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Abstract. � In this paper, for a geometrically integral projective scheme, we will

give an upper bound of the product of the norms of its non-geometrically integral

reductions over an arbitrary number �eld. For this aim, we take the adelic viewpoint

on this subject.

Résumé (Contrôle des réductions non-géométriquement intègres)
Dans cet article, pour un schéma projectif géométriquement intègre, on donnera

une majoration du produit des norms de ses réductions non-géométriquement intègre

sur un corps de nombres arbitraire. Pour le but, on prend le point de vue adélique

autour de ce sujet.
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1. Introduction

Let X ↪→ PnK → SpecK be a geometrically integral closed sub-scheme over
a number �eld K, X ↪→ PnOK

→ SpecOK be its Zariski closure, and XFp
=

Key words and phrases. � adelic height, Cayley variety, Chow variety, non-geometrically

integral criterion, non-geometrically integral reduction.
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X ×SpecOK
SpecFp → SpecFp be its �ber at p ∈ SpmOK . By [8, Théorème 9.7.7],

the set

(1) Q(X ) =
{
p ∈ SpmOK |XFp

→ SpecFp is not geometrically integral
}

is �nite.
If we replace the geometrically integral property of X → SpecK above by the

integral property, the set

Q′(X ) =
{
p ∈ SpmOK |XFp

→ SpecFp is not integral
}

is not �nite in general. For example, we consider

X = Proj
(
Q[T0, T1, T2]/

(
T 2

0 + T 2
1

))
→ SpecQ.

Then we have

Q′(X ) = {p prime | p ≡ 1(mod 4) or p = 2}
by properties on the quadric residue, which is a in�nite set.

By the above reasons, it is reasonable to give a numerical description of the set
of non-geometrically integral reductions Q(X ). Actually, it is easy to construct
examples such that Q(X ) = ∅, for example, the scheme X is a hyperplane in PnK . In
addition, we can construct examples whose non-geometrically integral reductions are
any products of prime ideals. Let

X = Proj
(
Q[T0, T1, T2]/

(
T 2

0 + aT1T2

))
→ SpecQ,

where a ∈ Z. In this case, we have

Q(X ) = {p prime | p | a} .

Hence, we are interested in the upper bound of
∑

p∈Q(X )

logN(p).

1.1. Brief history. � Traditionally, we only focus on the case of hypersurfaces
when K = Q and OK = Z, and there are fruitful results reported on this subject.
By [13, Exercise 2.4.1], we only need to study whether the polynomial de�ning this
hypersurface is absolutely irreducible over the residue �eld. Usually, lots of former
works considered the case of plane curves only.

Up to the author's knowledge, this subject was �rst considered by A. Ostrowski in
[14] implicitly. In [18], W. M. Schmidt gave an explicit estimate, which is re�ned by
E. Kaltofen in [10] (see also [11]).

In [15], W. M. Ruppert transferred the criterion of absolute irreducibility of poly-
nomials into the existence of certain polynomial solutions to a certain system of
partial di�erential equations, where he considered the de Rham cohomology of some
particular complexes. By this result, he gave an upper bound of non-geometrically
reductions for the case of arbitrary hypersurfaces, and a sharper upper bound for the
case of plane curves. This result improved some previous results, and was generalized
by [19] and [5] to di�erent directions.

In [22], U. Zannier gave an upper bound depending on the multi-degree of a
polynomial f(x, y) over Z. This result is improved by W. M. Ruppert in [17] by
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re�ning his method in [15]. In [16], he considered a special kind of plane curves and
gave a better upper bound.

In [6], Shuhong Gao and V. M. Rodrigues applied Newton polytopes to re�ne
the estimate in [17], where they involved the number of integral points of Newton
polytopes into the estimate.

1.2. Relation to the arithmetic Hodge index theorem. � In [3, �5], G.
Faltings proved an arithmetic analogue of the Hodge index theorem. Let X →
SpecOK , be an arithmetic surface, which means it is �at and projective with the
relative dimension 1, whose generic �ber is X → SpecK. In [3, Theorem 4 d)], the
author gave an estimate of∑

p∈SpmOK

((
number of components of XFp

)
− 1
)
,

which is related the rank of jacobian of X over K. In fact, the above estimate is able
to provide an estimate of the number of non-geometrically integral reductions for the
case of curves, while the invariant

∑
p∈Q(X )

logN(p) can provide the same estimate.

But their methods and fundamental ideas are quite di�erent.

1.3. Adelic viewpoint. � In this paper, we will give such an upper bound for the
case of an arbitrary number �eld. Let X ↪→ PnK be a hypersurface, and we consider
the Zariski closure X of X in PnOK

. In this case, only when OK is a principal ideal
domain, X ↪→ PnOK

can always be de�ned by a primitive equation with coe�cients
in OK .

Similar to the method in [12] to study the non-reduced reductions over an arbitrary
number �eld, we introduce the adelic viewpoint to overcome this obstruction. We
consider the polynomial with coe�cients in K de�ning X ↪→ PnK as coe�cients in the
adelic ring AK with respect to the diagonal embedding, and then we can obtain a
primitive AOK

-coe�cient polynomial by multiplying an element in AK which does not
change the height of polynomial in the adelic sense. Then for each p ∈ SpmOK , the
p-part of this primitive polynomial of AOK

-coe�cients is primitive over OK,p, which
de�nes Xp ↪→ PnOK,p

from X ↪→ PnOK
via the base change SpecOK,p → SpecOK .

Then we can consider the reduction type of each Xp modulo p.
In order to judge whether a projective hypersurface is geometrically integral, we use

a numerical criterion of Ruppert [15, Satz 3, Satz 4]. For the general case, we use the
theory of Chow varieties and Cayley varieties to reduce it to the case of hypersurfaces,
which is similar to that in [12, �6]. In fact, we have the following estimate in Theorem
4.5.

Theorem. � Let X be a geometrically integral closed sub-scheme of PnK of pure
dimension d and degree δ, and X be the Zariski closure of X in PnOK

. Then we have

1

[K : Q]

∑
p∈Q(X )

logN(p) 6 (δ2 − 1)h(X) + C(n, d, δ),
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where h(X) is a height of X and N(p) = #(OK/p). We will give the above constant
C(n, d, δ) explicitly in Theorem 4.5, and we have C(n, d, δ)�n δ

3.

If we consider the case of plane curves (d = 1 and n = 2) and use the naive height
(see De�nition 2.2) in the above theorem, we are able to obtain C(n, d, δ)�n δ

2 log δ
in the above estimate, see Proposition 4.3.

1.4. Structure of the article. � This paper is organized as follows. In �2, we
introduce the useful notions on Diophantine geometry and Arakelov geometry. In
�3, we recall some results of Ruppert on the criterion of the geometrically integral
property. In �4, we give an upper bound of the non-geometrically reductions for the
case of hypersurfaces by the above results of Ruppert under the adelic viewpoint, and
such an upper bound for the general case by applying the theory of Chow varieties
and Cayley varieties. In Appendix A, we provide the solution to an exercise in [13],
which is useful in this work.

Acknowledgement. � I would like to thank Prof. Per Salberger for introducing
me the master thesis [21] of his former student Stefán Þórarinsson, which is a good
summary for the previous works on this subject. I would like also to thank the
anonymous referee for suggestions on the revision of this paper.

2. Height functions

The height of arithmetic varieties is an invariant which evaluates the arithmetic
complexity of varieties. In order to study it, we introduce some preliminaries of
Arakelov geometry and Diophantine geometry.

2.1. Normed vector bundles. � Normed vector bundles are one of the main
research objects in Arakelov geometry. Let K be a number �eld and OK be its ring of
integers. We denote by MK the set of places of K, by MK,f the set of its �nite places
and by MK,∞ the set of its in�nite places. A normed vector bundle on SpecOK is a

pair E =
(
E, (‖.‖v)v∈MK,∞

)
, where:

� E is a projective OK-module of �nite rank;
� (‖.‖v)v∈MK,∞

is a family of norms, where ‖.‖v is a norm over E ⊗OK ,v C which

is invariant under the action of Gal(C/Kv).
If all the norms (‖.‖v)v∈MK,∞

are Hermitian, we call E a Hermitian vector bundle

on SpecOK . In particular, if rkOK
(E) = 1, we say that E is a Hermitian line bundle

since all Archimedean norms are Hermitian in this case.

2.2. Height of arithmetic varieties. � In this part, we introduce a kind of
height functions of arithmetic varieties de�ned via the arithmetic intersection theory
developed by Gillet and Soulé in [7], which is �rst introduced by Faltings in [4,
De�nition 2.5], see also [20, III.6].



CONTROL OF THE NON-GEOMETRICALLY INTEGRAL REDUCTIONS 5

De�nition 2.1 (Arakelov height). � Let K be a number �eld, OK be its ring
of integers, E be a Hermitian vector bundle of rank n + 1 on SpecOK , and L be a
Hermitian line bundle on P(E). Let X be a pure dimensional closed sub-scheme of
P(EK) of dimension d, and X be the Zariski closure of X in P(E). The Arakelov
height of X is de�ned as the arithmetic intersection number

1

[K : Q]
d̂eg

(
ĉ1(L)d+1 · [X ]

)
,

where ĉ1(L) is the arithmetic �rst Chern class of L (see [20, Chap. III.4, Proposition

1] for its de�nition), and d̂eg(.) is the Arakelov degree of arithmetic cycles. This height
is denoted by hL(X) or hL(X ).

2.3. Height of hypersurfaces. � Let X be a hypersurface in PnK . By [9, Propo-
sition 7.6, Chap. I], X is de�ned by a homogeneous polynomial. We de�ne a height
function of hypersurfaces by considering its de�ning polynomial.

De�nition 2.2 (Naive height). � Let f(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

ai0,...,inT
i0
0 · · ·T inn

be a polynomial. We de�ne the naive height of f(T0, . . . , Tn) as

HK(f) =
∏

v∈MK

max
(i0,...,in)∈Nn+1

{|ai0,...,in |v}
[Kv:Qv]

,

and h(f) = 1
[K:Q] logHK(f). In addition, if f(T0, . . . , Tn) is the de�ning polynomial

of the hypersurface X ↪→ PnK , we de�ne the naive height of X as

h(X) = h(f).

2.4. Adelic height. � In order to consider the reductions over an arbitrary number
�eld, we will introduce the so-called adelic height of a polynomial, which has been
applied to study the non-reduced reductions in [12].

Let K be a number �eld, OK be its ring of integers. In addition, we denote by

AK =

{
(av)v ∈

∏
v∈MK

Kv | av ∈ OK,v except a �nite number of v ∈MK,f

}
the adelic ring of K, by

AOK
= {(av)v ∈ AK | av ∈ OK,v for all v ∈MK,f}

the integral adelic ring of K, and by ∆ : K ↪→ AK the diagonal embedding. Let
a = (av)v∈MK

∈ AK , we de�ne

|a|AK
=

∏
v∈MK

|av|[Kv :Qv ]
v .

De�nition 2.3 (Local part). � Let {ai0,...,in} = {(avi0,...,in)v∈MK
} be a �nite

family of elements in AK with the indices (i0, . . . , in) ∈ Nn+1, and

f(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

ai0,...,inT
i0
0 · · ·T inn
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be a non-zero polynomial in AK [T0, . . . , Tn]. For each v ∈MK , we denote by

f (v)(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

avi0,...,inT
i0
0 · · ·T inn

the v-part of f(T0, . . . , Tn), or by f (p)(T0, . . . , Tn) for p ∈ SpmOK corresponding to
the place v ∈MK,f , which is called the p-part of f(T0, . . . , Tn).

De�nition 2.4 (Adelic height). � Let f(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

ai0,...,inT
i0
0 · · ·T inn

be a polynomial with coe�cients in AK , where we denote ai0,...,in = (avi0,...,in)v∈MK
∈

AK for every index (i0, . . . , in) in the above polynomial. We de�ne

HAK
(f) =

∏
v∈MK

max
(i0,...,in)∈Nn+1

{|avi0,...,in |v}
[Kv :Qv ]

as the adelic height of f . In addition, we denote h(f) = 1
[K:Q] logHAK

(f).

Let f(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

ai0,...,inT
i0
0 · · ·T inn be a polynomial with coe�-

cients in K, and c ∈ AK with |c|AK
= 1. Let

g(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

c∆(ai0,...,in)T i00 · · ·T inn

be the polynomial with coe�cients in AK . Then by de�nition, we have

(2) HAK
(g) = HK(f),

where HK(f) is de�ned in De�nition 2.2.
Let

f(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

ai0,...,inT
i0
0 · · ·T inn

be a polynomial with coe�cients in K. By [12, Lemme 3.8], there exists an element
c ∈ AK with |c|AK

= 1, such that for each v ∈MK,f , we have

max
(i0,...,in)∈Nn+1

{|c∆(ai0,...,in)|v} = 1.

Let bi0,...,in = c∆(ai0,...,in), then

(3) F (T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

bi0,...,inT
i0
0 · · ·T inn ∈ AOK

[T0, . . . , Tn],

which is called an adelicly primitive polynomial of f .
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3. A criterion of non-geometrically property

Let X be a geometrically integral hypersurface of PnK de�ned by the homogeneous
polynomial f(T0, . . . , Tn), and X be the Zariski closure of X in PnOK

. For all
p ∈ SpmOK , in order to study the reduction of X ↪→ PnOK

→ SpecOK at p, we
factor the reduction through the localization at p. More precisely, we consider the
Cartesian diagram

XFp
//

� _

��
2

XOK,p
//

� _

��
2

X� _

��
PnFp

//

��
2

PnOK,p

//

��
2

PnOK

��
SpecFp

// SpecOK,p // SpecOK .

By de�nition, XOK,p
↪→ PnOK,p

is de�ned by the p-part F (p)(T0 . . . , Tn) of

F (T0, . . . , Tn) (see De�nition 2.3 for its de�nition, which is primitive over OK,p
by the construction of F (T0, . . . , Tn) in (3).

By [13, Exercise 2.4.1] (see [12, Remarque 5.2] for a projective version), for
an arbitrary p ∈ SpmOK , the fact that the polynomial F (p)(T0 . . . , Tn) modulo
p[T0, . . . , Tn] is not absolutely irreducible over Fp is veri�ed if and only if XFp

is not
geometrically integral over SpecFp. So in order to control the set Q(X ) introduced in

(1), we need to study the absolute irreducibility of F (p)(T0, . . . , Tn) mod p[T0, . . . , Tn]
for all p ∈ SpmOK .

The �rst result is for the case of plane curves.

Proposition 3.1 ([15], Satz 3). � Let

g(T0, T1, T2) =
∑

(i0,i1,i2)∈N3

i0+i1+i2=δ

bi0,i1,i2T
i0
0 T

i1
1 T

i2
2

be a homogeneous polynomial of degree δ over an algebraically closed �eld k. Then
there exists a family of homogeneous polynomial {φj}j∈J ∈ Z[bi0,i1,i2 ] with the index
set J and variables {bi0,i1,i2 | (i0, i1, i2) ∈ N3, i0 + i1 + i2 = δ}, which are of degree

δ2 − 1 and length smaller than δ3δ2−3, such that

1. If F is reducible, then φj(bi0,i1,i2) = 0 for every j ∈ J ;
2. If F is irreducible and k is of characteristic 0, then there exists at least one

j ∈ J , such that φj(bi0,i1,i2) 6= 0.

The second one is for the case of general hypersurfaces.

Proposition 3.2 ([15], Satz 4). � Let

g(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

i0+···+in=δ

bi0,...,inT
i0
0 · · ·T inn
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be a homogeneous polynomial of degree δ over an algebraically closed �eld k. Then
there exists a family of homogeneous polynomial {φj}j∈J ∈ Z[bi0,...,in ] with the index
set J and variables {bi0,...,in | (i0, . . . , in) ∈ Nn+1, i0 + · · · + in = δ}, which are of

degree δ2 − 1 and length smaller than δ3δ2−3
[(
n+δ
δ

)
3δ
]δ2−1

, such that

1. If F is reducible, then φj(bi0,...,in) = 0 for every j ∈ J ;
2. If F is irreducible and k is of characteristic 0, then there exists at least one

j ∈ J , such that φj(bi0,...,in) 6= 0.

4. Control of the non-geometrically integral reductions

By Proposition 3.1 and 3.2, Ruppert gives a control of non-geometrically integral
reductions of hypersurfaces in PnZ in [15, Korollar 1, Korollar 2]. In this part, we will
give such a control over an arbitrary number �eld K for general projective schemes.

4.1. Non-geometrically integral reductions of hypersurfaces. � For the case
of hypersurfaces, by applying Proposition 3.1 and 3.2 to an adelicly primitive polyno-
mial introduced at (3), we have the following two results. Since their proofs are quite
similar, we only provide the detailed proof for the case of general hypersurfaces.

Proposition 4.1. � Let X be a geometrically integral hypersurface in PnK of degree
δ, X be its Zariski closure in PnOK

, XFp
= X ×SpecOK

SpecFp, and

Q(X ) =
{
p ∈ SpmOK |XFp

→ SpecFp is not geometrically integral
}
.

Then we have

1

[K : Q]

∑
p∈Q(X )

logN(p) 6 (δ2 − 1)h(X) + C(n, δ),

where N(p) = #(OK/p), h(X) is the classic height of X in PnK de�ned in De�nition
2.2, and the constant

C(n, δ) = (δ2 − 1)

(
3 log δ + δ log 3 + log

(
n+ δ

δ

))
.

Proof. � Suppose X is de�ned by the homogeneous polynomial

f(T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

i0+···+in=δ

ai0,...,inT
i0
0 · · ·T inn

with coe�cients in K, and

F (T0, . . . , Tn) =
∑

(i0,...,in)∈Nn+1

i0+···+in=δ

bi0,...,inT
i0
0 · · ·T inn

be an adelicly primitive polynomial of f(T0, . . . , Tn) constructed in (3). We use the
notations in Proposition 3.2, and choose an index j ∈ J of the polynomial φj(bi0,...,in)
with variables bi0,...,in , such that φj(ai0,...,in) 6= 0 for the coe�cients of f(T0, . . . , Tn).
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For each p ∈ SpmOK , since b
(p)
i0,...,in

∈ OK,p, we have
∣∣∣φj (b(p)

i0,...,in

)∣∣∣
p

6 1

if φj

(
b
(p)
i0,...,in

)
6= 0. By de�nition, if the maximal ideal p ∈ Q(X ), we have∣∣∣φj (b(p)

i0,...,in

)∣∣∣
p
< 1. Then we obtain

1

[K : Q]

∑
p∈Q(X )

logN(p) 6 −
∑

p∈Q(X )

[Kp : Qp]

[K : Q]
log

(∣∣∣φj (b(p)
i0,...,in

)∣∣∣
p

)

6 −
∑

p∈SpmOK

[Kp : Qp]

[K : Q]
log

(∣∣∣φj (b(p)
i0,...,in

)∣∣∣
p

)
=

1

[K : Q]

∑
v∈MK,∞

log
(∣∣∣φj (b(v)

i0,...,in

)∣∣∣
v

)
.

In order to estimate log
(∣∣∣φj (b(v)

i0,...,in

)∣∣∣
v

)
for a �xed v ∈MK,∞, from the properties

of φj given in Proposition 3.2, we have

log
(∣∣∣φj (b(v)

i0,...,in

)∣∣∣
v

)
6 (δ2 − 1) log

 max
(i0,...,in)∈Nn+1

i0+···+in=δ

{
|b(v)
i0,...,in

|v
}(4)

+(δ2 − 1)

(
3 log δ + δ log 3 + log

(
n+ δ

δ

))
.

Then from (4), we obtain

1

[K : Q]

∑
v∈MK,∞

log
(∣∣∣φj (b(v)

i0,...,in

)∣∣∣
v

)

6
δ2 − 1

[K : Q]

∑
v∈MK,∞

log

 max
(i0,...,in)∈Nn+1

i0+···+in=δ

{
|b(v)
i0,...,in

|v
}

+(δ2 − 1)

(
3 log δ + δ log 3 + log

(
n+ δ

δ

))
= (δ2 − 1)h(X) + (δ2 − 1)

(
3 log δ + δ log 3 + log

(
n+ δ

δ

))
,

where the last equality is from (2) and (3). Then we have the assertion.

Remark 4.2. � With all the notations in Proposition 4.1, we have C(n, δ)�n δ
3.

By applying Proposition 3.1 to the proof of Proposition 4.1, we have the following
estimate for plane curves, where we will only point out the key di�erence in the proofs.

Proposition 4.3. � Let X be a geometrically integral plane curve in P2
K of degree

δ, X be its Zariski closure in P2
OK

, XFp
= X ×SpecOK

SpecFp, and

Q(X ) =
{
p ∈ SpmOK |XFp

→ SpecFp is not geometrically integral
}
.
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Then we have
1

[K : Q]

∑
p∈Q(X )

logN(p) 6 (δ2 − 1)h(X) + C(δ),

where N(p) = #(OK/p), h(X) is the classic height of X in PnK de�ned in De�nition
2.2, and the constant C(δ) = (3δ2 − 3) log δ.

Sketch of the proof. � We replace (4) by the upper bound of the length in Proposi-
tion 3.1 in the proof of Proposition 4.1, then we prove the assertion.

Remark 4.4. � With all the notations in Proposition 4.3, we have C(δ)� δ2 log δ,
which has a better dependence on the degree than the case of general hypersurfaces
provided in Proposition 4.1. If we only consider the dependence on the degree of
plane curves, this estimate has the same as the later improvements.

4.2. Non-geometrically reductions of general projective schemes. � In or-
der to study the non-geometrically reductions of general schemes, it is signi�cant to
understand the reductions over their Chow varieties or Cayley varieties. Then we will
reduce the general case to that of hypersurfaces. In this paper, will only use Cayley
varieties, and Chow varieties are only mentioned for a historical reason.

4.2.1. Cayley variety. � First, we brie�y recall the construction of Cayley varieties.
For more details applied in the quantitative arithmetics, we refer the readers to [2,
�3], see also [12, �2] for the application to the study of the non-reduced reductions.

Let A be a Dedekind domain or a �eld, E be a vector bundle of rank n + 1 over
SpecA, and d ∈ N satisfying 1 6 d 6 n− 1. We denote

θ : E∨ ⊗A
(
∧d+1E

)
→ ∧dE

the homomorphism which maps ξ ⊗ (x0 ∧ · · · ∧ xn) to

d∑
i=0

(−1)iξ(xi)x0 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xd.

Let Γ be the sub-variety of P(E)×SpecA P(∧d+1E∨) which classi�es the all the points
(ξ, α) such that θ(ξ ⊗ α) = 0. Let p : P(E) ×SpecA P

(
∧d+1E∨

)
→ P(E) and q :

P(E)×SpecA P
(
∧d+1E∨

)
→ P

(
∧d+1E∨

)
be the two canonical projections.

Next, let E be a Hermitian vector bundle on SpecOK , X be a pure dimensional
closed sub-scheme of P(EK) of dimension d and degree δ, and X be the Zariski closure
of X in P(E). By [2, Proposition 3.4] or [12, Proposition 2.2, Proposition 2.7], the
scheme q(Γ∩ p−1(X)) (resp. q(Γ∩ p−1(X ))) is a geometrically integral hypersurface
in P

(
∧d+1E∨K

)
(resp. P

(
∧d+1E∨

)
), and q(Γ ∩ p−1(X)) is of degree δ. We call these

hypersurfaces the Cayley varieties of X and X . We denote by ΨX ↪→ P
(
∧d+1E∨K

)
and ΨX ↪→ P

(
∧d+1E∨

)
the Cayley varieties of X and X respectively.

By [1, �4.3.2 (i), (iv)], the construction of Cayley varieties commutes with the
extension from X ↪→ P(EK) to X ↪→ P(E), and commutes with the base change from
OK to its residue �eld, see [1, �4.3.1] or [12, Proposition 2.7] for more details of the
above argument. Then in order to control the non-geometrically integral reductions
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of X → SpecOK , we are able to consider the non-geometrically reductions of its
Cayley varieites.

4.2.2. Control of the non-geometrically integral reductions. � With the above con-
structions, we consider the non-geometrically reductions of general projective schemes

below. We pick E =
(
O⊕(n+1)
K , (‖.‖v)v∈MK,∞

)
, where for each v ∈ MK,∞, the norm

‖.‖v maps (x0, . . . , xn) to
√
|x0|2v + · · ·+ |xn|2v. In this case, we denote P(EK) and

P(E) by PnK and PnOK
respectively for simplicity.

Theorem 4.5. � With all the above notations and conditions in �4.2.2. Let X be
a geometrically integral closed sub-scheme of PnK of pure dimension d and degree δ,
X be the Zariski closure of X in PnOK

, XFp
= X ×SpecOK

SpecFp, and

Q(X ) =
{
p ∈ SpmOK |XFp

→ SpecFp is not geometrically integral
}
.

We denote N(n, d) =
(
n+1
d+1

)
− 1, N(p) = #(OK/p), and Hm = 1 + · · ·+ 1

m . Then we
have

1

[K : Q]

∑
p∈Q(X )

logN(p) 6 (δ2 − 1)hO(1)
(X) + C ′(n, d, δ),

where O(1) is equipped with the corresponding Fubini-Study metrics for all v ∈MK,∞,
hO(1)

(X) is the Arakelov height of X in PnK de�ned in De�nition 2.1, and the constant

C ′(n, d, δ) = (δ2 − 1)

(
3 log δ + log

(
N(n, d) + δ

δ

)
+

(
(N(n, d) + 1) log 2 + 4 log(N(n, d) + 1) + log 3− 1

2
HN(n,d)

)
δ

)
.

Proof. � Let ΨX be the Cayley variety of X , and

Q(ΨX ) = {p ∈ SpmOK |ΨX ×SpecOK
SpecFp is not geometrically integral} .

Then by [12, Proposition 2.2, 2.7], the fact p ∈ Q(ΨX ) is veri�ed if and only if
X ×SpecOK

SpecFp → SpecFp is not geometrically integral. So we obtain

1

[K : Q]

∑
p∈Q(X )

logN(p) =
1

[K : Q]

∑
p∈Q(ΨX )

logN(p).

By Proposition 4.1, we have

1

[K : Q]

∑
p∈Q(ΨX )

logN(p)

6 (δ2 − 1)h(ΨX) + (δ2 − 1)

(
3 log δ + δ log 3 + log

(
N(n, d) + δ

δ

))
,

where h(ΨX) is de�ned in De�nition 2.2.
By [12, Proposition 3.7], we have

h(ΨX)− hO(1)
(X) 6 (N(n, d) + 1)δ log 2 + 4δ log(N(n, d) + 1)− 1

2
δHN(n,d).
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So we obtain the assertion by combining the above estimates.

Remark 4.6. � We consider the constant C ′(n, d, δ) in Theorem 4.5. Then we have
C ′(n, d, δ) �n δ

3. Due to the comparison of heights, we have the same estimate of
this constant to the case of curves and of general dimensions if we choose the Arakelov
height.

Appendix A. A criterion of the reduced and irreducible properties

In this appendix, we will give a criterion of the reduced and irreducible hypersur-
faces, which is exactly a solution to the exercise [13, Exercise 2.4.1]. This result is
useful to judge whether a scheme is geometrically integral.

Proposition A.1. � Let k be a �eld and P ∈ k[T1, . . . , Tn]. Then the scheme
Spec (k[T1, . . . , Tn]/(P )) is reduced (resp. irreducible; resp. integral) if and only if P
has no square factor (resp. admits only one irreducible factor; resp. is irreducible).

Proof. � First, we consider the reduced property. By [13, De�nition 2.4.1,
Proposition 2.4.2 (b)], Spec (k[T1, . . . , Tn]/(P )) is reduced if and only if the ring
k[T1, . . . , Tn]/(P ) is reduced. In fact, the nilradical of k[T1, . . . , Tn]/(P ) is not zero
if and only if there exists a non-zero element f ∈ k[T1, . . . , Tn], such that f 6∈ (P )
but fm ∈ (P ) for some m ∈ N+, which is veri�ed if and only if (P ) has at least one
square factor.

Next, we consider the irreducible property. Let I = (P ) be an ideal of k[T1, . . . , Tn],
and then we have Spec (k[T1, . . . , Tn]/(P )) = V (I). By [13, Proposition 2.4.7 (a)],

V (I) is irreducible if and only if
√
I is prime, which is veri�ed if and only if P admits

only one square factor.
By [13, De�nition 2.4.16], a scheme is integral if and only it is both reduced and

irreducible. Then we obtain the result about the integral property.
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