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Abstract. We study the stability of an oscillatory associative memory network consisting
of N coupled Kuramoto oscillators with applications in binary pattern retrieve. In this
model, the coupling function consists of a Hebbian term and a second-order Fourier term
with nonnegative strength ε. In [Physica D 197 (2004) 134-148] Nishikawa et al. studied
the stability using the approach of linearization; the criteria for stability/instability is given
by the spectrum of linearization which is a matrix of order N . In recent literature [SIAM
J. Appl. Dyn. Syst. 14 (2015) 188-201], Hölzel et al. considered the model with ε = 0
and introduced the orthogonality of binary patterns so that the eigenvalues of linearization
can be calculated. In this paper, we will present conditions for stability/instability based
on the gradient formulation. First, we use the potential estimate to derive a criteria for
stability/instability by the spectrum of a matrix of order N − 1. This potential estimate
also gives convergence rate under some conditions. Second, we focus on the special case
with mutually orthogonal memorized patterns. We find a sufficient and necessary condition
for a binary pattern to be stable for any ε > 0. For any other binary pattern we prove
that there exists a critical value of ε below which it is unstable. A lower bound for this
critical strength is provided. A significant advantage of the results in this case is that the
conditions for stability/instability is easy to verify and the lower bound of ε is easy to
compute. Thirdly, when the memorized patterns are not mutually orthogonal, we suggest
a framework to transform it into the case of orthogonal memorized patterns. Simulations
are presented to illustrate our results.

1. Introduction

General background.- The famous Hopfield model of associative memory [16] provides
basic ideas for the origin of neural computing and has attracted a lot of interest. The
physical significance of Hopfield’s work lies in his proposal of the energy function and his
idea that memories are dynamically stable attractors, naturally bringing concepts and tools
from statistical and nonlinear physics into neuroscience and information sciences as well as
engineering. In this model, neurons in the network are assumed to be discrete values (e.g.
+1 and −1) and a set of patterns is stored such that when a new pattern is presented,
the network responds by producing a stored pattern that most closely resembles the new
pattern. This is the basic mechanism for the binary pattern recognition using an associative
memory network. Such models typically consist of coupled oscillators interacting with each
other according to a Hebbian rule, and the patterns are stored as phase-locked states. The
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network with a coupling matrix determined by Hebbian rule was studied in some literature,
see, for example, [2, 3, 13, 14, 15, 29]. One advantage of the type of this model is that it
can be naturally implemented using oscillatory devices including phase-locked loop circuits
[17], laser oscillators [18], and MEMS resonators [19]. There are also other mechanisms for
pattern recognition problem, for example, the face recognition can be formulated as sparse
representation or sparse signal reconstruction using optimization algorithms [27, 28].

The equation of motion for a network of coupled oscillators can be reduced to a phase
model under fairly moderate conditions. Assuming that interactions are weak and that the
oscillators have stable limit cycles with nearly identical periods, Kuramoto [20] has shown
that the equations of motion for a network of N oscillators can be reduced to equations for
the phase variables ϕ = (ϕ1, ϕ2, . . . , ϕN )T :

ϕ̇i = ωi +
1

N

N∑
j=1

Γij(ϕj − ϕi), i = 1, 2, . . . , N,

where ϕi is the phase angle of an individual oscillator, ωi represents the intrinsic natural
frequency of the i-th oscillator drawn from some given distribution function g = g(ω), N
is the size of the network and Γij(ϕ) is a 2π-periodic function determining the coupling
between oscillators i and j. Many of the previous studies of weakly coupled oscillators
with nearly identical frequencies have focused on the sinusoidal coupling functions, i.e.,
Γij(ϕ) = sinϕ, which gives the classic Kuramoto model [6, 8, 10, 20].

The model and pattern retrieve.- In this paper, we consider a network that can be
used in binary pattern retrieve. More precisely, for a given initial pattern, we want to recog-
nize a binary pattern ξ (ξi = ±1, i = 1, . . . , N) out of memorized patterns {ξ1, ξ2, . . . , ξM}.
Typically, the retrieved pattern should be closest to the initial one among the memorized
patterns. For this aim, we use the coupling function Γij(ϕ) with the Hebbian rule and
second-order Fourier term, namely,

Γij(ϕ) = Cij sinϕ+ ε sin 2ϕ,

where ε is a nonnegative constant and Cij is set to Cij =
∑M

k=1 ξ
k
i ξ
k
j which encodes the

memorized patterns and is an application of the Hebbian rule. We will consider coupled
oscillators with identical frequencies

(1.1) ϕ̇i =
1

N

N∑
j=1

Cij sin(ϕj − ϕi) +
ε

N

N∑
j=1

sin 2(ϕj − ϕi), i = 1, 2, . . . , N.

Here, ε > 0 is the strength of second-order Fourier term, which can be regarded as an
adjustable parameter that influences the stability of equilibriums and leads to rich dynamical
properties.

Let η = (η1, η2, . . . , ηN )T be anN -dimensional vector of 1’s and−1’s representing a binary
pattern. There is a unique (up to constant translation) phase-locked solution corresponding
to the pattern η, which is characterized by

(1.2)
∣∣ϕ∗i − ϕ∗j ∣∣ =

{
0, ηi = ηj ;

π, ηi 6= ηj .

We denote this phase-locked state (up to constant translation) by ϕ∗(η). Thanks to the
global phase shift invariance, for convenience in the following context we will say a binary
pattern η is stable (unstable) if the corresponding phase-locked solution ϕ∗(η) is stable
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(unstable). We notice that for binary patterns, η and −η can be regarded as the same
pattern. In fact, if the memorized pattern ξk is replaced by −ξk, the coupling term Cij does
not change.

The network can be used to identify a binary pattern η (ηi = ±1, i = 1, 2, . . . , N) as one of
a given set of M memorized binary patterns ξk

(
ξki = ±1, i = 1, 2, . . . , N, k = 1, 2, . . . ,M

)
.

The pattern η is regarded as the defective pattern. In [14, 24], the authors introduced the
overlap as follows:

m(η) =

∣∣∣∣ 1

N

N∑
i=1

ηie
√
−1ϕi

∣∣∣∣.
The overlap m(ξk) measures the closeness of the solution to the memorized pattern ξk and
it is a convenient way to check whether a given pattern is currently represented by the
state of the network. Due to the global phase shift invariance in system (1.1), m(η) is
invariant under global rotations. In [14], two-step pattern recognition is as follows: First,
the coupling matrix is chosen as Cij = ηiηj for a defective pattern η. As a result, the
phases ϕi will evolve towards a distribution reflecting this pattern, i.e., the overlap m(η)
will approach 1. Second, after this initialization of the network, the coupling coefficients
are set to Cij =

∑M
k=1 ξ

k
i ξ
k
j , which is an application of the Hebbian rule.If recognition is

successful, the network evolves towards a memorized pattern which is closest to its initial
state. For example, if the initial state is a slightly defective copy of ξ1, the desired final
state of the network would be ξ1 which is encoded by the overlap m(ξ1) = 1.

Other than the above two-step process, the model (1.1) can be also used to recognize
a binary pattern from a non-binary “pattern” (which is typically a gray scale image, as
a defective copy of a binary pattern), in the following way: we transform the non-binary
“pattern” into an initial phase vector typically in [0, π]N which reflect the non-binary pat-
tern, and then the model (1.1) will evolve towards a binary pattern which is close to the
initial state. This is reasonable especially when we are recognizing some standard patterns
such as Arabic numbers and/or letters. This idea will be illustrated in Subsection 5.3 with
a simulation. In this way, we do not need the initialization step and the process looks
simpler. However, it is necessary to do an initialization step in the two-step process, since
the defective pattern here is a binary pattern which is an equilibrium and will stay for ever.

As far as the authors know, there are few analytical results on the associative memory
network of Kuramoto oscillators. Recently, Hölzel et al. [14] considered a Hebbian network
of Kuramoto oscillators described by system (1.1) with ε = 0. The Hebbian term reflects the
set of memorized patterns such that these patterns stand out among other binary patterns.
When memorized patterns are mutually orthogonal, they showed that these patterns have
some stability in some sense by subtly finding out the eigenspecturm of linearization, see
[14]. Precisely, the memorized patterns {ξ1, ξ2, . . . , ξM} are non-isolated equilibriums and
they are part of a single, connected set of degenerate stationary states which comprises all
straight lines connecting any pair of memorized patterns. Despite of this, as indicated in
[25], the memorized patterns of such oscillatory networks are typically unstable.

A way to avoid this undesirable property and enhance the stability of memorized patterns
is to add the second-order Fourier term in (1.1). However, this term will enhance the
stability of all binary patterns, not only the memorized ones. Actually, if ε is sufficiently
large, then all binary patterns become stable (see Remark 3.1). We believe that in binary
pattern retrieve, one expects to recognize a memorized pattern (or related ones) and most
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of others should be unstable. Therefore, to make the memorized patterns stand out among
others, we need to seek a balance between the Hebbian term and second-order Fourier term.
Fortunately, this can be realized by controlling the strength ε of second-order Fourier term,
typically it should be positive but not too large. We acknowledge that the system (1.1) was
invented in earlier literature and some interesting work were performed mainly by numerical
simulations, for example, [9, 24, 25]. Rigorous study can be found in [24], where Nishikawa
et al. performed a linearization stability analysis and criteria for stability of any given
binary pattern is given by assuming the spectrum of the linearization are negative.

Contributions.- In this paper, we will perform rigorous analysis for (1.1) and the main
results are three-fold. First, we use the energy method to obtain a sufficient condition lead-
ing to the stability of binary patterns. This is based on the theory of  Lojasiewicz inequality
for analytic potential, by which we also give a condition under which the convergence is
exponentially fast. Second, we pay special attention to the special case that the memorized
patterns are mutually orthogonal. We show that the memorized orthogonal patterns are
ε-independently stable (stable for any ε > 0, see Definition 4.1). A necessary and sufficient
condition for the ε-independent stability of binary patterns is provided. Surprisingly we find
that there may exist other ε-independently stable patterns except the memorized ones. For
a pattern η which is not ε-independently stable, we prove that there is a critical strength ε∗η
such that η is unstable for ε < ε∗η. A lower bound for the critical strength is given as well.
A notable feature in the study for orthogonal memorized patterns is that the conditions for
stability/instability is easy to verify compared to that in [24]. We also consider the stability
of equilibrium which is the middle state of memorized patterns, which further explains the
advantage to include the second-order Fourier term with ε. Finally, we give a new idea
so that nonorthogonal memorized patterns can be transformed to orthogonal memorized
patterns and the cost is the size of network becomes larger. This new idea is illustrated in
Subsection 5.4 with a simulation.

Organization of paper.- In Section 2, we give some preliminaries for the gradient sys-
tem approach and matrix theory. In Section 3, we present sufficient conditions for stability
of binary patterns and study the convergence rate. In Section 4, we consider the case that
the memorized patterns are mutually orthogonal and discuss how the nonorthogonal bi-
nary patterns can be transformed to orthogonal binary patterns. In Section 5 we provide
numerical examples, and Section 6 is devoted to be a brief summary.

2. Preliminaries

In this section, we first review the coupled Kuramoto oscillators with associative memory
patterns and give the gradient system with analytic potential; then we study some crucial
propositions and lemmas, which will be used in the paper.

We consider the following dynamical equations for the binary pattern recognition:

(2.1) ϕ̇i =
1

N

N∑
j=1

M∑
k=1

ξki ξ
k
j sin(ϕj − ϕi) +

ε

N

N∑
j=1

sin 2(ϕj − ϕi), i = 1, 2, . . . , N.

Let ϕ = (ϕ1, . . . , ϕN ) and

(2.2) f(ϕ) = − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j cos(ϕj − ϕi)−

ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕj − ϕi),
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then f is the potential of (2.1) and (2.1) can be written as

ϕ̇ = −∇f(ϕ).(2.3)

Therefore, the nice theory of gradient system is available for this model. Next we introduce
some related works which will be helpful in this paper. The gradient inequality was first
developed by  Lojasiewicz [23].

Lemma 2.1. [5, 23] Let f : RN → R be a real analytic function.

(1) For any x∗ ∈ RN , there exist a neighborhood N (x∗) of x∗ and some constants
c = c(x∗) > 0 and r = r(x∗) ∈ (0, 12 ] such that

(2.4) |f(x)− f(x∗)|1−r≤ c‖∇f(x)‖, ∀ x ∈ N (x∗).

(2) Let x(·) be a solution of (2.3). If {x(t)}t∈R+ is bounded, then there exists an equilib-
rium x∞ such that x(t)→ x∞. Furthermore, if r = r(x∞) = 1

2 , then ‖x(t)− x∞‖≤
Ce−λ(t−T ) for some C, T, λ > 0. If r = r(x∞) < 1

2 , then ‖x(t)− x∞‖≤ Ct−
r

1−2r for
some C > 0.

The inequality (2.4) is referred as the celebrated  Lojasiewicz’s inequality and the constant
r ∈

(
0, 12
]

is called the  Lojasiewicz exponent of f at x∗. This inequality reveals a funda-
mental relation between the potential and its gradient near the equilibrium, and provides a
powerful tool to derive the convergence of a trajectory towards a single equilibrium. This
approach was applied to the synchronization analysis of Kuramoto model in some recent
literature such as [7, 11, 12, 22]. Based on  Lojasiewicz inequality, Absil et al. [4] gave a
sufficient and necessary condition for the stability of equilibriums of a gradient system.

Lemma 2.2. [4] Let f be real analytic in a neighbourhood of ϕ∗ ∈ Rn. Then, ϕ∗ is a
stable equilibrium of (2.3) if and only if ϕ∗ is a local minimum of f . Furthermore, it is
asymptotically stable if and only if it is a strict local minimum.

The following lemma immediately implies that any solution of system (2.3) converges to
a certain equilibrium point.

Lemma 2.3. [21] Let f : RN → R be real analytic and satisfy f(x+ 2πK) = f(x) for any
K ∈ ZN . Then for any solution x(·) of (2.3), there exists x∗ ∈ Γ := {x∗| ∇f(x∗) = 0} such
that x(t)→ x∗.

The following lemma for eigenvalues of a matrix will be also used.

Lemma 2.4. [26] Let A,B ∈ Mn be Hermitian and let the respective eigenvalues {λi(A +
B)}ni=1,{λi(A)}ni=1 and {λi(B)}ni=1 be arranged in increasing order. Then

λi−j+1(A) + λj(B) ≤ λi(A+B), j = 1, 2, . . . , i,

for each i = 1, 2, . . . , n.

3. The stability of equilibrium: General case

In this section, we first present a framework for stability/instability of equilibrium corre-
sponding to a binary pattern. We also study the  Lojasiewicz exponent of the potential at
these equilibriums which implies exponential convergence.

The tool for deriving stability/instability is to use Lemma 2.2. So we first consider the
potential difference.
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Lemma 3.1. Let η be a binary pattern, and let ϕ∗(η) be the phase-locked solution of (2.1)
satisfying (1.2), then there exists a neighborhood N (ϕ∗) such that for any ϕ ∈ N (ϕ∗),

f(ϕ)− f(ϕ∗) =
1

N

N∑
i=1

N∑
j=1

(Cijηiηj + 2ε) γ2ji −
1

3N

N∑
i=1

N∑
j=1

(Cijηiηj + 8ε) γ4ji

+
1

N

N∑
i=1

N∑
j=1

(
Cijηiηj +

ε

2

)
o
(
γ5ji
)

where γji =
ϕj−ϕi−ϕ∗j+ϕ∗i

2 .

Proof. For any ϕ ∈ N (ϕ∗), we have

ϕj − ϕi = ϕ∗j − ϕ∗i + 2γji.

It follows from (1.2) that

sin(ϕ∗j − ϕ∗i + γji) = ηiηj sin γji, sin(2(ϕ∗j − ϕ∗i ) + 2γji) = sin 2γji.

Then

f(ϕ)− f(ϕ∗)

=

− 1

2N

N∑
i=1

N∑
j=1

Cij cos(ϕj − ϕi)−
ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕj − ϕi)


−

− 1

2N

N∑
i=1

N∑
j=1

Cij cos(ϕ∗j − ϕ∗i )−
ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕ∗j − ϕ∗i )


=

1

2N

N∑
i=1

N∑
j=1

Cij
[
cos(ϕ∗j − ϕ∗i )− cos(ϕj − ϕi)

]
+

ε

4N

N∑
i=1

N∑
j=1

[
cos 2(ϕ∗j − ϕ∗i )− cos 2(ϕj − ϕi)

]
=

1

2N

N∑
i=1

N∑
j=1

Cij

(
−2 sin

ϕ∗j − ϕ∗i + ϕj − ϕi
2

sin
ϕ∗j − ϕ∗i − ϕj + ϕi

2

)

+
ε

4N

N∑
i=1

N∑
j=1

(
−2 sin(ϕ∗j − ϕ∗i + ϕj − ϕi) sin(ϕ∗j − ϕ∗i − ϕj + ϕi)

)
= − 1

N

N∑
i=1

N∑
j=1

Cij sin
2(ϕ∗j − ϕ∗i ) + 2γji

2
sin
−2γji

2

− ε

2N

N∑
i=1

N∑
j=1

sin
(
2
(
ϕ∗j − ϕ∗i

)
+ 2γji

)
sin (−2γji)

=
1

N

N∑
i=1

N∑
j=1

Cij sin(ϕ∗j − ϕ∗i + γji) sin γji +
ε

2N

N∑
i=1

N∑
j=1

sin2 2γji
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=
1

N

N∑
i=1

N∑
j=1

Cijηiηj sin2 γji +
ε

2N

N∑
i=1

N∑
j=1

sin2 2γji

=
1

N

N∑
i=1

N∑
j=1

Cijηiηj

(
γji −

γ3ji
3!

+ o
(
γ4ji
))2

+
ε

2N

N∑
i=1

N∑
j=1

(
2γji −

(2γji)
3

3!
+ o

(
γ4ji
))2

=
1

N

N∑
i=1

N∑
j=1

Cijηiηj

(
γ2ji −

γ4ji
3

+ o
(
γ5ji
))

+
ε

2N

N∑
i=1

N∑
j=1

(
4γ2ji −

16γ4ji
3

+ o
(
γ5ji
))

=
1

N

N∑
i=1

N∑
j=1

(Cijηiηj + 2ε) γ2ji −
1

3N

N∑
i=1

N∑
j=1

(Cijηiηj + 8ε) γ4ji

+
1

N

N∑
i=1

N∑
j=1

(
Cijηiηj +

ε

2

)
o
(
γ5ji
)
.

�

Corollary 3.1. Let ε > M−2
2 , then {ϕ∗(ξk)}Mk=1 are asymptotically stable phase-locked

states of (2.1).

Proof. For any i, j ∈ {1, 2, . . . , N}, k ∈ {1, 2, . . . ,M}, we have

Cijξ
k
i ξ
k
j + 2ε

=
(
ξ1i ξ

1
j + · · ·+ ξk−1i ξk−1j + ξki ξ

k
j + ξk+1

i ξk+1
j + · · ·+ ξMi ξ

M
j

)
ξki ξ

k
j + 2ε

= ξ1i ξ
1
j ξ
k
i ξ
k
j + · · ·+ ξk−1i ξk−1j ξki ξ

k
j + 1 + ξk+1

i ξk+1
j ξki ξ

k
j + · · ·+ ξMi ξ

M
j ξ

k
i ξ
k
j + 2ε

≥ −(M − 1) + 1 + 2ε.

Then the desired result follows from Lemmas 2.2 and 3.1. �

Next, we derive a sufficient condition for stability/instability of binary patterns. We
introduce the following matrices with suitable dimensions:

D :=


∑

j 6=2C2jη2ηj −C23η2η3 −C24η2η4 . . . −C2Nη2ηN
−C23η2η3

∑
j 6=3C3jη3ηj −C34η3η4 . . . −C3Nη3ηN

. . . . . . . . .
. . . . . .

−C2Nη2ηN −C3Nη3ηN −C4Nη4ηN . . .
∑

j 6=N CNjηNηj

 ,

1 := (1, 1, . . . , 1)T, E := 11T, I = diag(1, 1, . . . , 1).

Theorem 3.1. ϕ∗(η) is asymptotically stable equilibrium if λmin(D − 2εE + 2εNI) > 0.
Furthermore, ϕ∗(η) is unstable if λmin(D − 2εE + 2εNI) < 0.

Proof. Since γji = γ1i − γ1j , we have

N∑
i=1

N∑
j=1

(Cijηiηj + 2ε) γ2ji

=
N∑
i=1

N∑
j=1

(Cijηiηj + 2ε) (γ1i − γ1j)2
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=
N∑
i=1

N∑
j=1

Cijηiηjγ
2
1i +

N∑
i=1

N∑
j=1

Cijηiηjγ
2
1j +

N∑
i=1

N∑
j=1

(−2Cijηiηj − 4ε) γ1iγ1j

+ 2ε

 N∑
i=1

N∑
j=1

γ21i +

N∑
i=1

N∑
j=1

γ21j


=2

N∑
i=1

N∑
j=1

Cijηiηjγ
2
1i + 2

N∑
i=1

(− Ciiηiηi − 2ε)γ21i + 2

N∑
i=1

N∑
j=1
i<j

(−2Cijηiηj − 4ε) γ1iγ1j

+ 4εN

N∑
i=1

γ21i

=2

N∑
i=1

 N∑
j=1

Cijηiηj − Ciiηiηi − 2ε+ 2εN

 γ21i + 2

N∑
i=1

N∑
j=1
i<j

(−2Cijηiηj − 4ε) γ1iγ1j

=2

N∑
i=1

 N∑
j=1
j 6=i

Cijηiηj + 2ε (N − 1)

 γ21i + 2

N∑
i=1

N∑
j=1
i<j

(−2Cijηiηj − 4ε) γ1iγ1j

=2ΓT (D − 2εE + 2εNI) Γ,

where Γ :=
(
γ12 γ13 . . . γ1N

)T
. Since λmin(D − 2εE + 2εNI) > 0, we see that D −

2εE + 2εNI is positively definite. On the other hand, Lemma 3.1 tells that

f(ϕ)− f(ϕ∗) =
1

N

N∑
i=1

N∑
j=1

(Cijηiηj + 2ε) γ2ji +
N∑
i=1

N∑
j=1

O
(
γ4ji
)
.

By Lemma 2.2, ϕ∗(η) is asymptotically stable equilibrium point. By similar argument, we
see that ϕ∗(η) is unstable if λmin(D − 2εE + 2εNI) < 0. �

Corollary 3.2. If λmin(D) + 2ε > 0, ϕ∗(η) is asymptotically stable equalibrium of (2.1).

Proof. The eigenvalues of matrix −2εE are

−2ε (N − 1) , 0, 0, . . . , 0︸ ︷︷ ︸
N−2

.

By Lemma 2.4 we have

λmin(D)− 2ε (N − 1) ≤ λmin(D − 2εE).

This implies

λmin(D) + 2ε ≤ λmin(D − 2εE + 2εNI).

We use Theorem 3.1 to obtain the desired result. �

Remark 3.1. By Corollary 3.1 or 3.2, any binary pattern η is asymptotically stable for
(2.1) if ε is sufficiently large.
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We note that in [24], Nishikawa et al. gave a sufficient condition for stability by consider-
ing the Jacobian matrix of order N . In our paper, the sufficient condition is given through
a matrix of order N − 1. Moreover, with the potential approach we can further consider
the  Lojasiewicz exponent which gives the convergence rate. The main result is as follows.

Theorem 3.2. Let η be a binary pattern, and let ϕ∗(η) be the phase-locked solution of (2.1)
satisfying (1.2). If min

1≤i,j≤N
{Cijηiηj + 2ε} > 0, then there exists a positive constant C such

that

|f(ϕ∗)− f(ϕ)|
1
2 ≤ C‖∇f(ϕ)‖∞.

Therefore, the convergence towards such an equilibrium is exponentially fast.

Proof. It is easy to see

cos(ϕ∗j − ϕ∗i + γji) = ηiηj cos γji.

Set

xj := ϕ∗j − ϕj , xM := max
1≤j≤N

{xj}, xm := min
1≤j≤N

{xj}, xji := xj − xi, α := max
1≤i,j≤N

|γji|,

we can easily get

2α = xM − xm,
N∑
j=1

xMj ≥ 2α, 2γji = xi − xj = xij .

Then we have

‖∇f(ϕ)‖∞

= max
1≤i≤N

∣∣∣− 1

N

N∑
j=1

Cij sin(ϕj − ϕi)−
ε

N

N∑
j=1

sin 2(ϕj − ϕi)
∣∣∣

= max
1≤i≤N

∣∣∣ 1

N

N∑
j=1

Cij
(
sin(ϕj − ϕi)− sin(ϕ∗j − ϕ∗i )

)
+

ε

N

N∑
j=1

(
sin 2(ϕj − ϕi)− sin 2(ϕ∗j − ϕ∗i )

) ∣∣∣
= max

1≤i≤N

∣∣∣ 2

N

N∑
j=1

Cij cos
(
ϕ∗j − ϕ∗i + γji

)
sin γji +

2ε

N

N∑
j=1

cos 2γji sin 2γji

∣∣∣
= max

1≤i≤N

∣∣∣ 2

N

N∑
j=1

Cijηiηj cos γji sin γji +
ε

N

N∑
j=1

sin 4γji

∣∣∣
= max

1≤i≤N

∣∣∣ 1

N

N∑
j=1

Cijηiηj sin 2γji +
ε

N

N∑
j=1

sin 4γji

∣∣∣
= max

1≤i≤N

∣∣∣ 1

N

N∑
j=1

Cijηiηj

(
2γji −

(2γji)
3

3!
+

(2γji)
5

5!
+ o

(
γ6ji
))

+
ε

N

N∑
j=1

(
4γji −

(4γji)
3

3!
+

(4γji)
5

5!
+ o

(
γ6ji
)) ∣∣∣
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= max
1≤i≤N

∣∣∣ 2

N

N∑
j=1

(Cijηiηj + 2ε) γji −
4

3N

N∑
j=1

(Cijηiηj + 8ε) γ3ji

+
4

15N

N∑
j=1

(Cijηiηj + 32ε) γ5ji +
1

N

N∑
j=1

(Cijηiηj + ε) o
(
γ6ji
) ∣∣∣.

Therefore,

max
1≤i≤N

∣∣∣ 2

N

N∑
j=1

(Cijηiηj + 2ε) γji

∣∣∣ = max
1≤i≤N

∣∣∣ 1

N

N∑
j=1

(Cijηiηj + 2ε)xij

∣∣∣
≥ 1

N

N∑
j=1

(CMjηMηj + 2ε)xMj

≥
min

1≤i,j≤N
{Cijηiηj + 2ε}

N

N∑
j=1

xMj ,

which implies ‖∇f(ϕ)‖∞≥
2 min
1≤i,j≤N

{Cijηiηj+2ε}

N α. It follows from Lemma 3.1 that we have

|f(ϕ)− f(ϕ∗)|≤ 1

N

N∑
i=1

N∑
j=1

∣∣∣Cijηiηj + 2ε
∣∣∣α2.

As a consequence,

|f(ϕ∗)− f(ϕ)|
1
2 ≤ C‖∇f(ϕ)‖∞.

By Lemma 2.1 (2), the convergence towards such an equilibrium is exponentially fast. �

In the next Proposition, we will construct a “maximum” set of mutually orthogonal
binary patterns in {1,−1}N for special N , which is an example for the above theorem.

Proposition 3.1. Let N = 2n, n ∈ N. There exist N orthogonal binary patterns.

Proof. We construct the orthogonal binary patterns using the idea of induction.
• For n = 1, we construct a set of binary patterns:

ξ1,1 = [1 1], ξ1,2 = [1 − 1].

• For n = 2, we set

ξ2,1 = [ξ1,1 ξ1,1], ξ2,2 = [−ξ1,1 ξ1,1], ξ2,3 = [ξ1,2 ξ1,2], ξ2,4 = [−ξ1,2 ξ1,2].

• Suppose the conclusion is true for n− 1, i.e., there exist 2n−1 orthogonal binary patterns

ξn−1,1, ξn−1,2, . . . , ξn−1,2
n−1

. Then for n, we set

ξn,1 = [ξn−1,1 ξn−1,1], ξn,2 = [−ξn−1,1 ξn−1,1], ξn,3 = [ξn−1,2 ξn−1,2], ξn,4 = [−ξn−1,2 ξn−1,2],

ξn,5 = [ξn−1,3 ξn−1,3], ξn,6 = [−ξn−1,3 ξn−1,3], ξn,7 = [ξn−1,4 ξn−1,4], ξn,8 = [−ξn−1,4 ξn−1,4],

. . . . . . . . . . . .

ξn,2
n−3 = [ξn−1,2

n−1−1 ξn−1,2
n−1−1], ξn,2

n−2 = [−ξn−1,2n−1−1 ξn−1,2
n−1−1],

ξn,2
n−1 = [ξn−1,2

n−1
ξn−1,2

n−1
], ξn,2

n
= [−ξn−1,2n−1

ξn−1,2
n−1

].

We obtain the desired orthogonal binary patterns {ξn,k}Nk=1 in {1,−1}N . �
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Remark 3.2. (1) Proposition 3.1 shows, there exist N orthogonal binary patterns in
{1,−1}N for N = 2n, n ∈ N. Note that in space RN , an orthogonal vector set consists
of at most N vectors. Therefore, this is a “maximum” set of mutually orthogonal binary
patterns in {1,−1}N .

(2) If N = 2n, let us consider the case that the set of memorized patterns consists of
{ξn,k}Nk=1 constructed in Proposition 3.1. Then it is easy to see that

Cij =

N∑
k=1

ξn,ki ξn,kj = 0, ∀i 6= j ∈ {1, . . . , N},

which leads to min
1≤i,j≤N

{Cijηiηj + 2ε} = 2ε > 0 for any ε > 0 and any η ∈ {1,−1}N .

Therefore, Theorem 3.2 is available.
(3) The conditions for stability in Section 3 (see Theorem 3.1) and that in [24] are based

on the spectrum of some matrix. However, to calculate the eigenvalues of a matrix is a
difficult problem if the matrix is large. Therefore, simple conditions for stability that are
easy to verify, are highly desired. In the next section, we will study the special case when
the memorized patterns are mutually orthogonal and derive simple conditions for stability.

4. Orthogonal memorized patterns

In this section, we will consider the system (2.1) with mutually orthogonal memorized
patterns {ξk}Mk=1, i.e., ξk · ξl = 0 for any l 6= k. Simple conditions for stability/instability
of a binary pattern will be derived in Subsection 4.1. Then in Subsection 4.2, we study the
equilibrium property and stability/instability of those states on the straight lines connecting
any pair of memorized patterns. Compared to the studies in Section 3 and [24], an important
feature is that the conditions in this section are simple and easy to verify. In Subsection
4.3 we will demonstrate that a general case with nonorthogonal memorized patterns can be
transformed to the case of orthogonal memorized patterns.

Throughout this section, we will assume the memorized patterns {ξk}Mk=1 are mutually
orthogonal, unless stated otherwise.

4.1. Stability/instability of binary patterns. As we see in Remark 3.1, any binary
pattern can be stable if a large ε is provided. This means the pattern retrieve process may
give any binary pattern and the effect of memorized patterns is suppressed. So, our interest
mainly lies in the case that the parameter ε is temperate. We will show that the phase-
locked states corresponding to memorized patterns are asymptotically stable and isolated
for any ε > 0. Furthermore, we will give a criterion to determine the stability/instability
for any binary pattern.

Given memorized binary patterns {ξk}Mk=1, the Jacobian matrix for linearization of (2.1)
near ϕ∗(η) is

Aη =


−T1 1

NC12η1η2 + 2ε
N

1
NC13η1η3 + 2ε

N . . . 1
NC1Nη1ηN + 2ε

N
1
NC21η2η1 + 2ε

N −T2 1
NC23η2η3 + 2ε

N . . . 1
NC2Nη2ηN + 2ε

N

. . . . . . . . .
. . . . . .

1
NCN1ηNη1 + 2ε

N
1
NCN2ηNη2 + 2ε

N
1
NCN3ηNη3 + 2ε

N . . . −TN

 ,

where Ti =
∑N

j=1,j 6=i(
1
NCijηiηj + 2ε

N ). For convenience we recall some notations:

1 := (1, 1, . . . , 1)T, E := 11T, I = diag(1, 1, . . . , 1).
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Theorem 4.1. For each l ∈ {1, 2, . . . ,M}, ϕ∗(ξl) is an equilibrium of (2.1) with an eigen-
value spectrum of

−1− 2ε, . . . ,−1− 2ε︸ ︷︷ ︸
N−M

,−2ε, . . . ,−2ε︸ ︷︷ ︸
M−1

, 0.

Therefore, ϕ∗(ξl) is asymptotically stable for any ε > 0.

Proof. The matrix Aξl can be rewritten as follows

Aξl = Jξl +
2ε

N
E − 2εI,

where Jξl denotes the Jacobian matrix corresponding to ε = 0, i.e., the part of Aξl without
ε. We recall from [14] that the eigenvalues and eigenvectors of Jξl are given by

JξlX1 = −X1, JξlX2 = −X2, . . . , JξlXN−M = −XN−M ,

JξlX 1l = 0X 1l, JξlX 2l = 0X 2l, . . . , JξlXMl = 0XMl,

where X kl =
(
ξk1ξ

l
1, ξ

k
2ξ
l
2, . . . , ξ

k
Nξ

l
N

)T
, and {X1,X2, . . . ,XN−M} is a basis of the space

[span(X 1l,X 2l, . . . ,XMl)]⊥.

Note that

X ll · X kl = 1 · X kl = ξk · ξl = 0, ∀ k ∈ {1, 2, . . . ,M}\{l},

and

X ll · Xj = 1 · Xj = 0, ∀ j ∈ {1, 2, . . . , N −M},

which implies that EX ll = NX ll and EXj = EX kl = 0 (k 6= l). So we get

AξlX ll = JξlX ll +
2ε

N
EX ll − 2εX ll = 0X ll + 2εX ll − 2εX ll = 0X ll,

AξlXj = JξlXj +
2ε

N
EXj − 2εXj = −Xj − 2εXj = (−1− 2ε)Xj , ∀j ∈ {1, 2, . . . , N −M},

AξlX kl = JξlX kl +
2ε

N
EX kl − 2εX kl = 0X klp− 2εX kl = −2εX kl,∀k ∈ {1, 2, . . . ,M}\{l}.

Therefore, ϕ∗(ξl) is an equilibrium with an eigenvalue spectrum of

−1− 2ε, . . . ,−1− 2ε︸ ︷︷ ︸
N−M

,−2ε, . . . ,−2ε︸ ︷︷ ︸
M−1

, 0.

The eigenvalue 0 is simple and it has an eigenvector 1, which is due to the global phase shift
invariance, i.e, ϕ∗(ξl) + c1 is still an equilibrium. So, ϕ∗(ξl) is asymptotically stable. �

Theorem 4.1 tells that the memorized patterns {ξk}Mk=1 are asymptotically stable for any
ε > 0. This motivates the following definition.

Definition 4.1. An equilibrium of (2.1) is called ε-independently stable if it is stable for
any ε > 0. We say a binary pattern η is ε-independently stable if ϕ∗(η) is ε-independently
stable.
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Next we discuss the stability of other binary patterns. We find that the quality

M∑
k=1

(ξk · η)2

is important for this problem. We first gives a bound for this quality.

Proposition 4.1. Let η ∈ {1,−1}N be a binary pattern, then we have
∑M

k=1(ξ
k ·η)2 ≤ N2.

Proof. In space RN , the set of orthogonal vectors {ξk}Mk=1 can be extended to an orthogonal

basis {ξ1, ξ2, . . . , ξM , ξM+1, . . . , ξN} satisfying ξl · ξl = N, l ∈ {1, 2, . . . , N}. (For l ∈
{M + 1, . . . , N}, the component of ξl is not necessarily 1 or −1.) Note that η is a linear
combination of the basis, say

η = a1ξ
1 + a2ξ

2 + · · ·+ aNξ
N .

Then we obtain

ξk · η =
N∑
l=1

al(ξ
k · ξl) = akξ

k · ξk = akN, k = 1, 2, . . . ,M,

η · η =

N∑
l=1

a2l ξ
l · ξl = N

N∑
l=1

a2l .

Since η · η = N , we have
∑M

k=1(ξ
k · η)2 = N2

∑M
k=1 a

2
k and

∑N
l=1 a

2
l = 1. Hence,

M∑
k=1

(ξk · η)2 = N2
M∑
k=1

a2k ≤ N2
N∑
k=1

a2k = N2.

�

Lemma 4.1. Let η ∈ {1,−1}N be a binary pattern. If
∑M

k=1(ξ
k · η)2 < N2, then the

equilibrium ϕ∗(η) is unstable for any ε ∈ (0, εη), where εη is given by

(4.1) εη = max
l∈{1,2,...,M}

N2 −
∑M

k=1(ξ
k · η)2

2(N2 − (ξl · η)2)
.

Proof. For any l ∈ {1, 2, . . . ,M}, we let y = (ξl1η1, ξ
l
2η2, . . . , ξ

l
NηN )T. Then

yTAηy

=−
N∑
i=1

N∑
j=1,j 6=i

( 1

N
Cijηiηj +

2ε

N

)
ξliηiξ

l
iηi +

N∑
i=1

N∑
j=1,j 6=i

( 1

N
Cijηiηj +

2ε

N

)
ξliηiξ

l
jηj

=− 1

N

N∑
i=1

N∑
j=1,j 6=i

Cijηiηj − 2ε(N − 1) +
1

N

N∑
i=1

N∑
j=1,j 6=i

Cijξ
l
iξ
l
j +

2ε

N

N∑
i=1

N∑
j=1,j 6=i

ξliηiξ
l
jηj

=− 1

N

N∑
i=1

N∑
j=1

Cijηiηj +
1

N

N∑
i=1

Ciiηiηi − 2ε(N − 1) +
1

N

N∑
i=1

N∑
j=1

Cijξ
l
iξ
l
j −

1

N

N∑
i=1

Ciiξ
l
iξ
l
i

+
2ε

N

N∑
i=1

N∑
j=1

ξliηiξ
l
jηj −

2ε

N

N∑
i=1

ξliηiξ
l
iηi
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=− 1

N

M∑
k=1

(ξk · η)2 +M − 2ε(N − 1) +
1

N

M∑
k=1

(ξk · ξl)2 −M +
2ε

N
(ξl · η)2 − 2ε

=− 1

N

M∑
k=1

(ξk · η)2 − 2εN +
1

N
(ξl · ξl)2 +

2ε

N
(ξl · η)2

=
N2 −

∑M
k=1(ξ

k · η)2 − 2ε
(
N2 − (ξl · η)2

)
N

.

Here we used
N∑
i=1

N∑
j=1

Cijηiηj =
N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j ηiηj =

M∑
k=1

( N∑
i=1

ξki ηi

)( N∑
j=1

ξkj ηj

)
=

M∑
k=1

(ξk · η)2.

If
∑M

k=1(ξ
k · η)2 < N2, we denote ε∗l :=

N2−
∑M

k=1(ξ
k·η)2

2(N2−(ξl·η)2) > 0. Then for any ε ∈ (0, ε∗l ) we

have yTAηy > 0. By the minimax principle for eigenvalues [26], we find that Aη has a
positive eigenvalue. Note that εη := maxl∈{1,2,...,M} ε

∗
l , therefore, ϕ∗(η) is unstable for any

ε ∈ (0, εη). �

According to Remark 3.1, any binary pattern η becomes stable if ε is sufficiently large.
The following lemma tells that the ε leading to stability of η is a continuum.

Lemma 4.2. Let η ∈ {1,−1}N be a binary pattern and ε2 > ε1 > 0. If ϕ∗(η) is stable for
(2.1) with ε1, then ϕ∗(η) is stable for (2.1) with ε2.

Proof. For convenience, we denote the energy function in (2.2) by fε(ϕ), i.e.,

fε(ϕ) = − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j cos(ϕj − ϕi)−

ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕj − ϕi).

It follows from Lemma 2.2, we have

fε1(ϕ)− fε1(ϕ∗(η)) ≥ 0, ∀ϕ ∈ N (ϕ∗(η)).

For any ε2 > ε1, we can get by Lemma 3.1

fε2(ϕ)− fε2(ϕ∗(η)) ≥ fε1(ϕ)− fε1(ϕ∗(η)).

We apply Lemma 2.2 again to see that ϕ∗(η) is stable for (2.1) with ε2. �

Proposition 4.2. For any η ∈ {−1, 1}N and δ = (δ1, δ2, . . . , δN )T ∈ RN , we have

M∑
k=1

[
(ξk · (η ◦ cos δ))2 + (ξk · (η ◦ sin δ))2

]
≤ N2,

where η ◦ cos δ = (η1 cos δ1, η2 cos δ2, . . . , ηN cos δN )T and η ◦ sin δ is similar.

Proof. We prove this estimate by a similar way as in Proposition 4.1. The orthogonal
vectors {ξk}Mk=1 can be extended to an orthogonal basis in RN

ξ1, ξ2, . . . , ξM , ξM+1, . . . , ξN

satisfying ξl · ξl = N, l ∈ {1, 2, . . . , N}. Suppose η ◦ cos δ and η ◦ sin δ are expressed as

η ◦ cos δ = b1ξ
1 + b2ξ

2 + · · ·+ bNξ
N ,



KURAMOTO OSCILLATORS FOR BINARY PATTERN RETRIEVE 15

η ◦ sin δ = c1ξ
1 + c2ξ

2 + · · ·+ cNξ
N .

Then we have

ξk · (η ◦ cos δ) =

N∑
l=1

bl(ξ
k · ξl) = bkξ

k · ξk = bkN, k = 1, 2, . . . ,M,

ξk · (η ◦ sin δ) =

N∑
l=1

cl(ξ
k · ξl) = ckξ

k · ξk = ckN, k = 1, 2, . . . ,M,

‖η ◦ cos δ‖22= (η ◦ cos δ) · (η ◦ cos δ) =
N∑
l=1

b2l ξ
l · ξl = N

N∑
l=1

b2l ,

‖η ◦ sin δ‖22= (η ◦ sin δ) · (η ◦ sin δ) = p

N∑
l=1

c2l ξ
l · ξl = N

N∑
l=1

c2l .

Note that

‖η ◦ cos δ‖22+‖η ◦ sin δ‖22=
N∑
j=1

(ηj cos δj)
2 +

N∑
j=1

(ηj sin δj)
2 =

N∑
j=1

(cos2 δj + sin2 δj) = N,

we obtain N
∑N

l=1 b
2
l +N

∑N
l=1 c

2
l = N , i.e.,

∑N
l=1(b

2
l + c2l ) = 1. Hence,

M∑
k=1

[
(ξk · (η ◦ cos δ))2 + (ξk · (η ◦ sin δ))2

]
=

M∑
k=1

(b2kN
2 + c2kN

2) = N2
M∑
k=1

(b2k + c2k)

≤ N2
N∑
l=1

(b2l + c2l ) = N2.

�

Now we can give the main result for the stability of arbitrary binary patterns.

Theorem 4.2. Let η ∈ {1,−1}N be a binary pattern.

(1) If
∑M

k=1(ξ
k · η)2 < N2, then there exists a critical strength ε∗η > 0 such that ϕ∗(η)

is unstable for ε ∈ (0, ε∗η) and ϕ∗(η) is stable for ε ∈ (ε∗η,+∞). Moreover, ε∗η > εη
where εη is given in (4.1).

(2) If
∑M

k=1(ξ
k · η)2 = N2, then η is ε-independently stable, i.e., it is stable for any

ε > 0.

Proof. (1) This assertion follows from Remark 3.1, Lemma 4.1 together with Lemma 4.2.
(2) Suppose

M∑
k=1

(ξk · η)2 = N2.

Then we can calculate the value of the energy function f in (2.2) at ϕ∗(η) (denoted by ϕ∗

with component ϕ∗j ),

f(ϕ∗(η)) = − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j cos(ϕ∗j − ϕ∗i )−

ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕ∗j − ϕ∗i )
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= − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j ηiηj −

ε

4N

N∑
i=1

N∑
j=1

1

= − 1

2N

M∑
k=1

(ξk · η)2 − ε

4N
N2

= − 1

2N
N2 − εN

4

= −N
2
− εN

4
.

For ϕ ∈ N (ϕ∗), we denote

δj = ϕj − ϕ∗j , j = 1, 2, . . . , N.

Then

cos(ϕj − ϕi) = cos(ϕ∗j − ϕ∗i + δj − δi)
= cos(ϕ∗j − ϕ∗i ) cos(δj − δi)− sin(ϕ∗j − ϕ∗i ) sin(δj − δi)
= ηiηj (cos δj cos δi + sin δj sin δi) .

We have

f(ϕ) = − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j cos(ϕj − ϕi)−

ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕj − ϕi)

= − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j ηiηj (cos δj cos δi + sin δj sin δi)−

ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕj − ϕi)

= − 1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j ηiηj cos δj cos δi −

1

2N

N∑
i=1

N∑
j=1

M∑
k=1

ξki ξ
k
j ηiηj sin δj sin δi

− ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕj − ϕi)

= − 1

2N

M∑
k=1

(ξk · (η ◦ cos δ))2 − 1

2N

M∑
k=1

(ξk · (η ◦ sin δ))2 − ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕj − ϕi)

= − 1

2N

M∑
k=1

[
(ξk · (η ◦ cos δ)) + (ξk · (η ◦ sin δ))2

]
− ε

4N

N∑
i=1

N∑
j=1

cos 2(ϕj − ϕi)

≥ − 1

2N
N2 − ε

4N
N2 = f(ϕ∗(η)).

Here we used Proposition 4.2 and cos 2(ϕj − ϕi) ≤ 1. By Lemma 2.2, ϕ∗(η) is stable. �

Remark 4.1. Theorem 4.2 tells that the binary patterns can be classified into two types:
ε-independently stable or not. A question naturally arises: if there is any ε-independently
stable binary pattern other than the memorized patterns ? We will give an example in
Subsection 5.1 which shows that there can be some “extra” ε-independently stable binary
pattern other than the memorized ones.
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Let P{−1, 1}N denote the power set of {−1, 1}N . We define a mappingGN : P{−1, 1}N →
P{1,−1}N which carries a set of memorized binary patterns to the corresponding set of
ε-independently stable binary patterns. Therefore, for a set of mutually orthogonal binary
patterns {ξ1, . . . , ξM}, we have

GN
(
{ξ1, . . . , ξM}

)
=

{
η ∈ {1,−1}N

∣∣∣ M∑
k=1

(ξk · η)2 = N2

}
.

In the following context, we regard the patterns η and −η as the same one. Next we study
the monotonicity of this mapping and begin with the following proposition.

Proposition 4.3. Let η ∈ {1,−1}N be a binary pattern. Then
∑M

k=1(ξ
k · η)2 = N2 if and

only if there exists (a1, a2, . . . , aM ) ∈ RM such that η =
∑M

k=1 akξ
k.

Proof. (Necessity) Let η be a binary pattern satisfying
∑M

k=1(ξ
k · η)2 = N2. For the set of

memorized orthogonal patterns {ξk}Mk=1, it can be extended to an orthogonal basis in RN :

ξ1, ξ2, . . . , ξM , ξM+1, . . . , ξN

which satisfy ξl · ξl = N, l ∈ {1, 2, . . . , N}. Then there exists (a1, . . . , aM , aM+1, . . . , aN ) ∈
RN such that

η =
M∑
k=1

akξ
k +

N∑
k=M+1

akξ
k.

According to
∑M

k=1(ξ
k · η)2 = N2 and ξk · η = akN, k = 1, 2, . . . ,M , we see

∑M
k=1 a

2
k = 1.

Note that

N = η · η =
M∑
k=1

a2kN +
N∑

k=M+1

a2kN =

(
M∑
k=1

a2k +
N∑

k=M+1

a2k

)
N,

then we obtain
∑N

k=M+1 a
2
k = 0, i.e., ak = 0, k = M + 1, . . . , N . Consequently, η =∑M

k=1 akξ
k.

(Sufficiency) Let η be a binary pattern satisfying η =
∑M

k=1 akξ
k, ak ∈ R, k = 1, 2, . . . ,M ,

then we have N = η · η =
∑M

k=1 a
2
kN , and so

∑M
k=1 a

2
k = 1. It is easy to see that

∑M
k=1(ξ

k ·
η)2 =

∑M
k=1 a

2
kN

2 = N2. �

Theorem 4.3. Let M1 < M2 and let {ξ1, . . . , ξM1 , . . . , ξM2} be a set of mutually orthogonal
patterns. Then

GN
(
{ξ1, . . . , ξM1}

)
⊂ GN

(
{ξ1, . . . , ξM1 , . . . , ξM2}

)
.

Proof. For any η ∈ GN
(
{ξ1, . . . , ξM1}

)
, by Proposition 4.3 we see that there exists (a1, . . . , aM1)

such that η =
∑M1

k=1 akξ
k. Let ak = 0 for k = M1+1, . . . ,M2, then we have η =

∑M1
k=1 akξ

k =∑M2
k=1 akξ

k. Applying Proposition 4.3 again we obtain η ∈ GN
(
{ξ1, . . . , ξM1 , . . . , ξM2}

)
. �

Theorem 4.4. Let N1 ∈ N and let {ξk}Mk=1 ⊂ RN and {ξ̃k}Mk=1 ⊂ RN+N1 be two sets of
mutually orthogonal binary patterns such that

ξ̃k = [ξk, ξ̂k]

for some ξ̂k ∈ {1,−1}N1. Then∣∣∣GN+N1

(
{ξ̃1, . . . , ξ̃M}

)∣∣∣ ≤ ∣∣∣GN({ξ1, . . . , ξM})∣∣∣ .
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Proof. For any η̃ ∈ GN+N1

(
{ξ̃1, . . . , ξ̃M}

)
, we let η̃ = [η, η̂] with η ∈ {1,−1}N and η̂ ∈

{1,−1}N1 . We define a mapping T : η̃ 7→ η. We prove the desired result by showing that

T is an injection from GN+N1

(
{ξ̃1, . . . , ξ̃M}

)
to GN

(
{ξ1, . . . , ξM}

)
. We first show that

T (η̃) ∈ GN
(
{ξ1, . . . , ξM}

)
. As

∑M
k=1(ξ̃

k · η̃)2 = (N + N1)
2, Proposition 4.3 tells us that

there exists (a1, a2, . . . , aM ) ∈ RM such that η̃ =
∑M

k=1 akξ̃
k. Note that η (ξk, resp.) is the

vector consisting of the first N components of η̃ (ξ̃k, resp.), therefore we have

η =

M∑
k=1

akξ
k.

Applying Proposition 4.3 we obtain T (η̃) = η ∈ GN
(
{ξ1, . . . , ξM}

)
.

Next we show T is an injection. Suppose η̃, ς̃ ∈ GN+N1

(
{ξ̃1, . . . , ξ̃M}

)
satisfy T (η̃) =

T (ς̃). Denote

η̃ = [η, η̂], ς̃ = [ς, ς̂], with η, ς ∈ {−1, 1}N .

By Proposition 4.3, there exist (a1, a2, . . . , aM ) ∈ RM and (b1, b2, . . . , bM ) ∈ RM such that

η̃ =

M∑
k=1

akξ̃
k, ς̃ =

M∑
k=1

bkξ̃
k.

Then we have T (η̃) =
∑M

k=1 akξ
k and T (ς̃) =

∑M
k=1 bkξ

k. Since ξ1, . . . , ξM are linearly
independent, T (η̃) = T (ς̃) implies that ak = bk for k = 1, 2, . . . ,M. This tells that η̃ = ς̃. �

In the following context, a set of binary patterns {ξ̃k}Mk=1 ⊂ RN+N1 constructed by

ξ̃k = [ξk, ξ̂k]

is called a lift of the set of binary patterns {ξk}Mk=1 ⊂ RN . Next we prove that we can
construct a lift to avoid the “extra” ε-independently stable binary pattern.

Theorem 4.5. Let {ξk}Mk=1 ⊂ RN be a set of mutually orthogonal patterns. Then there

exist N1 ∈ N and a lift {ξ̃k}Mk=1 ⊂ RN+N1 such that

GN+N1

(
{ξ̃1, . . . , ξ̃M}

)
= {ξ̃1, . . . , ξ̃M}.

Proof. By choosing suitable N1 we can construct a set of mutually orthogonal patterns
{ξ̂1, . . . , ξ̂M} ⊂ RN1 whose first M components ξ̂kj (j = 1, 2, . . . ,M) satisfy

(4.2) ξ̂kj =

{
1, j 6= k,

− 1, j = k,
(k = 1, 2, . . . ,M − 1), and ξ̂Mj = 1.

Here, (4.2) gives only the first M components of {ξ̂1, . . . , ξ̂M} and the other N1 − M

components should be constructed so that {ξ̂1, . . . , ξ̂M} are mutually orthogonal. (The

existence of such N1 and {ξ̂1, . . . , ξ̂M} is justified in Subsection 4.3.) We claim that any

binary pattern in GN1

(
{ξ̂1, . . . , ξ̂M}

)
must coincide with a pattern in {ξ̂1, . . . , ξ̂M}. Let
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η̂ ∈ GN1

(
{ξ̂1, . . . , ξ̂M}

)
, by Proposition 4.3 there exists (a1, . . . , aM ) ∈ RM such that

η̂ =
∑M

k=1 akξ̂
k. Then we have

∑M
k=1 a

2
k = 1 and each component of η̂ is −1 or 1, that is,

(4.3)
∣∣∣a1ξ̂1j + a2ξ̂

2
j + · · ·+ aM ξ̂

M
j

∣∣∣ = 1, ∀j ∈ {1, 2, . . . , N1}.

Substituting (4.2) into the first M equations of (4.3), we obtain

(4.4)



|−a1 + a2 + a3 + · · ·+ aM−1 + aM | = 1,

|a1 − a2 + a3 + · · ·+ aM−1 + aM | = 1,

|a1 + a2 − a3 + · · ·+ aM−1 + aM | = 1,

...

|a1 + a2 + a3 + · · · − aM−1 + aM | = 1,

|a1 + a2 + a3 + · · ·+ aM−1 + aM | = 1.

Now we claim that there exists k0 ∈ {1, 2, . . . ,M} such that a2k0 = 1. Suppose not, we have

a2k 6= 1 for all k ∈ {1, 2, . . . ,M}. We combine the first and last equations in (4.4) to see
a1 = ±1 or 0. In view of a2k 6= 1, we have a1 = 0. Similarly we combine the second and last
equations in (4.4), together with a2k 6= 1 again, to find that a2 = 0. Note that we can repeat
the same argument to obtain a3 = a4 = · · · = aM−1 = 0. Then we recall (4.4) to find finally
that |aM |= 1, which contradicts to a2M 6= 1. Therefore, there exists k0 ∈ {1, 2, . . . ,M} such

that a2k0 = 1. Since
∑M

k=1 a
2
k = 1, we obtain η̂ = ±ξ̂k0 . This proves the claim since we do

not distinguish ξ̂k and −ξ̂k.
We now construct a lift {ξ̃k}Mk=1 of {ξk}Mk=1 by

ξ̃k = [ξk, ξ̂k].

Note that {ξk}Mk=1 and {ξ̂k}Mk=1 are sets of mutually orthogonal binary patterns, then so

does {ξ̃k}Mk=1. By Theorem 4.4, we find that∣∣∣GN+N1

(
{ξ̃1, . . . , ξ̃M}

)∣∣∣ ≤ ∣∣∣GN1

(
{ξ̂1, . . . , ξ̂M}

)∣∣∣ .
Now the claim above tells that GN1

(
{ξ̂1, . . . , ξ̂M}

)
= {ξ̂1, . . . , ξ̂M}. On the other hand, by

Theorem 4.1 we find {ξ̃1, . . . , ξ̃M} ⊂ GN+N1

(
{ξ̃1, . . . , ξ̃M}

)
. Therefore, we have

GN+N1

(
{ξ̃1, . . . , ξ̃M}

)
= {ξ̃1, . . . , ξ̃M}.

�

4.2. Instability of middle states. In [14], Hölzel et al. considered the case ε = 0 and
proved that any point in the straight line connecting ϕ∗(ξk) and ϕ∗(ξl) is an equilibrium.
Under some conditions they also claimed that ϕ∗(ξk) is neutrally stable (see [14, Theorem
2.3]). To simplify the notations, in this subsection we use ϕ∗k to denote ϕ∗(ξk) and use ϕ∗kj
to denote ϕ∗j (ξ

k). For (2.1) with ε = 0, Hölzel et al. proved the following result.

Lemma 4.3. [14] When ε = 0, ϕ∗k are non-isolated and they are part of a single, connected
set of degenerate stationary states which comprises all straight lines connecting any pair
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ϕ∗k, ϕ∗l in phase space defined by

ϕ∗k + u(ϕ∗l − ϕ∗k), ∀u ∈ R.(4.5)

In this subsection, we will study the system (2.1) with ε > 0. Let

ϕu := ϕ∗k + u(ϕ∗l − ϕ∗k),

and we use (ϕu)j to denote the j-th component of ϕu. For two binary patterns ξk and ξl,
we set

J1 := {j ∈ {1, 2, . . . , N} | ξlj = ξl1, ξ
k
j = ξk1},

J2 := {j ∈ {1, 2, . . . , N} | ξlj 6= ξl1, ξ
k
j = ξk1},

J3 := {j ∈ {1, 2, . . . , N} | ξlj = ξl1, ξ
k
j 6= ξk1},

J4 := {j ∈ {1, 2, . . . , N} | ξlj 6= ξl1, ξ
k
j 6= ξk1},

then J1 6= ∅ since 1 ∈ J1. We use |J | to denote the cardinality of a set J , i.e., the number
of elements in J .

Proposition 4.4. The patterns ξk and ξl are orthogonal if and only if |J1|+|J4|= |J2|+|J3|=
N
2 .

Proof. Since ξk and ξl are orthogonal, we see

|J1|+|J2|+|J3|+|J4|= N, and |J1|−|J2|−|J3|+|J4|= 0.

The result immediately follows. �

According to Proposition 4.4, at least one of J2 and J3 is not empty. Without loss of
generality we may assume that J3 is not empty in the following.

Proposition 4.5. ϕu is not an equilibrium if u ∈ (−1
2 , 0) ∪ (0, 12).

Proof. It follows from Lemma 4.3 that for any i = 1, 2, . . . , N ,

1

N

N∑
j=1

M∑
k=1

ξki ξ
k
j sin((ϕu)j − (ϕu)i) = 0.

Therefore, it suffices to show that there exists i0 ∈ {1, 2, . . . , N} such that

(4.6)
N∑
j=1

sin 2((ϕu)j − (ϕu)i0) 6= 0.

Since ∣∣∣ϕ∗kj − ϕ∗ki ∣∣∣ =

{
0, ξkj = ξki ;

π, ξkj 6= ξki ,

According to the global phase shift invariance, we can choose the representations of ϕ∗k:

ϕ∗k =
(

0,
π

2

(
1− ξk1ξk2

)
,
π

2

(
1− ξk1ξk3

)
, . . . ,

π

2

(
1− ξk1ξkN

))
,

and without loss of generality we can make a similar choice for ϕ∗l. We claim that ϕu is
not equilibrium point if u ∈ (−1

2 , 0) ∪ (0, 12). It is easy to see

ϕ∗kj =
π

2

(
1− ξk1ξkj

)
, ϕ∗lj =

π

2

(
1− ξl1ξlj

)
, ∀j = 1, 2, . . . , N.
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This implies 2(ϕ∗kj − ϕ∗ki ) = πξk1 (ξki − ξkj ) = 0 or ±2π, and therefore,

N∑
j=1

sin 2 ((ϕu)j − (ϕu)i)

=
N∑
j=1

sin 2
([
ϕ∗kj + u(ϕ∗lj − ϕ∗kj )

]
−
[
ϕ∗ki + u(ϕ∗li − ϕ∗ki )

])

=

N∑
j=1

sin
[
2u(ϕ∗lj − ϕ∗kj − ϕ∗li + ϕ∗ki )

]
.

(4.7)

Let i0 ∈ J1, we can find

(4.8)


ϕ∗lj − ϕ∗kj = ϕ∗li0 − ϕ

∗k
i0 , ∀j ∈ J1;

ϕ∗lj − ϕ∗kj = (ϕ∗li0 + π)− ϕ∗ki0 = ϕ∗li0 − ϕ
∗k
i0 + π, ∀j ∈ J2;

ϕ∗lj − ϕ∗kj = ϕ∗li0 − (ϕ∗ki0 + π) = ϕ∗li0 − ϕ
∗k
i0 − π, ∀j ∈ J3;

ϕ∗lj − ϕ∗kj = (ϕ∗li0 + π)− (ϕ∗ki0 + π) = ϕ∗li0 − ϕ
∗k
i0 , ∀j ∈ J4.

We substitute (4.8) into (4.7) to find

N∑
j=1

sin 2 ((ϕu)j − (ϕu)i0)

=
N∑
j=1

sin
[
2u(ϕ∗lj − ϕ∗kj − ϕ∗li0 + ϕ∗ki0

]
=
∑
j∈J1

sin 2u0 +
∑
j∈J2

sin 2uπ −
∑
j∈J3

sin 2uπ +
∑
j∈J4

sin 2u0

= (|J2|−|J3|) sin 2uπ.

• Case 1: If |J2|−|J3|6= 0, we obtain

N∑
j=1

sin 2 ((ϕu)j − (ϕu)i0) 6= 0,

in view of u ∈ (−1
2 , 0) ∪ (0, 12). In other words, i0 justifies (4.6).

• Case 2: If |J2|−|J3|= 0, we obtain |J2|= |J3|= N
4 by Proposition 4.4. In this case we need

to find another i
′
0 to justify the desired estimate (4.6). Let i

′
0 ∈ J3, we deduce that

ϕ∗l
i
′
0

− ϕ∗k
i
′
0

= ϕ∗li0 − ϕ
∗k
i0 − π,(4.9)

We substitute (4.8) into (4.7) and use (4.9) to find that for u ∈ (−1
2 , 0) ∪ (0, 12)

N∑
j=1

sin 2
(

(ϕu)j − (ϕu)
i
′
0

)

=

N∑
j=1

sin
[
2u(ϕ∗lj − ϕ∗kj − ϕ∗li′0

+ ϕ∗k
i
′
0

)
]
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=
∑
j∈J1

sin
[
2u
(
ϕ∗li0 − ϕ

∗k
i0 − ϕ

∗l
i
′
0

+ ϕ∗k
i
′
0

)]
+
∑
j∈J2

sin
[
2u
(
ϕ∗li0 − ϕ

∗k
i0 + π − ϕ∗l

i
′
0

+ ϕ∗k
i
′
0

)]
+
∑
j∈J3

sin
[
2u
(
ϕ∗li0 − ϕ

∗k
i0 − π − ϕ

∗l
i
′
0

+ ϕ∗k
i
′
0

)]
+
∑
j∈J4

sin
[
2u
(
ϕ∗li0 − ϕ

∗k
i0 − ϕ

∗l
i
′
0

+ ϕ∗k
i
′
0

)]
=|J1|sin 2uπ + |J2|sin 4uπ + 0 + |J4|sin 2uπ

= sin 2uπ (|J1|+2|J2|cos 2uπ + |J4|)

= sin 2uπ

(
N

2
+
N

2
cos 2uπ

)
=
N

2
sin 2uπ (1 + cos 2uπ) 6= 0.

We now Combine Case 1 and Case 2 to see that ϕu is not an equilibrium if u ∈ (−1
2 , 0)∪

(0, 12). �

Theorem 4.6. ϕu (u ∈ R) is an equilibrium if and only if u = m
2 ,m ∈ Z.

Proof. By Lemma 4.3 again, it suffices to show that for any i ∈ {1, 2, . . . , N} we have

N∑
j=1

sin 2((ϕu)j − (ϕu)i0) = 0.

The proof is divided into three steps.
• Step 1: For any u ∈ R, there exist v ∈ [−1

2 ,
1
2) and z ∈ Z such that u = v + z. We claim

that ϕu is an equilibrium if and only if ϕv is too; this means that we only need to consider
ϕu with u ∈ [−1

2 ,
1
2) instead of u ∈ R. Indeed, we have

sin 2((ϕu)j − (ϕu)i)

= sin 2
([
ϕ∗kj + u(ϕ∗lj − ϕ∗kj )

]
−
[
ϕ∗ki + u(ϕ∗li − ϕ∗ki )

])
= sin 2

([
ϕ∗kj + v(ϕ∗lj − ϕ∗kj ) + z(ϕ∗lj − ϕ∗kj )

]
−
[
ϕ∗ki + v(ϕ∗li − ϕ∗ki ) + z(ϕ∗li − ϕ∗ki )

])
= sin

(
2
[(
ϕ∗kj + v(ϕ∗lj − ϕ∗kj )

)
−
(
ϕ∗ki + v(ϕ∗li − ϕ∗ki )

)]
+ 2z(ϕ∗lj − ϕ∗kj − ϕ∗li + ϕ∗ki )

)
= sin 2((ϕv)j − (ϕv)i).

This implies that ϕu is an equilibrium if and only if ϕv is too.
• Step 2: We show that ϕu is an equilibrium if u ∈ {−1

2 , 0}. For u = 0, it’s obviously true.

If u = −1
2 , we use the relation (1.2), i.e.,∣∣∣ϕ∗pj − ϕ∗pi ∣∣∣ =

{
0, ξpj = ξpi
π, ξpj 6= ξpi

, p = 1, 2, . . . ,M,

to derive

sin 2 ((ϕu)j − (ϕu)i) = sin 2

[(
ϕ∗kj −

1

2

(
ϕ∗lj − ϕ∗kj

))
−
(
ϕ∗ki −

1

2

(
ϕ∗li − ϕ∗ki

))]
= sin

[
3
(
ϕ∗kj − ϕ∗ki

)
−
(
ϕ∗lj − ϕ∗li

)]
= 0,

which shows that ϕu is an equilibrium.
• Step 3: In Proposition 4.5 we proved that ϕu is not an equilibrium if u ∈ [−1

2 ,
1
2)\{−1

2 , 0}.
Combining Steps 1-3 yields the desired results. �
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Next we study the stability of equilibriums ϕu in (4.5) with u = m
2 , m ∈ Z. In order to

classify these equilibriums, we define an equivalence class as follows:

[ϕ] := {ϕ̃| ∃ q = (q1, q2, . . . , qN ) ∈ ZN , such that ϕ̃ = ϕ+ 2πq}.
Proposition 4.6. Given ϕu = ϕ∗k + u(ϕ∗l − ϕ∗k), u = m

2 ,m ∈ Z. We have

(1) if m = 0 (mod 4), then ϕu ∈ [ϕ∗k],
(2) if m = 1 (mod 4), then ϕu ∈ [ϕ 1

2
],

(3) if m = 2 (mod 4), then ϕu ∈ [ϕ∗l],
(4) if m = 3 (mod 4), then ϕu ∈ [ϕ 3

2
].

Furthermore, if ϕu and ϕu′ are taken from the same equivalent class, then ϕu is stable if
and only if ϕu′ is stable.

Proof. The assertions (1)-(4) are obviously true and we omit the proof. The last statement
holds true due to the 2π periodicity of the system. �

If m = 0 (mod 4) or m = 2 (mod 4), ϕu coincides with the stable equilibrium ϕ∗l or ϕ∗k.
For the state ϕu with m = 1 (mod 4) or m = 3 (mod 4), in this context we call a middle state
of ϕ∗l and ϕ∗k. Next, we prove the instability of middle states. Therefore, the existence of
such equilibriums does not matter much in applications.

Theorem 4.7. If the memorized patterns {ξk}Mk=1 are mutually orthogonal, then for any
k, l ∈ {1, 2, . . . ,M} with k 6= l, the equilibriums ϕ 1

2
and ϕ 3

2
are unstable.

Proof. We only show the proof for the instability of ϕ 1
2
, and the proof for ϕ 3

2
is the same.

The linearization matrix J = (Jij) of (2.1) at ϕ 1
2

is given by

Jii = − 1

N

N∑
j=1,j 6=i

Cij cos
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
− 2ε

N

N∑
j=1,j 6=i

cos 2
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
,

Jij =
1

N
Cij cos

(
(ϕ 1

2
)j − (ϕ 1

2
)i

)
+

2ε

N
cos 2

(
(ϕ 1

2
)j − (ϕ 1

2
)i

)
, j 6= i.

We will show JX kl = 2εX kl to see that 2ε is an eigenvalue of J , which implies the desired
result. Note that for p = 1, 2, . . . ,M we have

cos
ϕ∗pj − ϕ

∗p
i

2
=

1

2
ξpj ξ

p
i +

1

2
, sin

ϕ∗pj − ϕ
∗p
i

2
=


1
2ξ
p
j ξ
p
i −

1
2 , ϕ∗pj = ϕ∗pi − π,

−1
2ξ
p
j ξ
p
i + 1

2 , ϕ∗pj = ϕ∗pi + π,

0, ϕ∗pj = ϕ∗pi .

Let

I1 :=

{
(i, j)

∣∣∣ { ϕ∗lj = ϕ∗li − π
ϕ∗kj = ϕ∗ki − π

or

{
ϕ∗lj = ϕ∗li + π

ϕ∗kj = ϕ∗ki + π

}
,

I2 :=

{
(i, j)

∣∣∣ { ϕ∗lj = ϕ∗li + π

ϕ∗kj = ϕ∗ki − π
or

{
ϕ∗lj = ϕ∗li − π
ϕ∗kj = ϕ∗ki + π

}
,

I3 :=
{

(i, j)
∣∣∣ϕ∗lj = ϕ∗li or ϕ∗kj = ϕ∗ki

}
.

Then, for any j 6= i, we obtain

cos
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
= cos

(
ϕ∗lj + ϕ∗kj

2
− ϕ∗li + ϕ∗ki

2

)
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= cos

(
ϕ∗lj − ϕ∗li

2
+
ϕ∗kj − ϕ∗ki

2

)

= cos
ϕ∗lj − ϕ∗li

2
cos

ϕ∗kj − ϕ∗ki
2

− sin
ϕ∗lj − ϕ∗li

2
sin

ϕ∗kj − ϕ∗ki
2

=


(12ξ

l
jξ
l
i + 1

2)(12ξ
k
j ξ
k
i + 1

2)− (12ξ
l
jξ
l
i − 1

2)(12ξ
k
j ξ
k
i − 1

2), (i, j) ∈ I1
(12ξ

l
jξ
l
i + 1

2)(12ξ
k
j ξ
k
i + 1

2)− (−1
2ξ
l
jξ
l
i + 1

2)(12ξ
k
j ξ
k
i − 1

2), (i, j) ∈ I2
(12ξ

l
jξ
l
i + 1

2)(12ξ
k
j ξ
k
i + 1

2), (i, j) ∈ I3

=


1
2ξ
l
jξ
l
i + 1

2ξ
k
j ξ
k
i , (i, j) ∈ I1

1
2ξ
l
jξ
l
iξ
k
j ξ
k
i + 1

2 , (i, j) ∈ I2.
(12ξ

l
jξ
l
i + 1

2)(12ξ
k
j ξ
k
i + 1

2), (i, j) ∈ I3.

This implies

cos
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
ξkj ξ

l
j =


(12ξ

l
jξ
l
i + 1

2ξ
k
j ξ
k
i )ξkj ξ

l
j , (i, j) ∈ I1

(12ξ
l
jξ
l
iξ
k
j ξ
k
i + 1

2)ξkj ξ
l
j , (i, j) ∈ I2

(12ξ
l
jξ
l
i + 1

2)(12ξ
k
j ξ
k
i + 1

2)ξkj ξ
l
j , (i, j) ∈ I3

=


1
2(ξliξ

k
j + ξki ξ

l
j), (i, j) ∈ I1

1
2(ξliξ

k
i + ξkj ξ

l
j), (i, j) ∈ I2

1
4(ξljξ

k
j + ξkj ξ

l
i + ξki ξ

l
j + ξki ξ

l
i), (i, j) ∈ I3

=


(12ξ

l
jξ
l
i + 1

2ξ
k
j ξ
k
i )ξki ξ

l
i, (i, j) ∈ I1

(12ξ
l
jξ
l
iξ
k
j ξ
k
i + 1

2)ξki ξ
l
i, (i, j) ∈ I2

(12ξ
l
jξ
l
i + 1

2)(12ξ
k
j ξ
k
i + 1

2)ξki ξ
l
i, (i, j) ∈ I3p

= cos
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
ξki ξ

l
i,

(4.10)

and

cos 2
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
= 2 cos2

(
(ϕ 1

2
)j − (ϕ 1

2
)i

)
− 1 = ξljξ

l
iξ
k
j ξ
k
i , ∀j 6= i.(4.11)

Therefore, the ith component of JX kl is given by− 1

N

N∑
j=1,j 6=i

Cij cos
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
− 2ε

N

N∑
j=1,j 6=i

cos 2
(

(ϕ 1
2
)j − (ϕ 1

2
)i

) ξki ξli
+

N∑
j=1,j 6=i

[
1

N
Cij cos

(
(ϕ 1

2
)j − (ϕ 1

2
)i

)
+

2ε

N
cos 2

(
(ϕ 1

2
)j − (ϕ 1

2
)i

)]
ξkj ξ

l
j

= − 1

N

N∑
j=1,j 6=i

Cij cos
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
ξki ξ

l
i −

2ε

N

N∑
j=1,j 6=i

cos 2
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
ξki ξ

l
i

+
1

N

N∑
j=1,j 6=i

Cij cos
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
ξkj ξ

l
j +

2ε

N

N∑
j=1,j 6=i

cos 2
(

(ϕ 1
2
)j − (ϕ 1

2
)i

)
ξkj ξ

l
j
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= −2ε

N

N∑
j=1

ξljξ
l
iξ
k
j ξ
k
i ξ
k
i ξ
l
i +

2ε

N

N∑
j=1

ξljξ
l
iξ
k
j ξ
k
i ξ
k
j ξ
l
j

= −2ε

N

N∑
j=1

ξkj ξ
l
j +

2ε

N

N∑
j=1

ξki ξ
l
i

= 2εξki ξ
l
i, ∀i,

where we used (4.10), (4.11) and ξk ·ξl = 0. This is JX kl = 2εX kl. Hence, ϕ 1
2

is unstable. �

Remark 4.2. In this section, we have studied the stability/instability of equilibriums cor-
responding to binary patterns or states in the straight lines connecting a pair of memorized
patterns. However, it is still possible for a non-binary stable equilibriums to emerge (we call
non-binary if it does not correspond to any binary pattern). Therefore, an open question is:
can we avoid the non-binary stable equilibriums by introducing a lift ?

4.3. Nonorthogonality and orthogonality. In this subsection, we discuss the case that
the memorized patterns are not mutually orthogonal.

If the M memorized patterns are mutually orthogonal, Theorem 4.1 tells that each of
the memorized patterns {ξk}Mk=1 is ε-independently stable. Then a question is, whether the
memorized patterns are still ε-independently stable if they are not mutually orthogonal ?
The following example gives a negative answer.

Example 4.1. We set the memorized patterns {ξ1, ξ2, ξ3} as

ξ1 = [1 1 1 − 1 1 − 1 1 − 1], ξ2 = [1 1 − 1 − 1 − 1 1 − 1 − 1],

ξ3 = [1 1 − 1 1 − 1 − 1 − 1 − 1],

and we consider the stability of ξ1 by Theorem 3.1. Calculating the eigenvalues of D −
2εE + 2εNI, we obtain

16ε+ 4, 16ε+ 8, 16ε+ 8, 16ε+ 8, 16ε+ 8,

9ε+

√
196ε2 − 68ε+ 17

2
− 1

2
, 9ε−

√
196ε2 − 68ε+ 17

2
− 1

2
.

There exists a positive ε∗ > 0 such that the last eigenvalue in the above list is negative for
ε ∈ (0, ε∗) and positive for ε > ε∗. Therefore, ϕ∗(ξ1) is unstable if ε ∈ (0, ε∗), and the
memorized pattern ξ1 is not ε-independently stable.

Example 4.1 shows that the general case is indeed different with the ideal case with
orthogonal memorized patterns. This means that the nice theory in this section is not
available when we consider a general case. Next, we will explain that a pattern retrieve
problem with nonorthogonal memorized binary patterns can be transformed into a related
problem with orthogonal memorized binary patterns by introducing a lift.

Let {ξk}Mk=1 ⊂ {1,−1}N1 , N1 ∈ N be a set of binary patterns which are not mutually
orthogonal. The basic idea is as follows: First, we construct a set of mutually orthogonal
patterns {ξ̃k}Mk=1 which is a lift of {ξk}Mk=1 by adding some components for each pattern.

Let us denote the dimension of patterns {ξ̃k} by N2 (N2 > N1). We now use {ξ̃k}Mk=1 as the
memorized patterns to produce a system (2.1) with N2 oscillators for pattern retrieve. For
a defective pattern η with dimension N1, we also lift the dimension to produce a “larger”
defective pattern η̃. After a pattern is retrieved using system (2.1) with memorized patterns
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{ξ̃k}Mk=1 and defective pattern η̃ , we remove the N2−N1 elements to obtain the recognized
pattern. In Subsection 5.4, we will use a simulation to illustrate the above framework.

In the following, we just show that the required lift (with mutually orthogonal binary

patterns) does exist. Let {ξ̃k}Mk=1 ⊂ {1,−1}N2 be a lift of {ξk}Mk=1. For a1a2 . . . aM with
ak ∈ {0, 1}, k ∈ {1, 2, . . . ,M}, we define

J1
a1a2...aM

:=
{
j ∈ {1, 2, . . . , N1}

∣∣∣ ξ̃1j = (−1)a1 ξ̃11 , ξ̃
2
j = (−1)a2 ξ̃21 , . . . , ξ̃

M
j = (−1)aM ξ̃M1

}
,

J2
a1a2...aM

:=
{
j ∈ {N1 + 1, N1 + 2, . . . , N2}

∣∣∣ ξ̃1j = (−1)a1 ξ̃11 , ξ̃
2
j = (−1)a2 ξ̃21 , . . . , ξ̃

M
j = (−1)aM ξ̃M1

}
.

Then we have ∑
a1a2...aM
ai∈{0,1}

|J1
a1a2...aM

|= N1,
∑

a1a2...aM
ai∈{0,1}

|J2
a1a2...aM

|= N2 −N1.

To simplify the notations, in the following context we will omit the subscript “ai ∈ {0, 1}”.

For any k, l ∈ {1, 2, . . . ,M}, by Proposition 4.4 we see that ξ̃k · ξ̃l = 0 holds if and only if∑
a1a2...aM
ak=al=0

(
|J1
a1a2...aM

|+|J2
a1a2...aM

|
)

+
∑

a1a2...aM
ak=al=1

(
|J1
a1a2...aM

|+|J2
a1a2...aM

|
)

=
∑

a1a2...aM
ak=0,al=1

(
|J1
a1a2...aM

|+|J2
a1a2...aM

|
)

+
∑

a1a2...aM
ak=1,al=0

(
|J1
a1a2...aM

|+|J2
a1a2...aM

|
)

=
N2

2
,

that is,
∑

a1a2...aM
ak=al=0

|J2
a1a2...aM

|+
∑

a1a2...aM
ak=al=1

|J2
a1a2...aM

|= N2
2 −

∑
a1a2...aM
ak=al=0

|J1
a1a2...aM

|−
∑

a1a2...aM
ak=al=1

|J1
a1a2...aM

|,∑
a1a2...aM
ak=0,al=1

|J2
a1a2...aM

|+
∑

a1a2...aM
ak=1,al=0

|J2
a1a2...aM

|= N2
2 −

∑
a1a2...aM
ak=0,al=1

|J1
a1a2...aM

|−
∑

a1a2...aM
ak=1,al=0

|J1
a1a2...aM

|.

For each pair (k, l), there are two linear equations as above in which |J2
a1a2...aM

|’s are the

unknowns. So, there are 2C2
M = M(M − 1) linear equations with 2M unknowns. It is

easy to see that taking an appropriate N2, the equations have a solution. So nonorthogonal
binary patterns can be transformed into orthogonal binary patterns.

5. Numerical simulations

5.1. Orthogonal memorized patterns. We consider a network with N = 16 oscillators
and M = 3 memorized orthogonal patterns {ξ1, ξ2, ξ3} with ε = 0.03

ϕ̇i =
1

16

16∑
j=1

3∑
k=1

ξki ξ
k
j sin(ϕj − ϕi) +

0.03

16

16∑
j=1

sin 2(ϕj − ϕi), i = 1, 2, . . . , 16.

The memorized patterns {ξ1, ξ2, ξ3} and the defective pattern η are shown in Figure 1. We
apply the two-step process and after the initialization stage the phase shifts will evolve
towards a distribution reflecting the pattern η. We see from Figure 1 that η is a slightly
defective copy of ξ1, and Figure 2 shows that the final state reflects ξ1 since m1 = 1 and
m2 = m3 = 0, where mk denotes m(ξk). We notice that there is no ε-independently stable
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binary patterns except the memorized patterns {ξ1, ξ2, ξ3} by examining the condition in
Theorem 4.2.

Figure 1. The memorized patterns ξ1, ξ2, ξ3, and the defective pattern η.

Figure 2. η correctly identified ξ1.

Next, we do a simulation with N = 16 oscillators and M = 7 memorized mutually
orthogonal patterns {ξk}7k=1, shown in Figure 1 and Figure 3. We choose ε = 0.03 and
initial data ϕ(0) ∈ [0, π]16

(0.74, 0.25, 3.76, 3.80, 3.24, 0.05, 4.33, 5.94, 5.49, 0.71, 2.23, 1.52, 3.52, 3.85, 1.89, 5.01).

In Figure 4, we can see that ϕ(t) converges to ϕ∗(η̃) and it is easy to verify that this η̃

is ε-independently stable by Theorem 4.2 since
∑7

k=1(ξ
k · η̃)2 = 162. This example shows

that an extra ε-independently stable binary pattern η̃ emerges with the memorized patterns
{ϕ∗(ξk)}7k=1. This gives an answer for the question in Remark 4.1.

Figure 3. Mutually orthogonal patterns ξ4, ξ5, ξ6, ξ7.
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(a) (b)

Figure 4. ϕ(t) converges to ϕ∗(η̃).

ε 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 ... 0.75
number 6 6 6 6 14 14 14 14 110 15776 ... 65536

Table 1. The number of stable binary patterns for different values of ε.
Here, the six stable patterns for small ε are ±ξ1,±ξ2 and ±ξ3.

5.2. Varying ε. In this subsection, we use simulations to examine how the values of ε
influence the dynamics.

First, we consider again the mutually orthogonal memorized patterns {ξ1, ξ2, ξ3} shown
in Figure 1. We examine the stability of binary patterns by computing the eigenvalues
of Jacobian matrix. For given ε, we count the number of binary patterns at which the
Jacobian matrix has (N − 1) negative eigenvalues (0 is an eigenvalue due to global phase
shift invariance). Table 1 shows, as the strength ε increases, the number of (asymptotically)
stable binary patterns is gradually increased. This is consistent with Lemma 4.2. On the
other hand, this means that for different binary patterns η1 and η2, the critical strengths
ε∗η1 and ε∗η2 can be different.

Next, we do simulations to show how the strength ε influences the dynamics. In Figures
5-6, we illustrate the trajectories of ϕ(t) with respect to time t for different ε and different
retrieved patterns ξk. They show that the convergence typically become faster as the
strength ε increase. For the solutions in Figure 6, we make a table for the phase differences
ϕj(t) − ϕ1(t) at t = 100, see Table 2. Note that for different ε, the values ϕ̂1j are equal
or differ by 2π; this means that the solutions converge to the same binary pattern. Then
an interesting future problem is how does the basin of a stable binary pattern changes
according to different choices of ε ?
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(b) ε = 0.35

Figure 5. ϕ(t) converges to ϕ∗(ξ2).
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(b) ε = 0.35

Figure 6. ϕ(t) converges to ϕ∗(ξ3).

ε ϕ̂12 ϕ̂13 ϕ̂14 ϕ̂15 ϕ̂16 ϕ̂17 ϕ̂18 ϕ̂19

0.05 0 3.1416 3.1416 0 0 −3.1416 −3.1416 3.1416
0.35 0 3.1416 3.1416 0 0 −3.1416 −3.1416 3.1416

ε ϕ̂1,10 ϕ̂1,11 ϕ̂1,12 ϕ̂1,13 ϕ̂1,14 ϕ̂1,15 ϕ̂1,16

0.05 -3.1416 0 0 3.1416 3.1416 6.2832 6.2832
0.35 3.1416 0 6.2832 3.1416 3.1416 6.2832 6.2832

Table 2. ϕ̂1j := ϕj(t)− ϕ1(t) at t = 100 for the solutions in Figure 6.

5.3. Recognition with non-binary initial patterns. In this subsection, we do simula-
tions to show how our model (2.1) can be used to recognize a binary pattern (black-white
image) from a given non-binary “pattern” (gray scale image). The idea was briefly intro-
duced in Section 1.
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As a typical image file format, the bitmap image is a grid made of rows and columns
where a specific cell (pixel) is given a value that measures its color. For a typical gray
scale image, the value is called the gray scale which is set in [0, 255]Z (the set of integers in
[0, 255]) where 0 stands for “black” and 255 for “white”. So a gray scale image is a vector
P = (p1, p2, . . . , pN ) in [0, 255]NZ where N is the number of pixels. For each cell we identify
an oscillator so that we can make a system (2.1) with N oscillators, where the memorized
patterns {ξ1, ξ2, . . . , ξM} should be given according to the real situation. In order to use a
gray scale image as an initial data for (2.1), a reasonable way is to perform a transformation
from [0, 255]Z to [0, π], which is equivalent to extend the binary patterns in {−1, 1}N to
non-binary patterns in [−1, 1]N . For this aim we employ two continuous and monotone
maps g and f

[0, 255]Z
g−→ [−1, 1]

f−→ [0, π].

Then we produce an initial phase data ϕ0 ∈ [0, π]N by ϕ0
i = (f ◦ g)(pi).

In our simulation, we use the simple maps

g(x) :=
2

255
x− 1, f(x) :=

π

2
(x+ 1).

For simplicity we take N = 16, and use the orthogonal memorized patterns {ξ1, ξ2, ξ3}
shown in Figure 1 again. Figure 7 gives three non-binary patterns (gray scale images) η1, η2
and η3 where the gray scales are denoted by values in [−1, 1]. We will identify each of them
a memorized pattern by (2.1) and the initial phases are

ϕ0(η1) = (0
200π

255
0 0 π π π π 0 0

125π

255
0 π π π π),

ϕ0(η2) = (0 π 0
15π

255
π 0 π 0

200π

255
π 0 π π 0

15π

255
0),

ϕ0(η3) = (
200π

255
0 π π 0

200π

255
π π π π

170π

255
0 π π 0

183π

255
).

In Figure 8, we see that the three gray scale images have been successfully identified.

Figure 7. Gray images

5.4. Extending nonorthogonal memorized patterns. In this subsection, we give an
example to illustrate that the case of nonorthogonal binary patterns can be transformed to
the case of orthogonal patterns by extending the dimensions, as proposed in Subsection 4.3.

Consider N1 = 63 and M = 3. The memorized nonorthogonal patterns {ξ1, ξ2, ξ3} are
shown in Figure 9 and two defective patterns {ς1, ς2} are given in Figure 10. Notice that
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(a) (b) (c)

Figure 8. ξ1, ξ2, ξ3 are retrieved with defective patterns η1, η2, η3, respectively.

the defective patterns ς1 and ς2 are obtained by wiping the black cells in two rows of the
pattern ξ3.

Next we will use the framework in Subsection 4.3 to retrieve one of the memorized
patterns that is closet to the defective ones. We extend the memorized patterns {ξ1, ξ2, ξ3}
to {ξ̃1, ξ̃2, ξ̃3} shown in Figure 11. Note that the dimension of each pattern is extended

to N2 = 180 and the new patterns {ξ̃1, ξ̃2, ξ̃3} are mutually orthogonal. We now develop

a network with 180 oscillators using {ξ̃1, ξ̃2, ξ̃3} as the memorized patterns. According to

Theorem 4.2, we know that the patterns {ξ̃k}3k=1 are asymptotically stable for any ε > 0.
In order to perform the pattern retrieve with defective patterns {ς1, ς2}, we extend them
to new patterns {ς̃1, ς̃2} with 180 cells, shown in Figure 12. Here we extend the defective
patterns by adding N2−N1 cells and each of these extra cells is given a “gray scale” in [−1, 1]

which is the average of that in the extended memorized patterns {ξ̃1, ξ̃2, ξ̃3}. To retrieve
a binary pattern we are using the recognition process with non-binary initial patterns as
in Subsection 5.3. Figure 13 show that ξ̃3 is retrieved which gives the pattern ξ3 after
removing the extra cells.

Figure 9. Memorized nonorthogonal patterns ξ1, ξ2, ξ3.
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Figure 10. ς1, ς2 differ from ξ3 by two rows, respectively.

Figure 11. Nonorthogonal binary patterns ξ1, ξ2, ξ3 are extended to or-
thogonal modes ξ̃1, ξ̃2, ξ̃3.

Figure 12. ς1, ς2 are extended to ς̃1, ς̃2.

6. Conclusions

In this paper, we study the dynamic properties of oscillators networks for binary pattern
retrieve. We first give sufficient conditions for the stability of binary patterns when the
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(a) (b)

Figure 13. ξ̃3 is retrieved with defective patterns ς̃1 or ς̃2.

memorized patterns are general. Then we focus on the special case that the memorized
patterns are mutually orthogonal. Several results are given for the stability of binary pat-
terns for which a significant advantage is they are simple and easy to verify. Finally, we
give a new idea that the case with nonorthogonal memorized patterns can be transformed
into the case of orthogonal binary patterns by extending the dimension. We also suggest
to use this model to recognize a binary pattern (or a black-white image) from a non-binary
pattern (typically a gray scale image).
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