ON THE COMPOSITION OF ROUGH SINGULAR
INTEGRAL OPERATORS

GUOEN HU, XUDONG LAI, AND QINGYING XUE

ABSTRACT. In this paper, we investigate the behavior of the bounds of
the composition for rough singular integral operators on the weighted
space. More precisely, we obtain the quantitative weighted bounds of
the composite operator for two singular integral operators with rough
homogeneous kernels on LP(R?, w), p € (1, c0), which is smaller than
the product of the quantitative weighted bounds for these two rough
singular integral operators. Moreover, at the endpoint p = 1, the Llog L
weighted weak type bound is also obtained, which has interests of its
own in the theory of rough singular integral even in the unweighted case.

1. INTRODUCTION

This paper will be devoted to study the quantitative weighted bound-
s for the composition of rough singular integral operators. The theory of
Calderén-Zygmund singular integral operator, which origins from the pio-
neering work of Calderén and Zygmund [4] in 1950s, has been developed
extensively in the last sixty years (see for example the recently exposition
[14],[15)).

The composition of singular integral operators arise typically in the alge-
bra of singular integral (see [6],[2],[3]) and the non-coercive boundary-value
problems for elliptic equations (see [31],[28]). In the past decades, con-
siderable attention has been paid to the composition of singular integral
operators. We refer the reader to see the work in [34, 31, 9, 30, 7, 28] and
the references therein. This paper will be devoted to study the composition
of the singular integral operator T, with a rough convolution type kernel.
Recall that Tq, is defined by

Qx —
(1) Tof(@) =pv. [ =D s,
Re |z — Y|
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where €2 is homogeneous of degree zero, integrable and has mean value zero
on the unit sphere S41. This operator was introduced by Calderén and
Zygmund [4], and then studied by many authors in the last sixty years (see
e.g. [5], [11], [32], [10], [16], [13], [33]). The composite operator Tq,Tq,
has been first appeared in the work of Calderén and Zygmund [6] where
the algebra of singular integrals was studied. However in this paper, we
will study other properties of the composite operator T, Tn,. Our starting
points of this paper are as follows:

(i). Calderén and Zygmund [5] proved that Tg is bounded on LP(RY) if
p € (1, oo) for rough kernel €. It is trivial to see that the composite
operator Tq,Tq, is bounded on LP(RY) for p € (1,00). At the
endpoint p = 1, it was quite later that Seeger [33] showed Tf, is of
weak type (1,1) by means of some deep idea of geometric microlocal
decomposition and the Fourier transform. Nevertheless, no proper
weak type estimate of T, T, was known prior to this article when
both 7 and 2, are rough kernels. In this paper, we will prove that
Tq,To, satisfies the Llog L weak type estimate.

(ii). Recently there are numerous work related to seek the optimal quan-
titative weighted bound for singular integral operator (see e.g. [8,
25, 26, 27, 12, 21, 24, 22, 1, 18, 19]). Motivated by this, our inter-
ests are focused on the behavior of the quantitative weighted bound
for T, T, compared to that of single singular integral. We show
that the quantitative weighted bound of T, Tq, is smaller than the
products of that of T, and Tq,, which has interests of its own.

We summary our main results as follows.

Theorem 1.1. Let 21, 9 be homogeneous of degree zero, have mean value
zero and Q1, Qp € L>®(S97Y). Then for p € (1, 00) and w € Ay(RY),
1 1
P P’

1T Toufl oy S Ll (0l + o5 (ol + w]a.)
xmin {[o] 4., (0] W1 ot )

where p' = p/(p—1), 0 = w= P~V and the precise definitions of A, (R
weight and A, constants are listed in Section 2.

Remark 1.2. It is unknown whether the above quantitative weighted bound
is optimal. However, from the recent result of Hytonen, Roncal, and Tapiola
[24]: if Q@ € L>°(S%7 1), then for p € (1, o0) and w € A,(RY),
1 1 1
T f Nl o (e, wy S [wlh, ([wlh + [0]5) ([0]aw + [wla) 1]l o @, w)
in which the quantitative weighted bound was improved later by Li, Pérez,

Rivera-Rios and Roncal [29] as follows,

(1.2) ] ([l + o] ) min{lo]a, [uw]a.},
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we can see that the quantitative weighted bound of T, T, in Theorem 1.1
is smaller than the product of the quantitative weighted bounds of T, and
Ta, in (1.2). In fact, for p € (1, o0) and w € A,(R?), by some elementary
computation,

1

masc{[wa, [oa.} < [l ([l + o]

o)

T =

which easily implies our desired estimate.

Theorem 1.3. Let 21, Q9 be homogeneous of degree zero, have mean value
zero and Qy, Qp € L=°(S91). Then for w € A(R?) and X > 0,

w({z € R : |To, To, f(z)] > A})

S fula,fulh, Jog(e + ula) | I 0g (o LMY 0

Remark 1.4. To the best knowledge of the author, the Llog L weak type
estimate in Theorem 1.3 is new even in the unweighted case. We do not know
whether this kind of L log L weak type estimate is optimal, but this estimate
has no hope to be improved to the weak type (1,1) estimate even in the case
Q1,0 € C°(S971). In fact, it was shown by Phong and Stein [31] that in
general the composite operator T, Tq, is not of weak type (1,1). More ever,
the authors of [31] gave a necessary and sufficient condition such that the
composite operator is of weak type (1,1). If Q1,Qy € C°(S91), then by
[14, Proposition 2.4.8], the symbols of T, and Tq, (thus is Flp.v.Q1(-)/| -
9] and Fp.v.Qa(-)/| - |4], where F[f] denote the Fourier transform of f)
are C>°(R?\ {0}). By check the necessary and sufficient condition in [31,
Theorem 1], we may show that T, Tq, is not of weak type (1,1).

Previous results of quantitative weighted bounds for the composite oper-
ator is only known for the smooth singular integral operators, we refer to see
[1],[18] and [19]. It should be pointed out that the argument for the smooth
singular integral operators used in [1, 18, 19] essentially relies on the smooth
condition of the kernel. Our strategy in this paper is to establish a decom-
position of the composite operator by representing it as two operators which
may have different kinds of bilinear sparse dominations: (L(log L)?, L") and
(L', L") type respectively (see Corollary 5.1). This decomposition is done
basing on the weak type estimates of the grand maximal operator .#r,, , and
To. In addition, we also show that the (L(log L)®, L") type sparse domina-
tion could be applied to the operator that is of (L(log L)? weak type to get
quantitative weighted bounds. Our main arguments (see Sections 3 and 4)
presented in this paper are stated in the abstract setting which have interest
of its own. By applying them to the composite operator T, To,, we may
get our main theorems.

This paper is organized as follows. In Section 2, we give some notation
and lemmas. In Section 3, we will establish an quantitative weighted weak
type estimate for the operator which enjoys a bilinear sparse domination.
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Section 4 is devoted to give a decomposition of the composite operator.
Finally as applications of the arguments in Sections 3 and 4, the proof of
our main theorems are given in Section 5.

2. PRELIMINARY

In this paper, we will work on R%, d > 2. C always denotes a positive
constant that is independent of the main parameters involved but whose
value may differ from line to line. We use the symbol A < B to denote
that there exists a positive constant C' such that A < C'B. Specially, we use
A Sqp B to denote that there exists a positive constant C' depending only
on d,p such that A < CB. Constant with subscript such as ¢, does not
change in different occurrences.

For any set F C R?% yp denotes its characteristic function. For a cube
Q C R% and A € (0, 00), we use £(Q) (diam@Q) to denote the side length
(diameter) of @, and AQ to denote the cube with the same center as @) and
whose side length is A times that of Q). For a fixed cube @, denote by D(Q)
the set of dyadic cubes with respect to @, that is, the cubes from D(Q)
are formed by repeating subdivision of @ and each of descendants into 2%
congruent subcubes.

For B € [0, o0), cube Q C R? and a suitable function g, 191l L(10g )2, 0 18
the norm defined by

. 1 lg(y) lg(y)]
91l L1og )8, @ = inf {A >0: A log”? (e + T)dy < 1}.

1
(If])o denotes the mean value of |f| on Q and (|g)o, = ({|g]")q)". We
denote [|g| £aog )0, by (l9])@- Let Mg be the maximal operator defined by

Msf(x) = [M(f1%)()]7,

where M is the Hardy-Littlewood maximal operator, and M, 1,)s be the
maximal operator defined by

ML(logL)ﬁg(x) = Sup HQHL(logL)ﬂ,Q-
Q3>

For simplicity, we denote Mpogryt by Mpiogr. It is well known that
M (10g )5 is bounded on LP(R™) for all p € (1, c0), and for any A > 0,

(21) Hze R : Mp1og 1ys9(2) > M < /]Rd ’9(/e\73)| log” (e * M;)‘)dap

Let w be a nonnegative, locally integrable function on R%. We say that
w € Ap(RY) if the A, constant [w],, is finite, where

[w]a, := sgp (@/@w(m)dm) (@/Qw_zfl(:v)d:ry_l, p € (1, 0),
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the supremum is taken over all cubes in R?, and the A; constant is defined
by

A weight u € A (R?) = Up>1 A,(R?). We use the following definition of the
A constant of u (see e.g. [35])

[u]a,, = sup — /M uxQ)(
QCRd u(

As usual, by a general dyadic grid 2, we mean a collection of cubes with
the following properties: (i) for any cube Q € 2, its side length ¢(Q) is
of the form 2% for some k € Z; (ii) for any cubes Q1, Q2 € 2, Q1 N Qs €
{Q1, Q2, 0}; (iii) for each k € Z, the cubes of side length 2* form a partition
of R%.

Let n € (0,1) and S = {Q;} be a family of cubes. We say that S is
n-sparse, if for each fixed Q € S, there exists a measurable subset Eg C @,
such that |Eg| > n|Q| and Eg’s are pairwise disjoint. Associated with the
sparse family S and constants 8 € [0, co) and r € [1, o), we define the
bilinear sparse operator Ag. L(log L)%, L bY

As L(log L)8,L" (f.9) Z |Q’”fHL (log L)B Q(’Q’)
QES
Also, we define the operator As rri rra by
As,zr2(£,9) = 3 1QUI D gl re-
QES

Let T be a sublinear operator acting on U,>1LP(R%), B, ¢ € (0, 00). We
say that T enjoys a (L(log L)?, L%)-bilinear sparse domination with bound
A, if for each bounded function f with compact support, there exists a sparse
famﬂy S of cubes, such that for all g € LIOC(Rd)7

(2.2) )/ z)dz| < AAg 100g )8, La([5 9)-

We will use the following lemmas in our proof.

Lemma 2.1 (see [23]). Lett € (1, 0c0). Then for p € (1, co) and weight w,

1
||Mf||Lp’(Rd7(Mtw)1—p’) < capt'?’ ||f||Lp’(Rd,w1—p’)-
Lemma 2.2 (see [29] or [27]). Let p € (1, 0c0) and v be a weight. Let S be
the operator defined by
1 1
S(h) =v »M(hvr)
and R be the operator defined by

o0 k
(2.3) R(h) = Z ! 5°h

2 HSHLP(Rd )—LP (R4, v)‘




6 G. HU, X. LAI, AND Q. XUE

Then for any h € LP(R?, v),
(i) 0 <h < R(h),
(1) R Lowe,v) < 20l Lo (ra, v)s
(iii) R(h)v% c A1 (RY) with [R(h)v%]A1 < cqp’. Furthermore, when v =
M,w for some r € [1, ), we also have that [Rh]a,, < cqp'.
Lemma 2.3 (see [22]). Let w € Ax(R?). Then for any cube Q and 6 €
(1, 1+ WL

<‘22|/Qw‘s(m)dl)‘S < é Qw(v’ﬂ)dﬂﬁ-

3. ENDPOINT ESTIMATES FOR SPARSE OPERATORS

The main purpose of this section is to establish a weighted weak type
endpoint estimate for the operator which enjoys (L(log)?, L9)-bilinear sparse
domination. We begin with some lemmas.

Lemma 3.1. Let § € [0, o), r € [1, 0c0) and w be a weight. Then for any

t € (1, 00) and p € (1, r') such that tp;{i_ll > 1,

/1+6(1;/)'(tp//r -1

1=
AS,L(logL)ﬂ,L’"(fv 9) S0P V1 ) P Hf”LP(Rd,Mtw)||g||Lp’(]Rd7w1—p’)‘

Proof. Let p € (1, 7'), f € C(R?) with [ fllr(ra, vy = 1 and Rf be the
function defined by (2.3). Recall that

B \p\/ 1 / :
< - s
9 legos .0 % (14 (25)°) (g L @)
Applying Lemma 2.2 with v = M;w and Lemma 2.3, we then get that
D llaoe s, @lldha @1 S 87 (gl (f)a.slQ]

Qes Qes
< 57 dabarlIRfDa.slQl
QeS
< p” Z(\QDQ,r/ Rf(y)dy,
Qes Q
if we choose s = 1 + W. As in the proof of Lemma 4.1 in [23], we
see that -
> lshar [ Riwde £ Y inf Migy) [ Rf()is
Qes @ Qes”’ Q

S [Bae [ Mrg@)Rf(@)ds

< v /R Myg(@)Rf(a)da.
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Holder’s inequality, along with Lemma 2.1, tells us that
i ! / L/
[ s@rs@de <[ [ (Mg (o) da] 18 s
- - P —1 l_p//,r,
= [ [, etig ) * (M vps WD) @) ]
L Rd

- Np—1
s

Combining the estimates above leads to that

/ /
P\, 0 /=104
E Hf”L(logL)B(’g’)QJ"Q’ 510,1%(?) (t V-1 ) P HQHLP'(Rd,wl—p')-
QeS

RS
7

bS]

This, via homogeneity, implies our required estimate and completes the proof
of Lemma 3.1. O

Let U be an operator on U,>1LP(R?). We say that U is sublinear, if for
all functions fi, f» and = € R,

[U(f1+ f2)(@)] < [UA) (@) + U (f2) ()],
and for all A € R and function f,
(AU f(z)| = [UAS)()]-

Theorem 3.2. Let o, 3 € NU{0}, t,7 € [1, 00), p1 € (1, 7') such that
tpl/r 1

> 1. Let U be a sublinear operator which enjoys a (L(log L)?, L")-

sparse domination with bound D. Then for any weight u and bounded func-
tion f with compact support,

(3.1) u({z e R: |Uf(x)| > 1})

< (1 {ppl o (B (A=)

p1 -1
< / F@)log? (e + | £(4) ) Mru(y)dy.
Rd

Proof. Let f be a bounded function with compact support, and S be the
sparse family such that for g € LT (R?),

)/Rd Uf(x)g(w)dx‘ < DA, 10g )2, 17 (f+ 9)-

By the one-third trick (see [21, Lemma 2.5]), there exist dyadic grids 21, ..., 34
and sparse families &1, ..., Ssa, such that for j =1, ..., 3¢, S; C %j, and

3¢
‘AS L(log L)B, L™ fa Z L(log L)# L’"(fv )
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Now let Mg, 110g1)# e the maximal operator defined by

3.2 Mg sh(xr) = sup h 8O-

( ) 2;,L(log L) ( ) Q52,0€9; H ||L(10gL) ,Q

For each j =1, ..., 3%, decompose the set {z € R : Mg, paogrys f(z) > 1}
as

{zeR:: Mgy, rogrys f(x) > 1} = UrQjr,
with Qj; the maximal cubes in Z; such that | f||Leg1)5,q,, > 1. We have
that

L <[[fllzgog )8, ;1 S 2¢.
Let . '
1) = FWxeau, W) BW) =D FW)xe,. W),

k
and

fg(y) = Z ”fHL(logL)ﬁ,ijXij(y)-
k

It is obvious that Hf{HLl(Rd) Sl ey HffHLOO(Rd) < 1and ||f§||Loo(Rd) S
1.
Let u be a weight and p; € (1, co). It then follows from Lemma 3.1 that

(33)  As Laogr)s, - (f15 9)
/ / 1
11+8 P1y/ /T =1\
Spl (7) (t p/l -1 ) 1 Hf{HLpl(Rd,Mtu)HgHLPa(Rd’ulfp’)'

Let E = U?il Ux 4dQjx and u(y) = u(y)Xra\g(y)- It is obvious that
B4) wB)S Y inf Mu(\Qul < [ 1Fwl1og e+ 11w Mu(y)d.
gk

Moreover, by the fact that

inf Muu(y) ~ sup Mu(z),
YEQjk 2€Q;

we obtain that for v € [0, 00),

(35) Al e, am S Zzé%f_kMtﬂ(z)’ij’Hf”L(logL)ﬁ,ij
k J

< / £ log® (e + | () Myuy)dy.
R4

Let
S;={I€S;: InRNE) +# 0}.

Note that if supp g C R¥\ E, then

As; Log 1y, 17 (35 9) = Ast paog yor, 1 (f35 9)-
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As in the argument in [17, pp. 160-161], we can verify that for each fixed
ISy
7 )

||f§ ||L(10gL)5,I N ||f§ ||L(logL)r3,I'
Again by Lemma 3.1, we have that for g € L'(R?) with suppg C R\ E,

(36) ASj,L(logL)B,LT (fgv ) S AS L(logL)B LT (f?jn g)
146 (Pl p /7“
< o By (=1

~

" Hf3HL1 (R4, M) ||g||LP,1(Rd\E7ulfp’)'

Inequalities (3.3) and (3.6) tell us that

sw | [ Uf@)gla)e]
d
IIgIIL,,1 (R 71— ,,/1> R
3d
<D sup Z( s, Liog L)?,7 (f1,9) + As; Log 1)#,17 (f2 ))
19154 g s 154, <1 521

/ / 1 1
148 PLy g, P/ — 1\
< Do () (P15 () 128 gy + 1 )

Thus together with inequalities (3.4) and (3.5), we know that
u({z € R : [UF@)| > 1}) < ulE) + U1, o 5.2

/ / 1

p py/r—1/--1P1

< (1+ {Dpo (B (B m =y / |F@)log? (e + | £(y)) Mru(y)dy.
r p;— 1 R

This completes the proof of Theorem 3.2. ([

Corollary 3.3. Let a, $ € NU{0} and U be a sublinear operator. Suppose
that for any r € (1, 3/2], U satisfies bilinear (L(log L)?, L")-sparse domi-
nation with bound r'®. Then for any w € A1(R?) and bounded function f
with compact support,

w({z eR?: Uf(z)] > A})

< [wld. log' P (e + [w] 4 ) [w] 4, /Rd W;M log? (e + ’f()\fﬁ)|>w(x)da:

Proof. Let w € Aj(R?). Choose t = 1 + W’ r = (1+1t)/2 and

[ r—1
pr =1+ m. We apply Theorem 3.2 and deduce that t% > 1
and

/ 20"

(L =ty__ twh/r =) (B SUS e Sk
1) e g+l t—1 8 - -
P (p/r—=1) —py + -1 B
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Note that ' = &1 < 212+, and p) < log(e + [w]a.. ). Therefore,
/

L L N e R
T pp—1
S (Wi, log" P (e + [w]a,)-

On the other hand, we know from Lemma 2.3 that Myw(y) < [w]a, w(y).
This, via inequality (3.1) (with u = w) yields

w{z €RY: [Uf()] > 1))
< w5 log"*# (e + [ / F@)og? (e + | £(y) () dy,

which completes the proof of Corollary 3.3. O

4. DECOMPOSITION OF THE COMPOSITE OPERATOR

We begin with an endpoint estimate for composition of sublinear and
linear operators.

Theorem 4.1. Let Uy be a sublinear operator and Us be a linear operator
on Up>1 LP(RY). Suppose that the following conditions hold

(i) Uy is bounded on L?(R%) with bound 1;
(i) there exists a positive constant 1, such that for any A > 0,

(4.1) {z e RY: U f(z)] > A} §/ Mlogﬂ1 (e—l— W;M)dx;

(ili) for some q € (1, 3], Ua enjoys a bilinear (L(log L)%, L7)-sparse
domination with bound 1.
Then we get that: for any A > 0,

| F@ s (o, @)
(4.2) |{z € RY: [U3Unf(2)] > A} SAdA10g1+B (o4 S5 )

Proof. Let f be a bounded function and S be a sparse family of cubes such
that for any function g,

’/n g($)U2f(95)d~T‘ < AS,L(logL)ﬁz,Lq(fa 9)-

By the sparseness of S, we get that

| / ) Usf()de| < /[R Mg 1y S ()Mo f (9)dy

S I llze@mll Mo f Nl L2 mny-
Therefore, Us is bounded on L?(R") with bound C,. On the other hand, we
know from Theorem 3.2 that for any A > 0,

(4.3) {z € RY: |Unf(z)] > A} < /R ‘f(;) log™ (e + W;N)d”
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Since U is a sublinear operator and Us is a linear operator, A\~ U Us f| =
|UaUs(ALf)|. Therefore it suffices to consider inequality (4.2) for A = 1.
Let f be a bounded function with compact support, and S be the sparse

family such that (2.2) holds true. Then there exist dyadic grids 21, ..., Psa
and sparse families S, ..., Ssa, such that for j =1, ..., 3¢, S; C %j, and
3d
AS;L(logL)Ban (f7 g) < Z ASj;L(logL)32,Lq (fa g)
j=1

Now let My, 110 )2 be the maximal operator defined by (3.2). For each
j=1,...,3% decompose the set {z € R : M@%L(logL)@Qf(x) > 1} as

{r e R%: M@wL(logL)ng(a:) > 1} = UpQjik,

with @i the maximal cubes in Z; such that || f|| g Lys2,Q,, > 1. We have
that

d
1< ||f||L(logL)62,ij ’S 2%

Let £ = U?il Uy, 16dQ i, ff, fg, fg and §7 (j=1, ..., 3%) be the same as
we have done in the proof of Theorem 3.2. Write

U102 (@)| < |UL(xeU2f) (@)] + [UL (xga gU2) ()| =t T f () + T2 f (2).
Recall that U; satisfies the estimate (4.1), and by the fact (2.1)
FACII RS |f (@)
515 [ L iog (o4 M2
It then follows that
o € R @] > /2 < [ [Uaf(@)log” (e + [Uaf (o)) do
= /Oo {z € E: |Usf(z)] > s}‘d(slogﬁl(e—i— s))
0
< |E|+ /:: {z € E: |Usf(z)| > 2s}|d(slog™ (e + s))
S B+ [ o€ B (g @)] > sHslogh e +5))

281

+/::1 Hr € B |U2(fxqp1<sy)(@)] > s}d(slog” (e + s)).
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We deduce from (4.3) for Uy that

/::1 {z € B [Us(fxq1>s3) (@) > s}d(slog” (e + s))
* |f ()] \f( )| 8
< —log dxd(slo e+ s
~ /ewl /|f(x)>s s ( ) ded(slog™(e+ )

< [ s@no el [ stog’ e+ o)
S [ I @log™ et o)) da
Trivial computations leads to that
d(slogPi(e + ) < S%logﬁ1 (e + s)ds,
and when s € [e?1, 00),
—d(é log™(e+s) = |- % log™ (e + s) — Sﬁls) log™ =1 (e + s)] ds
>
It follows from the L2 (Rd) boundedness of Us that

[ e € B2 02 xqen) @) > sHd(slog e+ 5)

/ / z)[2dzd(slog? (e + )
261 8 x)|<s

1
:/ |f(x)\2/ —210g51(6+s)ds
" max{|f(z)[,e*1} §
S [ 1f@)log e+ |7(a) o
Therefore, we conclude the estimate of I; as follows
o € R f@)] > 12} 5 [ 17| og™ P e 4 | (o)) da
Rd

We turn our attention to term Ipf. By the L?(R?%) boundedness of Uy, we
know that

o e RY: Tof(2)] > 1/2)] < / Us f (2) 2de
Ri\E

S < sup ‘Ad\Eg(x)UQf(x)dx‘)2.

”gHL2(]Rd\E)§1
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For g € L?(R¥\E), we can write

3d
‘ / g(x)UQf(x)dx’ < ZASj,L(logL)%,Lq(ffa 9)
RI\E =
3d
+ Z Asj,L(logL)ﬁz, ra(f3, 9).
j=1
Recall that if supp g C R\ E, then
Asj,L(logL)Bz,Lq(fga g9) = As;,L(logL)ﬂz,Lq(fé, 9) < Asj,L(logL)Bz,Lq(fga g)
On the other hand, the sparseness of S; states that

Asj,LaogL)Bz,Lq(fgag) S /RdML(logL)Bzf?z(in)ng(fU)de

S ||ML(log L)P2 fg ||L2(Rd) HMq!J”L2(Rd)
S Hf?j,HLQ(Rd)Hg”L?(Rd)‘

Since HffHLl(Rd) < I fllz1(ray, and

1l S [ 1#1Tog™ e+ 17

we finally obtain that
3d

o e B Lf@)] > 12 £ (0 Iew +1lee)
j=1
34 .1 .1 2
< (AN gy + 1512 )
j=1
S [ 17@log™ e+ 1wy,
Rd

Combining estimates for I and II completes the proof of Theorem 4.1. [J

For a linear operator T', we define the corresponding grand maximal op-
erator .4t , by

_1
M, f(7) = ng Q7 ||T(fXRd\3Q)XQ||Lr(Rd),

where the supremum is taken over all cubes Q C R? containing z. M,y
was introduced by Lerner [25] and is useful in establishing bilinear sparse
domination of rough operator Tq. Let T, 15 be two linear operators. We
define the grand maximal operator ///7*“1Tz,r by
1
M1 8@) =510 (1 [ 1T (s Tel P xmno)) @)

Q> |Q| Q
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Lemma 4.2. Let s € [0, o0) and A € (1, 00), S be a sublinear operator
which satisfies that for any A > 0,

d Alf@), Alf(=)|
{z e R : [Sf(z)| > A} S /Rd)\log (e+ f>dx.
Then for any o € (0, 1) and cube Q C RY,

(é),/@ !S(fXQ)(:r)Igdx>E S Alf | aos ). 0-

Proof. Lemma 4.2 was proved essentially in [20, p. 643]. We present the
proof here mainly to make clear the bound. By homogeneity, we may assume
that || f £aog 1)+, = 1, which means that

/Q (@) log* (e + /() )dz < |Q].
A trivial computation leads to that
A
/ 1S(fx0)(@)|%dr = / o € Q: 1S(fxo)(@)| >t} at
Q 0

+ [Tl e r i@ > e

A
[ Af@)], Alf ()] 1
S ’Q\AQ—F/A /Qtlog (e+f>dxt9 dt
S 1Q[AC.

This gives the desired conclusion and completes the proof of Lemma 4.2. [J

Lemma 4.3. Let Ty, T5 be two linear operators. Suppose that for some
a, B € [0, 00) and r € (1, 2],

U 1o (4 U E

(44) {z e RY: My, Tof(z) > t}] S/ ¢

Rd
Then
o e R i @) > 5 [ T bog? (o4 U g,

Proof. Let 7 € (0, 1), z € R and Q C R? be a cube containing z. We know
by (4.4) and Lemma 4.2 that

(@/Q [///Tl,rTQ(fX9Q)(§)]Td€) T< r* My (10g 15 f ().
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A straightforward computation leads to that

! b
[@/Q‘Tl (XRd\BQTQ(fXRd\9Q))(§)|rdf} Sggé//{Thr(T?(fXRd\gQ))(f)
1 T L (] .
< T P
S MT'%TLTTZ]C(ZL’) + TQML(logL)Bf(JT)-
On the other hand, we have
[{z € R : My tr, ,Tof(z) > \}|

<A osup t{z e RY: gy Tof(x) >t}
t>2-1/7)

< [ U g (o U,

where the first inequality follows from inequality (11) in [20]. This, along
with (2.1) gives us the desired conclusion. O

1
p

Theorem 4.4. Let Th, Ty be two linear operators, r € (1, 3/2], p1, B2, v €
[0, 00). Suppose that the following conditions hold

(i) Ty, is bounded on L (R%) with bound A;
(ii) for each A >0,

AN g (4 AU

{z e RY: W Tof(z)] > A} S/ A

Rd

(iii) for each A >0,

|{$ c RY . j/Tl,r’T2f(x) > )\H 5/ Al|];\(x)’log51 <e+ 7>dx,
R4

and

{z e RY: iy, v f(z) > M} S /Rd AQ"Q(:C)'logBQ (e+ ’W)d:p.

=

Then for a bounded function f with compact support, there exists a 29%—

sparse family of cubes S = {Q}, and functions Hy and Ha, such that for
each function g,

| [ Hi@)g@)da] £ (Ao + A) s g1y, 20 9)

| [ Ho@)g(@)da] $ A4 As 1og 1y 1(F: 9),
and for a. e. x € R",

TlTQf(.Z') = Hl(a;) + HQ(.%')



16 G. HU, X. LAI, AND Q. XUE

Proof. We will employ the argument in [25], together with some ideas in
[19]. For a fixed cube Q, define the local analogy of .#r, ,» and ///filTwa/
by

_1
MryrQof(x) =  sup Q77 HXQT2(fX3Qo\3Q)HLT/(]Rd)y
Q3z,QCQo
and
1 ;N
ATy 00 (T) = Qai}égl)cQo <Q|/Q |11 (X]Rd\BQTQ(fX9Q0\9Q))<€)‘ df)

respectively. Let F = U§:1Ej with
By = {z € Qo |TiTa(fXx90,)(®)] > DAollfll L1og L)1, 900
By ={x € Qo: M1, .q.f(x) > DA?Hf”L(logL)Bz,ng}:
E3 = {x € QO : ‘%Yfng,r’;QOf(x) > DAleHL(logL)*Bl,QQo}’
with D a positive constant. Our hypothesis, vie Lemma 4.3 tells us that
1
|E| < W’QOL

if we choose D large enough. Now on the cube @)y, we apply the Calderén-
Zygmund decomposition to xg at level Qd%, and obtain pairwise disjoint
cubes {P;} C D(Qo), such that

1 1
W|Pj| <|PNE[< §|Pj|
and |E\ U; Pj| = 0. Observe that . |P;| < 21Qo. Let
Gi(z) = TiTa(fx0Q0)(®)XQo\uip, (T)
+ Z T <XR”\3Pl TQ(fX9Q0\9P1)> (z)xp,(x).
!
The facts that P,NE° # () and |E\U; Pj| = 0 imply that for any g € L"(R?),

@) [ Giwg@as] £ [ B0 @sta)ixann @

1
. i, * T T
b X it 1P, £ [ o)

l
S (Ao + Al Log yor, 904 (191w, @0 Qol-

Also, we define function G5 by

Rd

Ga(z) = Z T1 (x3p, T2 (fXx900\9m)) () x B, ().
;
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For each function g, we have by Holder’s inequality that

(4.6) ( /R d Gg(x)g(x)dx‘

<4 ([ 17lsoaion) @l ae)” ([ lotwyias)’
SAYIRIT it 0, @ ], )iy
l 1

S AA2|| FllLog £y2; 990 (|91, @0 | Qol -

It is obvious that
Ty To(fX000) ()Xo () = G1(z) + Ga(z) + > T1To(xom) () xR (x)-
l

As in [19], we now repeat the argument above with T17%(fx90,)(%)XqQo,
replaced by each T1Ta(xop,)(z)xp,(z), and so on. Let {Q}'} = {P;}, and
for fixed j1, ..., jm—1, {Q3 7" ™},,. be the cubes obtained at the m-th
stage of the decomposition process to the cube Qf)l"']mfl. For each fixed
J1--+,Jm, define the functions ngloljmf and Hgozjmf by

Héglo i]m (w) = Tl (XRn\gle-'-jm T2(fX9Qg1'-'jm—l\glemﬂ'm)) (J/‘)XQ%IJWL (.’,U),

and
Hgo 2Jm (:1;) =T (XSQgI...jmTz(fnggl...jm_l\gleu,jm))) (l‘)Xle“.jm (:L‘),

respectively. Set F = {Qo} UX_,; Uj17.,,7jm{Q61“'jm}. Then F C D(Qo) is a
%—sparse family. Let

HQO71(x) = TlTZ(fX9QO)XQ \U' Qél (17)

D MDD LT

m= 1]17 »]m
£Y S gy @)
m=1j1,....jm

Also, we define the function Hg, 2 by

Howole) = Y 30 A F0)rgy (o).

m=1ji...Jm

Then for a. e. € Qq,

TiTo(fx0Q0) () = Hgo,1(2) + Hey,2().
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Moreover, as in the inequalities (4.5) and (4.6), the process of producing
{Q}' 7™} leads to that
(4. 7)

| [ Havaf@nan@de] S (Ao+40) 3 17 ligogyn selsl)r 0l
QeF

and for the function g,

@8) | [ o), a@)ds] S Ade Y QU egnyi 009D

QeF

We can now conclude the proof of Theorem 4.4. In fact, as in [25], we
decompose R? by cubes {R;}, such that suppf C 3R; for each I, and R;’s
have disjoint interiors. Then for a. e. z € R,

LT f(x ZHRZ 1f(z ‘f‘ZHRZ 2f () := H1f(z) + Haf (x).

Our desired conclusion follows from inequalities (4.7) and (4.8) directly. O

5. PROOF OF THEOREMS

Applying Theorem 4.1 to the rough singular integral operators Tq, and
Tq,, we get the following result.

Corollary 5.1. Let Qq, Q9 be homogeneous of degree zero, have mean value
zero and 1, Qo € L>®(S1). Let r € (1,3/2]. Then for each bounded
function f with compact support, there exists a %g%ﬁparse family of cubes
S ={Q}, and functions Jy and Ja, such that for each function g,

‘/djl x)dz| Sr'As; pogr, 1 (f5 9),
R

Jo()g(@)da| S 1 As. 11 1 ([ 9).

‘ Rd
and for a. e. x € R?,

To,To, f(z) = Ji(z) + J2(2).
Proof. Let r € (1, 3/2]. Lerner [25] proved that if Q € L>°(S9!), then
(5.1) [ Mg, v fll 1o way S 71U Lo (sa-1) 1 fll L2 (Y-

On the other hand, since Tq is bounded on L' (R%) with bound max{r, '},
we deduce that

My, f(@) < MpTaof(x) +max{r, '} My f ().

Therefore, .#7,, , is bounded on L?"(R?) with bound Cr’. This, via estimate
(5.1), leads to that

(5.2) | Mg, v fll 2wy S I FI 2 ra)-



COMPOSITIONS OF ROUGH OPERATORS 19

We now conclude the proof of Corollary 5.1. Let I be the identity op-
erator. It is obvious that .#; ,/Tq, f(x) = 0. Applying (5.1) and Theorem
4.4 with Ty = I, Ty = Tq,, we know that Tq, satisfies a (L', L")-bilinear
sparse domination with bound /. Thus by Theorem 4.1 with the fact Tq,
is of weak type (1,1) (see e.g. [33]), we have that for any A > 0,

. |f(@)] |f(2)]
{z € RY: [To, To, f(2)] > A} < /R e 1og (o + )

Furthermore, it follows from Theorem 4.1, (5.1) and (5.2) that for any A > 0,

o e Bt T f0) > N S [ P g (e L,

Recall that Tq, is bounded on L"(R%) with bound C7/. Another application
of Theorem 4.4 yields desired conclusion. ([

Proof of Theorem 1.1. For p € (1, ) and w € A,(R?), let 7, =
211+d[w]Aoo and 7, = 211+d[0']A p—1

P Tetl It was
proved in [18] that

e = and g9 =

p—1
2pTo+17

oo )

(5.3) Ag,prver proes (£, 9) S [l P (0147 + ] {1 o g,y 91 o 20 0

P

Note that
1
AS;LlogL,LH‘EZ (f,9) S aAS;L1+51,L1+52 (f, 9)-

Invoking Corollary 5.1 and inequality (5.3), we deduce that for bounded
functions f and g,

| [ @B o, fla)ds| 5 Wl + Lol
(0] +[01) 1 ot 1911

Recall that w € A,(R") implies that o € A, (R") and [0]114/ i’ = [fw]z/ P,
P

P

Applying Corollary 5.1 to Tq,Tq,, we obtain that

oo

\ngmmwmm)S[M%Hﬁ+w?WMw

><([ Aoo)Hf”LP w)||9||Lp’(Rd,a)
s[wz[W’[Wﬂm%
x([w )||f”Lp Rd u;)”gHL:D (Rd,0)"

Combining the last two inequalities yields desired conclusion. O
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Proof of Theorem 1.3. Let w € A;(R?). We obtain from Corollary 5.1

and Corollary 3.3 that

w({z € R : |Tq, To, f(z)| > A})
<w({z € RY: | Jy(z)] > N2H) +u({z e RY . |Jy(x)| > A/2})
< [w]a log?(e + [w]a ) [w]a, / W;)‘ log (e + W/f”)u(az)dm

R
+Hwlh,, log(e + [w]a ) w]a, /n ’f(;)’

w(z)dz

< [w]?%<> log(e + [w]a,)[w]a, /]Rd ’f(;)’ log (e + |f(;)|)w($)dx,

with J; and Jy the functions defined in Corollary 5.1. This completes the
proof of Theorem 1.3. O

al
as

Added in Proof. After this paper was prepared, we learned that Li et

. [29] established the weighted bounds for linear operators satisfying the

sumptions in Corollary 3.3 with 8 = 0, which coincides the conclusion in

Corollary 3.3 for f = 0. The argument in [29] is different from the argument

in

the proof of Corollary 3.3 and is of independent interest.
The authors would like to thank Dr. Kangwei Li for his helpful comments

and suggestions.
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