MAXIMAL OPERATOR FOR THE HIGHER ORDER CALDERON
COMMUTATOR

XUDONG LAI

ABSTRACT. In this paper, we investigate the weighted multilinear boundedness prop-
erties of the maximal higher order Calderén commutator for the dimensions larger
than two. We establish all weighted multilinear estimates on the product of the
Lp(Rd,w) space, including some peculiar endpoint estimates of the higher dimen-
sional Calderén commutator.

1. INTRODUCTION

In the recent work [21], the author studied the multilinear boundedness of the higher
order Calderén commutator. The purpose of this paper is to further generalize those
results to the weighted space for its maximal type operator. Before stating our main
results, let us give some notation and background. Define the truncated higher (n-th)
order Calderén commutator by

CVAL - VA @) = [ K- (T[22 s

lz—y|>e i=1 ’x - y|
where n is a positive integer and K is the Calderén-Zygmund convolution kernel on
R9\ {0} (d > 2) which means that K satisfies the following three conditions:

(L.1) K ()] S [~

(1.2) / K(z)(z/|z])*dz =0, Y0 < r < R < 00 and Vo € Z4 with |a| = n,
r<|z|<R

(1.3) |K(x —y) — K(x)|] < |y|°/|z]%° for some 0 < 6 < 1if |z| > 2|yl.
Then we define the higher order Calderén commutator and its maximal operator by

C[VAla 7VAn7f](x) = I%CE[VAD : 7VAn7f]($)7

14
- CV AL VA f)(@) = sup LT AL -+ Vo, f1(0)].
e>
It is the standard context to check that these functions C[VAy,---,VA,, f](z) and
C.[VAL, - ,VA,, f](x) are well defined for Ay, ---, A,, f € CX(RY) (see e.g. [17]).
This kind of commutator was first introduced by A. P. Calderén [2] when n = 1 and
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K(z) is a homogeneous kernel and later [3] [4] for the higher order one (see also [6],
[7]). One can easily see that the first order Calderén commutator C[V A, f](z) is a
generalization of

A.511(@) = A@S(P)(a) = S(AP() = —pov-t [ = e ;4@)

s

where § = % o H and H denotes the Hilbert transform. It is well known that the
commutator [A, S] and it generalization are elementary operators in harmonic analysis,
which play an important role in the theory of the Cauchy integral along Lipschitz curve
in C, the boundary value problem of elliptic equation on non-smooth domain, the Kato
square root problem on R and the mixing flow problem (see e.g. [2], [4], [13], [24], [10],
[18], [8], [25], [19], [23] for the details).

Many classical known results about the higher order Calderén commutator take
place in the setting of the dimension d = 1. For example, the endpoint estimate
that the n-th order Calderén commutator C maps L'(R) x --- x LY(R) x LY(R) to

LI%H’OO(R) was proved by C. P. Calderén [5] when n = 1, Coifman and Meyer [6] when
n = 1,2 and Duong, Grafakos and Yan [11] when n > 1. Here we point out that one
important fact used by Coifman and Meyer [6], Duong, Grafakos and Yan [11] is that the
one dimensional higher order Calderén commutator can be reduced to the multilinear
Calderén Zygmund operator (see the very nice exposition [18, Chapter 7] and the
reference therein). However when the dimension d > 2, things become complicated since
Calderén commutator is a non standard multilinear Calderén-Zygmund operator. If we
consider the Calderén-Zygmund kernel K (x) = |2|~%, then the sharp bilinear estimates
(except some endpoint estimates) of the first order Calderén commutator in this case
has been established by Fong [14] via the time-frequency analysis method. For the more
general Calderén-Zygmund kernel or even rough homogeneous kernel, the author [21]
established all multilinear boundedness of the higher order Calderén commutator for
the higher dimensions, especially the endpoint estimate that the n-th order Calderén
commutator C maps the product of Lorentz space L&' (R?) x --- x L& (RY) x LY(RY)
to L@ (RY).

The weighted results related to the Calderén commutator is also only known for
the case d = 1. Duong, Gong, Grafakos, Li and Yan [12, Theorem 4.3] proved that
Cy maps L% (R,w) x -~ x L (R,w) x LP(R%,w) to L"(R,w) if 1 = (3, %) +%
with %H <r<oo, 1 <q,qn <00, 1 <p<ooandwe N A, (R)NALR).
For the endpoint estimate, Grafakos, Liu and Yang [16, Corollary 1.7] showed that
Cy maps L'(R,w) x --- x L}(R,w) x L'(R,w) to LH%’OO(R,w) under the assumption
w € A1(R). The method used in Duong et al. [12] and Grafakos et al. [16] is both
that by establishing the weighted theory for a class of multilinear Calderén-Zygmund
operators with non-smooth kernel and then applying it to the Calderén commutator
for the dimension d = 1. For the higher dimensional case of the Calderén commutator,
no proper weighted multilinear Calderén-Zygmund theory can be applied directly.

In this paper, we are interested in the following weighted strong type multilinear
estimate (or weighted weak type estimate) for the maximal operator of the higher
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order Calderén commutator

(15)  1CIVAL - VAn, Al gtay S ( TTIVAl o0 )1 o
=1
where 2 = (Y1, q%) —i—% with1 <¢; <oo,(i=1,---,n),and 1 < p < co. However, it

is unknown whether those kind of estimates hold for the maximal Calderén commutator
Ci even in the unweighted case. In this paper, we will work directly on the weighted
space and state our main results as follows.

Theorem 1.1. Let d > 2 and n be a positive integer. Suppose K satisfies (1.1),(1.2)
and (1.3). Assume that + = (31, i) —l—% with 1 < ¢ < oo (i = 1,---,n), and
1 < p < oo. Suppose w € (i, Amax{%’l}(Rd)) N Ap(RY). We may have the following
conclusions:
(i). Ifd_,_in <r<oo,1<¢g<oco(i=1,---,n) and 1 < p < oo, then (1.5) holds.
(ii). Ifd%t <r<oowith g =1 for somei=1,--- n;orp=1; orr= #Ln, then
the following multilinear estimate holds

n
(16)  CAV AL+ VA, [l ooy S ( TTIV A 2oty ) 11 o ey

i=1
and in this case, if ¢ = d for some i = 1,---,n, L%R% w) in the above inequality
should be replaced by L*' (R, w), the weighted Lorentz space. Specially, we have the
following endpoint estimate

n
A7) AL VA e S (TLIV A o) s
’ i=1

Remark 1.2.  (i). These results in Theorem 1.1 are new even in the unweighted case
when the dimension d > 2.

(ii). When 0 < r < d%w these multilinear strong type estimates (1.5) (or weak type
estimates (1.6)) do not hold for the maximal Calderén operator C,.. In fact,
some counterexamples has been constructed in [21, Theorem 1.1] to show that
those multilinear strong type estimates (or weak type estimates) fail even for the
operator C in the case 0 < r < d%z' Thus our results in Theorem 1.1 are optimal
in this sense.

(iii). The condition of the weight w € (N, Amax{%,l}(Rd)) N Ap(RY) seems to be
unnatural at the first sight, since it doesn’t appear previously. However, this kind
of condition is just appropriate for the higher dimensional Calderén commutator
as we will see in our later proof. In fact w € A, 9 ’1}(Rd) comes from VA; €

L% (R w) and w € Ap(RY) comes from f € LP(RY w). When the dimension
d =1, (1.5) turns out to be that C, maps L% (R, w) x - -- x LI (R, w) x LP(R%, w)
to L"(R,w) ifniJrl <r<ool<aq, ,qn <0, 1 <p<ooandw €
N, Ay (R) N Ap(R), which has been proved by Duong, Gong, Grafakos, Li and
Yan [12, Theorem 4.3] except the endpoint case ¢; = oo for some i or p = 0.
Therefore even in the one dimensional case (1.5) is new at the endpoint case

q; = oo for some i or p = oo. To the best knowledge of the author, (1.5) is new
when d > 2.
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(iv). Notice that LY (R, w) = L*(R,w). Therefore when the dimension d = 1, (1.7) is
just that the maximal n-th order Calderén commutator maps L!(R,w) x --- x
L'(R,w) x L'(R,w) to LH%’OO(]R,w) under the assumption w € A;(R), which
has been proved by Grafakos, Liu and Yang [16, Corollary 1.7]. To the best
knowledge of the author, (1.7) is new when d > 2. Although we assume that
d > 2 in our main results, the proof presented in this paper is also valid for
d = 1. Therefore even when d = 1, the proof of (1.5) and (1.7) here are quite
different from that by Duong, Gong, Grafakos, Li and Yan [12], Grafakos, Liu
and Yang [16], thus we give new proofs of (1.5) and (1.7) for d = 1.

(v). Currently, there are extensively research on seeking the optimal quantitative
weighted bound for singular integral. We do not purse this topic in this paper
but hope to work on it in the future work.

Notice first that if ¢; = oo with ¢ = 1,---,n, i.e. A; is a Lipschitz function,
then C[VA;y,---,VA,,] is a standard Calderén Zygmund operator. By the stan-
dard weighted theory of the Calderén-Zygmund operator, we may easily get that C,
maps L® (R4, w) x -+ x L®R% w) x LP(RY, w) to LP(R% w) for 1 < p < oo and
L®(RE w) x -+ x L®(R% w) x LY (R, w) to LM°(R? w). Recall the method used in
[12] or [16], by establishing the Cotlar inequality for the multilinear Calderén-Zygmund
operator, the authors in [12] or [16] proved the weighted multilinear estimates for the
Calderén-Zygmund operator and then applies them to the one-dimensional Calderén
commutator. There are also variants of the Cotlar inequality for the higher dimension-
al Calderén commutator, which is available only for the multilinear estimates (1.5) in
the case that all ¢; > d,i = 1,--- ,n,r > 1 (see Proposition 3.3). To deal with the
remainder case, our strategy is as follows. We straightforward establish the endpoint
estimates in (ii) of Theorem 1.1, which means that we need to give some weak type
estimates. Note that A; belongs to the Sobolev space W% (R%, w). We will construct
an exceptional set which satisfies the required weighted weak type estimate. And on
the complementary set of exceptional set, the function A; is a Lipschitz function with

a bound A\ . Then, roughly speaking, the strong type estimate and the weak type
L' (R4, w) boundedness (with ¢; = 00,i =1, ,n) of C,[VAy,---,VA,, fl(z) could
be applied on the complementary set of exceptional set. To construct the exceptional
set, we will make use of the Marry Weiss maximal operator and the weighted Sobolev
inequality.

This paper is organized as follows. Firstly some preliminary lemmas are presented
in Section 2. In Section 3, we give the proof of Theorem 1.1. The proof is divided
into several case. In Subsection 3.1, we prove some strong type estimates of (i) in
Theorem 1.1. The proofs of (ii) in Theorem 1.1 are given in Subsections 3.2 and 3.3.
In Subsection 3.4, we shall use the linear Marcinkiewicz interpolation with some strong
type estimates of (i) and full weak type estimates of (ii) to show the rest of (i) in
Theorem 1.1.

Notation. Throughout this paper, we only consider the dimension d > 2 and the
letter C' stands for a positive finite constant which is independent of the essential
variables, not necessarily the same one in each occurrence. A < B means A < CB
for some constant C. By the notation C. means that the constant depends on the
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parameter . A ~ B means that A < B and B < A. n represents the order of
Calderén commutator. The indexes r, q1,--- , ¢, and p satisfy % = (Z” ) +3 L with

i=1 ¢;
1<qg <00 (z'—l ,n) and 1 < p < oo in the whole paper. ForasetECRd
we denote by w( f pw(z)dr. VA will stand for the vector (014, ---,04A) where

0;A(x) = 0A(x )/83:1. Deﬁne Ng ={i,i+1,---,5}. Set

valy = (3 0aP)
=1

for X = LP(R%, w) or X = LY (R4, w). Z, denotes the set of all nonnegative integers
and Z4 =7, x -+ x Zy . For a € Z¢ and z € RY, we define 2% = 2" 25? - - - 2.
—_—————

2. SOME PRELIMINARY LEMMAS

In this section, we will introduce the weighted properties of some operators which
are useful in the proof of Theorem 1.1. Those operators include the Hardy-Littlewood
maximal operator with order §, the maximal sharp function operator, the Marry Weiss
maximal operator and many others. And also a weighted Sobolev inequality is needed.

Definition 2.1 (A4,(RY) weight). A nonnegative locally integrable function w on R is
called to be an A,(R?) weight if there exists a constant C' > 0 such that

p—1
2.1 su d:c / p- 1da: < C < oo,
2 Q \QI/ (7

where the supremum is taken all cube @ in R?. The smallest constant C' for (2.1) holds
is called the Aj, bound of w and is denoted by [w]a,. We call w an A;(R?) weight if
there exists a constant C' independent of @ such that

(2.2) Ql / z)dz < Cw(y), ae. y€Q.

And we set the smallest constant C' in (2.2) as [w]4,, which is called the A; bound of
w. We also set Ao (RY) = Ui<geoo A (RY).

It is easy to see that an equivalent definition of A;(R?) weight is that M (w) < Cw(z),
where M is the Hardy-Littlewood maximal operator. Recall the following basic fact
about A,(R?) weight (see [17]):

Ap(RY) € A RY), if 1 <p < q< oo

Lemma 2.2 (see [20] or [22]). Suppose that w € Ax(R?). Let 0 < 6,q < co. Then
there exists a constant C' depends only on w,d,q such that

[ ss@les < ¢ [ M)
Rd R4



6 XUDONG LAI

holds for any function provided that the left side integral is finite. Here Mg, M(g are
the Hardy-Littlewood maximal operator with order § and the maximal sharp function
operator, which are defined as

My(f)(w) = sup ( ny o )’

r>0

M) = suwint (g5 [ 17061 =)

where Q is a cube in R and Q(x,r) is a cube with center x and sidelength r.

Next we state some properties of a special maximal function introduced firstly by
Mary Weiss (see [5]), which is defined as

A h)—A
M(VA)(x) = sup |Alz + h) (z)]
heRd\ {0} |h|
Lemma 2.3. Suppose that w € Ap/d(]Rd) with p > d. Let VA € LP(RY,w). Then M
is bounded on LP(R%, w), that is

[IMVA) | o rawy S VAl Lo w0)-

Proof. By using the dense argument, it is sufficient to consider A as a C'*° function
with compact support. Then by the result of [5, Lemma 1.4], we get that for any ¢ > d,

A) ~ AWw) (1 o)
’w - y’ S <‘$ - y‘d /xz<2xy| ‘VA(Z)‘ I )

Since w € A,/q(R?), by the revers Holder inequality of 4,,/4(R?) weight (see [17]) and
its definition, there exist € > 0 such that w € A4, /d_e(Rd) and p/d — e > 1. Therefore
we may choose ¢ in the above inequality such that p/d — ¢ = p/q and d < ¢ < p.
Applying the fact that the Hardy-Littlewood maximal operator M maps L*(R% w) to
itself if 1 < s < 0o and w € A4(R?), we may get

IMV A e ra,w) S 1Mo(VA) [ Lora,wy = 1M (IVA]? )H ) S IVAlLeRa,w)

Lp/q R4,w
which completes the proof. O

Lemma 2.4. Let A be a function such that VA € L% (R, w), the Lorentz space with
weight w € A1(R?). Then for any X > 0,

w({z € RT: M(VA)(2) > A}) S A VAL a1 (g -

Proof. By the dense argument, it is sufficient to consider A as a smooth function with
compact support. Using the formula [26, page 125, (17)], one may write

ch/d — 0 A(y)dy = K x f(x)

|z —yld™

where K(z) = 1/|z|% 1, f = Cy ijl R;(0;A) with Rjs the Riesz transforms. Notice
that w € A;(R?) C A,(RY) for all 1 < p < co. By applying the general form of the



MAXIMAL OPERATOR OF CALDERON COMMUTATOR 7

Marcinkiewicz interpolation theorem (see [28, page 197, Theorem 3.15]), we obtain that

the Riesz transform R; maps LYY (R, w) to itself. Then it is easy to see that
||f||Ldv1(Rd,w) SJ HVAHLdvl(]RdﬂU)‘

Hence to finish the proof, it is sufficient to prove that

(2.3) w({ € R M(VA)@) > A) S A0 gy

with A = K % f. Below we shall show that for any = € R%, the following estimate
|A(z +h) = A(z)| S |WT(f)(x)

holds uniformly for h € R?\{0} where T is an operator maps L%!(R%, w) to L4 (R, w).

Once we show this, we get (2.3) and hence finish the proof of Lemma 2.4. We write

A(x + h) — A(x)

=/ w+h—y\‘d+1f(y)dy—/ |z —y| " f(y)dy
le—y|<2|hl lo—y|<2|hl

L T (R e e F{
|z—y|>2|h|
=I+II+ 111

Consider [ firstly. Observe that K € L% >°(R%) where d’ = d/(d — 1). Set B(z,r) =
{y € R?: |z —y| < r}. Applying the rearrangement inequality (see [17, page 74,
Exercise 1.4.1]), we obtain that

1< [ Kt h= i)l xaanm s < K aam) (s

< (/Ooo(fXB(x,2|h|)>*(5)5‘lids) ~sub (K*(S)S%)

S s>0
S xB@ 2l e @)Kl Lo oo gays

where f* stands for the decreasing rearrangement of f. Applying the definition of
Lorentz space, we may get that ||xp|| ;a1 ®e) = [ XEl L¢®a) holds for any characteristic
function x g of set E of finite measure, thus [|X p(s,2n)) | La.1 (re) = Calh|. Then we obtain
that

HfXB(m,r) ||Ld71(Rd)

1| < |R[A(f)(z), where A(f)(z)=su :
r>0 ||XB(as,r)HLd’1(Rd)

In the following it is sufficient to show that the operator A maps L*'(R% w) to
L%%°(R? w). Note that L%!(R? w) is a Banach space (see e.g. [28, page 204, Theorem
3.22]), it suffices to show that A is restricted of type (d, d), thus is [[A(xE)|| Ld.c0 (re,w) S

w(E)é (see e.g. [17, page 62, Lemma 1.4.20]). However in this case, the proof is
equivalent to show that

w({z € R M(xe)(2) > A}) S A7 IxEllL @),

where M is the Hardy-Littlewood maximal operator. Since M is weighted weak type
(1,1) if w € A;(R?), hence we prove that A maps L% (R, w) to L4 (R%, w).



8 XUDONG LAI

Next consider I1. Observe that the kernel k(z) := e [z|~%*!x{;)<.} is radial non-
increasing and L' integrable in R¢, we get
(I] < (IRl ray [P IM () (2)-
Notice that LP'(R?,w) C LP(R?,w) and M maps LP(RY w) to itself for 1 < p < oo.
Hence we get that M maps L (RY, w) to L% (R%, w).

Finally consider I11. Notice that it suffices to consider |z —y| > 2|h|. Then applying
the Taylor expansion of |z — y + k|1, we get

1 1
|z —y+hlT=t Jz—y

d
(2.4) = (-d+1) Zh _y|d+1 + R(z,y,h)
J=1

where the remainder term R(x,y,h) in the Taylor expansion satisfies
[R(z,y,h)| < Clh[|lz —y|~* " if [« — y| > 2|,

Inserting (2.4) into the term IIT with the above estimate of R(x,y,h), we conclude
that

d
IS IhIZRj(f)(w)+\hl2/ [ =y~ f (y)ldy
j=1 |z—y|>2|h|
where R? is the maximal Riesz transform defined by

R (£)(@) =sup| | F()dy|-
e>0 "' J]jz—y|>e ‘m_ ’d+l

Since R; is bounded on LP (]R ,w) for 1 < p < oo, we immediately obtain that R; maps

LAY R, w) to L (R?, w). The second term which controls IT1 can be dealt similar to
that of the estimate of I once we observe that e|z| 41 X{|z|>¢} 18 radial non-increasing

and L' integrable. O

In the following, we introduce a weighted Sobolev inequality and a key weighted
weak type estimate for VA € LP(R? w) with 1 < p < d. Define the weighted Hardy-
Littlewood maximal operator of order p M,, ;, and the weighted maximal operator 9,
by

1 1/p
Mapl0)) =sp (st [ IwPutay)

(
. 1 Alx) = AW, 0\
mw,S(vA)(x) - r>18 (QU(Q(J',T)) /Q(m,r) r (y)dy) )

where Q(x,r) is a cube with center x and sidelength r.

S

Lemma 2.5 (see [9]). If w is an A;(R%) weight, then the following weighted Sobolev

inequality
([ s@ruwan)” <o [ e vaw)uw)”

holds for 1 <p < d and 1/s = 1/p—1/d, where g is a C* function with compact support
and the constant C' does not depend on g.
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Lemma 2.6. Let w € A;(R?) and VA € LP(RY,w) with 1 < p < d. Set 1/s =
1/p—1/d. Then we have

w({z € RY: 9y (VA)(&) > M) S AP IVAR,
Proof. By using a standard limiting argument, we only need to consider A as a C'
function with compact support. Fix a cube Q(x,r). Choose a C2° function ¢ such
that ¢(y) = 1 if y € Q(x,r), suppp C Q(z,2r) and ||V poo(ra) S r~!. Consider the
auxiliary function ¢(y)(A(x) — A(y)) where z is fixed and y is the variable. Using the
weighted Sobolev inequality in Lemma 2.5 and the property (2.2) of A;(R?) weight,
one may get that

i (/62(95727")\@(90,7’)
<P oo

Az) — Ay) p ,
’ (/wa\cz(m) )]

7"
The above estlmate via the doubling property of w(z)dx (i.e. w(2Q) < w(Q), see [17])
and % l — = ylelds that

3=

Az) — Aly)

s 1
s

w(y)dy)” S Mup(VA)@) + Sp(TA) (@),

1
(W(Q(% 7)) /Q(a:,r)
where

1
[m /(;)(a:,zv«)\«;)(x,r)

Again using the fact that w(z)dz satisfies the doubling property, one may see that the
Hardy-Littlewood maximal operator M, ; with the weight w is of weak type (1,1), thus
is My, maps L'(R% w) to LV (R4 w). Then we get that M, , maps LP(R%, w) to
LP>° (R4, w). Therefore to complete the proof, it is enough to show that S,(VA)(z) <
T(VA)(x) with T mapping LP(R%, w) to LP>°(R%, w).

Below we give some explicit estimates of A(z) — A(y) similar to that in the proof of
Lemma 2.4. By the formula given in [26, page 125, (17)], we may write

Cdz/du %0, Aly)dy

yld™

Al) = 40Py

RS

Sp(VA)(z) ==
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Split A(x) — A(y) into three terms as follows,

Ax) - Aly)
d
xTj— 2 o
~ ¢, / 75 . A=) _/ A
(2.5) ; [ lo—z| <2yl o — 2 |z —2]|<2|z—y] ly — 2|47
Ti— 25 Yi — Z;

* L — L0, A(z)dz

|z—2|>2|z—y| <|x—z|d |y_Z|d) i A(2) ]

=I(x)+ II(x)+ I1I(x).

Plug the above three terms back into S,(VA)(xz) and define these three terms as
Sp1(VA)(z), Sp2(VA)(x) and Sy 3(VA)(x) respectively.
Let us first consider Sy, 1(VA)(x). By applying the Holder inequality,

1P < o—uP ([ VACIE ).

jo—2|<2fo—y) [T = 2|7

Plugging the above inequality into S, 1(VA)(z) with | — y| ~ r, and then using the
kernel k(x) = 5_1|x]_d+lx{‘x|gcs} is a radial non-increasing function and L' integrable
in R?, we get that

(2.6) Sp(VA@) S (! / VAGI 1) < MV A) ).

|lx—z|<r |:IZ - Z‘d_l

It is easy to see that M, maps LP(R% w) to LP*°(R% w) with w an A;(R?) weight
is equivalent to that the Hardy-Littlewood maximal operator M maps Ll(Rd,w) to
LY (RY, w), which is however well known.

Next we consider S, 2(VA)(x). By using the Holder inequality to deal with I1(x) as
those of I(x), then applying |x — y| = r and the Fubini theorem, we get

i 1 1 |VA(2)P 7
<[+t 1 VAE)IT
Sp2(VA)() 3 Lw(Q(z,2r)) /Q(x,2r)\Q(x,r) r </|x—z|§r ly — Z’d_ldz>w(y)dy}

S M /Iz—Z|§7" r_l ( /|y—z§7" Iyi}g\?j‘ldy) |VA(z)|sz} ’

o ,,
S Lw(Q(x,2r)) /|1’—z|§rM (w)(2)|VA(z)| dz}

< r 1

Lw(Q(z, 2r))

S =

/| [V S My (),

where in the third inequality we use again the fact that the kernel function k(z) =
5_1\x|_d+lx{|z|§05} is a radial non-increasing function and L' integrable in R?, the
last second inequality follows from (2.2). As showed previously, M, , maps LP(R, w)
to LP>=(R?, w).
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We consider S, 3(VA)(x). Set K;(x) = ;—f;. Notice that |z — z| > 2|z —y|. Applying
the Taylor expansion of KCj(x — z), we may get

d

Ki(z—2)—Kjly—=z) = Z(:{:Z —¥i)0ilCj(x — 2) + R(x,y, 2)
i=1

where the Taylor expansion’s remainder term R(z,y, z) satisfies
|R(z,y,2)| S |z —ylPle — 2|77, ¥ |z — 2| > 2]z —y].

Plunge the Taylor expansion’s main term and reminder term into Sp3(VA)(z) and
split S, 3(VA)(z) as two terms Sy, 3.m(VA)(z) (related to main term) and S, 3.(VA)(z)
(related to reminder term), respectively. Then by |z — y| = r, we have the following
estimate of S, 3., (VA)(z),

Spam(VA)(z)
d d )

=53

=114

T;4(9;A) (),

Z7.]

d
=1

where the maximal singular integral operator 7;";(f)(z) is defined as follows

(28) rE =sw| [ ok - prwa)

e>0

One can easily check that the kernel 0;K;(z — y) is a standard Calderén-Zygmund
convolution kernel which satisfies (1.1), (1.3) and has mean value zero on S?~!. Then
by the standard weighted Calderén-Zygmund theory (see [17]), T}; is bounded on
LP(RY, w). So T;; maps LP(RY, w) to LP>°(R%, w).

Finally one may apply the method similar to that of I to handle the reminder term
Sp.3r(VA)(x). Indeed, by the Holder inequality and |z — y| =~ r, we get

1 IVA(z)P :
(VA S [ VAP
Soar(VAN@) S w(Q(z,2r)) /Q(x,2r)\Q(:r,r) T<\/7',<V|xz| |z — Z|d+1d2)w<y)dy}
S Mp(VA)(2),

where in the last inequality we use that the function ala:\_d_lx{|m|>€} is radial non-
increasing and L' integrable. As showed in the estimate of I, we get that M, maps
LP(RY, w) to LP>°(RY, w). Hence we complete the proof. O

Remark 2.7. When giving an estimate in (2.5), we in fact prove that the following
inequality

W S M(VA)(z) + M(VA)(y) + D> T(04) ()

i=1 j=1

(2.9)

holds for almost every z,y € R? if A is a C2° function, where T3, is defined in (2.8).
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Lemma 2.8. Let {Q}r be the disjoint cubes in RY. Denote by 1(Qy) the side length
of Q. Define the operator Ty as

S

Suppose that 1 < g < oo, w € Aq(]Rd) and f € LYR?* w). Then for any s > 0, we get
that

| Ts () Laqre,wy S Nl La(re,w)-

Proof. If ¢ = 1, Lemma 2.8 just follows from the property (2.2) of A;(RY) weight and
the Fubini theorem. In fact, we have

LGOI MY A da] 110y
<3 [, M 7
Alz [ @) S ol e

where the second inequality follows from that splitting the kernel 0 )l (Qr) into

UQp)+lz—y[]*+s
two parts according whether |z — y| < I[(Qg) or |x — y| > I(Q), the third inequality
follows from the property (2.2) and in the last inequality we use that Qs are cubes
disjoint each other. After we establish T} is bounded on L'(R%, w) with bound [w]4,,
the proof of the case 1 < ¢ < oo just follows from the famous extrapolation theorem
(see e.g. Theorem 7.5.3 in [17]). If ¢ = oo, apply the Fubini theorem,

IT(F) @) <D Il Sgﬂgi/Q U(Qk)lﬁﬁ)s

Qk

de+8 Y S HfHLOO(Rd)

Then T} is bounded on L>®(R%, w) is just a consequence of the chain of inequalities:

(2.10) ITs (Pl oo e,y S NTs () oo ety S 1 oo ey S 11 poo (Rt )

which can be proved as follows. Notice that we have the equivalent definition of
L®(RY, pu): [ fllLoo(ra, ) = sup{a : p({z € R? : |f(z)] > a}) > 0}. The first in-
equality in (2.10) follows from the fact that w(E) > 0 implies |E| > 0. Likewise, the
last inequality in (2.10) follows from the fact that |E| > 0 implies w(E) > 0, because
w(x) = 0 only for the points in a set of measure zero by the definition of A.,(R?)
weight. Hence we complete the proof. O

Remark 2.9. By the last argument above, for any w € Ay (R?), the follow equality

HfHLOO(]Rd) ~ ||f||L°°(Rd,w)

holds. We will straightforward apply this equivalence many times later.
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3. PROOF OoF THEOREM 1.1

3.1. Some basic strong type multilinear estimates.

In the following, we begin to give the proof of Theorem 1.1. In this subsection, we

will first show our theorem in the case ¢ = -+ = ¢, = 00, r = p € [1,00) which is not
quite complicated and the case d < q1,- -+ ,qn, < 00,1 <71 < 00,p = 0.
Proposition 3.1. Let ¢ = co with ¢ = 1,--- ;n, 1 < r = p < co. We have the

following conclusions:
(i). fp=r€ (1,00), w € Ay(R?), then

ICIV AL VA, Aty S ( TTIVA ity ) 11l gty
=1
(ii). If p=7r =1, w € A;(R?%), then
IV AL VA, Ml gty S ( TTIVAN ot ) 12
=1

Proof. The proof of this lemma is quite standard, so we just give some key steps. When
q1 =+ =qy =00, A; is a Lipschitz function for i = 1,--- ,n. Fix all 4;. Observe that
the kernel

- Az xXr) — Az Y
(31) 8Go9) = Ko=) ([[ =)

i=1
is a standard Calderéon-Zygmund kernel satisfying the boundedness condition and reg-
ularity condition with bound [[;L; [[VAil| oo (ray (see e.g. [18, Definition 4.1.2]). Then

we may have the following L? boundedness

(3.2) 1€V AL,V A, flll ey S (TTIV Al )1 g
=1

This in fact can be seen by using the famous T'1 theorem (see [18]) or by applying the
mean value formula

W — /01 <’i:z’,VAi(sx+ (1- s)y)>ds

to reduce the operator C to the following operator introduced by Christ and Journé [8]

Ceslor, san @) = pv. [ Ko=) [[moyen) f0)ay
=1

which maps L>®(R%) x --- x L®(R%) x L?(R%) to L?(R%) (see [8]). Here in the above
operator k(x —y) is a standard Calderén-Zygmund kernel and m, ya = fol a(sx+ (1 —

s)y)dy. Then the rest of the proof just follows from the standard weighted Caderdn-
Zygmund theory (see [17, Theorem 7.4.6.]). O
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Proposition 3.2. Suppose that 1 <r <oo,d < q1, -+ ,q, < 0o and % =3, i. Let
we Nk, A%(Rd). Assume that VA; € L% (R w),i = 1,---,n and f € L®(R?, w).

Then we get
IV A+, VA, Ml ey S (TTIV A ot ) 1o ety
i=1

Proof. By the standard limiting arguments, it is enough to consider that each A;
are Cg° functions and f is bounded compact function. Then one can easily check
that [pq [Ms(C[V A1, -+, VA, f])(z)] w(z)dz is finite (for example one may use the
method in [22, page 1248] to show this). Therefore using the Fefferman-Stein inequality
in Lemma 2.2, we may get that for any § > 0,

”C[VAD -+, VA, f] HLT(Rd,w) < HM5 (C[VAD VA, f]) ||LT(]Rd,w)
S MV AL T An 1))

In the following, we need to give an estimate of the maximal sharp function. Fix x
and a cube @ 3> z. Define f1 = fx3g and fo = f — f1. Then write

C[VAy,--- VA, fl(z) =C[VAy,--- ,VA,, f1i](2) + C[VA1,--- ,VA,, fo](2).

Choose a constant ¢ = C[V Ay, - -+, VA,, fo](x) in the maximal sharp function. Then
we see that this maximal sharp function Mg (C[VA1,---,VA,, f])(z) is bounded by the
following two functions

— s (L 502)°
I(x)+11(z) := %L;[; <|Q| /Q IC[VA;,--- ,VA,, f1](2)] dz)

-

1 5 5
+221;11; (M/QC[VAL“' ,VAp, f2]l(2) = C[V A1, ,VAy, fo](z)] dz) .

We first consider the above first function I(z). Define A; = A;x30. Then for any
z € @, we may write

C[VAL, - VA, fil(z) =C[VAL, - VA, fi](2).

Choose 6 < d/n. Applying the Holder inequality, strong type multilinear estimate (see
[21, Theorem 1.1]) and the definition of A;, we may get

1 3 . -
(G [ e VA )" S IO AL T Ao il 4
0 ,

n

S il poo ey H ||V/~1¢”Ld(Rd,|%z)
i=1

d
< Hf”Loo(Rd) HMd(VAi)($)7
i=1

where M, is the Hardy-Littlewood maximal operator of order d. Notice that w €
Ny Ag, /d(Rd), by using the weighted boundedness of the Hardy-Littlewood maximal
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operator, one may easily get that || Ma(VA;)|| Lo (rdw) S IIVAill Lai (rd ) Therefore

Ml ety (HHVA o et ) 1 e -

i=1
Next we turn to [I(z). Write

CIV AL Voo, £)(2) =€V AL Vo i) = [ [8G.0) = 86 0)] Sy
where (z,y) = K (z — y) [T{; 242=Y. Then write
R(z,y) — R(z,y)
- (Ko KV Ta) - a)

‘Z - y|n |:‘C - y|n i=1
=1 =1
=: Ri(z,z,y) + Ra(z, 2, 9).

We consider the term £ (z,z,y). Notice that x,z € @ and y € (3Q)¢, then |z —y| =
|z — y|. By the regularity condition (1.3) and the formula (2.9), we get that

5 d
Rz )] < m TTM(VA) ) + T(VA) )],
=1

where here and in the following, T is the sum of combination of the Hardy-Littlewood
maximal operator and maximal singular integral Tz*j defined in (2.8), which both map
LY(R?, w) to itself for 1 < ¢ < co.

Next we consider the term Rs2(z,z,y). We may split R2(z,z,y) into n terms and
apply (2.9),

n i—1 n
Ro(z,2,y) S P ‘d+n Z ]kH[Ak( z) — Az'(y)]kH [Ak(2) = Ar(y)]
i=1 =1 =i+1
‘dﬂ H 2) + T(VA;)(z) + T(VA;)(y)].

Combining these estimates of RA1 and K, we get

[8(z, ) — R(z,y)]

6 n
< m [[0(VA)(E) + 7T A4)(5) + T(TA) )

|d+5 ST M(vA) ) T[] T(VA) (=) T T(VA) ()

Nn 1€N, i€ Ny 1€ N3

where in the last inequality we divide N} = N; U No U N3 with NP = {1,--- /n} and
Nj, N2, N3 non intersecting each other. Plugging the above estimates into I1(z) and
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applying the Holder inequality, we get that

SEUTreselg [ [, 25 T el

N} i€Na 1€EN3

< [ T] T(VA)(2)]dz

1€EN,

Sl Yo [ T] T(VAN @M ] T(VA) (2) - M[ T] T(VA)]

N} i€N2 1€N3 1€EN1

Now using the Holder inequality and the fact that M, T are bounded on L4(R%, w) for
1 < g < o0, we get

Wz @) S (TTIV Al 2ot ) 1o ety
=1

which completes the proof. O

Proposition 3.3. Suppose that 1 <7 < 00, d < q1,-* ,qn < 00, p = o0 and % =
S 1 g Letwe Niz; Ag;a(R?). Then we get

1V ALV A, Sl o) S (LTI Ail s gty ) 11 o

Proof. Let ¢ be a C2° function which is supported in {z € R? : |z| < 1/4}, o(z) =1
if [z] < 1/8 and [gqp(z)dz = 1. Set ¢.(z) = e %p(e1z). It is easy to see that
wexC[V Ay, -+ VA, fl(x) is bounded by M(C[V Ay, ---,VA,, f])(z). By the weighted
boundedness of the Hardy-Littlewood maximal operator M and Proposition 3.2, we
may get that

IMCIV AL,V Ans Do) S ( TTIVAM oty ) 1 o -

So, to complete the proof, it is suffice to show that the following difference
C[VAy, - VA, fl(z) — pe xC[VA1,--- ,VA,, fl(z)

is controlled uniformly in ¢ by a function which is bounded from L% (R% w) x --- x
L (R w) x L®(R4, w) to L"(RY,w). We write the difference in the above equality as
follows

Laee)] /|my|>s (R(e,y) = 8@ = 29)) f(v)dy| =
+ /Rd ¢ (2) [p.v. /|xy<€ R —2z9)f(y )dy] dz =: P.(z) 4+ Q.(x),

where R(z,y) == K(z —y)[[1-, % Now we first give an estimate of Q.(x).
By the Fubini theorem,
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Q-(z) = /Rd oo — 2) [p.v./

lz—y|<e
- /MKE pov. [ ela = )86 0)d2] )

Notice that |z — y| < e and |z — 2| < §. For each i = 1,---,n, define A;(-) =

i(-)X{|.—z|]<c}- The all A; in the above inequality can be replaced by A;. Choose
= (Z?:1$)+% such that 1 < 7 < 400, 1 < ¢ < ¢ < oo for all i = 1,--- ,n,
1 < p < co. Then by the multilinear boundedness properties of C[V Ay, - -+, VA,, f](z),
we may continue to give an estimate of Q(x) as follows

R(zy)f (y)dy} dz

<= :b

4T ~
|Qe(@)| S 1flloe@ye™ [T IV Aill s ey llpell Lo ety
i=1
n 1

1 g\ @ S+, L—alt
< e (1] 2 /| A
r—z|<e

1
P el Ls ray
-1

S oo ety | [ Ma (VA ().
i=1

As we have done in the proof of Lemma 2.3, we see that M maps L% (R? w) to itself
for w € A, /d(]Rd). Then by using the Holder inequality, we may get that

n
50 1Qelll ety S ( TTIV Al zovgetay ) 1 oo )
€ i=1
Next we turn to P.(z). Write

ﬁ(l‘)y) - ﬁ('x ) y)

_ K(x_y)_K(x—z—y) n 4
_<\x—y\n |z — 2z —y|™ )H(Al() Ai(y))

=1
+ EE D ) - At - [[ (A = 2) — o)
i=1 =1
=1+ 1I.

We consider the term I. Notice that [z—y| > € and |z| < e, then [z—y| & [z—z—y|.
By the regularity condition (1.3) and (2.9), we get that

g9 d
HPS [z — y|&+o H[M(VAJ(UU) +T(VA;)(y)]-
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Consider the term 7. We may split 11 into n terms and use (2.9),

n 1—1 n
111 < m_lw > [Ai(@) — Ai(z — 2)] [[ 1Akl — 2) = Ai)] [] [Ak(z) — Ar(y)]
Yy =1 k=1 k=i+1

S oyt LIIM(VA) @) + T(VA) @ = 2) + T(VA) )

Combining the estimates of I and II, we get
[R(zy) — Rz — 2,9)|

5 n
< ufm H[M(M)(x) +T(VA) (@ — 2) + T(VA) ()]

S —y|d+5 oI MVa)@) [T (VAN @ - 2) [T T(VA) W),

NT €Ny i€ No i€ N3

where in the last inequality we divide N} = N; U Ny U N3 with Nj, Na, N3 non
intersecting each other. Plugging the above estimate into P.(x), we get that

DS MVA) @ /R/| |> ,w_y,m T TV A0 W) £y

NP ieN; iEN3

X @e(z HTVA (z — 2)]dz

1€ No
Sy LTI MVAN @M [] T(VA)] (@) - M[ T] T(VA)]
Np €Ny 1€ Ny iEN3

Now using the Holder inequality and the fact that M, T are bounded on LI(R%, w) for
1 < g < o0, we get that

| 50p 1Pl ety < (H IV Al o ety ) 1 o
=1

which completes the proof. O

3.2. Case: all ¢;s are larger than d.

In this subsection, we consider the case d/(d+n) <r <oocand d < g, -+, g, < 0.
Without loss of generality, we assume that the first ¢1,--- ,q; > d and q;41, -+ ,qn, = d
with 0 <1 < n. Here and in the following, when [ = 0, we mean all ¢ = --- = ¢, = d.

The proof of the case p = oo is slight different from that of 1 < p < co. So we shall

give two propositions below. Let us see the case 1 < p < oo firstly and we emphasize

in the proof where it doesn’t work for p = oo.

Proposition 3.4. Let % = (Z?:l é)—l—%, diin <r<oo,d<qi,-,q <ocand gy =
-=¢qp =dwith 0 <1 <n, 1< p<oo. Suppose that w € (ﬂ;;l Amax{% 1}(]Rd)) N
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Ap(RY). Then
||C* [VAlv o, VA, f] HLTvOO(Rd,w)

l n
S (TIIV Ao ) ( TT 1Al oo )1 zoges )
=1

i=l41

(3.3)

where L%!(R? w) is the weighted Lorentz space.

Proof. By the dense limiting argument and scaling argument, it is sufficient to prove
that when A; (i =1,---,n) and f are C*° functions with compact supports,

IVAill Lo (e ) = IVAjll Lot e wy = 1 fll Lo e wy = 1,
fori=1,---,land j=141,---,n, the following inequality
w{z € RY: C[VA, - VA, fl(x) > A}) <A77
holds for any A > 0. Fix A > 0. For convenience we set
(3.4) Ey={z eRY:C,[VAL,---,VA,, fl(x) > \}.

Our goal is to show w(E)) < A7". First assume that all ¢1,---, ¢ < oco. Once the
proof in this situation is well understood, we can modify the proof to the other case
that there exist some ¢; = oo for i = 1,--- ;1. We shall show how to do this in the last
part of the proof. Define the exceptional set

Jin = {z € RY: M(VA;)(z) > \ur }.

fori =1,--- ,n. Here it should be pointed out that the above definition is meaningless
if ¢; = co. Therefore we need to assume all ¢; < oo firstly. By Lemma 2.3 and Lemma
2.4, M maps LP(R? w) to itself for p > d and maps L% (R, w) to LL°(R?, w), i.e.

w(‘]i)\) 5 )\_T||VAi||%qi(Rd7w) = )‘_T7 1= ]-7 e alv

(3.5) . J o
w(‘]J}A) SA |’VAjHLd,1(Rd7w) =X, j=I0+1,---,n.

Set Jy = U}, J; x. Since w(x)dx satisfies the doubling property, we may choose an
open set G which satisfies the following conditions: (1) Jyx C Gy; (2) w(Gy) < w(Jy).
By the property (3.5) of J;x, we see that w(G)) < A™". Next making a Whitney
decomposition of G (see e.g. [17]), we may obtain a family of disjoint dyadic cubes
{Qr }r such that

(). Gx=UpZ, Qs

(). V- UQp) < dist(Qr, (Gr)) < 4V 1(Q).
With those properties (i) and (ii), for each Qj, we may construct a larger cube @} so
that Qr C Q, Qj is centered at y;, and yi € (G1)¢, [(QF) ~ [(Qk). By the property
(ii) above, the distance between @ and (G,)¢ equals to Cl(Qy). Therefore by the
construction of Q7 and y;, one may get

(3.6) dist(yk, Qr) =~ (Qr), w(QF) =~ w(Qk).

Now we come back to give an estimate of w(FE)). Split f into two parts f = f1 + fa
where f1(z) = f(z)X(q,)e(7) and fa2(z) = f(z)xc, (7). By the definition of J), when

restricted on (G))¢, A; is a Lipschitz function with [[VAil[ze(gy)e) < Aui for i =
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1,---,n. Let A; represent the Lipschitz extension of A; from (Gy)¢ to R? (see [26, page

174, Theorem 3]) so that for each i = 1,--- , n,
Ai(y) = Aily) ify € (Gr)5

|Az(:v) - /L(y)‘ < )\ilx —y| forall z,y € R,

Since the operator Ci[- - ,] is sub-multilinear, we split E) as three terms and give
estimates as follows:

w{z e R : C,[VAL, -, VA, fl(z) > \})
(3.7) < w(10Gy) + w({z € (10G))®: CL[V AL, -+ , VA, fil(z) > \/2})
+w({z € (10G\)°: Ci[VAy, - , VA, fo](x) > N/2}).
The above first term satisfies w(10Gy) < A", which is our required estimate. In

the following, we only consider the second terms. Notice that we only need to consider
x € (10G))¢. By the definition of fi, it is not difficulty to see that

C[VAL - VAn, fil(2) = C[VAL, -+ VA, fi] (2).
With this equality in hand, Proposition 3.1 (1 < p < 0o) implies
w({z € (10G))° : C[VAy, -+, VA, fil(z) > A/2})

. — w({z € (10G))° : C.[VAy, -+, VA,, fil(x) > A/2})

- A —ptpSH T L,
NPTV AN ) gy S AP0 =2,
=1

If p = oo, the above method does not work. We will show how to prove this kind of
estimate in the next proposition. '

Let us turn to C4[VAy, -+, VA, fo](z). Recall N/ = {i,i+1,---,;} and our con-
struction of G, yr, Qr and QF above (3.6). Then by the property (i) of {Q}x, we
may write fo =, fxq,. Therefore we may get

Ce[V AL+ VA, fol (2 Zc VAL -+ VA, fxq,l ().

In the following we need to study carefully []7, w

several terms and then give an estimate for each term. Write

(y)
H \w—y\

We will separate it into

_ oy Ai(y) | Aily) — Ailyr) | Ailys) — Ai(y)
_H( Iw—yly ylfv—ylyk y!;—y! y)
= (gl ;’i(y)> <£V[2 Ai(:ﬁ—_j(y% (g3 Ai(y’Z)_—szi(y)>

= I(xay) ‘1‘17(%2/7?%)7
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where in the third equality we divide N = N{UNsUN3 with N1, N2, N3 non intersecting
each other; and I(x,y), II(x,y,yx), are defined as follows

Ai(y) — Ai(yk)} [ Ai(yr) — Ai(y)]

X —z — 2

D I | S
By the above decomposition, we in fact write C.[V Ay, - -+, VA, fxo,](z) into 3™ terms
and separate these terms into two parts according I and I1.

Weighted estimate of Cy[--- ,-] related to I. This estimate is similar to (3.8). In
fact, in this case there is only one term C,[V Ay, --- ,VA,, f]. Then by Proposition 3.1
(1 <p< o), we get

w({z €(10G,)° : C. VAL, --- VA, fo](z) > A/2})

B A Y Ty
SA p(HHVA’inoo(Rd )Hf2”Lp(Rd <A Pp Yy o AT
=1

If p = 0o, the above argument may not work again.

Weighted estimate of Ci[--- | related to I1. Tt is sufficient to consider one term
Cs[ -+ ,-] related to I in which N is a proper subset of N7. In such a case, without
loss of generality, we may suppose that Ny = {1,--- , v}, Ny = {v +1,--- ,;m} and
N3 ={m+1,--- ;n} with 0 < v <m <n and v < n. Here if v = 0, it means that
Ny = 0; if v = m, Ny = 0; if m = n, N3 = (). With these notation, it is easy to see that
N is a proper subset of N}. By a slight abuse of notation, we still utilize II(z,y, yx)
to represent one term related to Ny, Ny and N3 in (3.9) and utilize Hy7(z) to represent
Cy[---,-] related to II(x,y,yx), i.e

Hir(x) = sup Z/ K(x—y) Iz, y,u) f (y)xQ. (v)dy|-
e>0 lx—y|>e

Notice that y, € (G)€, thus y; € (J; 1)°. Therefore we obtain that
M(VA)(yi) < )\qli, fori=m+1,---,n

With the above fact and A; is a Lipschitz function with bound \/% for i = 1,--- ,m,
we get,

y—y n—uv n
(2, y, yi)| S A1 ||xk||nv IT M(VA) )
i=m-+1

|n7v

T g [V = v
~ |z — gyl
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Since it is sufficient to consider x € (10G) )¢, then for y € Qp, |z —y| > 21(Qk) ~ |y —yk|
by (3.6). Combining the above discussion with (1.1), we obtain

Hinle) < 3 / [ 1TE(z, g, )] - 1 ()ldy
(3.10)

s S >
o Z/ [1(Qr) +|x de—i—n =|f(y)|dy = A Tyof(2)

where T),_, is defined in Lemma 2.8. Applying the Chebyshev inequality with the
above estimate, and utilizing Lemma 2.8 (notice that n —v > 1 because N; is a proper
set of NT), we finally get

w({z € (1063)° : Hir() > M) < NPTl o S NI

Hence we finish the proof of the term II. If p = oo, the above last argument may
not work and some different discussion should be involved, see the proof in the next
proposition.
Finally, we show how to modify our proof here to the case ¢; = oo for some i =
1,---,l. We may assume that only ¢ = --- = ¢, = o0 with 1 < uw < [. Thus A,
, A, are Lipschitz functions which in fact are nice functions. Then we just fix
Aq,---, A, in the rest of the proof. We only make a construction of exceptional set

for Ayy1,---, An and study [];-, 41 % by using the same way as we have done

previously. After that utilizing Ay, ---, A, are Lipschitz functions to deal with all
estimates involved with Aq,---, A,, we could obtain our required bound. O

Proposition 3.5. Let 1 = (Y7, q%) + 1, T Sr<oo,d<gqi,--,q < ooand g,

oy gn=dwith 0 <[] <n, p=cc. Suppose that w € N, Amax{%l}(Rd). Then

IC«[V AL, -+, VA, fll Lroo (R )

l n
S (TTIV Ao ( TT 19 Al oo )1 2oe s )
=1

i=1+1
where L% (R? w) is the weighted Lorentz space.

Proof. The proof here is similar to that of Proposition 3.4. So we shall be brief and
only indicate necessary modifications here. Proceeding the proof in Proposition 3.4,
there are four different arguments.

The first one is that when we choose the set Ey, we set

E\x={x eRY:C,[VAL, -, VA, fl(z) > CoA},

where Cj is a constant determined later. Our goal is to show w(Ey) S A™". We split
FE), as several terms and give estimates as follows:

w{z € R : C,[VAL, - ,VA,, f](z) > CoA})
(3.11) < w(10Gy) + w({z € (10G\)°: C.[V AL, -+, VA, fil(x) > CoA/2})
+ w({x S (10G)\)C : C*[VAl, s ,VAn, fQKZC) > C())\/2})
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The first term above satisfies w(10Gy) <A77, so it is sufficient to consider the second
and third terms. Thus we only need to consider x € (10G))°.

The second difference is the estimate related to the second term in (3.11). Here
we choose 7, G1, -+, Gn, such that 1 <7 <00, 1 < G1 < 00, -+, @n < @p < 00,
d<qi,- - ,qGn and % =3, ~_ . Utilize Proposmon 3.3 with those above T, ¢1, -+, Gn

and A; is a Lipschitz function on (G )¢ with Lipschitz bound A for i = 1,---,n, we
may obtain

w({x € (10G))° : C«[VAy,--- ,VA,, fil(x) > CQ)\/Q})
< w({x € G)\)C : C [V(AIX(G/\)C)v s ,V(AnX(GX)C)’ fl](.’I}) > C()/\/Q})

H||V iXene)llTa (R w0 ||f1||Zoo(Rd,w)
)

ql~ ~
(Hum e )(HHVAZHL% Y L 1
S /\*TJFT(Zz 1 ;)*T(Z?:l qil) -\

Next consider the estimate related to the third term in (3.11). As done in the proof of
Proposition 3.4, we divide C.[V Ay, - - - , VA,, f2](z) into several terms and then separate
these terms into two parts according I and I7 in (3.9). So we get

w({x S (10G)\)C : C*[VAl, -, VA,, fg](.T) > CU)\/2})
< ’LU({.CC S (10G)\)C : C*[V.Al, s ,VAn,fQ](JZ) > Co/\/4})
+w({z € (10G))°: Hi(z) > Cor/4}).

The third difference is the weighted estimate of Cy[-- - .| related to I. Here we utilize
Lemma 3.1 and the estimate || fall ;1 ra w) S 1f [l oo e,y (GA) S AT to get

w({z €(10G)°: C.[V Ay, -+, VA, fo](z) > Cor/4})

n T

(TLIV Ao ) U fellpr gy < A~ (80 77 = 3
=1

The fourth difference is the weighted estimate of Ci[--- ,-| related to I1I. We shall
prove that
(3.12) {z € (10G»)®: Hi1(z) > CoN/4} = 0.

In fact, by (3.10) and Lemma 2.8 with ¢ = oo, we get for any = € (10G,)¢,
Hig(w) € Ca\==1 % | | oo o ) = Ca.

If we choose Cp > 4Cy, we get (3.12). So we complete the proof. O
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3.3. Case: some ¢;s are smaller than d and some are not.
In this subsection, we consider the case: d/(d+n) < r < oo with at least one ¢; < d,
1 < p < oo. By our condition, the weight w satisfies w € (), Amax{%,l}(Rd)) N

A,(R?) = A;(R?). Without loss of generality, we may suppose that d < g, ,q < o0
and 1 < g1, - ,qn < dwith 0 <1 < n. If [ =0, it means that all ¢1,--- ,q, € [1,d).
Also we suppose that g1 = -+ - =qg =dand d < gga1, -+ ,q < oo with 0 < k <. If
k = 0, we mean that there is no index in q1,--- , ¢ equals to d, i.e. d < g1, ,q < o0;
if K =1, we mean that ¢ = --- = q; = d. Since the proof of p = occ is a little different
from that of 1 < p < oo, we shall give two propositions.

Proposition 3.6. Suppose w € A;(R?). Let % = (Z:-L:l qi) + %, d;in < r < oo,

Gp=-=q=d,d<qq1, - ,qg <ooand 1 < g1, ,q, <dwith 0 <k <!l and
0<l<n,1<p<oo. Then

”C* [VAlv 0 VAR, .ﬂ HLTvD"(Rd,w)
k n
S (TIIV Al e gea ) ( TT 1V Al 2ot ) 11z e
i=1 i=k+1
where L% (R? w) is the weighted Lorentz space.

Proof. We need to prove that for any A > 0, the following inequality holds
w{z € RY: C,[VAy, -+, VA, fl(z) > \})

k n
<2 ( 1 IV Al a1ty ) 111 19 4400 gt ) 1 Wy

(3.13)

By the standard dense and scaling argument, it is sufficient to consider that each A;

(i=1,---,n) and f as smooth functions with compact supports and
VAl par(mawy =+ = IVAg| par (e ) = 15
IV Aillpai(mawy =1 fori=k+1,-- n, and ||f| 1r(ra ) = 1.
As done in the proof of Proposition 3.4, we first suppose that all gx11,--+,q < 00
since the other case is easy and we will show lastly how to modify the proof to the case
that there exist ¢; = co for some i =k +1,--- ,I. Fix A > 0 and set

Ey={z eRY:C,[VAL, -, VA, fl(z) > \}.

Our goal is to show w(E)) < A7". The main idea is to construct some exceptional set
such that the w measure of exceptional set is bounded by A™", which is our required
estimate. At the same time on the complementarry set of exceptional set these functions
A;s should be Lipschitz functions with bound A% for each ¢ = 1,--- ,n. The construc-
tions of exceptional sets are different between d < ¢; < oo and 1 < ¢; < d. Now we
begin our constructions of some exceptional sets.

Step 1: Exceptional set related to q1,--- ,q. Define the exceptional set for i =1,--- 1
Tin={z € R : M(VA)(x) > Aw }; Jy = UL J;.
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Since w € A1 (R%), by Lemma 2.3 and Lemma 2.4, M maps LP(R?, w) to itself for p > d
and maps L&' (R?, w) to L4 (R?, w), i.e.
W(Iin) SATIV AN asgay = A7Ts i =1k

(3.14) L
W(i2) SATIVAN gy gy = A =k 1L

w)
So we obtain that w(Jy) < A7

Step 2: Calderdon-Zygmund decomposition. By the formula given in [26, page 125, (17)],

for each A;, i =1+ 1,--- ,n, we may write
d d
2)=3Cy / — I A(y)dy = Ay j().
= Re [T =yl =1

Notice that w € A;(RY) in this case. For each |9;4;|% € LY(R%, w) with j = 1,--- ,d
and i =1+ 1,---,n, making a Calderén-Zygmund decomposition at level \", we may
have the following conclusions (see e.g. [15, page 413, Theorem 3.5]):

(cz-i) 0;A; = gji + bj, 1195 L% (R? w) S 105Ai pai (Re,w)3
(cz-ii) bj; = ZQGQM bjiq,supp bj;o C Q, where Q;; is a countable set of disjoint
dyadic cubes;
(cz 111) Let Ej; = UQEQ Q, then w(Ej;) S A7"|0;4; HL% (B a0
v) [ bjiq(y)dy = 0 for ecach Q € Qj;, the unweighted estimate ||b;;.qll7,, (R S
A"|Q[ and the weighted estimate [|b) il Lai (re,w) S 1054ill Lai (1) DOl

We shall split A; ; into two parts according the above Calderén-Zygmund decompo-
sition (cz-1):

A (@) =Cy | =Yg (y)dy;
z,](x> d/]Rd |x_y|dg], (y) y7

T —y;
A (z)=C, I i(y)dy.
z,](x> d R |.CC _y|d Jﬂ(y) Y
Define the exzceptional set By = U, U?Zl E;;. Then by (cz-iii), we obtain w(B)) S
AT

Step 3: Exceptional set D). Set Si = % — % fori=10+41,---,n. Notice that w belongs
to A1(R?). Define the following exceptional set

Din = {z € RT: 0y, (VA () > A |

where the maximal operator 9, s, is defined in the paragraph above Lemma 2.5.

Denote Dy = U;"; . D; x. Then by Lemma 2.6, we get that

w(Din) S A IVAl Ty ga,y =A5 w(Da) SAT

w)
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Step 4: Fxceptional set F. Foreach j=1,---,d,i=1+1,---,n, define the functions

) Q)
M= 2 @l ve @

where yq is the center of Q). Define another exceptional set
Fjix= {:c eR?: A“( ) > 1}7 F\= U?:l U?=l+1 Fjix

Notice that we have w € A;(R%). We claim the following property of A; weight: For
any cube @ and « > 1, there exists a constant C' independent of () and « such that

(3.15) w(aQ) < Caw(Q).
In fact by (2.2) in Definition 2.1, there exist a constant C' independent of o and @ such
that )

— w(z)dz < C ess inf,cquw(y / y)dy,

2@l Jag Ve “lal
which immediately implies (3.15). In the following, by using the Chebyshev inequality
in the first inequality, (3.15) with o = 2% in the last second inequality and (cz-iii) in
the last inequality, we get

d+1
F..\) < A x)dr < d
( J5 ,)\) = /]Rd Js ,)\( £ Z /Rd + |I’ yQ‘]d+1w(x) IE]
QEQ]
l(Q)d+1
x)dxr + / w(z)dx
"5 / > o T+ s
(2"Q) —r
S 2 [ +22kd+1)} > w@sAT
Qe QEQ;,i

Therefore we obtain that w(Fy) S A7

Step 5: Exceptional set Hy. Define the exceptional set fori =1+1,--- ., n,j=1,--- .d,
Hijx={z € R": M(VAL)(z) > N9}, Hy =Up,, Ul Hyja.

Notice that by the definition of Ag . foreach s=1,---,d, we get

§s8;
F(0:47,)(§) = C |§’g~/—-.( (&) = VAL, = CRR;g;;,
where F is the Fourier transform, R; is the Riesz transform and R = (Ry,--- , Ry).

Recall w € A;(RY). Since R; is weighted strong type (g,q) for 1 < ¢ < oo, we get
IVAY il Laraw) S 195l Lo(ri,w)- Choose d < g < oo, by the Chebyshev inequality,
Lemma 2.3 and (cz-i) in Step 2, we get

w(Hijn) S A 32/

R4
A [ lg@lu@de 37 [ jguto)fu@)ds 37
R4 R4

Therefore we get w(H)y) S A"

[M(VA;‘-’,j)(w)]qw(ﬂf)deAZ:/ VAL (@) w(x)da
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Step 6: Final exceptional set G. Based on the construction of Jy, By, Dy, F)\, Hy in
Step 1-5 and the fact w satisfies the doubling property, we choose an open set G) which
satisfies the following conditions:
(1).  (10JyU10B\U 10D, U10F\ U10H)) C Gy;
(2).  w(Gy) Sw(Jx) +w(By) +w(Dy) +w(Fy) +w(Hy).
Applying the previous weighted estimates of Jy, By, Dy, F)\ and H), we obtain that
w(Gy) S A", Next making a Whitney decomposition of G (see [17]), we may obtain
a family of disjoint dyadic cubes {Qy}x such that

(). Gr=Upls Qs

(). V- 1(Qk) < dist(Qu, (G)) < 4V 1(Qx)
By the property (ii) above, the distance between @ and (G )¢ equals to Cl(Qy). For
each Q) above, we could construct a larger cube Q) so that Q) C Q, Q} is centered
at yr and y, € (G)), (QF) = I(Qr). Therefore by the construction of Q} and v, we
may get that

(3.16) dist(yr, Qk) =~ U(Qr)-

Clearly, the exceptional set G constructed in Step 6 satisfies that w(Gy) < A7".
Below we will prove that these functions A;s are Lipschitz functions on (Gy)°.

Step 7: Lipschitz estimates of A; on (Gy)¢. Choose any x,y € (G))¢. By the exceptional

set Jy constructed in Step 1, we see that for i =1,--- 1
(3.17) [Ai(z) = Ai(y)] < Asifz —y].
In the following we only consider ¢ =1+ 1,--- ,n. By the Calderén-Zygmund decom-

position in Step 2, it is sufficient to prove that Af’ j and AZ ; satisfy Lipschitz estimates
on (GA)C foreachi=1+1,--- ,nand j =1, ---,d. Firstly, it is easy to see that A:Zj
satisfies Lipschitz estimates by the construction of Hy in Step 5. In fact, z,y € (G))°
implies that x,y € H{, we obtain that fori =1+ 1,--- ,n,j=1,---,d,

(3.18) A9, () — AL, (3)] < AFi | — g,
We devote to proving that A?’ jisa Lipschitz function on (G))¢. Recall the Calderén-
Zygmund decomposition properties (cz-ii), (cz-iii) and (cz-iv) in Step 2. For each

bji = ZQGQﬂ bjiQ, supp bjio C Q, where Q;; is a countable set of disjoint dyadic
cubes. Then for each @ € Q;;, we define

b xTj— 2j
Now we fix a dyadic cube @ € Q;;. We are going to give a straight-forward Lipschitz

estimate of A?g. By the construction of G, we get that z,y € (10B))¢, i.e. x,y €

(10Q)¢, therefore we obtain dist(z, Q) > 31(Q) and dist(y, Q) > 31(Q). Let zg be the
center of ). Without loss of generality, assume that | — zg| < |y — 2g|. Choose a
point Z € R? such that

2
|z = Z| <100[z —y[; |y — 2] < 100]z —y|; [X — 20| > |z — 2q]
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for any X belongs to the polygonal with vertex x,y, Z. We could draw a figure to show

that such a point Z exists under the condition that dist(x, Q) > %Z(Q) and dist(y, Q) >

. b b b b b b .
21(Q). Now we write Aifj (x)— Ai,(]?' (y) = Aifj (x)— Ai,(]?' (2) —{—Ai,? (Z)— Ai’? (y). By using
the mean value formula, we have

17] 27‘7

A% (z) — AR (2) = /1@ ~ Z,V(A,9)(tx + (1 — ) Z))dt;
(3.19) 0

Z?] 1/7]

A(Z) — AP (y) = / z-y, V(A;2)(tZ + (1~ t)y))dt.
0

For any 0 <t < 1, the points tz + (1 — t)Z and tZ + (1 — t)y lie in the polygonal with
vertex z,y, Z. Notice that |z — zg| > 51(Q). Then by our choice of Z, we get

2
te+ (1 =1)Z — 2q| > ]z — 2] > 2U(Q),
(3.20) ;
[tZ + (1 —t)y — zq| > g|ZL‘ — 29| > 21(Q).

We set Z(t) equals to tz + (1 —t)Z or tZ + (1 — t)y and K;(x) = z;/|z|?. Using the
cancelation condition of bj; g, (3.20) and the unweighted estimate in (cz-iv) of Step 2,
we get that

IV(A?,?)(Z(t))I = ‘ /Rd [(VKj)(Z(t) —2) = (VE)(Z(t) - ZQ)} bjﬂ,,Q(z)dZ‘
1(Q . 10
~ [Z(Q) + |FT —) ZQ”dJFl Hbj’i’QHLl(Q) 5 >\% [Z(Q) + |§3 _) ZQ|]d+1 |Q‘

Combining the above arguments with (3.19) and the construction of Z, we obtain

HQ)
Q) + |z = 2]
Notice z € (G,)¢ implies that x € (Fy)¢ in Step 3. Then we get that

|479(2) — A2 (y)| S AW

i, d+1’QH$_Z/‘-

- Q) .
3.21)  |Ab(z) — AL (y)| S Aw |2 — < i |z —y).
321) Al - A )| SNyl Y g Q< Ay
QEQ;
Therefore we conclude that the Lipschitz estimates in (3.17) for ¢ = 1,--- 1, good

function (3.18) and bad function (3.21) for ¢ = [ + 1,--- ,n, to obtain that for any
1= ]-7 N, T,Y € (G)\)Ca

(3.22) Ai() — Aily)] < Aw |z —y).

Step 8: Weighted estimate of E,. We come back to give an estimate of Fy. Split f

into two parts f = f1 + fo where fi(x) = f(2)x(q,)-(z) and fa(z) = f(x)xc,(z). By
the Lipschitz estimate in (3.22), when restricted on (G,)¢, A; is a Lipschitz function

with [[VAil| Lo ((ay)e) < A for i = 1,---,n. Let A; represent the Lipschitz extension
of A; from (G))¢ to R? (see [26, page 174, Theorem 3]) so that for each i = 1,--- ,n,
Aily) = Aily) ify € (G

(3.23) _ ) B
|Ai(x) — Ai(y)| < Avi|z —y| forall z,y € RY.
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Since the operator C,[--- ,-| is sub-multilinear, we split F) as three terms

w({z € RY: C[VAy, -, VA,, f](z) > A})
< w(10Gy) + w({z € (10G))®: CL[V Ay, -+ , VA, fil(x) > A\/2})
+w({z € (10G,)°: C.[V AL, -+, VA, fo](z) > A/2}).

The above first term satisfies w(10G) < A", which is our required estimate. Below
we consider the second term. We only consider x € (10G)¢. By the definition of fi,

Ci[VAL, - VA, fil(x) = C[V AL, -, VA,, fi](z).

Notice that w € A;(R?) C A,(R?). Applying the above equality and Proposition 3.1
(1 <p< ), we derive that

w({z € (10G))° : Cx[V Ay, -+, VA, fil(z) > A/2})
=w({z € (10G,)" : C.[VAy, - VA, fil(z) > A2})

n

X TLIVAN gy )y S AP = 3,
=1

If p = oo, the above argument does not work.

Step 9: Weighted estimate of Ci[V Ay, -+ ,V Ay, fo](x). Recall Ng = {i,i+1,---,j} and
the construction of G, yx, Q and Q. above (3.16). Then we may write fo = >, fxq,-
So

CE[VAly VAn’fZ ZC VAla ’VAnanQk]($)

In the following we study [}, %

then give an estimate for each term. Write

. We shall separate it into several terms and

i=1
A Ay | Ay) - Aiue) | Ailue) — Ai(y)
—}1< FETEE T E e

Ai(z) — Ai(y) Ai(y) — Ai(yr) Ai(yr) — Ai(y)
=NZ(TNI @~y )<i€rN[2 ERE : >(g3 ri—m )
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where in the third equality we divide N = N{UNsUN3 with N1, N2, N3 non intersecting
each other; and I(x,y), Il(z,y,yx), I1I(x,y,yx) and IV (x,y, y) are defined as follows

NIQN@? i€EN7 i€Ns
N3=

i@y =y (11 W)( I W)

N1 GNP 1€N i€EN,
(3.24) N3#0,N3C {1, i}
Ai(yr) — Ai(y)
g (1&[3 |z =y )
Ay(z) — Ai(y) A;(y) — A;
Wayw = > (II W)( I W)
Ny GNY i€ENT iEN,

N3#@,N3ﬂ{l+l,-~ n}#A0

X(IIAN%)—AKM>

iEN; = =yl

In the above decomposition, we in fact divide C.[V Ay, -+, VA, fxq,](z) into 3™ terms
and separate these terms into four parts according I, 11, 111 and IV.

Step 10: Weighted estimate of Cy[- - , -] related to I. In this case there is only one term,
ie. C,[VAL,---,VA,, fa]. Then by Proposition 3.1 (1 < p < o0), we get

’U)({JI E(lOG)\)c : C*[VAH, s ,szln,fg](x) > /\/2})

n
B A Y E -
SN (TTIV AR < o I 2y S AP0 = A7
i=1
If p = oo, the above argument may not work.

Step 11: Weighted estimate of Cy[--- ,-] related to II. It is sufficient to consider one
term Cy[- - - , -] related to I7 in which N; is a proper subset of N} and N3 = (). In such a
case, without loss of generality, we may suppose Ny = {1,--- ,v}, No={v+1,--- ,n}
with 0 < v < n. Here if v = 0, it means that N7 = (). With these notation, we see that
N is a proper subset of N7'. By a slight abuse of notation, we still utilize II(z,y, yx) to
represent one term related to Ni, No and N3 in (3.24) and utilize Hrr(x) to represent
Cyl -+ ,-] related to II(z,y,yx), i-e.

Hyt(x) = sup / K(x — )12y, 1) fran (0)dy].
e>0 177 Jlz—y[>e
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Notice that A; is a Lipschitz function with bound A for i = 1,---,n by (3.23). Then
we obtain that

ooy —gl"T
(2, y,y1)| S A== ey

Since we only need to consider z € (10G) )¢, then by (3.16), we obtain that

(3.25) [z —yl = 20(Qr) = ly — yx| for any y € Q.
Now combining with (1.1), the above estimate of I(z,y,y) and (3.25), we obtain that
Hia(a) < 3 [ 1K=l Han)l 0y

TL—’U

it g
=k E}/ o s )l

Utilizing the Chebyshev inequality, the above estimate of H;; and Lemma 2.8 (since
n —v > 1), we finally obtain that

w({z € (10G)° : Hir(e) > M) < NP0 8T oI, o S NI )

Hence we finish the proof related to I1.

Step 12: Weighted estimate of Cy|--- ,-| related to I1I. It is sufficient to consider one
term C,[- - - , -] related to I1] in which Nj is a proper subset of N} and N3 is a nonempty
subset of {1,--- ,l}. By the condition in this proposition, for any i € N3, d < ¢; < oc.

Thus VA; € L%(R?% w) (or LY (R, w) if ¢; = d) with d < ¢; < co. Then by using the

fact yi, lies in the (Gy)¢, i.e. yr € (J; 1), we give the estimates in N3 as follows

| Ai(yk) — Ai(y)|
Y —

Define v = card(N;). Then we see that 0 < v < n. By a slight abuse of notation, we
still utilize I1I(x,y,yx) to stand for one term related to N1, Ny and N3 in (3.24) and

(3.26) < M(VA;)(y) < A%, for i € Ny,

utilize Hrrr(x) to represent Cy|--- -] related to I[11(x,y,yx), i.e
Hine) =swp |37 [ Klo )11 o 0)d].
e>0 |lx—y|>e

From the fact /Nlis are Lipschitz functions with bounds /4 for i € N7 U Ny and
(3.26), we obtain that

|Tl—’U

[ITI(z,y,yk)| < AZHENIUN, 3 ‘yyk]nv H M(VA) (yr) < )\Zz 13 ly — Yk

|z [z —yl"

|7’l—’U

i€N3

Inserting this estimate of IT1(x,y,yx) into Hyy, combining with (1.1) and (3.25), and
next utilizing the Chebyshev inequality and Lemma 2.8 (since n — v > 1), we finally
obtain that

wifr € (10GY)° : Hurla) > AP < X ER G 1, g, < A1

Hence we finish the proof of this part.
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Step 13: Weighted estimate of Cy[--- ,-| related to I'V. Tt is sufficient to consider one
term C,[- - - , -] related to IV in which Ny C N7 and N3 # () with N3N {l+1,--- ,n} # 0.
In such a case, without loss of generality, we may suppose [ + 1,--- ,v € N3 with
Il+1<v<nandv+1,---,n belongs to N1 or No. So we may assume that N3 =
{t,-++ ,w,l+1,--- v} with 0 < < w <. Define u = card(N;). Then n—u > 1. With
these notation, we can easily see that N3 is a nonempty set with NsN{l+1,--- ,n} # 0.
Note that w € A;(R?%). By a slight abuse of notation, we still use IV (x,y, yx) to stand
for one term related to Ny, N2 and N3 in (3.24) and use Hyy () to stand for Ci[--- , ]
related to IV (z,y,yx), i.e

Hpy(z) = sup Z/ . K(:v—y)IV(:v,y,yk)fXQk(y)dy(-

e>0
Note that d < ¢qq,--- ,q < o0 and 1 < qj41,---,qn < d. Recall in Step 3, we set
S%_:a—fforZ—l—i—l - ,n. We also set 1 = (X l+1811) 1 Since r > 5 d
% = (Z? 1 qz) + 7, we could obtain 1 < ¢ < oo which will be crumal when we use

Lemma 2.8. With (3.16) and A; is a Lipschitz function with bound \"/4% for i € NyUN,
we have

n u - W A i
|Iv<x,y,yk>|5A@’€N1UN“ B gl U[HM wa)o] 1T ! Q Y
k
i=l+1

SA<zé:1+22;v+1> Qi)™ H |Ai(yr) — Ai(y)|
oy AL < 0

Then inserting the above estimate of IV into Hry with (1.1) and (3.25), we get

Hv() <3 / IV (2,90 - | (9) Iy

TL—’LL

< )\(Zl 1+Zz u+1 / h » d
: B, Wt e e

_ )\(Z¢:1 + Z’i:erl)‘TiTn_u (hz,v) (),

where the operator T,_,, is defined in Lemma 2.8 and the function h;,(y) is defined as

o) =S TT (24 o ) vl

Qk 1=l+1

Utilizing the Chebyshev inequality and the above estimate of Hjy, applying Lemma
2.8(note that 1 < ¢ < oo and n —u > 1), we finally obtain that

w{zr €(10G,)°: Hry(x) > A})

< )\_q“l‘(Zz 1+Zl U+1) / Tniu h v )T q’u} X dﬂj
. . o st @)

—qg+ l.f +> 0 o
S,)\ a+ (o Zl—“‘*l)qi ||hl,v||%q(IRd,w)'
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In the following we give an estimate of ||hy .||, (R4, We may write

w)’
ol =32, [ IL (F55 ) it

i= l+1 H@r)
<Q211 [ (A ][ [ irtratin]
) — AW : SPINEE
<§1111 [/Ch( - QL ) wiy)dy] [/Qk F@)Pw(y)dy]

hSES

S T e (A0 0@ ] | 1w’

Qr  i=l+1 k

where in the second inequality we use the Holder inequality and the third inequality
follows from the fact Qn C QF, yi is the center of Q; and [(Q}) ~ I[(Qk). Notice that
yr lies in the (G))¢, i.e. yi € (D;x)¢ (see Step 3). Then we obtain that

Moy o, (VA () < A%, fori=1+1,--- v

Utilizing the above inequality, the Holder inequality again and (cz-iii) in Step 2, we get

v qr Z;J:ZH s
% gty S AT [ S (@) 1% e
Qk

v T v v qr __ 4qr
< )\Zi:l+1 ?Ti [w(G,\)]Zi:l“ S%. < )\ZZIZ-H (qi Si)_

Plunge the above estimate into (3.27) with some elementary calculations, we finally
obtain that

w(fe € (10G2)° - Hiv(z) > A} < A~ (S 3) = (S %) < )

hence we finish the proof of the term I'V.
Finally, we show how to modify the above argument to the case ¢; = oo for some

i =k+1,--- 1. Notice that only in Step 1 the construction of exceptional set is involved
with Ag1q, -+, 4;. We may assume that only g1 = =g, = oo with k+1 <u <.
Therefore Agyq, ---, Ay are Lipschitz functions. Then we just fix Agyq1,---, Ay in the

rest of the proof. In Step 1 we modify the argument that we only make a construction
of exceptional set for Ay, -+, Ax and Ay11,--- , A;. These proofs in Steps 2-8 are the
same. Later when studying

(05 = CILIT T )

i=k+11=1i=u+1

we just use the same way as in Steps 9-13 to deal with the terms from HZ I

i=u+1
since the term J[;L, % could be absorbed by the kernel K (x—y) if we observe
that K(z —y) [[i—pq % is a standard Calderén-Zygmund kernel. O
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Proposition 3.7. Let d%t <r<l,qg=--=q,=4d,d < qgt1, - ,q < 0o and
1< qu1, g <dwith0<k<land1<I<mn,p=oo. Suppose that w € A;(R?).
Then

ICc[V AL, -, VA, Il oo (R

n

k
S (TIIV AN o) ( TT IV Al o) ) 1 oo e
=1

i=k+1
where L%!(R? w) is the standard Lorentz space.

Proof. The proof is similar to that of Proposition 3.6 and one could follow the idea in
the proof of Proposition 3.5, so the details of the proof is omitted. O

3.4. Interpolation.

Notice that we have already proven all the cases (ii) in Theorem 1.1 by Propositions
3.4,3.5,3.6 and 3.7. And only part strong type multilinear estimates of (i) in Theorem
1.1 has been established by Proposition 3.1 and Proposition 3.3. The rest part of (i)
in Theorem 1.1 just follow from the linear Marcinkiewicz interpolation (see [28] or [1]).
In the following we show how to do this.

Since the maximal Calderén commutator C is (n + 1)th submultilinear, when using
the Marcinkiewicz interpolation, our main strategy is that we consider C, as a sublinear
operator if we fix part of n variables.

Let VA; € L%(R% w) and f € LP(RY, w) with 1 = (Y01, &) + 1, g6 <7 < o0,
1<g <o (i=1,---,n)and 1 < p < oco. Let w € (ﬂ?zl Amax{%l}(Rd)) N Ap(R%).
Our goal is to show the follow strong type estimate

(3:28)  NCIVAL - VAn o) S (TTIVAN o) ) 11 o
=1

We divide the proof into several cases. We first consider the case all ¢; # d for
i =1,---,n. Therefore by (ii) of Theorem 1.1, the multilinear estimates (1.6) are not
involved with L%!(R?, w) spaces. We further divide this case into two cases: 1 < p < 0o
and p = oo. Consider firstly the case 1 < p < oco. We fix all VA;, ¢; and w €
(N, Amax{%,1}(Rd)) N Ap(R?). By the basic property of A,(R%) weight, w € A,, (R%)
for all p; > p. If we choose p1,r1 such that p < p; < oo and % = (Z?:l i) + p%’ then
by (ii) of Theorem 1.1
(3.29) C.[VAL, - VA, ]: LP'(RY, w) — L'°(RY, w).
Since w € A,(R?), by the revers Hélder inequality of A,(RY) weight (see [17]) and its

definition, there exist € > 0 such that w € A,_. and p — e > 1. Then we may choose

Po,To such that p —e < pg < p, d%z < rg < oo and % = (Z?:l q%) —I—I%O. Hence we

obtain w € (N, Amax{%l}(Rd)) N Ay (RY). By using (ii) of Theorem 1.1, we get

(3.30) C.[VAL, -+ VA, ]: LPRY w) = L70®(RY, w).

Applying the Marcinkiewicz interpolation with (3.29) and (3.30), we establish the
strong type estimate (3.28) provided that all ¢; # d and 1 < p < co. Next we consider
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another case all ¢; # d and p = co. By our condition r < oo, there is at least one
¢; < oo. Without loss of generality, we may suppose that ¢; < co. If d < ¢1 < o0,
then the rest of proof is similar to the case ¢; # d and 1 < p < oo once fixing VA;,
g fori =2,--- ,n, f € LR w) and w € Nies Amax{%,l}(Rd)- If1 <q <d, then

w € A1(R%) by our condition. Therefore it is easy to show (3.28) using (ii) of Theorem
1.1 once we fix VA;, ¢; for i =2,--- ,n, f € L°(R? w) and w € A;(R?).

Secondly let us consider the case there is only one ¢; which equals to d. Without
loss of generality, we may suppose ¢ = d. Then by our condition w € A;(R%) in
this case. Fix VA;, ¢ for i = 2,---,n, f € LP(RY,w) and w € A;(R?). Then

we may choose 79,71,q1,0,¢91,1 such that din < 7rp,m < o0, 1 <qo <d< qp,

1 1 11 1 1 1 .
=t (Xr, q%) e =t (>r, a) + 5. Then by (ii) of Theorem 1.1, we

get

Cil-, VAg, -+ VA, f]: L% (R, w) = LR w) 5 =0,1.
Using the Marcinkiewicz interpolation with the above two estimate, we get (3.28) in
the case ¢ = d and all g9, -+ , g, # d.
Finally we consider the general case there are m numbers of ¢;s which equal to d.
We only need to show m = 2, the general case just follows from the induction. Without
loss of generality, we suppose that ¢; = go = d. In this case, w € A;(RY). Fix VA;, ¢

fori=2,---,n, f € LP(RY, w) and w € A;(R%). Then we may choose 70,71, 41,0, 41,1
such that d-&-in <rp,r <00, 1 <qupo<d<aqp, % = ﬁ—% (Z:L:Qq%) + %, % =
é + (Z?:Q %) + %. Since g2 = d, by the result of the case there is only one ¢; = d we

discussed above, we get the strong type estimate
Cul-, VAg, -+ VA, f]: LT (R w) = L (R w) j=0,1.

Using the Marcinkiewicz interpolation with the above two estimate, we get (3.28) in
the case g1 = g2 = d and all g3, - , ¢, # d. Applying the induction of m, we finish the
proof.

Remark 3.8. Instead of using the linear Marcinkiewicz interpolation in this proof, an-
other possible more straightforward method is the multilinear interpolation with change
of measures. To the best knowledge of the author, such kind of multilinear interpola-
tion with change of measures is currently unknown. Therefore it will be interesting to
establish the multilinear version of Stein-Weiss interpolation with change of measures
(see [27]).
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