
ON A SINGULAR INTEGRAL OF CHRIST-JOURNÉ TYPE WITH
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Abstract. In this paper, we prove that the following singular integral defined by

TΩ,af(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d ·mx,ya · f(y)dy

is bounded on Lp(Rd) for 1 < p <∞ and is of weak type (1,1), where Ω ∈ L log+ L(Sd−1) and

mx,ya =:
∫ 1

0
a(sx + (1− s)y)ds with a ∈ L∞(Rd) satisfying some restricted conditions.

1. Introduction

In 1965, A. P. Calderón [2] introduced the commutator [A,S] on R which is defined by

[A,S]f(x) = A(x)Sf(x)− S(Af)(x),

where A ∈ Lip(R) and the operator S := d
dx ◦H, H denotes the Hilbert transform defined by

Hf(x) = p.v.
1

π

∫ ∞
−∞

f(y)

x− y
dy.

Note that the commutator [A,S] can be rewritten as [A,
√
−∆], where ∆ = d2

dx2 is the Laplacian

operator on R. Therefore, the study of the commutator [A,S] plays an important role in the

theory of linear partial differential equations, Cauchy integral along Lipschitz curve in C and

the Kato square root problem on R (see [3], [4], [14], [21], [22], [23], [6], [7] for the details).

By a formal computation, we see that

[A,S]f(x) = (−1) p.v.
1

π

∫ ∞
−∞

A(x)−A(y)

x− y
f(y)

x− y
dy.

The operator [A,S] is the so called Calderón commutator . In [2], A. P. Calderón proved that

if A ∈ Lip(R), then the Calderón commutator [A,S] is bounded on Lp(R) for all 1 < p <∞.

In 1987, Christ and Journé [9] introduced a variant singular integral of the Calderón com-

mutator in higher dimensions as follows

(1.1) Taf(x) = p.v.

∫
Rd
K(x− y) ·mx,ya · f(y)dy,
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where K is the with the standard Calderón-Zygmund convolution kernel , which means that K

satisfies the following conditions:

(k1) |K(x)| ≤ C|x|−d;
(k2)

∫
R<|x|<2RK(x)dx = 0, for all R > 0;

(k3) |K(x− h)−K(x)| ≤ C|h|ν |x|−d−ν if |x| > 2|h|, where 0 < ν ≤ 1.

Here and in the sequel, for a ∈ L∞(Rd),

mx,ya =

∫ 1

0
a(sx+ (1− s)y)ds.

When the dimension d = 1, we have

mx,ya =

∫ x
0 a(z)dz −

∫ y
0 a(z)dz

x− y
=:

A(x)−A(y)

x− y
.

Obviously, A′(x) = a(x) ∈ L∞(R). So, if taking K(x) = − 1
πx , we see that

Taf(x) = (−1) p.v.
1

π

∫
R

A(x)−A(y)

x− y
f(y)

x− y
dy.

Hence, when d = 1, the operator Ta is just the Calderón commutator [A,S]. In [9], Christ and

Journé showed that Ta is bounded on Lp(Rd) for all 1 < p <∞.

In 1995, by taking K(x) = Ω(x)|x|−d (x 6= 0), S. Hofmann [20] discussed the following

singular integral of Christ-Journé type with homogeneous kernel:

(1.2) TΩ,af(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
·mx,ya · f(y)dy,

where

(1.3) Ω(rx′) = Ω(x′), for any r > 0 and x′ ∈ Sd−1

and Ω satisfies

(1.4)

∫
Sd−1

Ω(x′)dσ(x′) = 0.

In [20], S. Hofmann gave the weighted Lp boundedness of TΩ,a if Ω ∈ L∞(Sd−1) satisfies

(1.3), (1.4) and a ∈ L∞(Rd). Recently, the weak type estimates for the singular integral Ta

defined by (1.1) are also discussed. In 2012, Grafakos and Honźık [18] proved that Ta is of weak

type (1,1) in dimension d = 2. Further, Seeger [25] showed that Ta is of weak type (1,1) for all

dimension d ≥ 2. In 2015, the author [11] gave a weighted weak (1,1) boundedness of Ta for

dimension d = 2 with power weight ω(x) = |x|α for −2 < α < 0 and later extended to more

general A1(Rd) weight for dimension d ≥ 2 in [12].

It is well known that if Ω ∈ L log+ L(Sd−1) and satisfies (1.3) and (1.4), the singular integral

operator with rough kernel defined by

(1.5) TΩ(f)(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
f(y)dy

is bounded from Lp(Rd) to itself for 1 < p < ∞ (see [5]) and is of weak type (1,1) (see [24]).

Now a natural question is that whether similar results hold for TΩ,a defined in (1.2) if Ω ∈
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L log+ L(Sd−1). In this paper, we give some partial answer to this question. Our main result is

as follows.

Theorem 1.1. Suppose Ω ∈ L log+ L(Sd−1) and satisfies (1.3) and (1.4). Let a ∈ L1(Rd) and

satisfy â ∈ L1(Rd).
(a) For 1 < p <∞, we have

‖TΩ,af‖p ≤ C‖â‖1‖Ω‖L log+ L‖f‖p;

(b) For p = 1, we have

m({x ∈ Rd : |TΩ,af(x)| > λ}) ≤ C

λ
‖â‖1‖f‖1.

The constant C above is depended on the dimension d and Ω.

Remark 1.2. It is clear that the conditions a ∈ L1(Rd) and â ∈ L1(Rd) imply a ∈ L∞(Rd). It

seems difficult to get the Lp and weak (1,1) boundedness of TΩ,a with a ∈ L∞(Rd) only by the

method presented in this paper. So, it is still an open question whether the commutator TΩ,a is

Lp bounded for 1 < p < ∞ and is of weak type (1,1) for a ∈ L∞(Rd) and Ω ∈ L log+ L(Sd−1)

with (1.3) and (1.4).

The proof of part (a) is quite simple. We use the Fourier inversion formula of a and the

problem can be reduced to the Lp boundedness of TΩ. The main content of this paper is

dedicated to the proof of part (b) in Theorem 1.1. The proof is based on a variant Calderón-

Zygmund decomposition. More precisely, we make a Calderón-Zygmund type decomposition

of a L1 function with some parameters and the constants that appears in the estimate are

independent of these parameters. For the rest of the proof, we use some nice ideas from Seeger’s

works ([24], [25]). Recall that when the dimension d = 1, mx,ya can be rewritten as A(x)−A(y)
x−y

which has some smoothness about variable x, y. For dimension d ≥ 2, mx,ya has no smoothness

about x, y since a ∈ L∞(Rd). Note that the kernel K satisfying (k1)-(k3) has some smoothness

and the commutator Ta defined in (1.1) has only one rough factor mx,ya. However, for the

commutator TΩ,a, it is much harder to establish the weak (1,1) boundedness since it involves

two rough factors: Ω and mx,ya.

Besides the higher dimensional variant form of the Calderón commutator defined in (1.2),

there are some other kinds of the Calderón commutators in higher dimensions. For example, in

[2], A. P. Calderón considered the following commutator:

(1.6) TΩ,Af(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
· A(x)−A(y)

|x− y|
· f(y)dy,

where A ∈ Lip(Rd) and Ω satisfies (1.3) and∫
Sd−1

Ω(x′)x′αdσ(x′) = 0, for all α ∈ Zd+ with |α| = 1.

Calderón showed that TΩ,A is bounded on Lp(Rd) for 1 < p < ∞ if ∇A ∈ L∞(Rd) and Ω ∈
L log+L(Sd−1). Recently the authors of this paper established a weak type (1,1) criteria for
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singular integral with rough kernel in [13] and used this criteria to show TΩ,A is weak type

(1,1) bounded if Ω ∈ L log+ L(Sd−1). However this criteria is not efficient to the operator TΩ,a

discussed in this paper if a ∈ L∞. For more topics about singular integral with rough kernel,

we refer to see [5],[1],[8],[10],[19],[26],[15],[27],[16].

This paper is organized as follows. In Section 2, we complete the proof of part (a) in Theorem

1.1 and part (b) based on some lemmas, their proofs are given in Section 3 and 4, respectively.

Throughout this paper, the letter C stands for a positive constant which is independent of

the essential variables and not necessarily the same one in each occurrence. For a Lebesgue

measurable set E ⊂ Rd, we denote its measure by |E| or m(E). Ff and f̂ denote the Fourier

transform of f defined by

Ff(ξ) =

∫
Rd
e−ixξf(x)dx.

Zd+ denotes the space of nonnegative multi-indices and Z+ denote the set of all nonnegative

integers. Moreover, ‖Ω‖q :=
( ∫

Sd−1 |Ω(x′)|qdσ(x′)
) 1
q and ‖Ω‖L log+L :=

∫
Sd−1 |Ω(x′)| log(2 +

|Ω(x′)|)dσ(x′).

2. Proof of Theorem 1.1

2.1. Proof of part (a) in Theorem 1.1. Using the inversion Fourier formula, we write

mx,ya =
1

(2π)d

∫ 1

0

∫
Rd
â(η)eis〈η,x〉ei(1−s)〈y,η〉dηds.

Therefore by Fubini’s theorem, we have

TΩ,a(f)(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
( 1

(2π)d

∫∫
[0,1]×Rd

â(η)eis〈x,η〉ei(1−s)〈y,η〉dsdη
)
f(y)dy

=

∫∫
[0,1]×Rd

ax,s(η)TΩ(W η,sf)(x) dηds
(2.1)

where ax,s(η) = 1
(2π)d

â(η)eis〈x,η〉, W η,s(y) = ei(1−s)〈y,η〉 and TΩ is defined by (1.5). Now applying

Minkowski’s inequality, the above inequality and TΩ is bounded on Lp(Rd), we have

‖TΩ,a(f)‖p ≤
∫∫

[0,1]×Rd

|â|‖TΩ(W η,sf)‖p dηds ≤ C‖â‖1‖Ω‖L log+ L‖f‖p.

�

2.2. Proof of part (b) in Theorem 1.1. We will finish the proof of part (b) based on some

lemmas, their proofs are given in Section 3 and Section 4, respectively. We only focus on dimen-

sion d ≥ 2. By using scaling arguments, we may assume ‖Ω‖L log+ L(Sd−1) = ‖â‖L1(Rd) = 1. Write

TΩ,a in the form (2.1). In the following, we try to make a Calderón-Zygmund decomposition of

W η,sf with the underlying cubes independent of η, s.
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Lemma 2.1. Fix η, s. Let f ∈ L1(Rd) and λ > 0. Set Ωλ = {x ∈ Rd : M(f)(x) > λ} where M

is the Hardy-Littlewood maximal operator. Then we have the following conclusions:

(i) Ωλ =
⋃
Q, Q’s are disjoint dyadic cubes. Set Q be the collection of all these cubes.

(ii) m(Ωλ) ≤ Cλ−1‖f‖1.

(iii) fW η,s = gη,s + bη,s.

(iv) bη,s =
∑
Q∈Q

bη,sQ , suppbη,sQ ⊂ Q,
∫
bη,sQ = 0, ‖bη,sQ ‖1 ≤ Cλ|Q|, ‖bη,s‖1 ≤ C‖f‖1.

(v) ‖gη,s‖22 ≤ Cλ‖f‖1.

Here all the constants C in (i)-(v) are independent of η, s.

Proof. We first make a Whitney decomposition of the set Ωλ. Then there exists a family of

dyadic closed cubes {Qj}j (see [17]) such that

(a)
⋃
Qj = Ωλ and Qj ’s have disjoint interior.

(b)
√
d · l(Qj) ≤ dist(Qj ,Ωc

λ) ≤ 4
√
d · l(Qj), where l(Qj) denotes the side’s length of Qj .

By the weak type (1,1) bound of M , we have

(2.2) m(Ωλ) ≤ C

λ
‖f‖1.

We write fW η,s = gη,s + bη,s, where

gη,s = fW η,sχΩcλ
+
∑
Q

1

|Q|

∫
Q
f(x)W η,s(x)dxχQ,

bη,s =
∑
Q

{
fW η,s − 1

|Q|

∫
Q
f(x)W η,s(x)dx

}
χQ =:

∑
Q

bη,sQ .

So, bη,sQ is supported in Q and
∫
bη,sQ = 0. Let tQ denote the cube with t times the side length

of Q and the same center. We first claim that

(2.3)
1

|Q|

∫
Q
|f(x)|dx ≤ Cλ,

where C is only dependent of the dimension d. In fact, by the Whitney decomposition’s property

(b) we have 9
√
dQ ∩ Ωc

λ 6= ∅. Thus by the definition of Ωc
λ, there exists x0 ∈ 9

√
dQ such that

Mf(x0) ≤ λ. Using the property of the maximal function, we have 1
|9
√
dQ|

∫
9
√
dQ |f(x)|dx ≤ C ′λ,

where C ′ is only dependent of the dimension d. Hence we have the estimate

1

|Q|

∫
Q
|f(x)|dx ≤ (9

√
d)d

|9
√
dQ|

∫
9
√
dQ
|f(x)|dx ≤ Cλ.

For bη,sQ and bη,s, by (2.2) and (2.3) we have

‖bη,sQ ‖1 ≤ 2

∫
Q
|f(x)|dx ≤ Cλ|Q|,

‖bη,s‖1 ≤ C‖f‖1 + λm(Ωλ) ≤ C‖f‖1.

Note that |f(x)| ≤ λ almost everywhere in (Ωλ)c, by (2.2) and (2.3), we have

‖gη,s‖22 ≤ Cλ‖f‖1 + Cλ2m(Ωλ) ≤ Cλ‖f‖1.

�
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By the property (iii) in Lemma 2.1 and (2.1), we have

m({x : |TΩ,a(f)(x)| > λ}) ≤ m
({
x :
∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)TΩ(gη,s)(x) dηds
∣∣∣ > λ

2

})

+m
({
x :
∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)TΩ(bη,s)(x) dηds
∣∣∣ > λ

2

})
.

(2.4)

Notice that TΩ is bounded from Lp(Rd) to itself with bound ‖Ω‖L log+ L. Hence, combining this

with Chebyshev’s inequality, Minkowski’s inequality, and the property (v) in Lemma 2.1,

m
({
x :
∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)TΩ(gη,s)(x) dηds
∣∣∣ > λ

2

})

≤ 4

λ2

(∫∫
[0,1]×Rd

|â(η)| · ‖TΩ(gη,s)‖2dηds
)2
≤ C

λ
‖f‖1.

For Q ∈ Q, denote by l(Q) the side length of cube Q. Set E∗ =
⋃
Q∈Q 2200Q. Then we have

m
({
x :
∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)TΩ(bη,s)(x) dηds
∣∣∣ > λ

2

})

≤ m(E∗) +m
({
x ∈ (E∗)c :

∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)TΩ(bη,s)(x) dηds
∣∣∣ > λ

2

})
.

By the property (ii) in Lemma 2.1, the set E∗ satisfies

m(E∗) ≤ Cm(Ωλ) ≤ C

λ
‖f‖1.

Thus, to complete the proof of part (b) in Theorem 1.1, it remains to show

(2.5) m
({
x ∈ (E∗)c :

∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)TΩ(bη,s)(x) dηds
∣∣∣ > λ

2

})
≤ C

λ
‖f‖1,

where C is only dependent of the dimension d.

Denote Qk = {Q ∈ Q : l(Q) = 2k} and let Bη,s
k =

∑
Q∈Qk

bη,sQ . Then bη,s can be rewritten as

bη,s =
∑
j∈Z

Bη,s
j . Taking a smooth radial function φ on Rd such that supp φ ⊂ {x : 1

4 ≤ |x| ≤ 1}

and
∑

j φj(x) = 1 for all x ∈ Rd\{0}, where φj(x) = φ(2−jx). Now we define the operator Tj as

(2.6) Tj(f)(x) =

∫
Rd

Ω(x− y)

|x− y|d
φj(x− y)f(y)dy.

Then we have TΩ =
∑
j
Tj . We write

TΩ(bη,s)(x) =
∑
n∈Z

∑
j∈Z

Tj(B
η,s
j−n)(x).
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Note that Tj(B
η,s
j−n)(x) = 0 for x ∈ (E∗)c and n < 100. Therefore

m
({
x ∈ (E∗)c :

∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)TΩ(bη,s)(x) dηds
∣∣∣ > λ

2

})

= m
({
x ∈ (E∗)c :

∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)
∑
j

∑
n≥100

Tj(B
η,s
j−n)(x) dηds

∣∣∣ > λ

2

})
.

Hence, to finish the proof of of part (b), it suffices to verify the following estimate:

m
({
x ∈ (E∗)c :

∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)
∑
j

∑
n≥100

Tj(B
η,s
j−n)(x) dηds

∣∣∣ > λ

2

})
≤ C

λ
‖f‖1.(2.7)

2.3. Some key estimates.

In the following we will show that (2.7) holds if Ω is restricted in some subset of Sd−1. More

precisely, for a fixed n ≥ 100, denote Dι = {θ ∈ Sd−1 : |Ω(θ)| ≥ 2ιn‖Ω‖1}, where 0 < ι < γ
2 will

be chosen later. The operator Tnj,ι is defined by

Tnj,ι(f)(x) = p.v.

∫
Rd

ΩχDι(
x− y
|x− y|

)
φj(x− y)

|x− y|d
· f(y)dy.

We have the following result, which will be proved in next section.

Lemma 2.2. Under the conditions of Theorem 1.1 with 0 < ι < γ/2, we have

m
({
x ∈ (E∗)c :

∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)
∑
j

∑
n≥100

Tnj,ι(B
η,s
j−n)(x) dηds

∣∣∣ > λ

2

})
≤ C ‖f‖1

λ
.

Thus, by Lemma 2.2, to finish the proof of Theorem 1.1, it suffices to verify (2.7) for the

kernel function Ω, which satisfies ‖Ω‖∞ ≤ 2ιn‖Ω‖1 in each Tj(B
η,s
j−n).

In the following, we need to give a partition of unity on the unit surface Sd−1. Fix n ≥
100. Let Θn = {env}v be a collection of unit vectors on Sd−1 which satisfies the following two

conditions:

(a) |env − env′ | ≥ 2−nγ−4, if v 6= v′;

(b) If θ ∈ Sd−1, there exists a env such that |env − θ| ≤ 2−nγ−4.

The constant 0 < γ < 1 in (a) and (b) will be chosen later. To do this, we may simply take a

maximal collection {env}v for which (a) holds. Notice that there are C2nγ(d−1) elements in the

collection {env}v. For every θ ∈ Sd−1, there only exists finite env such that |env −θ| ≤ 2−nγ−4. Now

we can construct an associated partition of unity on the unit surface Sd−1. Let ζ be a smooth,

nonnegative, radial function with ζ(u) = 1 for |u| ≤ 1
2 and ζ = 0 for |u| > 1. Set

Γ̃nv (ξ) = ζ
(

2nγ(
ξ

|ξ|
− env )

)
and define

Γnv (ξ) = Γ̃nv (ξ)
(∑

v

Γ̃nv (ξ)
)−1

.
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Then it is easy to see that Γnv is homogeneous of degree 0 with∑
v

Γnv (ξ) = 1, for all ξ 6= 0 and all n.

Now we define operator Tn,vj by

(2.8) Tn,vj (h)(x) = p.v.

∫
Rd

Ω(x− y)

|x− y|d
φj(x− y)Γnv (x− y) · h(y)dy.

For convenience, define the kernel of Tn,vj as Kn,v
j (x) = Ω(x)

|x|d φj(x)Γnv (x). Therefore, for fixed

n ≥ 100 we have

Tj =
∑
v

Tn,vj .

In the sequel, we need to separate the phase of the kernel into different direction. Hence we

define a multiple operator by

Ĝn,vh(ξ) = Φ(2nγ〈env , ξ/|ξ|〉)ĥ(ξ),

where h is a Schwartz function and Φ is a smooth, nonnegative, radial function such that

0 ≤ Φ(x) ≤ 1 and Φ(x) = 1 on |x| ≤ 2, Φ(x) = 0 on |x| > 4. Now we can split Tn,vj into two

parts:

Tn,vj = Gn,vT
n,v
j + (I −Gn,v)Tn,vj .

The following lemma gives the L2 estimate involving Gn,vT
n,v
j , which will be proved in next

section.

Lemma 2.3. For n ≥ 100, ‖Ω‖∞ ≤ 2ιn‖Ω‖1 with 0 < ι < γ/2, there exists a constant C such

that ∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
v

∑
j

Gn,vT
n,v
j (Bη,s

j−n)(x)dηds
∥∥∥2

2
≤ C2−nγ+2nιλ‖f‖1,

where constant C is independent of n, λ and f .

The terms involving (I − Gn,v)T
n,v
j are more complicated. In Section 4, we shall prove

following lemma.

Lemma 2.4. For ‖Ω‖∞ ≤ 2ιn‖Ω‖1 in Tn,vj , then

∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
n≥100

∑
v

∑
j

(I −Gn,v)Tn,vj (Bη,s
j−n)(x)dηds

∥∥∥
1
≤ C‖f‖1

where C is independent of λ and f .
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2.4. Proof of part (b) in Theorem 1.1.

We now complete the proof of (2.7) with ‖Ω‖∞ ≤ 2ιn‖Ω‖1 in each Tj . By Chebyshev’s

inequality, we have

m
({
x ∈ (E∗)c :

∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)
∑
j

∑
n≥100

Tnj (Bη,s
j−n)(x)dηds

∣∣∣ > λ

2

})
≤ 16

λ2

∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
n≥100

∑
v

∑
j

Gn,vT
n,v
j (Bη,s

j−n)(x)dηds
∥∥∥2

2

+
4

λ

∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
n≥100

∑
v

∑
j

(I −Gn,v)Tn,vj (Bη,s
j−n)(x)dηds

∥∥∥
1

=: I + II.

Using Lemma 2.4, we can get the desired estimate of II. Notice that we choose 0 < ι < γ
2 . For

I, by Minkowski’s inequality and Lemma 2.3, we have

I ≤ Cλ−2
( ∑
n≥100

∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
v

∑
j

Gn,vT
n,v
j (Bη,s

j−n)dηds
∥∥∥

2

)2

≤ Cλ−2
( ∑
n≥100

(2−nγ+2nιλ‖f‖1)
1
2

)2
≤ Cλ−1‖f‖1.

Combining with Lemma 2.2, we hence complete the proof of part (b) in Theorem 1.1 once

Lemmas 2.2-2.4 hold. �

3. Proofs of Lemmas 2.2 and 2.3

3.1. Proof of Lemma 2.2.

Denote the kernel of operator Tnj,ι by

Kn
j,ι(y) := ΩχDι(

y

|y|
)
φj(y)

|y|d
.

It is easy to see that

∣∣∣∣ ∫
Rd
Kn
j,ι(y)dy

∣∣∣∣ ≤ C ∫
Dι

∫ 2j

2j−2

|Ω(θ)|r−1drdσ(θ) ≤ C
∫
Dι
|Ω(θ)|dσ(θ).
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Therefore by Chebyshev’s inequality, Minkowski’s inequality and the property (iv) in Lemma

2.1, we get

m

({
x ∈ (E∗)c :

∣∣∣∣ ∫∫
[0,1]×Rd

ax,s(η)
∑
n≥100

∑
j∈Z

Tnj,ι(B
η,s
j−n)(x)dηds

∣∣∣∣ > λ

2

})

≤ C

λ

∥∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
n≥100

∑
j∈Z

Tnj,ι(B
η,s
j−n)(x)dηds

∥∥∥∥
1

≤ C

λ

∑
n≥100

∫∫
[0,1]×Rd

|â(η)|
∑
j

‖Bη,s
j−n‖1dηds

∫
Dι
|Ω(θ)|dσ(θ)

≤ C

λ
‖â‖1‖f‖1

∫
Sd−1

card
{
n ∈ N : n ≥ 100, 2ιn ≤ |Ω(θ)|/‖Ω‖1

}
|Ω(θ)|dσ(θ)

≤ C

λ
‖â‖1‖f‖1.

�

3.2. Proof of Lemma 2.3.

We will use some idea from [24] in the proof of Lemma 2.3. As usually, we adopt the TT ∗

method in the L2 estimate. Moreover, we also use some orthogonality argument based on the

following observation of the support of F(Gn,vT
n,v
j ): For a fixed n ≥ 100, one has

(3.1) sup
ξ 6=0

∑
v

|Φ2(2nγ〈env , ξ/|ξ|〉)| ≤ C2nγ(d−2).

In fact, by the homogeneity of Φ, it suffices to take the supremum over the surface Sd−1. For

|ξ| = 1 and ξ ∈ supp Φ(2nγ〈env , ξ/|ξ|〉), denote by ξ⊥ the hyperplane perpendicular to ξ. Thus

(3.2) dist(env , ξ
⊥) ≤ C2−nγ .

Since the mutual distance of env ’s is bounded by 2−nγ−4, there are at most C2nγ(d−2) vectors

satisfy (3.2). We hence get (3.1).

By applying Minkowski’s inequality, Plancherel’s theorem and Cauchy-Schwarz inequality,

we have ∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
v

∑
j

Gn,vT
n,v
j (Bη,s

j−n)(x)dηds
∥∥∥2

2

≤
(∫∫

[0,1]×Rd
|â(η)|

∥∥∥∑
v

Φ(2nγ〈env , ξ/|ξ|〉)F
(∑

j

Tn,vj (Bη,s
j−n)

)
(ξ)
∥∥∥

2
dηds

)2

≤ C2nγ(d−2)
(∫∫

[0,1]×Rd
|â(η)|

∥∥∥∑
v

∣∣∣F(∑
j

Tn,vj (Bη,s
j−n)

)∣∣∣2∥∥∥ 1
2

1
dηds

)2

≤ C2nγ(d−2)
(∫∫

[0,1]×Rd
|â(η)|

(∑
v

∥∥∥∑
j

Tn,vj (Bη,s
j−n)

∥∥∥2

2

) 1
2
dηds

)2
.

(3.3)

Next we will show that for a fixed env , η, s,

(3.4)
∥∥∥∑

j

Tn,vj (Bη,s
j−n)

∥∥∥2

2
≤ C2−2nγ(d−1)+2nιλ‖f‖1.
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Then by card(Θn) ≤ C2nγ(d−1), and apply (3.3) and (3.4) we get∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
v

∑
j

Gn,vT
n,v
j (Bη,s

j−n)dηds
∥∥∥2

2
≤ C2−nγ+2nιλ‖f‖1,

which is just desired bound of Lemma 2.3. Thus, to finish the proof of Lemma 2.3, it is enough

to prove (3.4). By applying ‖Ω‖∞ ≤ 2ιn‖Ω‖1, then

|Tn,vj (Bη,s
j−n)(x)| ≤ C2−jd2ιn‖Ω‖1

∫
Rd
φj(x− y)Γnv (x− y)|Bη,s

j−n(y)|dy

≤ C2ιnHn,v
j ∗ |Bη,s

j−n|(x),

where Hn,v
j (x) := 2−jdχEn,vj (x) and χEn,vj (x) is a characteristic function of the set

En,vj := {x ∈ Rd : |〈x, env 〉| ≤ 2j , |x− 〈x, env 〉env | ≤ 2j−nγ}.

For a fixed env , we write∥∥∥∑
j

Tn,vj (Bη,s
j−n)

∥∥∥2

2
≤ C22ιn

∑
j

∫
Rd
Hn,v
j ∗Hn,v

j ∗ |Bη,s
j−n|(x) · |Bη,s

j−n(x)|dx

+ C22ιn
∑
j

j−1∑
i=−∞

∫
Rd
Hn,v
j ∗Hn,v

i ∗ |Bη,s
i−n|(x) · |Bη,s

j−n(x)|dx.
(3.5)

Observe that ‖Hn,v
i ‖1 ≤ C2−idm(En,vi ) ≤ C2−nγ(d−1), therefore for any i ≤ j,

Hn,v
j ∗Hn,v

i (x) ≤ 2−nγ(d−1)2−jdχ
Ẽn,vj

,

where Ẽn,vj = En,vj + En,vj . Hence for a fixed j, n, env and x, we have

Hn,v
j ∗Hn,v

j ∗ |Bη,s
j−n|(x) +

j−1∑
i=−∞

Hn,v
j ∗Hn,v

i ∗ |Bη,s
i−n|(x)

≤ C2−nγ(d−1)2−jd
∑
i≤j

∫
x+Ẽn,vj

|Bη,s
i−n(y)|dy

≤ C2−nγ(d−1)2−jd
∑
i≤j

∑
Q∈Qi−n

Q∩{x+Ẽ
n,v
j
}6=∅

∫
Rd
|bη,sQ (y)|dy

≤ C2−nγ(d−1)2−jd
∑
i≤j

∑
Q∈Qi−n

Q∩{x+Ẽ
n,v
j
}6=∅

λ|Q|

≤ C2−nγ(d−1)2−jd2jd−nγ(d−1)λ

≤ Cλ2−2nγ(d−1),

(3.6)

where in third inequality above, we use
∫
|bη,sQ (y)|dy ≤ Cλ|Q| (see the property (iv) in Lemma

2.1) and in the fourth inequality we use the fact that the cubes in Q are disjoint (see the property
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(i) in Lemma 2.1). By (3.5), (3.6) and
∑
j
‖Bη,s

j−n‖1 ≤ C‖f‖1, we obtain

∥∥∥∑
j

Tn,vj (Bη,s
j−n)

∥∥∥2

2
≤ Cλ2−2nγ(d−1)+2nι

∑
j

‖Bη,s
j−n‖1 ≤ Cλ2−2nγ(d−1)+2nι‖f‖1,

which is just (3.4) and we complete the proof of Lemma 2.3. �

4. Proof of Lemma 2.4

To prove Lemma 2.4, we have to face with some oscillatory integrals which come from the

term (I −Gn,v)Tn,vj .

Before stating the proof of Lemma 2.4, let us give some notations. We introduce a frequency

decomposition. Let ψ be a radial C∞ function such that ψ(ξ) = 1 for |ξ| ≤ 1, ψ(ξ) = 0 for

|ξ| ≥ 2 and 0 ≤ ψ(ξ) ≤ 1 for all ξ ∈ Rd. Define β(ξ) = ψ(ξ) − ψ(2ξ), βk(ξ) = β(2kξ), then βk

is supported in {ξ : 2−k−1 ≤ |ξ| ≤ 2−k+1}. Define the convolution operators Λk with Fourier

multipliers βk. That is, Λ̂kf(ξ) = βk(ξ)f̂(ξ). Then by the construction of βk, we have

I =
∑
k∈Z

Λk

where I is the identity. Write (I − Gn,v)T
n,v
j =

∑
k

(I − Gn,v)ΛkT
n,v
j . By using Minkowski’s

inequality, ∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
n≥100

∑
v

∑
j

(I −Gn,v)Tn,vj (Bη,s
j−n)(x)dηds

∥∥∥
1

≤
∑
n≥100

∑
v

∑
j

∑
k

∑
l(Q)=2j−n

∫∫
[0,1]×Rd

|â(η)| · ‖(I −Gn,v)ΛkTn,vj (bη,sQ )‖1dηds.
(4.1)

Lemma 4.1. There exists N > 0, such that for any N1 ∈ Z+

(4.2) ‖(I −Gn,v)ΛkTn,vj (bη,sQ )‖1 ≤ C2−nγ(d−1)+nι+(−j+k)N1+nγ(N1+2N)‖bη,sQ ‖1,

where C is a constant only dependent of N1.

Proof. Denote hk,n,v(ξ) = (1− Φ(2nγ〈env , ξ/|ξ|〉))βk(ξ). Then

‖(I −Gn,v)ΛkTn,vj (bη,sQ )‖1 ≤ ‖F−1(hk,n,vK̂
n,v
j )‖1‖bη,sQ ‖1.

Write

F−1(hk,n,vK̂
n,v
j )(x) =

1

(2π)d

∫
Rd
eix·ξhk,n,v(ξ)

∫
Rd
e−iξ·ωKn,v

j (ω)dωdξ.

In order to separate the rough kernel, we change to polar coordinates ω = rθ, then the integral

above can be written as

1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

{∫
Rd

∫ ∞
0

ei(〈x−rθ,ξ〉)hk,n,v(ξ) ·
φj(r)

r
drdξ

}
dσ(θ).(4.3)
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Since θ ∈ supp Γnv , then |θ−env | ≤ 2−nγ . By the support of Φ, we see |〈env , ξ/|ξ|〉| ≥ 21−nr. Thus,

(4.4) |〈θ, ξ/|ξ|〉| ≥ |〈env , ξ/|ξ|〉| − |〈env − θ, ξ/|ξ|〉| ≥ 2−nγ .

Notice that φj is supported in [2j−2, 2j ], we can integrate by parts N1 times with r. Hence the

integral (4.3) can be rewritten as

1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

{∫
{2−k−1≤|ξ|≤2−k+1}

∫ 2j

2j−2

ei(〈x−rθ,ξ〉)hk,n,v(ξ)

× (i〈θ, ξ〉)−N1 · ∂N1
r [φj(r)r

−1]drdξ

}
dσ(θ),

since hk,n,v is supported in {2−k−1 ≤ |ξ| ≤ 2−k+1}. Integrating by parts in ξ, the integral in

curly brackets above can be rewritten as

∫
{2−k−1≤|ξ|≤2−k+1}

∫ 2j

2j−2

ei〈x−rθ,ξ〉
(I − 2−2k∆ξ)

N
[
(i〈θ, ξ〉)−N1hk,n,v(ξ)

]
(1 + 2−2k|x− rθ|2)N

· ∂N1
r [φj(r)r

−1]drdξ.

(4.5)

We first give an exploit estimate of the term in (4.5). Note that 2j−2 ≤ r ≤ 2j , we get∣∣∂N1
r [φj(r)r

−1]
∣∣ ≤ C2−j(1+N1).(4.6)

In the following, we claim that

(4.7)
∣∣(I − 2−2k∆ξ)

N [〈θ, ξ〉−N1hk,n,v(ξ)]
∣∣ ≤ C2(nγ+k)N1+2nγN .

In fact, by (4.4), it is easy to see that

|(−i〈θ, ξ〉)−N1 · hk,n,v(ξ)| ≤ C|〈θ, ξ〉|−N1 ≤ C2(nγ+k)N1 .

Using product rule, we get

|∂ξihk,n,v(ξ)| = | − ∂ξi [Φ(2nγ〈env , ξ/|ξ|〉)] · βk(ξ) + ∂ξiβk(ξ) · (1− Φ(2nγ〈env , ξ/|ξ|〉))| ≤ C2nγ+k.

Therefore by induction, we have |∂αξ hk,n,v(ξ)| ≤ C2(nγ+k)|α| for any multi-indices α ∈ Zd+. By

using product rule again and (4.4), we have∣∣∂2
ξk

(〈θ, ξ〉)−N1hk,n,v(ξ))
∣∣ =

∣∣〈θ, ξ〉−N1−2 ·N1(N1 + 1)θ2
k · hk,n,v

+ 2〈θ, ξ〉−N1−1 · (−N1) · θk∂ξkhk,n,v(ξ) + 〈θ, ξ〉−N1∂2
ξk
hk,n,v(ξ)

∣∣
≤ C2(nγ+k)(N1+2).

Hence we conclude that

2−2k
∣∣∆ξ[(〈θ, ξ〉)−N1hk,n,v(ξ)]

∣∣ ≤ C2(nγ+k)N1+2nγ .

Proceeding by induction, we get (4.7). Now we choose N = [d/2] + 1. Since we need to get the

L1 estimate of (4.3), by the support of hk,n,v,∫
{2−k−1≤|ξ|≤2−k+1}

∫ (
1 + 2−2k|x− rθ|2

)−N
dxdξ ≤ C.
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Integrating with r, we get a bound 2j . Note that we suppose that ‖Ω‖∞ ≤ 2nι‖Ω‖1. Next inte-

grating with θ, we get a bound 2−nγ(d−1)+nι‖Ω‖1. Combining (4.6), (4.7) and above estimates,

(4.2) is bounded by

2−j(1+N1)+(nγ+k)N1+2nγN+j−nγ(d−1)+nι‖Ω‖1 ≤ C2−nγ(d−1)+nι2(−j+k)N1+nγ(N1+2N).

Hence we complete the proof of Lemma 4.1 with N = [d/2] + 1. �

Lemma 4.2. There exists N > 0, such that

‖(I −Gn,v)ΛkTn,vj (bη,sQ )‖1 ≤ C2−nγ(d−1)+nι+j−n−k+2nγN‖bη,sQ ‖1.

Proof. The proof of this lemma is similar to that of Lemma 4.1. However we will not integrate

by part with r, but use some cancellation of bη,sQ . Denote hk,n,v(ξ) = (1−Φ(2nγ〈env , ξ/|ξ|〉))βk(ξ).
Then

(4.8)

(I −Gn,v)ΛkTn,vj (bη,sQ )(x) =

∫
Rd

(
F−1(hk,n,vK̂

n,v
j )(x− y)−F−1(hk,n,vK̂

n,v
j )(x− yQ)

)
bη,sQ (y)dy

where yQ is the center of Q. Here we use the cancellation of bη,sQ (see the property (iv)

in Lemma 2.1). By making a change to polar coordinate and integrating by parts with ξ,

F−1(hk,n,vK̂
n,v
j )(x− y) could be rewritten as

1

(2π)d

∫
Sd−1

Ω(θ)Γnv (θ)

{∫
{2−k−1≤|ξ|≤2−k+1}

∫ 2j

2j−2

ei〈x−y−rθ,ξ〉

×
(I − 2−2k∆ξ)

N
[
hk,n,v(ξ)

]
(1 + 2−2k|x− y − rθ|2)N

· φj(r)r−1drdξ

}
dσ(θ).

Here we choose N = [d/2] + 1. Thus (4.8) can be rewritten as two parts: I(x) + II(x), where

I(x) =
1

(2π)d

∫
Rd

∫
Sd−1

Ω(θ)Γnv (θ)

{∫
ξ

∫
r
ei〈x−rθ,ξ〉

(
e−i〈y,ξ〉 − e−i〈yQ,ξ〉

)
×

(I − 2−2k∆ξ)
N
[
hk,n,v(ξ)

]
(1 + 2−2k|x− y − rθ|2)N

φj(r)r
−1drdξ

}
dσ(θ) · bη,sQ (y)dy

and

II(x) =
1

(2π)d

∫
Rd

∫
Sd−1

Ω(θ)Γnv (θ)

{∫
ξ

∫
r
ei〈x−yQ−rθ,ξ〉(I − 2−2k∆ξ)

N
[
hk,n,v(ξ)

]
φj(r)r

−1

×
(

(1 + 2−2k|x− y − rθ|2)−N − (1 + 2−2k|x− yQ − rθ|2)−N
)
drdξ

}
dσ(θ) · bη,sQ (y)dy.

Note that y ∈ Q and yQ is the center of Q, then |y − yQ| ≤ C2j−n. By applying (4.7) with

N1 = 0, we get

(4.9)
∣∣(I − 2−2k∆ξ)

N
(
hk,n,v(ξ)

)∣∣ ≤ C22nγN

Notice that |e−i〈y,ξ〉 − e−i〈yQ,ξ〉| ≤ C2j−n−k. Now integrating with the variables in the or-

der as we do in proving Lemma 4.1, we may obtain that the L1 norm of I(x) is bounded by

2−nγ(d−1)+nι+j−n−k+2nγN‖bη,sQ ‖1.
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For II(x), using the following observation∣∣∣Ψ(y)−Ψ(yQ)
∣∣∣ =

∣∣∣ ∫ 1

0

〈
y − yQ,∇Ψ(ty + (1− t)y0)

〉
dt
∣∣∣

≤ C|y − yQ|
∫ 1

0

N2−2k|x− (ty + (1− t)yQ)− rθ|
(1 + 2−2k|x− (ty + (1− t)yQ)− rθ|2)N+1

dt

where Ψ(y) = (1 + 2−2k|x− y − rθ|2)−N , we may also get the L1 norm of II(x) is bounded by

2−nγ(d−1)+nι+j−n−k+2nγN‖bη,sQ ‖1. Thus we finish the proof of Lemma 4.2 �

4.1. Proof of Lemma 2.4.

Let us come back to the proof of Lemma 2.4. Denote by [x] the integral part of x. Let ε0

satisfy 0 < ε0 < 1 and will be chosen later. By (4.1),∥∥∥∫∫
[0,1]×Rd

ax,s(η)
∑
n≥100

∑
v

∑
j

(I −Gn,v)Tn,vj (Bη,s
j−n)(x)dηds

∥∥∥
1

≤
∑
n≥100

∑
v

∑
j

∑
k<j−[nε0]

∑
l(Q)=2j−n

∫∫
[0,1]×Rd

|â(η)| · ‖(I −Gn,v)ΛkTn,vj (bη,sQ )‖1dηds

+
∑
n≥100

∑
v

∑
j

∑
k≥j−[nε0]

∑
l(Q)=2j−n

∫∫
[0,1]×Rd

|â(η)| · ‖(I −Gn,v)ΛkTn,vj (bη,sQ )‖1dηds

Now using Lemma 4.1 with N = [d/2] + 1 for the first term, Lemma 4.2 with N = [d/2] + 1

for the second term, the fact [nε0] ≤ nε0 < [nε0] + 1, the property (iv) in Lemma 2.1 and

card(Θn) ≤ C2nγ(d−1), the above sum is bounded by∑
n≥100

(2nτ1 + 2nτ2)‖â‖1‖f‖1,

where

τ1 = −ε0N1 + ι+ γ(N1 + 2
(
[d/2] + 1

)
), τ2 = 2γ

(
[d/2] + 1

)
+ ε0 + ι− 1.

Choose 0 < ι� γ � ε0 � 1 and N1 large enough such that

max{τ1, τ2} < 0.

Therefore the sum for n ≥ 100 is convergent and we finish the proof of Lemma 2.4, thus we

prove part (b) in Theorem 1.1. �
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China Mathematics. 2017. DOI: 10.1007/s11425-016-9025-x.

13. Y. Ding and X.D. Lai, Weak type (1,1) bound criterion for singular integral with rough kernel and its appli-

cations, Trans. Amer. Math. Soc. arXiv:1509.03685.

14. C. Fefferman, Recent Progress in Classical Fourier Analysis, Proc. Inter. Con. Math., Vancouver, 1974,

95-118.

15. D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties. Amer. J. Math.

119(1997), no. 4, 799-839.

16. D. Fan and S. Sato,Weak type (1, 1) estimates for Marcinkiewicz integrals with rough kernels. Tohoku Math.

J. 53 (2001), no. 2, 265C284

17. L. Grafakos, Classic Fourier Analysis, Graduate Texts in Mathematics, Vol. 249, Springer, New York, 2014.
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