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1 Introduction

Let Ω be a bounded domain in Rn. In this paper we study the gradient estimates of weak solutions for

the following non-homogeneous quasilinear elliptic equations with measure data:

− div (a(|Du|)Du) = µ in Ω, (1.1)

where µ is a Borel measure with finite mass and a ∈ C1(0,+∞) satisfies the structure assumption

0 6 ia := inf
t>0

ta′(t)

a(t)
6 sup

t>0

ta′(t)

a(t)
=: sa < +∞. (1.2)

Define

g(t) = ta(t) (1.3)

and

G(t) =

∫ t

0

g(τ) dτ =

∫ t

0

τa(τ) dτ for t > 0. (1.4)

Thanks to (1.2) we know that g(t) is strictly increasing and continuous over [0,+∞), and then G(t) is

increasing over [0,+∞) and strictly convex with G(0) = 0.
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It is easy to see that

G(t) = tp and G(t) = tq log(1 + t)

for any p > 2, q > 2 satisfy the condition (1.2). Especially when a(t) = tp−2 (and then G(t) = tp/p),

(1.1) is reduced to the p-Laplacian equation

−div (|Du|p−2Du) = µ for p > 2.

As usual, the solutions of (1.1) are taken in a weak sense.

Definition 1.1. A function u ∈ W 1,G
loc (Ω) is a local weak solution of (1.1) if for any ϕ ∈ C∞0 (Ω) we

have ∫
Ω

a(|Du|)Du ·Dϕdx =

∫
Ω

ϕdµ.

Here W 1,G(Ω) is the Orlicz-Sobolev spaces defined in Definition 2.5.

Elliptic equations of the type considered in (1.1) have been introduced by Lieberman [13], which can

be seen as the natural generalization of the p-Laplace equations. The local boundedness and Hölder

regularity both of solutions and their gradients, Harnack’s inequalities and characterizations of De Giorgi

classes were proved for this class of equations. Cianchi and Maz’ya in their series of papers [9–11] proved

global Lipschitz regularity and obtained a sharp estimate for the decreasing rearrangement of the length

of the gradient for the Dirichlet and Neumann elliptic boundary value problems of

−div (a(|Du|)Du) = f in Ω

with the similar condition (1.2) and weak assumptions on the boundary, where f belongs to some Lorentz

spaces or f ∈ L1(Ω). Furthermore, Yao and Zhou [20] investigated the local Lp-type regularity estimates

of weak solutions for the following quasilinear elliptic equations

div (a(|Du|)Du) = div (a(|f |)f) in Ω.

The elliptic and parabolic problems involving measure data naturally come from many interesting

phenomena in the area of applied mathematics, for instance, the flow pattern of blood in the heart [15],

and state-constrained optimal control problems [7, 8]. For the p-Laplacian type elliptic equation

−div a(x,Du) = µ in Ω,

under certain natural conditions on a and Ω, Phuc in [16] showed that the renormalized solutions satisfy

the bound ∫
Ω

|Du|qw dx 6 C

∫
Ω

M1(µ)
q
p−1w dx

for any q ∈ (0,+∞) and any weight w in the A∞ class, where M1 is the fractional maximal function of

order 1 for µ, defined as

M1(µ)(x) := sup
r>0

r|µ|(Br(x))

|Br(x)|
, x ∈ Rn.

Very recently, Byun and Park in [4] established the global gradient estimates for solutions of the elliptic

equations with linear growth and measure data in the setting of variable exponent spaces. We also refer to

[3,6] for the gradient estimates of more general p(x)-Laplacian type elliptic equations. On the other hand,

Baroni [2], Yao and Zheng [19] proved the pointwise gradient estimates via the linear Riesz potential and

the nonlinear Wolff potential for weak solution of (1.1), respectively.

Motivated by the works mentioned above, the aim of this paper is to establish an interior Calderón-

Zygmund type estimate in the setting of Orlicz spaces for a weak solution u to the problem (1.1). More

precisely, we want to prove that

M1(µ)
1

1+ia ∈ Lφloc(Ω) =⇒ |Du| ∈ Lφloc(Ω),
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where ia is the constant defined in (1.2), provided φ ∈ ∆2∩∇2 (see Definition 2.2). The technical approach

in our proof is based on the comparison L1-estimates with the homogeneous problems, the Vitali-type

covering lemma, boundedness of the Hardy-Littlewood maximal operator in Lφ(Ω) and estimates of the

power decay of the upper level sets of the gradient |Du|.

The main result of this paper is stated as follows.

Theorem 1.2. Let the structure assumption (1.2) be satisfied. If u ∈W 1,G
loc (Ω) is a local weak solution

to (1.1), then for any Young function φ with φ ∈ ∆2 ∩∇2, we have

M1(µ)
1

1+ia ∈ Lφloc(Ω) =⇒ |Du| ∈ Lφloc(Ω),

with the estimate∫
Br

φ(|Du|) dx 6 Cφ

(∫
B4R0

|Du| dx+ 1

)
+ C

∫
B4R0

φ
(
M1(µ)

1
1+ia (x)

)
dx,

where ia is the constant defined in (1.2), 0 < r < R0 with B4R0 ⊂⊂ Ω and C is independent of u and µ.

This paper is organized as follows. In Section 2, we state some preliminary tools and known results

which will be used later. We will finish the proof of Theorem 1.2 in Section 3.

2 Preliminaries

2.1 Orlicz spaces

The theory of Orlicz spaces has been extensively studied in the area of analysis (see [1, 14]) and plays

a crucial role in many fields of mathematics including geometry, probability, stochastic analysis, Fourier

analysis and partial differential equations (see [17]). For the reader’s convenience, we will give some

definitions on the general Orlicz spaces. Denote by Φ the function class that consists of all functions

φ : [0,+∞)→ [0,+∞) which are increasing and convex.

Definition 2.1. A function φ ∈ Φ is said to be a Young function if

lim
t→0+

φ(t)

t
= lim
t→+∞

t

φ(t)
= 0.

Definition 2.2. A Young function φ ∈ Φ is said to satisfy the global ∆2 condition, denoted by φ ∈ ∆2,

if there exists a positive constant M such that for every t > 0,

φ(2t) 6Mφ(t). (2.1)

Moreover, A Young function φ ∈ Φ is said to satisfy the global ∇2 condition, denoted by φ ∈ ∇2, if there

exists a number a > 1 such that for every t > 0,

φ(t) 6
φ(at)

2a
. (2.2)

Example 2.3.

(1) φ1(t) = (1 + t) log(1 + t)− t ∈ ∆2, but φ1(t) /∈ ∇2.

(2) φ2(t) = et − t− 1 ∈ ∇2, but φ2(t) /∈ ∆2.

(3) φ3(t) = tp log(1 + t) ∈ ∆2 ∩∇2, p > 1.

Remark 2.4. In fact, if a function φ satisfies (2.1) and (2.2), then

φ(θ1t) 6 Kθβ1

1 φ(t) and φ(θ2t) 6 2aθβ2

2 φ(t), (2.3)

for every t > 0 and 0 < θ2 6 1 6 θ1 < +∞, where β1 = log2M and β2 = loga2 + 1. These doubling type

conditions ensure that a Young function grows neither too slowly nor too fast.
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Definition 2.5. Assume that φ is a Young function. Then the Orlicz class Kφ(Ω) is the set of all

measurable functions g : Ω→ R satisfying ∫
Ω

φ(|g|) dx < +∞.

The Orlicz space Lφ(Ω) is the linear hull of Kφ(Ω) endowed with the Luxemburg norm

‖g‖Lφ(Ω) = inf

{
k > 0 :

∫
Ω

φ

(
|g(x)|
k

)
dx 6 1

}
.

Furthermore, the Orlicz-Sobolev space W 1,φ(Ω) =
{
g ∈ Lφ(Ω) : ∇g ∈ Lφ(Ω)

}
, endowed with the norm

‖g‖W 1,φ(Ω) = ‖g‖Lφ(Ω) + ‖∇g‖Lφ(Ω).

In this work we need the following lemma. Here the ∆2 ∩∇2 condition is crucial.

Lemma 2.6 ([1]). Let φ be a Young function satisfying φ ∈ ∆2 ∩∇2. Then

(1) Kφ(Ω) = Lφ(Ω).

(2) C∞0 (Ω) is dense in Lφ(Ω).

(3) Lβ1(Ω) ⊂ Lφ(Ω) ⊂ Lβ2(Ω) ⊂ L1(Ω) with β1 > β2 > 1 as in (2.3).

(4) If g ∈ Lφ(RN ), then ∫
RN

φ(|g|) dx =

∫ ∞
0

∣∣{x ∈ RN : |g| > µ
}∣∣ d [φ(µ)] . (2.4)

2.2 Maximal function

We use the Hardy-Littlewood maximal function, which controls the local behavior of a function. For a

locally integrable function f defined on Rn, we define its maximal function M(f)(x) as

M(f)(x) = sup
r>0

∫
−
Br(x)

|f(y)| dy.

If f is not defined outside a bounded domain Ω, then we define

MΩf =M(fχΩ)

for the standard characteristic function χ on Ω.

The basic properties for the Hardy-Littlewood maximal function are the followings.

Lemma 2.7 ([18], Chapter 1). If f ∈ Lp(Rn) with 1 < p 6 +∞, then Mf ∈ Lp(Rn) and

1

C
‖f‖Lp 6 ‖Mf‖Lp 6 C‖f‖Lp .

If f ∈ L1(Rn), then

|{x ∈ Rn : (Mf)(x) > t}| 6 C

t

∫
|f(x)| dx.

Lemma 2.8 ([12], Chapter 1). Let U be a bounded domain in Rn and φ be a Young function with

φ ∈ ∆2 ∩∇2. If f ∈ Lφ(U), then Mf ∈ Lφ(U) and for C = C(n, φ) > 0,

1

C

∫
U

φ(|f |) dx 6
∫
U

φ(Mf) dx 6 C

∫
U

φ(|f |) dx.
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2.3 Technical lemmas

In this paper, we use the following version of the Vitali covering lemma, which will be a crucial ingredient

in obtaining our main result.

Lemma 2.9 ([5], Lemma 2.7). Assume that C and D are measurable sets, C ⊂ D ⊂ B1, and that

there exists an ε > 0 such that |C| < ε|B1| and that for all x ∈ B1 and for all r ∈ (0, 1] with |C∩Br(x)| >
ε|Br(x)| we have Br(x) ∩B1 ⊂ D. Then,

|C| 6 10nε|D|.

We next give the following important results.

Lemma 2.10 ([19], Lemmas 1.3, 1.4). Assume that a(t) satisfies (1.2) and G(t) is defined in (1.4).

Then we have

(1) For any t > 0 we find that

θia 6
a(θt)

a(t)
6 θsa and θ2+ia 6

G(θt)

G(t)
6 θ2+sa for any θ > 1. (2.5)

(2) G(t) ∈ ∆2 ∩∇2.

Lemma 2.11 ([19], Lemma 2.1). Assume that a(t) satisfies (1.2) and G(t) is defined in (1.4). Then

there exists C = C(n, ia, sa) > 0 we have

[ξa(|ξ|)− ηa(|η|)] · (ξ − η) > CG(|ξ − η|) for any ξ, η ∈ Rn.

In particular, we have

a(|ξ|)ξ · ξ > CG(|ξ|) for any ξ ∈ Rn.

Furthermore, we derive comparison L1-estimates for the gradient of the weak solution u to (1.1) in

localized interior regions.

Lemma 2.12. Assume that u ∈W 1,G
loc (Ω) is a local weak solution of (1.1) with B2R ⊂ Ω and (1.2). If

v ∈W 1,G(BR) is the weak solution of{
div (a (|Dv|)Dv) = 0 in BR,

v = u on ∂BR,
(2.6)

then there exists a constant C1 = C1(n, ia, sa) > 1 such that∫
−
BR

|Du−Dv| dx 6 C1

[
|µ|(BR)

Rn−1

] 1
1+ia

.

Proof. Without loss of generality we may as well assume that R = 1 by defining

ũ(x) = R−1u(Rx), ṽ(x) = R−1v(Rx) and µ̃(x) = Rµ(Rx).

For k > 1 we define the following truncation operators

Tk(s) := max{−k,min{k, s}} and Φk(s) := T1(s− Tk(s)), s ∈ R.

Since u and v are weak solutions of (1.1) and (2.6) respectively, then by approximation we have∫
B1

[a (|Du|)Du− a (|Dv|)Dv] ·Dϕdx =

∫
B1

ϕdµ (2.7)

for any ϕ ∈ L∞(B1) ∩W 1,G
0 (B1). We divide into two cases.
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Case 1: |µ|(B1) 6 1.

If 2 + ia > n (recall that u − v ∈ W 1,G
0 (B1) and then u − v ∈ W 1,2+ia

0 (B1)), then from Sobolev’s

inequality we have u − v ∈ L∞(B1). By selecting ϕ = u − v ∈ L∞(B1) ∩W 1,G
0 (B1), from Lemma 2.11

and Sobolev’s inequality we find that∫
B1

|G (Du−Dv)| dx 6 C‖u− v‖L∞(B1)|µ|(B1) 6 C‖Du−Dv‖L2+ia (B1).

Then from (2.5) we have

‖Du−Dv‖2+ia
L2+ia (B1) =

∫
B1

|Du−Dv|2+ia dx

6 C

∫
B1

|G (Du−Dv)|+ 1 dx

6 C‖Du−Dv‖L2+ia (B1) + C,

which implies that

‖Du−Dv‖L2+ia (B1) 6 C and then

∫
B1

|Du−Dv| dx 6 C

by using Hölder’s inequality. Therefore, we may as well assume that 2 + ia 6 n. Then by selecting the

test function ϕ = Tk(u− v) ∈ L∞(B1) ∩W 1,G
0 (B1), from (2.7) and Lemma 2.11 we have∫

Dk

|G (Du−Dv)| dx 6 Ck|µ|(B1) 6 Ck,

where Dk := {x ∈ B1 : |u(x)− v(x)| 6 k}, which implies that∫
Dk

|Du−Dv|2+ia dx 6
∫
Dk

|G (Du−Dv)|+ 1 dx 6 Ck

and then ∫
Dk

|Du−Dv| dx 6 Ck (2.8)

by using Young’s inequality. Moreover, testing (2.7) again with ϕ = Φk(u − v) ∈ L∞(B1) ∩W 1,G
0 (B1)

and using Lemma 2.11, we find that∫
Ck

|G (Du−Dv)| dx 6 C

∫
B1

|µ| dx 6 C,

where Ck := {x ∈ B1 : k < |u(x)− v(x)| 6 k + 1}, which implies that∫
Ck

|Du−Dv|2+ia dx 6
∫
Ck

|G (Du−Dv)|+ 1 dx 6 C. (2.9)

From (2.5), Hölder’s inequality, (2.8), (2.9) and the definition of Ck we find that∫
Ck

|Du−Dv| dx 6 C |Ck|1−
1

2+ia

(∫
Ck

|Du−Dv|2+ia dx

) 1
2+ia

6 C |Ck|1−
1

2+ia 6
C

k
n
n−1 (1− 1

2+ia
)

(∫
Ck

|u− v|
n
n−1 dx

)1− 1
2+ia

,

which implies that∫
B1

|Du−Dv| dx =

∫
Dk0

|Du−Dv| dx+

∞∑
k=k0

∫
Ck

|Du−Dv| dx
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6 Ck0 + C

∞∑
k=k0

1

k
n
n−1 (1− 1

2+ia
)

(∫
Ck

|Du−Dv| dx
) n
n−1 (1− 1

2+ia
)

6 Ck0 + C

[ ∞∑
k=k0

1

k
n(1+ia)
n−1

] 1
2+ia

( ∞∑
k=k0

∫
Ck

|Du−Dv| dx

) n
n−1 (1− 1

2+ia
)

6 Ck0 + C

[ ∞∑
k=k0

1

k
n(1+ia)
n−1

] 1
2+ia (∫

B1

|Du−Dv| dx
) n
n−1 (1− 1

2+ia
)

in view of Sobolev’s inequality. Considering the fact that

n(1 + ia)

n− 1
> 1 and

n

n− 1

(
1− 1

2 + ia

)
6 1

in view of 2 + ia 6 n and then choosing k0 ∈ N large enough such that

C

[ ∞∑
k=k0

1

k
n(1+ia)
n−1

] 1
2+ia

6
1

2
,

we obtain ∫
B1

|Du−Dv| dx 6 C.

Case 2: |µ|(B1) > 1.

Let

ũ(x) = A−1u(x), ṽ(x) = A−1v(x),

and

µ̃(x) = A−1−iaµ(x) and ã (t) = A−iaa(At),

where

A = (|µ|(B1))
1

1+ia > 1. (2.10)

Then it is easy to check that

|µ̃|(B1) = 1.

Moreover, ã (t) satisfies (1.2) and ũ(x) ∈W 1,G
loc (Ω) is a local weak solution of

div (ã (|Dũ|)Dũ) = µ̃

If 2+ ia > n (recall that u−v ∈W 1,G
0 (B1) and then ũ− ṽ ∈W 1,2+ia

0 (B1)), then from Sobolev’s inequality

we have ũ − ṽ ∈ L∞. Moreover, testing (2.7) again with ϕ = ũ − ṽ ∈ L∞(B1) ∩W 1,G
0 (B1), and using

Lemma 2.11 and Sobolev’s inequality, we find that

A−2−ia
∫
B1

|G (Du−Dv)| dx 6 C‖ũ− ṽ‖L∞(B1)|µ̃|(B1)

6 C‖Dũ−Dṽ‖L2+ia (B1). (2.11)

Then from (1.2), (2.5), (2.10) and (2.11) we have

‖Dũ−Dṽ‖2+ia
L2+ia (B1) =

∫
B1

|Dũ−Dṽ|2+ia dx

6 CA−2−ia
∫
B1

|G (Du−Dv)|+ 1 dx
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6 C‖Dũ−Dṽ‖L2+ia (B1) + C,

which implies that

‖Dũ−Dṽ‖L2+ia (B1) 6 C and then

∫
B1

|Dũ−Dṽ| dx 6 C

by using Hölder’s inequality. Therefore, we may as well assume that 2 + ia 6 n. Furthermore, similarly

to Case 1 we find that ∫
B1

|Dũ−Dṽ| dx 6 C,

which finishes our proof.

The following lemma is indeed essentially a little variation of Lemma 5.1 in [13].

Lemma 2.13 ([2], Lemma 4.1). Let v ∈W 1,G(A) be a solution to

div (a(|Dv|)Dv) = 0 on A ⊂ Rn.

Then for every ball BR ≡ BR(x0) ⊂ A the following De Giorgi type estimate holds:

sup
BR/2

|Dv| 6 C

∫
−
BR

|Dv| dx.

3 Proof of the main result

In this section we will finish the proof of Theorem 1.2. Hereafter we set 0 < r < R0 with B4R0 ⊂⊂ Ω.

Lemma 3.1. There is a constant N = N(n, ia, sa) > 0 so that for any ε > 0, there exists a small

δ = δ(ε) > 0 such that if u ∈W 1,G
loc (Ω) is a local weak solution of (1.1) in B6r ⊂ Ω with

Br ∩ {x :M(|Du|)(x) 6 λ} ∩ {x :M1(µ)
1

1+ia (x) 6 δλ} 6= ∅, (3.1)

then we have

|{x ∈ B1 :M(|Du|)(x) > Nλ} ∩Br| < ε|Br|. (3.2)

Proof. From (3.1), there exists a point x0 ∈ Br such that

∫
−
Bρ(x0)

|Du| dx 6 λ and

(
r

∫
−
Bρ(x0)

d|µ|

) 1
1+ia

6 δλ (3.3)

for all ρ > 0.

Since B4r ⊂ B5r(x0), it follows from (3.3) that∫
−
B4r

|Du| dx 6
|B5r(x0)|
|B4r|

· 1

|B5r(x0)|

∫
|B5r(x0)|

|Du| dx

6 2nλ.

Likewise, we also have (
r

∫
−
B4r

d|µ|
) 1

1+ia

6 2nδλ.

Then we are under the hypotheses of Lemma 2.12. This implies that there exists a constant C =

C(n, ia, sa) > 1 such that ∫
−
B4r

|Du−Dv| dx 6 C2nδλ,
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where v ∈W 1,G(B4r) is the weak solution of (2.6) in B4r. If follows from Lemma 2.13 that

‖Dv‖L∞(B2r) 6 C

∫
−
B4r

|Dv| dx

6 C

∫
−
B4r

|Du| dx+ C

∫
−
B4r

|Du−Dv| dx

6 C2n(1 + δ)λ 6 C2n+1λ := N0λ.

Write N = max{3n, 2N0}. We claim that

{x ∈ Br :M(|Du|)(x) > Nλ} ⊂ {x ∈ Br :M(|Du−Dv|)(x) > N0λ}. (3.4)

To show this, we take x1 ∈ {x ∈ Br :M(|Du−Dv|)(x) 6 N0λ}. If 0 < ρ < r, then Bρ(x1) ⊂ B2r, and

so we have ∫
−
Bρ(x1)

|Du| dx 6
∫
−
Bρ(x1)

(|Dv|+ |Du−Dv|) dx

6 2N0λ 6 Nλ.

On the other hand, if ρ > r, then Bρ(x1) ⊂ B3ρ(x0). From (3.3), we find∫
−
Bρ(x1)

|Du| dx 6
|B3ρ(x0)|
|Bρ(x1)|

∫
−
B3ρ(x0)

|Du| dx

6 3nλ 6 Nλ.

Thus (3.4) now follows. Then we estimate

1

|Br|
|{x ∈ Br :MB4r

(|Du|) > Nλ}|

6
1

|Br|
|{x ∈ Br :MB4r

(|Du−Dv|) > N0λ}|

6
C

N0λ

∫
−
B4r

|Du−Dv| dx 6 Cδ 6 ε,

by taking δ such that the last inequality holds.

The contraposition of Lemma 3.1 can be stated as follows.

Lemma 3.2. There is a constant N > 0 such that for any ε > 0, there exists a small δ = δ(ε) > 0 so

that if

|{x :M(|Du|)(x) > Nλ} ∩Br| > ε|Br|,

then we have

Br ⊂ {x :M(|Du|) > λ} ∪ {x :M1(µ)
1

1+ia (x) > δλ}.

Now fix ε, which will be determined later and take the corresponding δ > 0 given by Lemma 3.2 and

set

ε1 = 10nε.

Denote

µ1(t) = |{x ∈ Br :M(|Du|)(x) > t}|,

µ2(t) = |{x ∈ Br :M1(µ)
1

1+ia (x) > t}|

and

λ0 =
2C

N |B1|ε

(∫
B4R0

|Du| dx+ 1

)
. (3.5)
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Let u ∈W 1,G
loc (Ω) be the local weak solution of (1.1). It follows from the weak (1− 1) estimate and (3.5)

that

µ1(Nλ0) = |{x ∈ Br :M(|Du|)(x) > Nλ0}|

6
C

Nλ0

∫
Br

|Du| dx 6
ε|B1|

2
< ε|B1|.

Using Lemma 2.9 and Lemma 3.2, we can get

µ1(N1λ0) 6 ε1[µ1(λ0) + µ2(δλ0)] 6 ε1µ1(λ0) + µ2(δλ0),

where ε1 = 10nε < 1. By induction, we deduce

µ1(Nm+1λ0) 6 εm+1
1 µ1(λ0) +

m∑
i=0

εm−i1 µ2(N iδλ0) (3.6)

for every integer m > 0.

Now we can prove our main result.

Proof of Theorem 1.2. According to the standard arguments of measure theory and Lemma 2.8, we

observe that ∫
Br

φ(|Du|) dx 6
∫
Br

φ(M(|Du|)) dx

=

∫ ∞
0

µ1(λ) d[φ(λ)]

=

∫ λ0

0

µ1(λ) d[φ(λ)] +

∫ ∞
λ0

µ1(λ) d[φ(λ)].

Moreover, we find from (2.3) that∫ λ0

0

µ1(λ) d[φ(λ)] 6 φ(λ0)|Ω| 6 |Ω|φ

[
C

N |B1|ε

(∫
B4R0

|Du| dx+ 1

)]

6 C(ε)φ

(∫
B4R0

|Du| dx+ 1

)

6 C(ε)φ

(∫
B4R0

|Du| dx+ 1

)
.

In a similar way we have∫ ∞
λ0

µ1(λ) d[φ(λ)] =

∞∑
m=0

∫ Nm+1λ0

Nmλ0

µ1(λ) d[φ(λ)]

6
∞∑
m=0

[φ(Nm+1λ0)− φ(Nmλ0)]µ1(Nmλ0)

6
∞∑
m=0

φ(Nm+1λ0)µ1(Nmλ0).

Since

φ(Nλ0)µ1(λ0) 6 |Ω|φ

(
C

ε|B1|

∫
B4R0

|Du| dx+ 1

)

6 C(ε)φ

(∫
B4R0

|Du| dx+ 1

)
,
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we obtain from (3.6) that∫
Br

φ(|Du|) dx 6 Cφ

(∫
B4R0

|Du| dx+ 1

)
+

∞∑
m=1

φ(Nm+1λ0)µ1(Nmλ0)

6 Cφ

(∫
B4R0

|Du| dx+ 1

)
+

∞∑
m=1

φ(Nm+1λ0)εm1 µ1(λ0)

+

∞∑
m=1

φ(Nm+1λ0)

m−1∑
i=0

εm−1−i
1 µ2(N iδλ0)

:= I1 + I2 + I3.

Estimate of I2. Observe that

I2 6 Cφ(λ0)|Ω|
∞∑
m=1

MN (m+1)β1εm1

6 Cφ(λ0)|Ω|MNβ1 ·
∞∑
m=1

(Nβ1ε1)m

6 Cφ

(∫
B4R0

|Du| dx+ 1

)
,

by choosing ε1 small enough satisfying Nβ1ε1 < 1.

Estimate of I3. From (2.3) we have

I3 =

∞∑
m=1

φ(Nm+1λ0)

m−1∑
i=0

εm−1−i
1 µ2(N iδλ0)

6
∞∑
m=1

m−1∑
i=0

MN (m−i+1)β1φ(N iλ0)εm−1−i
1 µ2(N iδλ0)

6
∞∑
i=0

φ(N iλ0)µ2(N iδλ0)

∞∑
m=i+1

MN (m−i+1)β1εm−1−i
1

6 KN2β1

∞∑
i=0

φ(N iλ0)µ2(N iδλ0)

∞∑
m=i+1

(
Nβ1ε1

)m−1−i

6 C

∞∑
i=0

φ(N iλ0)µ2(N iδλ0).

Moreover, we observe that∫
Br

φ
(
M1(µ)

1
1+ia (x)

)
dx =

∫ ∞
0

µ2(λ) d [φ(λ)]

=

∫ δλ0

0

µ2(λ) d [φ(λ)] +

∫ ∞
δλ0

µ2(λ) d [φ(λ)]

> µ2(δλ0)φ(δλ0) +

∞∑
k=0

∫ Nk+1δλ0

Nkδλ0

µ2(λ) d [φ(λ)] .

Choosing N = max{2N0, 3
n, 2a} and using (2.3) again we obtain that∫

Br

φ
(
M1(µ)

1
1+ia (x)

)
dx
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> µ2(δλ0)φ(δλ0) +

∞∑
k=0

µ2(Nk+1δλ0)
[
φ
(
Nk+1δλ0

)
− φ

(
Nkδλ0

)]
> µ2(δλ0)φ(δλ0) +

[
1− 2a/Nβ2

] ∞∑
k=0

µ2(Nk+1δλ0)φ
(
Nk+1δλ0

)
>
δβ1

M
µ2(δλ0)φ(λ0) +

Cδβ1

M

∞∑
k=0

µ2(Nk+1δλ0)φ
(
Nk+1λ0

)
>
Cδβ1

M

∞∑
k=0

µ2(Nkδλ0)φ
(
Nkλ0

)
,

where M is the constant defined in (2.1). Combining the above estimates, we get

I3 6 C

∞∑
i=0

φ(N iλ0)µ2(N iδλ0)

6 C

∫
B4R0

φ
(
M1(µ)

1
1+ia (x)

)
dx.

Therefore, we conclude that∫
Br

φ(|Du|) dx 6 Cφ

(∫
B4R0

|Du| dx+ 1

)
+ C

∫
B4R0

φ
(
M1(µ)

1
1+ia (x)

)
dx.

This finishes the proof.
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8 Casas E, de los Reyes J, Tröltzsch F. Sufficient second-order optimality conditions for semilinear control problems with

pointwise state constraints. SIAM J Optim, 2008, 19: 616–643

9 Cianchi A, Maz’ya V. Global Lipschitz regularity for a class of quasilinear elliptic equations. Comm Partial Differential

Equations, 2011, 36: 100–133

10 Cianchi A, Maz’ya V. Global boundedness of the gradient for a class of nonlinear elliptic systems. Arch Ration Mech

Anal, 2014, 212: 129–177

11 Cianchi A, Maz’ya V. Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems.

J Eur Math Soc, 2014, 16: 571–595

12 Kokilashvili V, Krbec M. Weighted Inequalities in Lorentz and Orlicz Spaces. River Edge, NJ: World Scientific

Publishing Co, Inc, 1991

13 Lieberman G M. The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic

equations. Comm Partial Differential Equations, 1991, 16: 311–361

14 Musielak J. Orlicz Spaces and Modular Spaces. Berlin: Springer-Verlag, 1983



YAO F P et al. Sci China Math 13

15 Peskin C. Numerical analysis of blood flow in the heart. J Comput Phys, 1977, 25: 220–252

16 Phuc N C. Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear

Riccati type equations. Adv Math, 2014, 250: 387–419

17 Rao M, Ren Z. Applications of Orlicz Spaces. New York: Marcel Dekker Inc, 2002

18 Stein E M. Harmonic Analysis. Princeton, NJ: Princeton University Press, 1993

19 Yao F P, Zheng M. Gradient estimates via the Wolff potentials for a class of quasilinear elliptic equations. J Math

Anal Appl, 2017, 452: 926–940

20 Yao F P, Zhou S L. Calderón–Zygmund estimates for a class of quasilinear elliptic equations. J Funct Anal, 2017, 272:

1524–1552


	Introduction
	Preliminaries
	Orlicz spaces
	Maximal function
	Technical lemmas

	Proof of the main result

