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Abstract

In this paper, we investigate steady incompressible Euler flows with nonvanishing vorticity in
a planar bounded domain. Let q be a harmonic function that corresponds to an irrotational
flow. This paper proves that if q has k isolated local extremum points on the boundary, then
there exist two kinds of steady Euler flows with small vorticity supported near these k points.
For the first kind, near each maximum point the vorticity is positive and near each minimum
point the vorticity is negative. For the second kind, near each minimum point the vorticity is
positive and near each maximum point the vorticity is negative. Moreover, near these k points,
the flow is characterized by a semilinear elliptic equation with a given profile function in terms
of the stream function. The results are achieved by solving a certain variational problem for the
vorticity and studying the limiting behavior of the extremizers.
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1. Introduction

Let D be a bounded and smooth domain in R2. We consider the following steady incom-
pressible Euler system in D {

(v · ∇)v = −∇P, x = (x1, x2) ∈ D,
∇ · v = 0,

(1.1)

with the boundary condition

v · n = g, x ∈ ∂D, (1.2)

where v = (v1, v2) is the velocity field, P is the scalar pressure, and n is the unit outward
normal to ∂D. Of course, the given function g is supposed to satisfy the following compatibility
condition ∫

∂D
gdσ = 0, (1.3)
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where dσ denotes the area unit on ∂D. This system describes the time-independent motion of
an ideal fluid (like water) in D with unit density, and the boundary condition (1.2) means that
the rate of mass flow across ∂D per unit area is g.

The scalar vorticity of the fluid ω = ∂x1v2 − ∂x2v1 is the signed magnitude of the vorticity
vector curlv and is a very fundamental quantity in the study of planar fluids. Taking the curl
on both sides of the momentum equation (the first equation of (1.1)), we get

v · ∇ω = 0. (1.4)

On the other hand, v can be recovered from ω. More precisely, when D is simply-connected, for
given g satisfying (1.3), there is a unique v satisfying

curlv = ω, x ∈ D,
∇ · v = 0, x ∈ D,
v · n = g x ∈ ∂D.

(1.5)

In fact, since D is simply-connected and v is divergence-free, applying Green’s theorem we can
define a function ψ, called the stream function, such that v = (∂x2ψ,−∂x1ψ). To simplify the
notation, in this paper we will use b⊥ to denote the clockwise rotation through π/2 for any
planar vector b, and ∇⊥f to denote (∇f)⊥ for any C1 function defined on D. In this way, we
have v = ∇⊥ψ. Now it is easy to see that{

−∆ψ = ω, x ∈ D,
∇⊥ψ · n = g, x ∈ ∂D.

(1.6)

Let q be a solution of the problem {
−∆q = 0, x ∈ D,
∇⊥q · n = g, x ∈ ∂D,

(1.7)

Then up to a constant the solution of (1.6) is given by

ψ = q + Gω,

where Gω(x) :=
∫
DG(x, y)ω(y)dy, and G is the Green’s function for −∆ in D with zero Dirichlet

boundary condition. Therefore the unique solution to (1.5) is

v = ∇⊥(q + Gω). (1.8)

Taking into account (1.4), we get the following vorticity form of the Euler system

∇⊥(q + Gω) · ∇ω = 0. (1.9)

In the rest of this paper, we assume that q ∈ C2(D) ∩ C1(D).
In many cases, the vorticity is not C1 (not even continuous), so (1.9) has to be interpreted

in weak sense. Here we only consider the case ω ∈ L∞(D), which is enough for later use.
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Definition 1.1. Let ω ∈ L∞(D). If there holds∫
D
ω∇⊥(q + Gω) · ∇φdx = 0, ∀φ ∈ C∞c (D), (1.10)

then ω is called a weak solution to the vorticity equation (1.9).

In the above definition, by a density argument, it is easy to check that “φ ∈ C∞c (D)” can be
replaced by “φ ∈W 1,1

0 (D)”.
From now on, we will be focusing on solving the vorticity equation (1.9). Obviously ω ≡ 0

automatically satisfies (1.10). Our aim in this paper is to investigate solutions with nonvanishing
vorticity. This is a very interesting and important topic in the study of incompressible flows.
There are already many results in the literature in this respect. See [8, 9, 10, 11, 13, 15, 16, 17,
21, 23, 24] and the references therein.

Roughly speaking, the steady Euler flows obtained in previous works can be divided into two
types: the desingularization type and the perturbation type. For solutions of desingularization
type, the vorticity is sufficiently supported in a finite number of disjoint regions of small diameter,
and the integral of the vorticity in each of these small regions is a given nonzero real number.
In other words, the vorticity is almost a finite sum of Dirac measures. Moreover, the limiting
position of the support of the vorticity is completely determined by the geometry of the domain
D and the boundary flux g. For example, if (1.9) has a family of solutions {ωλ} with λ > 0
being a parameter, having the form

ωλ =

k∑
i=1

ωλi ,

∫
D
ωλi dx = κi, supp(ω

λ
i ) ⊂ Brλ(x̃i),

where κ1, · · ·, κk are k nonzero real numbers, x̃i ∈ D, and rλ → 0+ as λ→ +∞, then according
to the point vortex model (see [19] or [20] for example), (x̃1, · · ·, x̃k) should be a critical point
of the Kirchhoff-Routh function Wk, defined by

Wk(x1, · · ·, xk) = −
∑

1≤i<j≤k
κiκjG(xi, xj) +

1

2

k∑
i=1

κ2
ih(xi, xi)−

k∑
i=1

κiq(xi),

where xi ∈ D and xi 6= xj if i 6= j, and h(·, ·) is the regular part of the Green’s function, that is,

h(x, y) := − 1

2π
ln |x− y| −G(x, y), x, y ∈ D.

In the past decades, solutions of desingularization type have been constructed via various meth-
ods. Related references include [8, 9, 10, 11, 15, 21, 24].

The other type of solutions, the perturbation type, is to construct a new solution with
“small” vorticity near a given irrotational flow. Here by “small” we mean that the support and
the integral of the vorticity are both small. Below are several works related to this issue. In
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[17], Li–Yan–Yang proved existence of C1 solutions to (1.9) with small positive vorticity near a
given isolated local maximum point of q on ∂D, moreover, the vorticity satisfies

ωλ = λf(Gωλ + q), (1.11)

where λ is a large positive parameter, and the profile function f satisfies some regularity and
growing conditions. Note that in [17] the authors used opposite sign for q. In [16], Li–Peng
used a reduction procedure to construct solutions with small positive vorticity supported near
any given finite collection of isolated local maximum points of q on ∂D, and near each of these
points the vorticity satisfies (1.11) with f(s) = sp+, 1 < p < +∞, s+ = max{s, 0}. In [13], Cao–
Wang–Zhan considered the vortex patch case, that is, the vorticity has a jump discontinuity.
They proved that for any finite collection of isolated local extremum (maximum or minimum)
points of q on ∂D, there are two kinds of solutions. For the first kind, near each maximum point
of q there is a small positive patch and near each minimum point of q there is a small negative
patch. For the second kind, near each minimum point of q there is a small positive patch and
near each maximum point of q there is a small negative patch. They obtained these solutions
by solving some variational problems for the vorticity and studying the limiting behavior of the
extremizers as the circulation vanishes. Recently Cao–Wang–Zhan in [14] modified the method
in [13] to obtain more general Euler flows with small positive vorticity supported near a finite
number of isolated local maximum points of q, and the stream function of the flow near each
of these maximum points satisfies a semilinear elliptic equation with a given increasing profile
function satisfying some mild conditions.

In this paper, we continue the study of steady Euler flows of perturbation type. Our main
aim is to improve the result in [14], that is, we will show that any finite collection of isolated
local extremum (not only maximum) points of q on the boundary generates a family of solutions
with small vorticity. As in [13], we will construct two kinds of solutions. For the first kind, the
positive part of the vorticity is supported near maximum points of q and the negative part of
the vorticity is supported near minimum points of q. For the second kind, the positive part of
the vorticity is supported near minimum points of q and the negative part of the vorticity is
supported near maximum points of q. Moreover, near each extremum point the solution can be
characterized by a semilinear elliptic equation with a given monotone profile function satisfied
by the stream function. The precise statements of our main results will be given in Section 2.

Our strategy of constructing these solutions is mainly based on the method developed in [13]
and [14], that is, we will maximize or minimize a suitable functional over some admissible class
of vorticity. This is usually called the vorticity method, which was firstly established by Arnold
in 1960s and later developed by many authors. See [2, 3, 4, 5, 6, 11, 23] and the references listed
therein.

It is also worth mentioning that for the three dimensional case, Alber [1] and Tang–Xin [22]
also studied existence of steady Euler flows near a given irrotational flow with some assumptions
on the boundary flux.

This paper is organized as follows. In Section 2, we give some notations needed in the sequel
and state our main results (Theorem 2.1 and Theorem 2.2). In Section 3, we prove Theorem
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2.1 by solving a maximization problem and studying the limiting behavior of the maximizers.
In Section 4, we sketch the proof of Theorem 2.2.

2. Main results

2.1. Notations

Throughout this paper, we assume that D is a bounded and simply-connected domain with
smooth boundary. For any measurable function f defined on D, supp(f) denotes the essential
support of f , that is, the complement of the union of all open sets in which f vanishes. Obviously
supp(f) is always a compact set in R2. For any s ∈ R, {x ∈ D | f(x) > s} is abbreviated as
{f > s}. For any subset A ⊂ D, IA denotes the characteristic function of A, that is, IA(x) = 1
if x ∈ A, and IA(x) = 0 if x ∈ D \A. For any s ∈ R, s+ := max{s, 0} and s− := max{−s, 0}.

Let k be a fixed positive integer and α be a fixed positive real number. Define

Vαk :={~κ ∈ Rk | ~κ = (κ1, · · ·, κk), κi 6= 0 for 1 ≤ i ≤ k, |κi|
|κj |
≤ α for 1 ≤ i, j ≤ k}. (2.1)

We also define the norm of ~κ = (κ1, · · ·, κk) ∈ Vαk by

‖~κ‖ :=

k∑
i=1

|κi|.

It is easy to check that for any ~κ = (κ1, · · ·, κk) ∈ Vαk , there holds

1

kα
‖~κ‖ ≤ |κi| ≤ ‖~κ‖, ∀ i ∈ {1, · · ·, k}. (2.2)

As mentioned in Section 1, the stream function of the flow we obtain in this paper satisfies
“locally” a semilinear elliptic equation with a given profile function. Here we give the conditions
imposed on these profiles functions. Let f : R+ → R+ be a function, where R+ is the set of all
nonnegative real numbers. We make the following two assumptions on f .

(H1) f(0) = 0, f is continuous and strictly increasing on R+;

(H2) There exists δ0 ∈ (0, 1) such that∫ s

0
f(r)dr ≤ δ0f(s)s, ∀ s ≥ 0.

By (H1)(H2), it is easy to check that lims→+∞ f(s) = +∞, therefore f has an inverse

function on [0,+∞), denoted by f−1. By using the identity
∫ s

0 f(r)dr +
∫ f(s)

0 f−1(r)dr = sf(s)
for all s ≥ 0, one can easily check that (H2) is in fact equivalent to
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(H2)′ There exists δ1 ∈ (0, 1) such that

F (s) ≥ δ1sf
−1(s), ∀ s ≥ 0,

where F (s) =
∫ s

0 f
−1(r)dr, ∀ s ≥ 0.

For instance, for any p ∈ (0,+∞), f(s) = sp satisfies (H1)(H2). In this case, f−1(s) = s1/p

and F (s) = p
p+1s

1+1/p.
Except for the profile function, we also need some assumptions on the L∞ norm of the

vorticity as the circulation vanishes. Let Λ : R \ {0} → R be a function. We make the following
two assumptions.

(A1) lims→0
Λ(s)
s = +∞;

(A2) There exists some γ0 > 0 such that lims→0 Λ(s)sγ0 = 0.

For example,

Λ(s) =

{
1, if s > 0

−1, if s < 0
(2.3)

satisfies (A1)(A2). Note that by (A1), if |s| is sufficiently small, we have Λ(s) > 0 if s is positive
and Λ(s) < 0 if s is negative.

2.2. Main Results

As mentioned in Section 1, our aim in this paper is to prove existence of steady Euler flows
with nonvanishing vorticity near a given irrotational flow.

Throughout this paper, m,n, k are three fixed positive integers satisfying m + n = k. We
assume that q ∈ C2(D) ∩ C1(D) is a harmonic function (which corresponds to an irrotational
flow), and q has m isolated local maximum points {x̄i, · · ·, x̄m} and n isolated local minimum
points {x̄m+1, · · ·, x̄k} on ∂D. Since these extremum points are all isolated, we can choose a
small positive number r0 such that Di ∩Dj = ∅ if 1 ≤ i < j ≤ k, where Di := Br0(x̄i)∩D, and
x̄i is the unique maximum (if 1 ≤ i ≤ m) or minimum (if m+ 1 ≤ i ≤ k) point of q over Di.

Our first theorem shows that there exists a family of steady Euler flows in which the positive
part of the vorticity is supported near {x̄1, · · ·, x̄m}, and the negative part of the vorticity is
supported near {x̄m+1, · · ·, x̄k}.
Theorem 2.1. Let α be a fixed positive number and Vαk be defined by (2.1). Let Λi : R\{0} → R,
i = 1···, k, be k functions satisfying (A1)(A2), fi : R+ → R+, i = 1···, k, be k functions satisfying
(H1)(H2). Then there exists δ0 > 0, such that for any ~κ = (κ1, · · ·, κk) ∈ Vαk with ‖~κ‖ < δ0,
κi > 0 if 1 ≤ i ≤ m and κi < 0 if m + 1 ≤ i ≤ k, there exists a weak solution ω~κ to (1.9)
satisfying

supp(ω~κ) ⊂ ∪ki=1Di,

∫
Di

ω~κdx = κi for 1 ≤ i ≤ k, (2.4)

ω~κ = Λi(κi)fi

(
(Gω~κ + q − µ~κi )+

)
in Di if 1 ≤ i ≤ m, (2.5)

ω~κ = Λi(κi)fi

(
(Gω~κ + q − µ~κi )−

)
in Di if m+ 1 ≤ i ≤ k, (2.6)
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where each µ~κi is a real number depending on ~κ. Furthermore, for each i ∈ {1, · · ·, k},

µ~κi → q(x̄i), supp(ω~κi ) ⊂ Bo(1)(x̄i) (2.7)

as ‖~κ‖ → 0+.

Our second theorem shows that the set {x̄1, · · ·, x̄k} also gives rise to a family of steady Euler
flows in which the negative part of the vorticity is supported near {x̄i, · · ·, x̄m}, and the positive
part of the vorticity is supported near {x̄m+1, · · ·, x̄k},

Theorem 2.2. Let α be a positive number and Vαk be defined by (2.1). Let Λi : R \ {0} → R,
i = 1 · ··, k, be k functions satisfying (A1)(A2), fi : R+ → R+, i = 1 · ··, k, be k functions
satisfying (H1)(H2). Then there exists δ0 > 0, such that for any ~κ = (κ1, · · ·, κk) ∈ Vαk with
‖~κ‖ < δ0, κi < 0 if 1 ≤ i ≤ m and κi > 0 if m + 1 ≤ i ≤ k, there exists a weak solution ω~κ to
(1.9) satisfying

supp(ω~κ) ⊂ ∪ki=1Di,

∫
Di

ω~κdx = κi for 1 ≤ i ≤ k, (2.8)

ω~κ = Λi(κi)fi

(
(Gω~κ + q − µ~κi )+

)
in Di if 1 ≤ i ≤ m, (2.9)

ω~κ = Λi(κi)fi

(
(Gω~κ + q − µ~κi )−

)
in Di if m+ 1 ≤ i ≤ k, (2.10)

where each µ~κi is a real number depending on ~κ. Furthermore, for each i ∈ {1, · · ·, k},

µ~κi → q(x̄i), supp(ω~κi ) ⊂ Bo(1)(x̄i) (2.11)

as ‖~κ‖ → 0+.

Remark 2.3. In Theorem 2.1, in each Di the vorticity is a non-decreasing function of the stream
function; while in Theorem 2.2, in each Di the vorticity is a non-increasing function of the
stream function. This is due to the variational nature of these solutions. See Burton–Mcleod
[7] for a general discussion.

Remark 2.4. For solutions of perturbation type, the location of the support of the vorticity is
not arbitrary, but determined by q. To see this, let us consider a simple example. Let {wκ} be
a family of solutions to (1.9) with κ being a small positive parameter, satisfying

0 ≤ wκ ≤ C a.e. in D,

∫
D
wκdx = κ, supp(wκ) ⊂ Brκ(x̃0), (2.12)

where C is a positive number not depending on κ, x̃0 ∈ D, and rκ → 0+ as κ→ 0+. By (1.10),
wκ satisfies ∫

D
wκ∇⊥(Gwκ + q) · ∇φdx = 0

for any φ ∈ W 1,1
0 (D). If x̃0 is in the interior of D, then we choose φ(x) = χ(x)b · x, where b is

an arbitrary planar vector and χ ∈ C∞c (D), χ ≡ 1 near x0. Letting κ→ 0+ it is easy to see that
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b · ∇⊥q(x̃0) = 0, which implies ∇q(x̃0) = 0. If x̃0 ∈ ∂D, then we can choose φ(x) = d(x), where
d(x) := dist(x, ∂D). Note that d is Lipschitz continuous and vanishes on ∂D. Letting κ → 0+

we deduce that ∇⊥q(x̃0) · n(x̃0) = 0. This example indicates that for solutions of perturbation
type, there are only two possibilities for the limiting location of the support of vorticity. For
the interior case, to our knowledge, there is no result concerning the existence of solutions with
small vorticity supported near a critical point of q in the literature. For the boundary case, a
local maximum or minimum point of q on ∂D obviously satisfies ∇⊥q · n = 0, which is exactly
the situation we are concerned with in this paper.

3. Proof of Theorem 2.1

In this section, we give the proof of Theorem 2.1. The strategy is to solve a suitable maxi-
mization problem for the vorticity and studying the limiting behavior of the maximizers.

3.1. Maximization Problem

For brevity, throughout this section we denote

Sαk := {~κ = (κ1, · · ·, κk) ∈ Vαk | κi > 0 if 1 ≤ i ≤ m, κi < 0 if m+ 1 ≤ i ≤ k}.

For any ~κ ∈ Sαk , define

M~κ :={ω ∈ L∞(D) | supp(ω) ⊂ ∪ki=1Di, 0 ≤ ω ≤ Λi(κi) a.e. in Di if 1 ≤ i ≤ m,

Λi(κi) ≤ ω ≤ 0 a.e. in Di if m+ 1 ≤ i ≤ k,
∫
Di

ωdx = κi for 1 ≤ i ≤ k}.
(3.1)

By (A1), it is easy to check that M~κ is not empty if ‖~κ‖ is sufficiently small. Also note that
for any ω ∈ M~κ, there holds 0 ≤ ω

Λi(κi)
≤ 1 a.e. in Di for any 1 ≤ i ≤ k. We consider the

maximization of the following functional over Mκ

P(ω) :=
1

2

∫
D
ωGωdx+

∫
D
qωdx−

m∑
i=1

∫
Di

Λi(κi)Fi

(
ω

Λi(κi)

)
dx

+

k∑
i=m+1

∫
Di

Λi(κi)Fi

(
ω

Λi(κi)

)
dx,

(3.2)

where Fi(s) =
∫ s

0 f
−1
i (r)dr, ∀ s ≥ 0. To make it brief, we denote

E(ω) :=
1

2

∫
D
ωGωdx, (3.3)

Q(ω) :=

∫
D
qωdx, (3.4)

Fi(ω) :=

∫
Di

Λi(κi)Fi

(
ω

Λi(κi)

)
dx, 1 ≤ i ≤ k, (3.5)
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thus

P(ω) = E(ω) +Q(ω)−
m∑
i=1

Fi(ω) +
k∑

i=m+1

Fi(ω), ∀ω ∈M~κ. (3.6)

Since Fi is a convex function in [0,+∞), it is easy to check that Fi is convex if 1 ≤ i ≤ m,
and is concave if m+ 1 ≤ i ≤ k.

Lemma 3.1. For fixed ~κ, P is bounded from above attains a maximum value over M~κ.

Proof. First we show that P is bounded from above over M~κ. For any ω ∈M~κ, we have

E(ω) ≤ 1

2
‖ω‖2L∞(D)‖G(·, ·)‖L1(D×D) ≤

1

2

(
k∑
i=1

|Λi(κi)|

)2

‖G(·, ·)‖L1(D×D), (3.7)

Q(ω) =
m∑
i=1

∫
Di

qωdx+
k∑

i=m+1

∫
Di

qωdx ≤
m∑
i=1

κiq(x̄i) +
k∑

i=m+1

κiq(x̄i) =
k∑
i=1

κiq(x̄i), (3.8)

Fi(ω) ≥ 0 if 1 ≤ i ≤ m, Fi(ω) ≤ 0 if m+ 1 ≤ i ≤ k, (3.9)

which implies that P is bounded from above for fixed ~κ.
Now we prove that P attains its supremum. Let {ωn}, n = 1, 2, · · ·, be a sequence of M~κ

satisfying
lim

n→+∞
P(ωn) = sup

ω∈M~κ

P(ω). (3.10)

Since {ωn} is bounded in L∞(D), there is a subsequence, still denoted by {ωn}, such that {ωn}
converges to ω~κ weakly star in L∞(D) for some ω~κ ∈ L∞(D). It is not hard to check that
ω~κ ∈M~κ (See also Lemma 3.1 in [13]). Below we show that ω~κ is a maximizer. First for E and
Q, it is not hard to verify that

lim
n→+∞

E(ωn) = E(ω~κ), lim
n→+∞

Q(ωn) = Q(ω~κ). (3.11)

Here we used the definition of weak star convergence and the fact that Gωn → Gω~κ in C(D) by
Sobolev embedding and Lp estimate. For Fi, 1 ≤ i ≤ m, since Fi is convex, one can check that
Fi is lower semicontinuous in the weak star topology of L∞(D) (see Lemma 2.1 in [14]), that is,

Fi(ω~κ) ≤ lim inf
n→+∞

Fi(ωn), 1 ≤ i ≤ m, (3.12)

Similarly,
Fi(ω~κ) ≥ lim sup

n→+∞
Fi(ωn), m+ 1 ≤ i ≤ k. (3.13)

From (3.11), (3.12) and (3.13), we obtain

P(ω~κ) ≥ lim sup
n→+∞

P(ωn),

which together with (3.10) gives the desired result.
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Note that uniqueness of the maximizer is open. Next we study the profile of a fixed maxi-
mizer.

Lemma 3.2. Let ω~κ be a maximizer of P over M~κ. Set ω~κi = ω~κIDi , i = 1, · · ·, k. Then

ω~κi = Λi(κi)I{φ~κ,i≥f−1
i (1)}∩Di + Λi(κi)fi(φ

~κ,i
+ )I{0<φ~κ,i<f−1

i (1)}∩Di , 1 ≤ i ≤ m, (3.14)

ω~κi = Λi(κi)I{φ~κ,i≤−f−1
i (1)}∩Di + Λi(κi)fi(φ

~κ,i
− )I{−f−1

i (1)<φ~κ,i<0}∩Di , m+ 1 ≤ i ≤ k, (3.15)

where each µ~κi is a real number depending on ~κ, and

φ~κ,i := Gω~κ + q − µ~κi .

Proof. First we prove (3.14). For any fixed index i, 1 ≤ i ≤ m, define

ω =

k∑
j=1,j 6=i

ω~κj + ωi,

where ωi ∈ Ci and

Ci := {w ∈ L∞(D) | supp(w) ⊂ Di, 0 ≤ w ≤ Λi(κi) a.e. in Di,

∫
D
wdx = κi}. (3.16)

It is clear that ω ∈ M~κ. Besides, it is easy to check that M~κ is a convex set, so ωs :=
ω~κ + s(ω − ω~κ) ∈M~κ for any s ∈ [0, 1]. Therefore we have

dP(ωs)

ds

∣∣∣∣
s=0+

≤ 0 (3.17)

On the other hand, we can calculate directly to obtain

dP(ωs)

ds

∣∣∣∣
s=0+

=

∫
Di

(
Gω~κ + q − f−1

i

(
ω~κi

Λi(κi)

))
(ωi − ω~κi )dx. (3.18)

Therefore we get from (3.17) and (3.18) that∫
Di

(
Gω~κ + q − f−1

i

(
ω~κi

Λi(κi)

))
ωidx ≤

∫
Di

(
Gω~κ + q − f−1

i

(
ω~κi

Λi(κi)

))
ω~κi dx.

Notice that ωi ∈ Ci is arbitrary, so ω~κi is in fact a maximizer of the linear functional

Ii(w) :=

∫
Di

(
Gω~κ + q − f−1

i

(
ω~κi

Λi(κi)

))
wdx

over Ci. By an adaption of the bathtub principle (see Theorem 1.14 in [18]), ω~κi must be of the
form

ω~κi = Λi(κi)I{
Gω~κ+q−f−1

i

(
ω~κ
i

Λi(κi)

)
>µ~κi

}
∩Di

+ hI{
Gω~κ+q−f−1

i

(
ω~κ
i

Λi(κi)

)
=µ~κi

}
∩Di

,
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where µ~κi is a real number depending on ~κ, and h is a measurable function such that ω~κi ∈ Ci
(obviously 0 ≤ h ≤ Λi(κi) a.e. in Di). Now it is easy to see that

Gω~κ + q − f−1
i

(
ω~κi

Λi(κi)

)
≥ µ~κi on {ω~κi = Λi(κi)} ∩Di,

Gω~κ + q − f−1
i

(
ω~κi

Λi(κi)

)
= µ~κi on {0 < ω~κi < Λi(κi)} ∩Di,

Gω~κ + q − f−1
i

(
ω~κi

Λi(κi)

)
≤ µ~κi on {ω~κi = 0} ∩Di.

(3.19)

Set φ~κ,i := Gω~κ + q − µ~κi . From (3.19) we obtain

φ~κ,i ≥ f−1
i (1) on {ω~κi = Λi(κi)} ∩Di,

ω~κi = Λi(κi)fi(φ
~κ,i) on {0 < ω~κi < Λi(κi)} ∩Di,

φ~κ,i ≤ 0 on {ω~κi = 0} ∩Di.

(3.20)

Thus (3.14) is verified.
Next we give the proof of (3.15), which is very similar to the one of (3.14). Let m+1 ≤ i ≤ k

be a fixed index. Define

Di := {w ∈ L∞(D) | supp(ωi) ⊂ Di, Λi(κi) ≤ ωi ≤ 0 a.e. in Di,

∫
D
ωidx = κi}. (3.21)

Then a similar calculation gives∫
Di

(
Gω~κ + q + f−1

i

(
ω~κi

Λi(κi)

))
wdx ≤

∫
Di

(
Gω~κ + q + f−1

i

(
ω~κi

Λi(κi)

))
ω~κi dx

for any w ∈ Di. By bathtub principle, ω~κi must be of the form

ω~κi = Λi(κi)I{
Gω~κ+q+f−1

i

(
ω~κ
i

Λi(κi)

)
<µ~κi

}
∩Di

+ hI{
Gω~κ+q+f−1

i

(
ω~κ
i

Λi(κi)

)
=µ~κi

}
∩Di

,

where h satisfies Λi(κi) ≤ h ≤ 0 a.e. in Di. This gives

Gω~κ + q + f−1
i

(
ω~κi

Λi(κi)

)
≤ µ~κi on {ω~κi = Λi(κi)} ∩Di,

Gω~κ + q + f−1
i

(
ω~κi

Λi(κi)

)
= µ~κi on {Λi(κi) < ω~κi < 0} ∩Di,

Gω~κ + q + f−1
i

(
ω~κi

Λi(κi)

)
≥ µ~κi on {ω~κi = 0} ∩Di.

(3.22)
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We still denote φ~κ,i := Gω~κ + q − µ~κi . By (3.22),

φ~κ,i ≤ −f−1
i (1) on {ω~κi = Λi(κi)} ∩Di,

ω~κi = Λi(κi)fi(−φ~κ,i) on {Λi(κi) < ω~κi < 0} ∩Di,

φ~κ,i ≥ 0 on {ω~κi = 0} ∩Di,

(3.23)

from which (3.15) clearly follows.

3.2. Limiting behavior

Now we turn to analyzing the limiting behavior ω~κ as ‖~κ‖ → 0+. Our final purpose is to
show that the support of ω~κi “shrinks” to x̄i for each i ∈ {1, · · ·, k} as ‖~κ‖ → 0+. To this end,
the key ingredient is to estimate the Lagrange multiplier µ~κi .

We begin with a lemma that is frequently used later on. For convenience, we shall use C to
denote various positive numbers not depending on ~κ, o(1) to denote various quantities that go
to zero as ‖~κ‖ → 0+, and o(‖~κ‖) to denote ‖~κ‖o(1).

Lemma 3.3. As ‖~κ‖ → 0+, there holds

sup
ω∈M~κ

‖Gω‖W 1,2(D) = o(1), sup
ω∈M~κ

‖Gω‖L∞(D) = o(1).

Proof. By Sobolev embedding, it is sufficient to prove that there exists some p ∈ (1,+∞) such
that

sup
ω∈M~κ

‖Gω‖W 2,p(D) = o(1). (3.24)

Let p ∈ (1,+∞) be an index to be determined later. For any ω ∈M~κ, by Lp estimate we have

‖Gω‖W 2,p(D) ≤ C‖ω‖Lp(D) ≤ C‖ω‖
1/p
L1(D)

‖ω‖1−1/p
L∞(D) ≤ ‖~κ‖

1/p

(
k∑
i=1

|Λi(κi)|

)1−1/p

. (3.25)

Taking (2.2) into consideration, we obtain

‖Gω‖W 2,p(D) ≤ C

(
k∑
i=1

(
|κi|

1
p−1 |Λi(κi)|

))1−1/p

. (3.26)

Recalling (A2), by choosing p = 1 + γ−1
0 we get the desired result.

Now we begin to estimate the Lagrange multiplier µ~κi . The following bound is straightfor-
ward.
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Lemma 3.4. As ‖~κ‖ → 0+, we have

µ~κi ≤ q(x̄i) + o(1), 1 ≤ i ≤ m, (3.27)

µ~κi ≥ q(x̄i) + o(1), m+ 1 ≤ i ≤ k. (3.28)

Proof. We only prove (3.27), since the proof of (3.28) is similar. For any fixed index i, 1 ≤ i ≤ m,
it is obvious by (3.14) that {Gω~κ + q − µ~κ > 0} ∩Di is not empty. Consequently

µ~κ ≤ ‖Gω~κ‖L∞(Di) + sup
Di

q ≤ q(x̄i) + o(1).

Here we used Lemma 3.3 and the fact that x̄i is a maximum point of q over Di.

The proofs of the inverse inequalities of (3.27) and (3.28) are a little involved. We begin
with the following energy estimate.

Lemma 3.5. As ‖~κ‖ → 0+, there holds

P(ω~κ) =
k∑
i=1

κiq(x̄i) + o(‖~κ‖).

Proof. First it is clear that

P(ω) = E(ω) +Q(ω)−
m∑
i=1

Fi(ω) +

k∑
i=m+1

Fi(ω)

≤ E(ω) +Q(ω)

≤
k∑
i=1

κiq(x̄i) + o(‖~κ‖).

(3.29)

Here we used (3.8), (3.9) and Lemma 3.3. To finish the proof, it suffices to show that

P(ω~κ) ≥
k∑
i=1

κiq(x̄i) + o(‖~κ‖). (3.30)

The idea is to choose a suitable test function to compare the energy. Since D is a smooth
domain, ∂D satisfies the interior sphere condition at each x̄i ∈ ∂D, 1 ≤ i ≤ k. As a result,
for ‖~κ‖ sufficiently small, there exists a disc Bεi(x

~κ
i ) ⊂ D, where |x~κi − x̄i| = εi and εi satisfies

πε2
i =

√
κi/Λi(κi). Note that by (A1), εi → 0+ as ‖~κ‖ → 0+. Define

ω̃ =
m∑
i=1

√
κiΛi(κi)ID∩Bεi (x

~κ
i ) −

k∑
i=m+1

√
κiΛi(κi)ID∩Bεi (x

~κ
i ).
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Recalling (A1), we can easily verify that ω̃ ∈ M~κ if ‖~κ‖ is sufficiently small. Since ω~κ is a
maximizer, we have

P(ω~κ) ≥ P(ω̃). (3.31)

On the other hand, it is easy to check that

E(ω̃) ≥ 0, Q(ω̃) =

k∑
i=1

κiq(x̄i) + o(1). (3.32)

For each Fi, a direct calculation gives

|Fi(ω̃)| = |κi|

√
Λi(κi)

κi
Fi

(√
κi

Λi(κi)

)
, 1 ≤ i ≤ k. (3.33)

Recalling (A1) and taking into the fact that lims→0+ Fi(s)/s = 0, we get

|Fi(ω̃)| = o(‖~κ‖),

which together with (3.31) and (3.32) leads to (3.30). Thus the lemma is proved.

Lemma 3.6. As ‖~κ‖ → 0+, for each i ∈ {1, · · ·, k}, there holds

Fi(ω~κ) = o(‖~κ‖). (3.34)

Proof. First by Lemma 3.5, we have

E(ω~κ) +Q(ω~κ)−
m∑
i=1

Fi(ω~κ) +

k∑
i=m+1

Fi(ω~κ) =

k∑
i=1

κiq(x̄i) + o(‖~κ‖). (3.35)

On the other hand,

E(ω~κ) = o(‖~κ‖), Q(ω~κ) ≤
k∑
i=1

κiq(x̄i). (3.36)

Combining (3.35) and (3.36) we get

−
m∑
i=1

Fi(ω~κ) +

k∑
i=m+1

Fi(ω~κ) ≥ o(‖~κ‖). (3.37)

Since Fi ≥ 0 for 1 ≤ i ≤ m and Fi ≤ 0 for m+ 1 ≤ i ≤ k, (3.37) clearly implies (3.34).

Recall that φ~κ,i = Gω~κ + q − µ~κi . We have the following lemma.

Lemma 3.7. For each i ∈ {1, · · ·, k}, there holds∫
D
ω~κi φ

~κ,idx = o(‖~κ‖). (3.38)



On 2D steady Euler flows with small vorticity 15

Proof. First we prove (3.38) for 1 ≤ i ≤ m. In this case, by Lemma 3.2 we have∫
D
ω~κi φ

~κ,idx =

∫
{0<ω~κi <Λi(κi)}∩Di

ω~κi φ
~κ,idx+

∫
{ω~κi =Λi(κi)}∩Di

ω~κi φ
~κ,idx

=

∫
{0<ω~κi <Λi(κi)}∩Di

ω~κi f
−1
i

(
ω~κi

Λi(κi)

)
dx+

∫
{ω~κi =Λi(κi)}∩Di

ω~κi φ
~κ,idx

=

∫
Di

ω~κi f
−1
i

(
ω~κi

Λi(κi)

)
dx+

∫
{ω~κi =Λi(κi)}∩Di

ω~κi (φ~κ,i − f−1
i (1))dx

=

∫
Di

ω~κi f
−1
i

(
ω~κi

Λi(κi)

)
dx+

∫
Di

ω~κi (φ~κ,i − f−1
i (1))+dx. (3.39)

For the first term in (3.39), recalling that fi satisfies (H2)′, we deduce that∫
Di

ω~κi f
−1
i

(
ω~κi

Λi(κi)

)
dx = Λi(κi)

∫
Di

ω~κi
Λi(κi)

f−1
i

(
ω~κi

Λi(κi)

)
dx

≤ Λi(κi)

δ1

∫
Di

Fi

(
ω~κi

Λi(κi)

)
dx

=
1

δ1
Fi(ω~κ)

= o(‖~κ‖).

(3.40)

Here we used Lemma 3.6. Therefore, in order to prove (3.38), it is sufficient to prove∫
Di

ω~κi ζ
~κ,i
+ dx = o(‖~κ‖), (3.41)

where ζ~κ,i = φ~κ,i− f−1
i (1). To this end, we denote A~κi = {ω~κi (x) = Λi(κi)} ∩Di and calculate as

follows ∫
Di

ω~κi ζ
~κ,i
+ dx =Λi(κi)

∫
A~κi

ζ~κ,i+ dx

≤Λi(κi)|A~κi |1/2
(∫

Di

|ζ~κ,i+ |2dx
)1/2

(3.42)

≤CΛi(κi)|A~κi |1/2
∫
Di

(
ζ~κ,i+ + |∇ζ~κ,i+ |

)
dx (3.43)

=C|A~κi |1/2
∫
Di

ω~κi ζ
~κ,i
+ dx+ CΛi(κi)|A~κi |1/2

∫
Di

|∇ζ~κ,i+ |dx. (3.44)

Here we used Hölder’s inequality in (3.42) and Sobolev embedding W 1,1(Di) ↪→ L2(Di) in (3.43).
By (A1), we have |A~κi | → 0+ as ‖~κ‖ → 0+, therefore (3.44) implies∫

Di

ω~κi ζ
~κ,i
+ dx ≤ CΛi(κi)|A~κi |1/2

∫
Di

|∇ζ~κ,i+ |dx. (3.45)
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On the other hand, using Hölder’s inequality and Lemma 3.3 we can estimate the righthand of
(3.45) as follows

Λi(κi)|A~κi |1/2
∫
Di

|∇ζ~κ,i+ |dx ≤ Λi(κi)|A~κi |
(∫

Di

|∇ζ~κ,i+ |2dx
)1/2

≤ Cκi

(∫
A~κi

|∇q|2 + |∇Gω~κ|2dx

)1/2

= o(‖~κ‖),

(3.46)

which together with (3.45) gives (3.41).
Next we give the proof of (3.38) for m + 1 ≤ i ≤ k. Although the procedure is similar, we

present it below for readers’ convenience. In this situation we have∫
D
ω~κi φ

~κ,idx =

∫
{Λi(κi)<ω~κi <0}∩Di

ω~κi φ
~κ,idx+

∫
{ω~κi =Λi(κi)}∩Di

ω~κi φ
~κ,idx

=−
∫
{Λi(κi)<ω~κi <0}∩Di

ω~κi f
−1
i

(
ω~κi

Λi(κi)

)
dx+

∫
{ω~κi =Λi(κi)}∩Di

ω~κi φ
~κ,idx

=−
∫
Di

ω~κi f
−1
i

(
ω~κi

Λi(κi)

)
dx+

∫
{ω~κi =Λi(κi)}∩Di

ω~κi (φ~κ,i + f−1
i (1))dx

=−
∫
Di

ω~κi f
−1
i

(
ω~κi

Λi(κi)

)
dx−

∫
Di

ω~κi (φ~κ,i + f−1
i (1))−dx. (3.47)

Taking into account (H2)′ and Lemma 3.6, we can easily verify that

0 ≤
∫
Di

−ω~κi f−1
i

(
ω~κi

Λi(κi)

)
dx ≤ − 1

δ1
Fi(ω~κ) = o(‖~κ‖). (3.48)

Consequently we only need to check that

−
∫
Di

ω~κi ξ
~κ,i
− dx = o(‖~κ‖), (3.49)

where ξ~κ,i = φ~κ,i + f−1
i (1). Denote B~κi = {ω~κi (x) = Λi(κi)} ∩Di. Using Hölder’s inequality and

Sobolev embedding, we have

−
∫
Di

ω~κi ξ
~κ,i
− dx =− Λi(κi)

∫
B~κi

ξ~κ,i− dx

≤− Λi(κi)|B~κi |1/2
(∫

Di

|ξ~κ,i− |2dx
)1/2

(3.50)

≤− CΛi(κi)|B~κi |1/2
∫
Di

(
ξ~κ,i− + |∇ξ~κ,i− |

)
dx (3.51)

=− C|A~κi |1/2
∫
Di

ω~κi ξ
~κ,i
− dx− CΛi(κi)|B~κi |1/2

∫
Di

|∇ξ~κ,i− |dx. (3.52)
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Since |B~κi | → 0+ as ‖~κ‖ → 0+, we deduce from (3.52) that

−
∫
Di

ω~κi ξ
~κ,i
− dx ≤ −CΛi(κi)|A~κi |1/2

∫
Di

|∇ξ~κ,i− |dx. (3.53)

But

−Λi(κi)|B~κi |1/2
∫
Di

|∇ξ~κ,i− |dx ≤ −Λi(κi)|B~κi |
(∫

Di

|∇ξ~κ,i− |2dx
)1/2

≤ C|κi|

(∫
B~κi

|∇q|2 + |∇Gω~κ|2dx

)1/2

= o(‖~κ‖).

(3.54)

From (3.53) and (3.54) we get (3.49). Thus the proof is completed.

Now we are in a position to derive the desired estimate for each µ~κi .

Lemma 3.8. µ~κi = q(x̄i) + o(1).

Proof. By Lemma 3.4, we only need to show

µ~κi ≥ q(x̄i) + o(1), 1 ≤ i ≤ m, (3.55)

µ~κi ≤ q(x̄i) + o(1), m+ 1 ≤ i ≤ k. (3.56)

Notice that

P(ω~κ) = E(ω~κ) +Q(ω~κ)−
m∑
i=1

Fi(ω~κ) +

k∑
i=m+1

Fi(ω~κ)

=
k∑
i=1

∫
D
ω~κi φ

~κ,idx+
k∑
i=1

κiµ
~κ
i + o(‖~κ‖)

=
k∑
i=1

κiµ
~κ
i + o(‖~κ‖).

(3.57)

Here we used Lemma 3.6 and Lemma 3.7. From (3.57) and Lemma 3.5 we get

k∑
i=1

κiµ
~κ
i =

k∑
i=1

κiq(x̄i) + o(‖~κ‖). (3.58)
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Now (3.55) and (3.56) are only easy consequences of (3.58) and Lemma 3.4. In fact, if 1 ≤ i ≤ m,
then κi > 0, thus by (3.58) and Lemma 3.4 we have

µ~κi =
1

κi

 k∑
j=1

κjµ
~κ
j −

k∑
j=1,j 6=i

κjµ
~κ
j


=

1

κi

 k∑
j=1

κjq(x̄j) + o(‖~κ‖)−
k∑

j=1,j 6=i
κjµ

~κ
j


≥ 1

κi

 k∑
j=1

κjq(x̄j) + o(‖~κ‖)−
k∑

j=1,j 6=i
κjq(x̄j)


= q(x̄i) + o(1).

Similarly, for m+ 1 ≤ i ≤ k we have

µ~κi =
1

κi

 k∑
j=1

κjµ
~κ
j −

k∑
j=1,j 6=i

κjµ
~κ
j


=

1

κi

 k∑
j=1

κjq(x̄j) + o(‖~κ‖)−
k∑

j=1,j 6=i
κjµ

~κ
j


≤ 1

κi

 k∑
j=1

κjq(x̄j) + o(‖~κ‖)−
k∑

j=1,j 6=i
κjq(x̄j)


= q(x̄i) + o(1).

Thus the lemma is proved.

Lemma 3.9. If ‖~κ‖ is sufficiently small, then {φ~κ,i ≥ f−1
i (1)}∩Di = ∅ for each i ∈ {1, · · ·, k},

and consequently ω~κi has the form

ω~κi = Λi(κi)fi(φ
~κ,i
+ ) if 1 ≤ i ≤ m, (3.59)

ω~κi = Λi(κi)fi(φ
~κ,i
− ) if m+ 1 ≤ i ≤ k. (3.60)

Proof. We only prove the case 1 ≤ i ≤ m. Notice that f−1
i (1) is a positive number not depending

on ~κ. By Lemma 3.8 and the fact that ‖Gω~κ‖L∞(D) = o(1) (recall Lemma 3.3), there exists some
δ0 > 0, such that for any ‖~κ‖ < δ0, there holds

φ~κi = Gω~κ + q − µ~κi ≤
1

2
f−1(1) in Di.

Thus {φ~κ,i ≥ f−1
i (1)} ∩Di is empty if ‖~κ‖ < δ0.
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Lemma 3.10. For each i ∈ {1, · · ·, k}, supp(ω~κi ) shrinks to x̄i as ‖~κ‖ → 0+, or more precisely,
for any ε > 0, there exists some δ > 0, such that for any ~κ ∈ Sαk , ‖~κ‖ < δ, we have supp(ω~κi ) ⊂
Bε(x̄i).

Proof. We only prove the case 1 ≤ i ≤ m. It suffices to show that {φ~κ,i > 0}∩Di shrinks to x̄i. We
prove this by contradiction. Suppose that there exist ε0 > 0, {~κn} ⊂ Sαk , {xn} ⊂ {φ~κn,i > 0}∩Di,
n = 1, · · ·, such that ‖~κn‖ < 1/n, but |xn− x̄i| ≥ ε0 for each n. Since x̄i is the unique maximum
point of q over Di, by continuity of q, there exists some ε1 > 0 such that supn q(xn) < q(x̄i)− ε1.
Thus we have

0 < Gω~κn(xn) + q(xn)− µ~κni ≤ Gω
~κn(xn) + q(x̄i)− ε1 − µ~κni .

Letting n→ +∞, we get
lim sup
n→+∞

µ~κni ≤ q(x̄i)− ε1,

which obviously contradicts Lemma 3.8.

3.3. Proof of Theorem 2.1

Having made enough preparations, now we are ready to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. We only need to prove that ω~κ is a weak solution to the vorticity equation,
that is, ω~κ satisfies (1.10), if ‖~κ‖ is sufficiently small, since other assertions in Theorem 2.1 have
been verified in the last subsection.

Noting that by Lemma 3.10, the support of each ω~κi is away from the boundary of Di, thus
we can apply Theorem 1.2 in [12] to show that ω~κ is a weak solution. However, we prefer to
prove this statement directly on account of the variational nature of ω~κ.

Let φ ∈ C∞c (D). Consider the following ODE{
dΦs(x)
ds = −∇⊥φ(Φs(x)), s ∈ R

Φ0(x) = x.
(3.61)

Since∇⊥φ is a smooth vector field with compact support, (3.61) admits a unique smooth solution
for any x ∈ D. Thus (3.61) gives rise to a family of transformations {Φs}s∈R from D to D. Since
∇⊥φ is divergence-free, it is easy to see that Φs is area-preserving, that is, for any measurable
set A ⊂ D, there holds |{Φs(x) | x ∈ A}| = |A|, ∀ s ∈ R. Define ωs(x) := ω~κ(Φs(x)). By Lemma
3.10 and the continuity of Φs, we have supp(ωs) ⊂ ∪ki=1Di if |s| is sufficiently small. Thus it is
easy to see that ωs ∈M~κ if |s| is sufficiently small. As s→ 0 one can check that (see also (1.13)
in [23])

P(ωs) = P(ω~κ) + s

∫
D
ω~κ∇⊥(Gω~κ + q) · ∇φdx+ o(s), (3.62)

which also implies that P(ωs) is differentiable at s = 0. On the other hand, since ω~κ is a
maximizer, we see that s = 0 is a local maximum point of P(ωs), which together with (3.62)
gives ∫

D
ω~κ∇⊥(Gω~κ + q) · ∇φdx = 0
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if ‖~κ‖ is sufficiently small.

4. Proof of Theorem 2.2

In this section, we sketch the proof of Theorem 2.2. As in Section 3, we need to solve
a suitable minimization problem for the vorticity and studying the limiting behavior of the
minimizers. Although the procedure is parallel to the one of Theorem 2.1, some details must be
taken into careful consideration.

Set

Tαk := {~κ = (κ1, · · ·, κk) ∈ Vαk | κi < 0 if 1 ≤ i ≤ m, κi > 0 if m+ 1 ≤ i ≤ k}.

For any ~κ ∈ Tαk , define

N ~κ :={ω ∈ L∞(D) | supp(ω) ⊂ ∪ki=1Di, Λi(κi) ≤ ω ≤ 0 a.e. in Di if 1 ≤ i ≤ m,

0 ≤ ω ≤ Λi(κi) a.e. in Di if m+ 1 ≤ i ≤ k,
∫
Di

ωdx = κi for 1 ≤ i ≤ k}.
(4.1)

By (A1), N ~κ is not empty if ‖~κ‖ is sufficiently small, and for any ω ∈ N ~κ there holds 0 ≤
ω

Λi(κi)
≤ 1 a.e. in Di, 1 ≤ i ≤ k.

We consider the minimization problem of P (defined by (3.2) in Section 3) over N ~κ.
The proof of the existence of a minimizer is almost identical to that in the maximization

case. What is new here is that the minimizer is fact unique, which is due to the strict convexity
of P over N ~κ.

Lemma 4.1. There is a unique minimizer ω~κ of P over N ~κ. Let ω~κi = ω~κIDi, 1 ≤ i ≤ k, then

ω~κ = Λi(κi)I{φ~κi (x)≥f−1
i (1)}∩Di + Λi(κi)fi(φ

~κ,i
+ )I{0<φ~κ,i<f−1

i (1)}∩Di if 1 ≤ i ≤ m,

ω~κi = Λi(κi)I{φ~κ,i≤−f−1
i (1)}∩Di + Λi(κi)fi(φ

~κ,i
− )I{−f−1

i (1)<φ~κ,i− (x)<0}∩Di
if m+ 1 ≤ i ≤ k,

where each µ~κi is a real number depending on ~κ and φ~κ,i := Gω~κ + q − µ~κi .

Proceeding as in Section 3, we have the following asymptotic estimates.

Lemma 4.2. As ‖~κ‖ → 0+, we have

(i) P(ω~κ) =
∑k

i=1 κiq(x̄i) + o(‖~κ‖);

(ii) For each 1 ≤ i ≤ k, Fi(ω~κ) = o(‖~κ‖);

(iii) For each 1 ≤ i ≤ k, µ~κi = q(x̄i) + o(1);

(iv) For each 1 ≤ i ≤ k, supp(ω~κi ) shrinks to x̄i.
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Using Lemma 4.2, we finally have

Lemma 4.3. If ‖~κ‖ is sufficiently small, then ω~κ is a weak solution to the vorticity equation,

moreover, ω~κ = Λi(κi)fi(φ
~κ,i
+ ) a.e. in Di for 1 ≤ i ≤ m, and ω~κ = Λi(κi)fi(φ

~κ,i
− ) a.e. in Di for

m+ 1 ≤ i ≤ k.

The proofs of Lemma 4.1–4.3 are analogous to those in Section 3, therefore we omit them
here. Theorem 2.2 is an obvious consequence of these lemmas.
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