(x− y)Kn
j (x, y) · h(y)dy.

Lemma 2.1. With the notations above, we have

m
({
x ∈ (E∗)c :

∑
n≥100

∣∣∣∑
j

(
TjBj−n(x)− Tnj Bj−n(x)

)∣∣∣ > λ

4

})
.

1

λ
‖Ω‖1‖f‖1.
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By Lemma 2.1, the proof of (2.4) now is reduced to verify the following estimate:

(2.6) m

({
x ∈ (E∗)c :

∣∣∣∣ ∑
n≥100

∑
j∈Z

Tnj Bj−n(x)

∣∣∣∣ > λ

4

})
. λ−1CΩ‖f‖1.

Our second lemma shows that, (2.6) holds if Ω is restricted in some subset of Sd−1. More

precisely, for fixed n ≥ 100, denote Dι = {θ ∈ Sd−1 : |Ω(θ)| ≥ 2ιn‖Ω‖1}, where ι > 0 will be

chosen later. The operator Tnj,ι is defined by

Tnj,ιh(x) =

∫
Rd

ΩχDι(
x− y
|x− y|

)Kn
j (x, y) · h(y)dy.

We have the following result.

Lemma 2.2. Under the conditions of Theorem 1.1, for f ∈ L1(Rd), we have

m

({
x ∈ (E∗)c :

∣∣∣∣ ∑
n≥100

∑
j∈Z

Tnj,ιBj−n(x)

∣∣∣∣ > λ

8

})
. CΩ

‖f‖1
λ

.

Thus, by Lemma 2.2, to finish the proof of Theorem 1.1, it suffices to verify (2.6) under the

condition that the kernel function Ω satisfies ‖Ω‖∞ ≤ 2ιn‖Ω‖1 in each Tnj .

In the following, we need to make a microlocal decomposition of the kernel. To do this,

we give a partition of unity on the unit surface Sd−1. Choose n ≥ 100. Let Θn = {env}v be a

collection of unit vectors on Sd−1 which satisfies the following two conditions:

(a) |env − env′ | ≥ 2−nγ−4, if v 6= v′;

(b) If θ ∈ Sd−1, there exists an env such that |env − θ| ≤ 2−nγ−4.

The constant 0 < γ < 1 in (a) and (b) will be chosen later. To choose such an Θn, we may simply

take a maximal collection {env}v for which (a) holds. Notice that there are C2nγ(d−1) elements in

the collection {env}v. For every θ ∈ Sd−1, there only exists finite env such that |env − θ| ≤ 2−nγ−4.

Now we can construct an associated partition of unity on the unit surface Sd−1. Let ζ be a

smooth, nonnegative, radial function with ζ(u) = 1 for |u| ≤ 1
2 and ζ(u) = 0 for |u| > 1. Set

Γ̃nv (ξ) = ζ
(

2nγ(
ξ

|ξ|
− env )

)
and define

Γnv (ξ) = Γ̃nv (ξ)
( ∑
env∈Θn

Γ̃nv (ξ)
)−1

.

Then it is easy to see that Γnv is homogeneous of degree 0 with∑
v

Γnv (ξ) = 1, for all ξ 6= 0 and all n.

Now we define operator Tn,vj by

(2.7) Tn,vj h(x) =

∫
Rd

Ω(x− y)Γnv (x− y) ·Kn
j (x, y) · h(y)dy.

Therefore, we have

Tnj =
∑
v

Tn,vj .
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In the sequel, we need to separate the phase into different directions. Hence we define a

multiplier operator by

Ĝn,vh(ξ) = Φ(2nγ〈env , ξ/|ξ|〉)ĥ(ξ),

where h is a Schwartz function and Φ is a smooth, nonnegative, radial function such that

0 ≤ Φ(x) ≤ 1 and Φ(x) = 1 on |x| ≤ 2, Φ(x) = 0 on |x| > 4. Now we can split Tn,vj into two

parts:

Tn,vj = Gn,vT
n,v
j + (I −Gn,v)Tn,vj .

The following lemma gives the L2 estimate involving Gn,vT
n,v
j , which will be proved in next

section.

Lemma 2.3. Let n ≥ 100. Suppose ‖Ω‖∞ ≤ 2ιn‖Ω‖1 in Tnj , then we have the following estimate∥∥∥∑
j

∑
v

Gn,vT
n,v
j Bj−n

∥∥∥2

2
. 2−nγ+2nιλ‖Ω‖1‖f‖1.

The terms involving (I − Gn,v)Tn,vj are more complicated. For convenience, we set Ln,vj =

(I −Gn,v)Tn,vj . In Section 4, we shall prove the following lemma.

Lemma 2.4. Suppose ‖Ω‖∞ ≤ 2ιn‖Ω‖1 in Tnj . With the notations above, we have

m
({
x ∈ (E∗)c :

∣∣∣ ∑
n≥100

∑
j

∑
v

Ln,vj Bj−n(x)
∣∣∣ > λ

8

})
. λ−1‖Ω‖1‖f‖1.

2.2. Proof of (2.6).

We now complete the proof of (2.6) under the condition ‖Ω‖∞ ≤ 2ιn‖Ω‖1 in each Tnj . By

Chebyshev’s inequality,

m
({
x ∈ (E∗)c :

∣∣∣ ∑
n≥100

∑
j

Tnj Bj−n(x)
∣∣∣ > λ

4

})
. λ−2

∥∥∥ ∑
n≥100

∑
j

∑
v

Gn,vT
n,v
j Bj−n

∥∥∥2

2

+m
({
x ∈ (E∗)c :

∣∣∣ ∑
n≥100

∑
j

∑
v

Ln,vj Bj−n(x)
∣∣∣ > λ

8

})
=: I + II.

Using Lemma 2.4, we can get the desired estimate of II. Next we consider the term I.

Choose 0 < ι < γ
2 . Minkowski’s inequality and Lemma 2.3 implies

I . λ−2
( ∑
n≥100

∥∥∥∑
j

∑
v

Gn,vT
n,v
j Bj−n

∥∥∥
2

)2

. λ−2
( ∑
n≥100

(2−nγ+2nι‖Ω‖1λ‖f‖1)
1
2

)2
. λ−1‖Ω‖1‖f‖1.

We hence complete the proof of Theorem 1.1 once Lemmas 2.1-2.4 hold.
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3. proofs of Lemmas 2.1-2.3

3.1. Proof of Lemma 2.1.

We first focus on the proof of Lemma 2.1. By the definitions of Tj and Tnj ,

‖Tjf − Tnj f‖1 =

∫
Rd

∣∣∣ ∫
Rd

Ω(x− y)(Kj(x, y)−Kn
j (x, y))f(y)dy

∣∣∣dx
=

∫
Rd

∣∣∣ ∫
Rd

Ω(x− y)

∫
Rd
ηj−lδ(n)(z)(Kj(x, y)−Kj(x− z, y))dzf(y)dy

∣∣∣dx.
By the definition of Kj(x, y), we have

|Kj(x, y)−Kj(x−z, y)| ≤ |φj(x−y)(K(x, y)−K(x−z, y))|+|φj(x−y)−φj(x−z−y)||K(x−z, y)|.

Consider the first term firstly. Note that |z| ≤ 2j−lδ(n) and 2j−1 ≤ |x− y| ≤ 2j+1, then we have

2|z| < |x− y|. By the regularity condition (1.9), the first term above is bounded by

|z|δ

|x− y|d+δ
χ{2j−1≤|x−y|≤2j+1} . n

−22−jdχ{2j−1≤|x−y|≤2j+1}.

We turn to the second therm. By the fact |z| ≤ 2j−lδ(n) and the support of φj , we have

|x− y| ≈ |x− z − y| and 2j−2 ≤ |x− y| ≤ 2j+2. By (1.8), the second term is controlled by

2−j |z|
|x− z − y|d

χ{2j−2≤|x−y|≤2j+2} . n
−22−jdχ{2j−2≤|x−y|≤2j+2}.

Combining the above two estimates and applying Minkowski’s inequality, we get

‖Tjf − Tnj f‖1 . n−2

∫
Rd

∫
2j−2≤|x−y|≤2j+2

2−jd|Ω(x− y)|
∫
Rd
ηj−lδ(n)(z)dz|f(y)|dydx

. n−22−jd
∫
Rd

∫
2j−2≤|x−y|≤2j+2

|Ω(x− y)|dx|f(y)|dy

. n−2‖Ω‖1‖f‖1.

By Chebyshev’s inequality, Minkowski’s inequality and the estimates above, we get the bound

m
({
x ∈ (E∗)c :

∑
n≥100

∣∣∣∑
j

TjBj−n(x)− Tnj Bj−n(x)
∣∣∣ > λ

4

})
. λ−1‖Ω‖1

∑
n≥100

∑
j

∥∥∥TjBj−n − Tnj Bj−n∥∥∥
1

. λ−1‖Ω‖1
∑
n≥100

n−2
∑
j

‖Bj−n‖1 . λ−1‖Ω‖1‖f‖1,

which is the required estimate. �

3.2. Proof of Lemma 2.2.

Denote the kernel of the operator Tnj,ι by

Kn
j,ι(x, y) := ΩχDι(

x− y
|x− y|

)Kn
j (x, y).
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By (2.5), we have∣∣∣∣ ∫
Rd
Kn
j,ι(x, y)dy

∣∣∣∣ . ∫
Dι

∫ 2j+2

2j−2

|Ω(θ)|rd−12−jddrdθ .
∫
Dι
|Ω(θ)|dθ.

Therefore by Chebyshev’s inequality, the above inequality, the property (cz-v), we get

m

({
x ∈ (E∗)c :

∣∣∣∣ ∑
n≥100

∑
j∈Z

Tnj,ιBj−n(x)

∣∣∣∣ > λ

8

})

. λ−1

∥∥∥∥ ∑
n≥100

∑
j∈Z

Tnj,ιBj−n

∥∥∥∥
1

. λ−1
∑
n≥100

∑
j

‖Bj−n‖1
∫
Dι
|Ω(θ)|dθ

. λ−1‖b‖1
∫
Sd−1

card
{
n ∈ N : n ≥ 100, 2ιn ≤ |Ω(θ)|/‖Ω‖1

}
|Ω(θ)|dθ

. λ−1‖f‖1
∫
Sd−1

|Ω(θ)|
(
1 + log+(|Ω|/‖Ω‖1)

)
dθ

. λ−1CΩ‖f‖1.

�

3.3. Proof of Lemma 2.3.

We will use some ideas from [29] in the proof of Lemma 2.3. As usually, we adopt the TT ∗

method in the L2 estimate. Moreover, we need to use some orthogonality argument based on

the following observation of the support of F(Gn,vT
n,v
j ): For a fixed n ≥ 100, we have

(3.1) sup
ξ 6=0

∑
v

|Φ2(2nγ〈env , ξ/|ξ|〉)| . 2nγ(d−2).

In fact, by homogeneous of Φ2(2nγ〈env , ξ/|ξ|〉), it suffices to take the supremum over the surface

Sd−1. For |ξ| = 1 and ξ ∈ supp Φ2(2nγ〈env , ξ/|ξ|〉), denote by ξ⊥ the hyperplane perpendicular

to ξ. Thus

(3.2) dist(env , ξ
⊥) . 2−nγ .

Since the mutual distance of env ’s is bounded by 2−nγ−4, there are at most 2nγ(d−2) vectors satisfy

(3.2). We hence get (3.1).

By applying Plancherel’s theorem and Cauchy-Schwarz inequality, we have∥∥∥∑
v

∑
j

Gn,vT
n,v
j Bj−n

∥∥∥2

2
=
∥∥∥∑

v

Φ(2nγ〈env , ξ/|ξ|〉)F
(∑

j

Tn,vj Bj−n

)
(ξ)
∥∥∥2

2

. 2nγ(d−2)
∥∥∥∑

v

∣∣∣F(∑
j

Tn,vj Bj−n

)∣∣∣2∥∥∥
1

. 2nγ(d−2)
∑
v

∥∥∥∑
j

Tn,vj Bj−n

∥∥∥2

2
.

(3.3)

Once it is showed that for a fixed env ,

(3.4)
∥∥∥∑

j

Tn,vj Bj−n

∥∥∥2

2
. 2−2nγ(d−1)+2nιλ‖Ω‖1‖f‖1,
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then by card(Θn) . 2nγ(d−1), and apply (3.3) and (3.4) we get∥∥∥∑
v

∑
j

Gn,vT
n,v
j Bj−n

∥∥∥2

2
. 2−nγ(d−1)−nγ+2nιcard(Θn)λ‖Ω‖1‖f‖1 . 2−nγ+2nιλ‖Ω‖1‖f‖1,

which is just the desired bound of Lemma 2.3. Thus, to finish the proof of Lemma 2.3, it is

enough to prove (3.4). By applying ‖Ω‖∞ ≤ 2ιn‖Ω‖1, (2.5) and the support of Γnv , we have

|Tn,vj Bj−n(x)| . 2ιn‖Ω‖1
∫
Rd

Γnv (x− y)|Kn
j (x, y)||Bj−n(y)|dy

. 2ιn‖Ω‖1Hn,v
j ∗ |Bj−n|(x),

where Hn,v
j (x) := 2−jdχEn,vj (x) and χEn,vj (x) is a characteristic function of the set

En,vj := {x ∈ Rd : |〈x, env 〉| ≤ 2j+2, |x− 〈x, env 〉env | ≤ 2j+2−nγ}.

For a fixed env , we write∥∥∥∑
j

Tn,vj Bj−n

∥∥∥2

2
≤ 22ιn‖Ω‖21

∑
j

∫
Rd
Hn,v
j ∗Hn,v

j ∗ |Bj−n|(x) · |Bj−n(x)|dx

+ 22ιn+1‖Ω‖21
∑
j

j−1∑
i=−∞

∫
Rd
Hn,v
j ∗Hn,v

i ∗ |Bi−n|(x) · |Bj−n(x)|dx.
(3.5)

Observe that ‖Hn,v
i ‖1 . 2−idm(En,vi ) . 2−nγ(d−1), therefore for any i ≤ j,

Hn,v
j ∗Hn,v

i (x) . 2−nγ(d−1)2−jdχ
Ẽn,vj

,

where Ẽn,vj = En,vj + En,vj . Hence for a fixed j, n, env and x, we have

Hn,v
j ∗Hn,v

j ∗ |Bj−n|(x) + 2

j−1∑
i=−∞

Hn,v
j ∗Hn,v

i ∗ |Bi−n|(x)

. 2−nγ(d−1)2−jd
∑
i≤j

∫
x+Ẽn,vj

|Bi−n(y)|dy

. 2−nγ(d−1)2−jd
∑
i≤j

∑
Q∈Qi−n

Q∩{x+Ẽ
n,v
j
}6=∅

∫
Rd
|bQ(y)|dy

. 2−nγ(d−1)2−jd
∑
i≤j

∑
Q∈Qi−n

Q∩{x+Ẽ
n,v
j
}6=∅

λ

CΩ
|Q|

. 2−nγ(d−1)2−jd2jd−nγ(d−1) λ

CΩ
=

λ

CΩ
2−2nγ(d−1),

(3.6)

where in third inequality above, we use
∫
|bQ(y)|dy . λ|Q|/CΩ (see (cz-v) in Section 2) and in

the fourth inequality we use fact that the cubes in Q are disjoint (see (cz-iii) in Section 2). By

(3.5), (3.6) and
∑
j
‖Bj−n‖1 . ‖f‖1, we obtain

∥∥∥∑
j

Tn,vj Bj−n

∥∥∥2

2
. λ2−2nγ(d−1)+2nι‖Ω‖1

∑
j

‖Bj−n‖1 . λ2−2nγ(d−1)+2nι‖Ω‖1‖f‖1.
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Hence, we complete the proof of Lemma 2.3. �

4. Proof of Lemma 2.4

To prove Lemma 2.4, we have to face with some oscillatory integrals which come from Ln,vj .

We first introduce Mihlin multiplier theorem, which can be found in [19].

Lemma 4.1. Let m be a complex-value bounded function on Rn \ {0} that satisfies

|∂αξm(ξ)| ≤ A|ξ|−|α|

for all multi indices |α| ≤ [d2 ] + 1, then the operator Tm defined by

T̂mf(ξ) = m(ξ)f̂(ξ)

is a weak type (1,1) bounded operator with bound Cd(A+ ‖m‖∞).

Before stating the proof of Lemma 2.4, let us give some notations. We first introduce the

Littlewood-Paley decomposition. Let ψ be a radial C∞ function such that ψ(ξ) = 1 for |ξ| ≤ 1,

ψ(ξ) = 0 for |ξ| ≥ 2 and 0 ≤ ψ(ξ) ≤ 1 for all ξ ∈ Rd. Define βk(ξ) = ψ(2kξ) − ψ(2k+1ξ), then

βk is supported in {ξ : 2−k−1 ≤ |ξ| ≤ 2−k+1}. Define the convolution operators Vk and Λk with

Fourier multipliers ψ(2k·) and βk, respectively. That is,

V̂kf(ξ) = ψ(2kξ)f̂(ξ), Λ̂kf(ξ) = βk(ξ)f̂(ξ).

Then by the construction of βk and ψ, we have

I =
∑
k∈Z

Λk = Vm +
∑
k<m

Λk for every m ∈ Z.

Set An,vj,m = VmT
n,v
j and Dn,v

j,k = (I −Gn,v)ΛkTn,vj . Write

Ln,vj = (I −Gn,v)VmTn,vj +
∑
k<m

(I −Gn,v)ΛkTn,vj

=: (I −Gn,v)An,vj,m +
∑
k<m

Dn,v
j,k ,

where m = j − [nε0], ε0 > 0 will be chosen later. To prove Lemma 2.4, we split the measure in

Lemma 2.4 into two parts,

m
({
x ∈ (E∗)c :

∣∣∣ ∑
n≥100

∑
v

∑
j

(I −Gn,v)Tn,vj Bj−n(x)
∣∣∣ > λ

})
≤ m

({
x ∈ (E∗)c :

∣∣∣ ∑
n≥100

∑
v

(I −Gn,v)
(∑

j

An,vj,mBj−n
)
(x)
∣∣∣ > λ

2

})
+m

({
x ∈ (E∗)c :

∣∣∣ ∑
n≥100

∑
v

∑
j

∑
k<m

Dn,v
j,k Bj−n(x)

∣∣∣ > λ

2

})
=: I + II.

(4.1)
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4.1. First step: basic estimates of I and II.

Consider the term I. Notice that F [(I − Gn,v)f ](ξ) = (1 − Φ(2nγ〈env , ξ/|ξ|〉)) · f̂(ξ). It is

easy to see that (1− Φ(2nγ〈env , ξ/|ξ|〉)) is bounded and

|∂αξ (1− Φ(2nγ〈env , ξ/|ξ|〉))| . 2nγ([ d
2

]+1)|ξ|−|α|

for all multi indices |α| ≤ [d2 ]+1. Then by Lemma 4.1, I−Gn,v is of weak type (1,1) with bound

2nγ([ d
2

]+1). By using the pigeonhole principle, one may get

(4.2) {x :
∑
i

fi(x) >
∑
i

λi} ⊆
⋃
i

{x : fi(x) > λi}.

Let µ > 0 to be chosen later. Then there exists Cµ,d such that∑
n≥100

∑
env∈Θn

Cµ,d2
−nµ−nγ(d−1) =

1

2
.

Therefore

m
({
x ∈ (E∗)c :

∣∣∣ ∑
n≥100

∑
v

(I −Gn,v)
(∑

j

An,vj,mBj−n

)
(x)
∣∣∣ > λ

2

})
= m

({
x ∈ (E∗)c :

∣∣∣ ∑
n≥100

∑
v

(I −Gn,v)
(∑

j

An,vj,mBj−n

)
(x)
∣∣∣ > ∑

n≥100

∑
v

Cµ,d2
−nµ−nγ(d−1)λ

})
≤
∑
n≥100

∑
v

m
({
x ∈ (E∗)c :

∣∣∣(I −Gn,v)(∑
j

An,vj,mBj−n

)
(x)
∣∣∣ > Cµ,d2

−nµ−nγ(d−1)λ
})

≤
∑
n≥100

∑
j

∑
v

1

Cµ,dλ
2nµ+nγ(d−1)+nγ([ d

2
]+1)‖An,vj,mBj−n‖1

≤
∑
n≥100

∑
j

∑
v

∑
l(Q)=2j−n

1

Cµ,dλ
2nµ+nγ(d−1)+nγ([ d

2
]+1)‖An,vj,mbQ‖1,

(4.3)

where the second inequality follows from (4.2) and in the third inequality we use I − Gn,v is

weak type (1,1) bounded and Minkowski’s inequality.

Next we turn to the term II. We use L1 estimate directly

II ≤ 2

λ

∑
n≥100

∑
v

∑
j

∑
k<m

‖Dn,v
j,k Bj−n‖1 ≤

2

λ

∑
n≥100

∑
v

∑
j

∑
k<m

∑
l(Q)=2j−n

‖Dn,v
j,k bQ‖1.(4.4)

Now the problem is reduced to estimate ‖An,vj,mbQ‖1 and ‖Dn,v
j,k bQ‖1. Recall in (2.7), the

kernel of operator Tn,vj is

Kn,v
j,y (x) := Ω(x− y)Γnv (x− y)Kn

j (x, y).

Below we see Kn,v
j,y (x) as a function of x for a fixed y ∈ Q. Thus, by Fubini’s theorem,

An,vj,mbQ(x) =

∫
Q
VmK

n,v
j,y (x) · bQ(y)dy =:

∫
Q
Am(x, y)bQ(y)dy

and

Dn,v
j,k bQ(x) =

∫
Q

(I −Gn,v)ΛkKn,v
j,y (x) · bQ(y)dy =:

∫
Q
Dk(x, y)bQ(y)dy.
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4.2. Estimate of Dk.

Lemma 4.2. For a fixed y ∈ Q, there exists N > 0, such that for any N1 ∈ Z+

(4.5) ‖Dk(·, y)‖1 ≤ Cn2δ−1N12−nγ(d−1)+nι2(−j+k)N1+nγ(N1+2N)‖Ω‖1,

where C is a constant independent of y, but may depend on N1, N and d.

Proof. Denote hk,n,v(ξ) = (1− Φ(2nγ〈env , ξ/|ξ|〉))βk(ξ). Write Dk(x, y) as

(I −Gn,v)ΛkKn,v
j,y (x) =

1

(2π)d

∫
Rd
eix·ξhk,n,v(ξ)

∫
Rd
e−iξ·ωΩ(ω − y)Γnv (ω − y)Kn

j (ω, y)dωdξ.

In order to separate the rough kernel, we make a variable change ω − y = rθ. By Fubini’s

theorem, the integral above can be written as

(4.6)
1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

{∫
Rd

∫ ∞
0

ei〈x−y−rθ,ξ〉hk,n,v(ξ)K
n
j (y + rθ, y)rd−1drdξ

}
dθ.

By the support of Kn
j (x, y) in (2.5), we have 2j−2 ≤ r ≤ 2j+2. Integrate by parts N1 times with

r. Hence the integral involving r can be rewritten as∫ ∞
0

ei〈x−y−rθ,ξ〉(i〈θ, ξ〉)−N1∂N1
r [Kn

j (y + rθ, y)rd−1]dr.

Since θ ∈ supp Γnv , then |θ − env | ≤ 2−nγ . By the support of Φ, we see |〈env , ξ/|ξ|〉| ≥ 21−nr.

Thus,

(4.7) |〈θ, ξ/|ξ|〉| ≥ |〈env , ξ/|ξ|〉| − |〈env − θ, ξ/|ξ|〉| ≥ 2−nγ .

After integrating by parts with r, integrate by parts with ξ, the integral in (4.6) can be rewritten

as

1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

∫
Rd
ei〈x−y−rθ,ξ〉

∫ ∞
0

∂N1
r

(
Kn
j (y + rθ, y)rd−1

)
×

(I − 2−2k∆ξ)
N

(1 + 2−2k|x− y − rθ|2)N

(
hk,n,v(ξ)(i〈θ, ξ〉)−N1

)
drdξdθ.

(4.8)

In the following, we give an explicit estimate of the term in (4.8). By the definition of

Kn
j (x, y), we have

|∂αxKn
j (x, y)| = 2−(j−lδ(n))|α|

∣∣∣ ∫ (∂αx η)j−lδ(n)(x− z)Kj(z, y)dz
∣∣∣

≤ 2−(j−lδ(n))|α|‖Kj(·, y)‖∞‖∂αx η‖1

. 2−(j−lδ(n))|α|−jd,

(4.9)

where the third inequality follows from (2.5). By using product rule,∣∣∣∂N1
r

(
Kj(y + rθ, y)rd−1

)∣∣∣ =
∣∣∣ N1∑
i=0

CiN1
∂ir(K

n
j (y + rθ, y))∂N1−i

r (rd−1)
∣∣∣

=
∣∣∣ N1∑
i=N1−d+1

CiN1
∂ir(K

n
j (y + rθ, y))∂N1−i

r (rd−1)
∣∣∣.(4.10)
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Applying (4.9) and 2j−2 ≤ r ≤ 2j+2 , the above (4.10) is bounded by

(4.11)

N1∑
i=N1−d+1

CiN1
2−(j−lδ(n))i−jd2(j+2)(d−1−N1+i) ≤ CN1n

2δ−1N12−(1+N1)j .

Below we will show that

(4.12)
∣∣(I − 2−2k∆ξ)

N [〈θ, ξ〉−N1hk,n,v(ξ)]
∣∣ ≤ CN12(nγ+k)N1+2nγN .

We prove (4.12) when N = 0 firstly. By (4.7), we have

|(−i〈θ, ξ〉)−N1 · hk,n,v(ξ)| . |〈θ, ξ〉|−N1 . 2(nγ+k)N1 .

By using product rule,

|∂ξihk,n,v(ξ)| =
∣∣− ∂ξi [Φ(2nγ〈env , ξ/|ξ|〉)] · βk(ξ) + ∂ξiβk(ξ) · (1− Φ(2nγ〈env , ξ/|ξ|〉))

∣∣ . 2nγ+k.

Therefore by induction, we have |∂αξ hk,n,v(ξ)| . 2(nγ+k)|α| for any multi-indices α ∈ Zn+. By

using product rule again and (4.7), we have∣∣∂2
ξi

(〈θ, ξ〉)−N1hk,n,v(ξ))
∣∣ =

∣∣〈θ, ξ〉−N1−2 ·N1(N1 + 1)θ2
i · hk,n,v

+ 2〈θ, ξ〉−N1−1 · (−N1) · θi∂ξihk,n,v(ξ) + 〈θ, ξ〉−N1∂2
ξi
hk,n,v(ξ)

∣∣
≤ CN12(nγ+k)(N1+2).

Hence we conclude that

2−2k
∣∣∆ξ[(〈θ, ξ〉)−N1hk,n,v(ξ)]

∣∣ ≤ CN12(nγ+k)N1+2nγ .

Proceeding by induction, we get (4.12).

Now we choose N = [d/2] + 1. Since we need to get the L1 estimate of (4.6), by the support

of hk,n,v, ∫
supp(hk,n,v)

∫ (
1 + 2−2k|x− y − rθ|2

)−N
dxdξ ≤ C.

Integrating with r, we get a bound 2j . Note that we suppose that ‖Ω‖∞ ≤ 2nι‖Ω‖1. Then

integrating with θ, we get a bound 2−nγ(d−1)+nι‖Ω‖1. Combining (4.11), (4.12) and above

estimates, ‖Dk(·, y)‖1 is bounded by

CN1n
2δ−1N12−j(1+N1)+(nγ+k)N1+2nγN+j−nγ(d−1)+nι‖Ω‖1

= CN1n
2δ−1N12−nγ(d−1)+nι2(−j+k)N1+nγ(N1+2N)‖Ω‖1.

Hence we complete the proof of Lemma 4.2 with N = [d2 ] + 1. �
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4.3. Estimate of Am.

Using the cancellation condition of bQ (see (cz-v) in Section 2), we have

An,vj,mbQ(x) =

∫
Q

(Am(x, y)−Am(x, y0))bQ(y)dy,

where y0 is the center of Q. By changing to polar coordinates and applying Fubini’s theorem,

we can write Am(x, y) as

1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

{∫ ∞
0

∫
Rd
ei(〈x−y−rθ,ξ〉ψ(2mξ)Kn

j (y + rθ, y)rd−1drdξ

}
dθ.

Integrating by part N = [d/2] + 1 times with ξ in the above integral, we have

1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

{∫ ∞
0

∫
Rd
ei〈x−y−rθ,ξ〉Kn

j (y + rθ, y)rd−1

×
(I − 2−2m∆ξ)

Nψ(2mξ)(
1 + 2−2m|x− y − rθ|2

)N dξdr}dθ.
Denote

Am(x, y)−Am(x, y0) =: Fm,1(x, y) + Fm,2(x, y) + Fm,3(x, y),

where

Fm,1(x, y) =
1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

{∫ ∞
0

∫
Rd

(
ei〈−y,ξ〉 − ei〈−y0,ξ〉

)
ei〈x−rθ,ξ〉

×Kn
j (y + rθ, y)rd−1 (I − 2−2m∆ξ)

Nψ(2mξ)(
1 + 2−2m|x− y − rθ|2

)N dξdr}dθ,
Fm,2(x, y) =

1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

{∫ ∞
0

∫
Rd
ei〈x−y0−rθ,ξ〉

(
Kn
j (y + rθ, y)−Kn

j (y0 + rθ, y0)
)

× rd−1 (I − 2−2m∆ξ)
Nψ(2mξ)(

1 + 2−2m|x− y − rθ|2
)N dξdr}dθ,

and

Fm,3(x, y) =
1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

∫ ∞
0

∫
Rd
ei〈x−y0−rθ,ξ〉(I − 2−2m∆ξ)

Nψ(2mξ)rd−1×

Kn
j (y0 + rθ, y0)

( 1(
1 + 2−2m|x− y − rθ|2

)N − 1(
1 + 2−2m|x− y0 − rθ|2

)N )dξdrdθ.
Hence

(4.13) ‖An,vj,mbQ‖1 ≤ sup
y∈Q

(‖Fm,1(·, y)‖1 + ‖Fm,2(·, y)‖1 + ‖Fm,3(·, y)‖1)‖bQ‖1.

We have the following estimates of Fm,1(x, y), Fm,2(x, y), Fm,3(x, y).

Lemma 4.3. For a fixed y ∈ Q, we have

‖Fm,1(·, y)‖1 ≤ C2−nγ(d−1)+nι+j−n−m‖Ω‖1,

where C is independent of y.



WEAK TYPE (1,1) BOUND CRITERION 17

Proof. We use the same method in proving Lemma 4.2 but don’t apply integrating by parts.

Note that y ∈ Q and y0 is the center of Q, then |y − y0| . 2j−n. Thus∣∣∣ei〈−y,ξ〉 − ei〈−y0,ξ〉
∣∣∣ . 2j−n−m.

Since 2j−2 ≤ r ≤ 2j+2 and (2.5), we have |Kn
j (y + rθ, y)rd−1| . 2−j . It is easy to see that

|(I − 2−2m∆ξ)
Nψ(2mξ)| ≤ C.

Since we need to get the L1 estimate of Fm,1(·, y), by the support of ψ(2mξ), we have∫
|ξ|≤21−m

∫ (
1 + 2−2m|x− y − rθ|2

)−N
dxdξ ≤ C.

Integrating with r, we get a bound 2j . Note that we suppose that ‖Ω‖∞ ≤ 2nι‖Ω‖1, so integrating

with θ, we get a bound 2−nγ(d−1)+nι‖Ω‖1. Combining these bounds, we can get the required

estimate for Fm,1(·, y). �

Lemma 4.4. For a fixed y ∈ Q, we have

‖Fm,3(·, y)‖1 ≤ C2−nγ(d−1)+nι+j−n−m‖Ω‖1,

where C is independent of y.

Proof. For the term Fm,3(·, y), we can deal with it in the same way as Fm,1(·, y) once we have

the following observation∣∣∣Ψ(y)−Ψ(y0)
∣∣∣ =

∣∣∣ ∫ 1

0

〈
y − y0,∇Ψ(ty + (1− t)y0)

〉
dt
∣∣∣

. |y − y0|2−m
∫ 1

0

N2−m|x− (ty + (1− t)y0)− rθ|
(1 + 2−2m|x− (ty + (1− t)y0)− rθ|2)N+1

dt

where Ψ(y) = (1 + 2−2m|x − y − rθ|2)−N . Since y ∈ Q and y0 is the center of Q, we have

|y − y0| . 2j−n. By 2j−2 ≤ r ≤ 2j+2 and (2.5), we have |Kn
j (y + rθ, y)rd−1| . 2−j . It is easy to

see

|(I − 2−2m∆ξ)
Nψ(2mξ)| ≤ C.

Since we need to get the L1 estimate of Fm,3(·, y), by the support of ψ(2mξ), we have∫
|ξ|≤21−m

∫
N2−m|x− (ty + (1− t)y0)− rθ|

(1 + 2−2m|x− (ty + (1− t)y0)− rθ|2)N+1
dxdξ ≤ C.

Integrating with r, we get a bound 2j . Integrating with t, we get finite bound 1. Note that we

suppose that ‖Ω‖∞ ≤ 2nι‖Ω‖1, therefore integrating with θ, we get a bound 2−nγ(d−1)+nι‖Ω‖1.

Combining these bounds, we can get the required estimate for Fm,3(·, y). �

Lemma 4.5. For a fixed y ∈ Q, we have

‖Fm,2(·, y)‖1 ≤ C
(
n2δ−1

2−n + 2−nδ
)

2−nγ(d−1)+nι‖Ω‖1,

where C is independent of y.
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Proof. First, notice that 2j−2 ≤ r ≤ 2j+2. Write Kn
j (y + rθ, y)−Kn

j (y0 + rθ, y0) as(
Kn
j (y + rθ, y)−Kn

j (y0 + rθ, y)
)

+
(
Kn
j (y0 + rθ, y)−Kn

j (y0 + rθ, y0)
)
.

Since y ∈ Q and y0 is the center of Q, we have |y − y0| ≤ 2j−n. Therefore by the mean value

formula, Minkowski’s inequality and (2.5), we get∣∣∣Kn
j (y + rθ, y)−Kn

j (y0 + rθ, y)
∣∣∣

=
∣∣∣ ∫

Rd

(
ηj−lδ(n)(y + rθ − z)− ηj−lδ(n)(y0 + θ − z)

)
Kj(z, y)dz

∣∣∣
=
∣∣∣ ∫

Rd

(∫ 1

0
〈y − y0,∇(ηj−lδ(n))(ty + (1− t)y0 + rθ − z)〉dt

)
Kj(z, y)dz

∣∣∣
≤ |y − y0|2−j+lδ(n)

n∑
i=1

‖∂xiη‖1‖Kj(·, y)‖∞

. n2δ−1
2−n−jd.

(4.14)

We write ∣∣∣Kn
j (y0 + rθ, y)−Kn

j (y0 + rθ, y0)
∣∣∣

=
∣∣∣ ∫

Rd
ηj−lδ(n)(y0 + rθ − z)

(
Kj(z, y)−Kj(z, y0)

)
dz
∣∣∣

≤
∣∣∣ ∫

Rd
ηj−lδ(n)(y0 + rθ − z)

(
φj(z − y)− φj(z − y0)

)
K(z, y)dz

∣∣∣
+
∣∣∣ ∫

Rd
ηj−lδ(n)(y0 + rθ − z)

(
K(z, y)−K(z, y0)

)
φj(z − y0)dz

∣∣∣
=: P1 + P2.

(4.15)

Consider P1 firstly. Using the fact |y−y0| . 2j−n and the support of φ, we have 2j−2 ≤ |z−y| ≤
2j+2. Applying the mean value formula, we get

P1 ≤ |y − y0|2−j‖K(·, y)‖∞‖η‖1 . 2−n−jd.

For the term P2, by |y− y0| < 2j−n and 2j−1 ≤ |z− y0| ≤ 2j+1, we have 2|y− y0| ≤ |z− y0|.
By the regularity condition (1.9), we have

P2 ≤ C
∫

2j−2≤|z−y0|≤2j+2

ηj−lδ(n)(y0 + rθ − z) |y − y0|δ

|z − y0|d+δ
dz . 2−nδ−jd.

Combining the estimates of P1 and P2, we conclude that (4.15) is controlled by 2−nδ−jd.

Now we come back to estimate the L1(Rd) norm of Fm,2(·, y). It is easy to check

|(I − 2−2m∆ξ)
Nψ(2mξ)| ≤ C.

Since we need to get the L1 estimate of Fm,2(·, y), by the support of ψ(2mξ), we have∫
|ξ|≤21−m

∫ (
1 + 2−2m|x− y − rθ|2

)−N
dxdξ ≤ C.
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Integrating with r, we get ∫ 2j+2

2j−2

rd−1dr ≈ 2jd.

Integrating with θ, we get a bound 2−nγ(d−1)+nι‖Ω‖1. Combining with the estimates in (4.14)

and (4.15), the L1 norm of Fm,2(·, y) is bounded by(
n2δ−1

2−n + 2−nδ
)

2−nγ(d−1)+nι‖Ω‖1,

which is the required bound. �

4.4. Proof of Lemma 2.4.

Let us come back to the proof of Lemma 2.4, it is sufficient to consider I and II in (4.1).

By (4.3), (4.4) and (4.13), we have

I + II ≤ 2

λ

∑
n≥100

∑
j

∑
v

∑
l(Q)=2j−n

[
C−1
µ,d2

nµ+nγ(d−1)+nγ([ d
2

]+1)‖An,vj,mbQ‖1 +
∑
k<m

‖Dn,v
j,k bQ‖1

]
≤ 2

λ

∑
n≥100

∑
j

∑
v

∑
l(Q)=2j−n

sup
y∈Q

[
C−1
µ,d2

nµ+nγ(d−1)+nγ([ d
2

]+1)
(
‖Fm,1(·, y)‖1

+ ‖Fm,2(·, y)‖1 + ‖Fm,3(·, y)‖1
)

+
∑
k<m

‖Dk(·, y)‖1
]
‖bQ‖1.

Notice m = j − [nε0] and card(Θn) . 2nγ(d−1). Now applying Lemma 4.2 with N = [d2 ] + 1,

then Lemma 4.3, Lemma 4.4, Lemma 4.5 and the fact [nε0] ≤ nε0 < [nε0] + 1 imply

I + II . λ−1
∑
n≥100

∑
j

∑
l(Q)=2j−n

‖bQ‖1‖Ω‖1
[
C−1
µ,d(2

s1n + n2δ−1
2s2n + 2s3n) + n2δ−1N12s4n

]
,

where

s1 = µ+ γ(d− 1) + γ
(
[
d

2
] + 1

)
− 1 + ε0 + ι,

s2 = µ+ γ(d− 1) + γ
(
[
d

2
] + 1

)
− 1 + ι,

s3 = µ+ γ(d− 1) + γ
(
[
d

2
] + 1

)
− δ + ι,

s4 = −ε0N1 + γN1 + 2
(
[
d

2
] + 1

)
γ + ι.

Now we choose 0 < ι � γ � ε0 � 1, 0 < µ � δ, 0 < γ � δ, 0 < ι � δ and N1 large enough

such that

max{s1, s2, s3, s4} < 0.

Therefore

I + II .
‖Ω‖1
λ
‖b‖1

∑
n≥100

[
C−1
µ,d(2

s1n + n2δ−1
2s2n + 2s3n) + n2δ−1N12s4n

]
.
‖Ω‖1
λ
‖f‖1.

Hence we finish the proof of Lemma 2.4, thus we prove Theorem 1.1. �
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5. Applications of the criterion

In this section, we will give some important and interesting applications of Theorem 1.1.

Notice the following well known embedding relations between some function spaces on Sd−1:

L∞(Sd−1) ( Lr(Sd−1) (1 < r <∞) ( L log+L(Sd−1) ( L1(Sd−1),

and ‖Ω‖L log+ L . ‖Ω‖r when Ω ∈ Lr(Sd−1) (1 < r ≤ ∞). Thus, we may get the following

corollary of Theorem 1.1:

Corollary 5.1. Suppose K satisfies (1.8) and (1.9). Let Ω satisfy (1.1) and Ω ∈ Lr(Sd−1) for

1 < r ≤ ∞. In addition, suppose Ω and K satisfy some appropriate cancellation conditions such

that TΩf(x) in (1.7) is well defined for f ∈ C∞c (Rd) and maps L2(Rd) to itself with bound ‖Ω‖r.
Then for any λ > 0, we have

λm({x ∈ Rd : |TΩf(x)| > λ}) . CΩ,r‖f‖1

where CΩ,r = ‖Ω‖r +
∫
Sd−1 |Ω(θ)|

(
1 + log+(|Ω(θ)|/‖Ω‖1)

)
dθ.

Obviously, the weak type (1,1) bounds of rough singular integral T given in Theorem B are

immediate consequences of applying Theorem 1.1. In fact, it is easy to see that

K(x, y) =
1

|x− y|d

in the kernel of the singular integral T defined in (1.4) satisfies (1.8) and (1.9) with δ = 1.

In the following we give some applications of Theorem 1.1 and Corollary 5.1 involving

Calderón commutator and its generalizations, which arises naturally in the studies of the Cauchy

integral on Lipschitz curve and differential equations with non-smooth coefficients, see [4], [18],

[27] and [28] for the background and applications of Calderón commutator.

5.1. Calderón commutator.

Recall Caldeón commutator defined in (1.5),

TΩ,Af(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
· A(x)−A(y)

|x− y|
· f(y)dy,

As a first application of Theorem 1.1, we get the weak type (1,1) boundedness of Calderón

commutator TΩ,A.

Theorem 5.2. Suppose Ω ∈ L log+L(Sd−1) satisfying (1.1) and (1.6) and A ∈ Lip(Rd). Then

for any λ > 0, we have

m({x ∈ Rd : |TΩ,Af(x)| > λ}) . λ−1CΩ‖∇A‖∞‖f‖1.

Proof. Under the conditions in Theorem 5.2 , by Theorem C, we know that TΩ is bounded on

L2(Rd) with bound ‖∇A‖∞‖Ω‖L log+ L. Hence, to prove the Theorem 5.2, by Theorem 1.1, it is

enough to show that the kernel

K(x, y) =
1

|x− y|d
A(x)−A(y)

|x− y|
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satisfies (1.8) and (1.9). Since A ∈ Lip(Rd), it is trivial to see that (1.8) holds. Suppose

|x1 − y| > 2|x1 − x2|, then we have |x1 − y| ≈ |x2 − y|. Applying the mean value formula, we

have

|K(x1, y)−K(x2, y)| ≤
∣∣∣ 1

|x1 − y|d+1
− 1

|x2 − y|d+1

∣∣∣|A(x1)−A(y)|+ |A(x1)−A(x2)|
|x2 − y|d+1

. ‖∇A‖∞
|x1 − x2|
|x1 − y|d+1

.

Thus the first inequality in (1.9) is valid. The proof of the second inequality in (1.9) is similar.

Hence we complete the proof. �

5.2. Higher order Calderón commutator.

In 1990, S. Hofmann [23] gave the Lp (1 < p <∞) boundedness of the higher order Calderón

commutator defined by

(5.1) T kΩ,Af(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
·
(
A(x)−A(y)

|x− y|

)k
· f(y)dy,

where Ω satisfies (1.1), A ∈ Lip(Rd) and k ≥ 1.

Theorem D ([23]). Suppose that Ω ∈ L∞(Sd−1) and satisfies the moment conditions

(5.2)

∫
Sd−1

Ω(θ)θαdθ = 0, for all α ∈ Zd+ with |α| = k.

Then the higher order Calderón commutator T kΩ,A defined in (5.1) is a bounded operator on

Lp(Rd) for 1 < p <∞ with bound ‖Ω‖∞‖∇A‖k∞.

Applying Corollary 5.1, we show that the higher order Calderón commutator T kΩ,A is of weak

type (1,1).

Theorem 5.3. Suppose that k ≥ 1, Ω ∈ L∞(Sd−1) satisfying (1.1) and (5.2) and A ∈ Lip(Rd).
Then for any λ > 0, we have

m({x ∈ Rd : |T kΩ,Af(x)| > λ}) . λ−1‖Ω‖∞‖∇A‖k∞‖f‖1.

Proof. The proof is similar to the proof of Theorem 5.2. By Corollary 5.1 and Theorem D, it

only needs to check that the kernel

K(x, y) =
1

|x− y|d

(
A(x)−A(y)

|x− y|

)k
satisfies (1.8) and (1.9). On one hand, the verification of (1.8) is trivial since A ∈ Lip(Rd). On

the other hand, if |x1 − y| > 2|x1 − x2|, we have |x1 − y| ≈ |x2 − y|. Applying the mean value
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formula, we get

|K(x1, y)−K(x2, y)|

≤
∣∣∣ 1

|x1 − y|d
− 1

|x2 − y|d

∣∣∣∣∣∣∣∣A(x1)−A(y)

|x1 − y|

∣∣∣∣k
+

1

|x2 − y|d

∣∣∣∣(A(x1)−A(y)

|x1 − y|

)k
−
(
A(x2)−A(y)

|x2 − y|

)k∣∣∣∣
. ‖∇A‖k∞

|x1 − x2|
|x1 − y|d+1

.

Thus the first inequality in (1.9) is valid. The proof of the second inequality in (1.9) is similar.

Hence we complete the proof. �

5.3. General Calderón commutator.

In [3], Calderón introduce the following more general commutator

(5.3) TΩ,F,Af(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
F
(A(x)−A(y)

|x− y|

)
f(y)dy.

It is well known that the study of this commutator is closely connected to the Cauchy integral

on Lipschitz curves and the elliptic boundary value problem on non-smooth domain (see [4], [3],

[5] and [16]). In [5], by using the method of rotation, A. P. Calderón et al. pointed that

Theorem E ([5]). Suppose Ω, F and A satisfy the following conditions, then the commutator

TΩ,F,A defined in (5.3) is bounded on Lp(Rd) for 1 < p <∞:

(i) Ω(−θ) = −Ω(θ) for θ ∈ Sd−1 and Ω ∈ L1(Sd−1);

(ii) A ∈ Lip(Rd) ;

(iii) F (t) = F (−t) for t ∈ R and F (t) is real analytic in {|t| ≤ ‖∇A‖∞}.

Using Theorem 1.1, we may get a weak type (1,1) boundedness of TΩ,F,A.

Theorem 5.4. Suppose Ω, A and F satisfy the conditions (i)∼(iii) in Theorem E. If Ω ∈
L log+ L(Sd−1), then the general Calderón commutator TΩ,F,A is of weak type (1, 1). That is, for

any λ > 0 and f ∈ L1,

m({x ∈ Rd : |TΩ,F,Af(x)| > λ}) . λ−1CΩ‖f‖1.

Proof. By Theorem 1.1 and Theorem E, it is enough to show that the kernel

K(x, y) =
1

|x− y|d
F
(A(x)−A(y)

|x− y|

)
satisfies (1.8) and (1.9). It is easy to check that

|K(x, y)| ≤ 1

|x− y|d
‖F‖L∞(B(0,‖∇A‖∞)).
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Suppose |x1 − y| > 2|x1 − x2|, then |x1 − y| ≈ |x2 − y|. Using the mean value formula and the

fact F is analytic in {|t| ≤ ‖∇A‖∞}, we have

|K(x1, y)−K(x2, y)| ≤
∣∣∣ 1

|x1 − y|d
− 1

|x2 − y|d
∣∣∣∣∣∣F(A(x1)−A(y)

|x1 − y|

)∣∣∣
+

1

|x2 − y|d
∣∣∣F(A(x1)−A(y)

|x1 − y|

)
− F

(A(x2)−A(y)

|x2 − y|

)∣∣∣
.
|x1 − x2|
|x1 − y|d+1

(
‖F‖L∞(B(0,‖∇A‖∞)) + ‖∇A‖∞‖∇F‖L∞(B(0,‖∇A‖∞))

)
.

Thus the first inequality in (1.9) is valid. Similarly we can establish the second inequality in

(1.9). Therefore we complete the proof. �

5.4. Calderón commutator of Bajsanski-Coifman type.

In 1967, Bajsanski and Coifman [1] introduced another kind of general Calderón commutator

as follows. For a multi-indices α ∈ Zd+, set Aα(x) = ∂αxA(x) and

Pl(A, x, y) = A(x)−
∑
|α|<l

Aα(y)

α!
(x− y)α,

where l ∈ N. Define the singular operator TΩ,A,l as

(5.4) TΩ,A,lf(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
· Pl(A, x, y)

|x− y|l
· f(y)dy,

where Ω satisfies (1.1) and (1.3). Clearly, when l = 1, the operator TΩ,A,l is just Calderón

commutator TΩ,A defined in (1.5).

Theorem F ([1]). The commutator TΩ,A,l defined in (5.4) is bounded on Lp(Rd) for 1 < p <∞
if l ∈ N and Ω, A satisfy the following conditions:

(i) Ω ∈ L log+L(Sd−1) and satisfies (1.1) and

(5.5)

∫
Sd−1

Ω(θ)θαdθ = 0, for all α ∈ Zd+ with |α| = l;

(ii) Aα ∈ L∞(Rd) for |α| = l.

E. M. Stein pointed out that the operator TΩ,A,l is of weak type (1, 1) if Ω ∈ Lip(Sd−1).

Theorem G (E. M. Stein, see [1, p. 16]). Suppose l ∈ N and Ω, A satisfy the same conditions

as Theorem F, but replacing Ω ∈ L log+L(Sd−1) by Ω ∈ Lip(Sd−1), then TΩ,A,l is of weak type

(1, 1).

Applying Theorem 1.1, we may improve Theorem G essentially.

Theorem 5.5. Let l ≥ 1. Suppose Ω ∈ L log+L(Sd−1) satisfying (1.1) and (5.5). Let Aα ∈
L∞(Rd) for every |α| = l. Then for any λ > 0, we have

m({x ∈ Rd : |TΩ,A,lf(x)| > λ}) . λ−1CΩ

∑
|α|=l

‖Aα‖∞‖f‖1.
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Remark 5.6. When l = 1, TΩ,A,1 equals to TΩ,A defined in (1.5). Thus, Theorem 5.2 is just the

special case of Theorem 5.5 when l = 1.

Proof. By Theorem 1.1 and Theorem F, to prove Theorem 5.5, it suffices to show that the kernel

K(x, y) =
1

|x− y|d
· Pl(A, x, y)

|x− y|l

satisfies (1.8) and (1.9). By the fact Aα ∈ L∞(Rd) for every |α| = l and the following Taylor

expansion

Pl(A, x, y) = l
∑
|α|=l

(x− y)α

α!

∫ 1

0
(1− s)l−1Aα(y + s(x− y))ds,

we conclude that

|K(x, y)| .
∑
|α|=l

‖Aα‖∞
1

|x− y|d
.

Choose |x1 − y| > 2|x1 − x2|. Then we have |x1 − y| ≈ |x2 − y|. By using the Taylor

expansion, we can write

Pl(A, x, y) = Pl−1(A, x, y)−
∑
|α|=l−1

Aα(y)

α!
(x− y)α

= (l − 1)
∑
|α|=l−1

(x− y)α

α!

∫ 1

0
(1− s)l−2

(
Aα(y + s(x− y))−Aα(y)

)
ds.

Note that for each |α| = l − 1, Aα ∈ Lip(Rd). By the mean value formula, it is not difficult to

see that

|K(x1, y)−K(x2, y)| .
∑
|α|=l

‖Aα‖∞
|x1 − x2|
|x1 − y|d+1

.

The proof of the second inequality in (1.9) is similar. Hence (1.9) holds for K(x, y). Thus we

finish the proof. �

5.5. General singular integral of Muckenhoupt type.

In 1960, B. Muckenhoupt [26] considered a modification of singular integral and generalized

Calderón and Zygmund’s work [6] and [7] on the fractional integration in the following. Suppose

that Ω satisfies (1.1)∼(1.3). Then the following singular integral operator is well defined for

f ∈ C∞c (Rd) and r ∈ R \ {0},

(5.6) TΩ,irf(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d+ir
f(y)dy,

where i =
√
−1.

Theorem H ([26, Theorem 8]). With the above definition of the general singular integral operator

TΩ,ir, TΩ,ir is bounded on Lp(Rd) with bound Cr‖Ω‖1 for 1 < p <∞. Here we should point out

Ω satisfies additional cancelation condition (1.2) so that TΩ,irf is well defined for f ∈ C∞c (Rd).

As a final application of Theorem 1.1, we can establish the weak type (1,1) boundedness of

TΩ,ir.
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Theorem 5.7. Suppose Ω satisfies (1.1), (1.2) and Ω ∈ L log+ L(Sd−1). Then for any λ > 0,

m({x ∈ Rd : |TΩ,irf(x)| > λ}) . λ−1CΩ‖f‖1.

Proof. By Theorem 1.1 and Theorem H, it suffices to verify the kernel

K(x, y) =
1

|x− y|d+ir

satisfying (1.8) and (1.9). It is easily to see that |K(x, y)| = 1
|x−y|d . Suppose |x1−y| > 2|x1−x2|,

then |x1 − y| ≈ |x2 − y|. By using the mean value formula, we have

|K(x1, y)−K(x2, y)|

≤
∣∣∣ 1

|x1 − y|d
− 1

|x2 − y|d
∣∣∣+

1

|x2 − y|d
∣∣∣e−ir ln |x1−y| − e−ir ln |x2−y|

∣∣∣
.
|x1 − x2|
|x1 − y|d+1

.

So the first inequality in (1.9) is valid. Similarly we can establish the second inequality in (1.9).

Hence we complete the proof. �

6. Some further problems

In the previous section, we give lots of applications of Theorem 1.1. However, there are still

many operators that do not fall into the scope of our main result’s applications. Below we list

some open problems related to weak type (1,1) bound (For more we refer the reader to see [30],

[21]).

6.1. Oscillatory singular integral operator with rough kernel. Let P (x, y) be a real-

valued polynomial on Rd × Rd. S. Lu and Y. Zhang [25] showed that the operator defined

by

Tf(x) = p.v.

∫
Rd
eiP (x,y) Ω(x− y)

|x− y|d
f(y)dy

is bounded on Lp(Rd)(1 < p < +∞) if Ω satisfies (1.1), (1.2) and Ω ∈ Lr(Sd−1)(1 < r ≤ +∞).

S. Challino and M. Christ [9] proved that this operator is of weak type (1,1) if Ω ∈ Lip(Sd−1).

It is interesting to show T is weak (1,1) bounded if Ω is rough.

6.2. Commutator of Christ-Journé type. Let a ∈ L∞(Rd), let K be the Calderón-Zygmund

convolution kernel. M. Christ and J. L. Journé [11] proved the operator defined by

Ta,kf(x) = p.v.

∫
Rd
K(x− y)(mx,ya)kf(y)dy

maps Lp(Rd) to itself for 1 < p < +∞, where mx,ya =
∫ 1

0 a(sx + (1 − s)y)ds. A. Seeger [30]

showed that Ta,1 is of weak type (1,1). It is open whether Ta,k is weak (1,1) bounded for k ≥ 2. If

replacing the Calderón-Zygmund convolution kernel K(x) by Ω(x)/|x|d with Ω is homogeneous

of degree zero, S. Hofmann [24] proved this kind of operator maps Lp(w) to itself for w an Ap

weight and 1 < p < ∞ if Ω ∈ L∞(Sd−1). One can also ask a question whether it is weak type

(1,1) bounded if Ω ∈ L∞(Sd−1).
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6.3. Maximal singular integral operator with rough kernel. SupposeK satisfies (1.8) and

(1.9). Let Ω satisfy (1.1) and Ω ∈ L log+ L(Sd−1). Suppose Ω and K satisfy some appropriate

cancellation conditions such that the following operator

T∗f(x) = sup
ε>0

∣∣∣ ∫
|x−y|>ε

Ω(x− y)K(x, y)f(y)dy
∣∣∣.

is well defined for f ∈ C∞c (Rd) and extends to a bounded operator on L2(Rd) with bound

C‖Ω‖L log+ L. Then a natural question is that wether T∗ is of weak type (1,1). When K(x, y) =

1/|x−y|d, Calderón and Zygmund [7] showed that T∗ is Lp(Rd) bounded for 1 < p < +∞ if Ω ∈
L log+ L(Sd−1). But it is unknown whether T∗ is of weak type (1,1) even when Ω ∈ L∞(Sd−1).

And when K(x, y) = A(x)−A(y)
|x−y|d+1 , A is a Lipschitz function, A. P. Calderón [2] proved that T∗ is

Lp(Rd) bounded for 1 < p < +∞ if Ω ∈ L log+ L(Sd−1). Also the weak type (1,1) bound is

unknown in this case.
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