WEIGHTED WEAK TYPE (1,1) ESTIMATE FOR THE CHRIST-JOURNE
TYPE COMMUTATOR

YONG DING AND XUDONG LAI

ABSTRACT. Let K be the Calderén-Zygmund convolution kernel on R*(d > 2). Christ and
Journé defined the commutator associated with K and a € L>(R%) by

Tof(z) = p.v. /Rd K(z —y)meya- f(y)dy,

which is an extension of the classical Calderén commutator. In this paper, we show that T, is
weighted weak type (1,1) bounded with A; weight for d > 2.

1. INTRODUCTION

Assume that K is the Calderén-Zygmund convolution kernel on R? \ {0} (d > 2), which

means that K satisfies the following three conditions:

(1.1) K (2)] < Cla| ™,
(1.2) / K(x)dx =0, for all R > 0,
R<|z|<2R
c
(1.3) VK (x)] < T

In 1987, Christ and Journé [2] introduced a higher dimensional commutator associated with
K and a € L*®(R?) by

Tf(@) =p. [ K@= pmaya f)ds, f e SR,
where S(RY) denotes the Schwartz class and

1 1
My yQ = / a((1 —t)z +ty)dt = / a(tz + (1 —t)y)dt.
0 0
Note that T, can be seen as a higher dimensional generalization of the Calderén commutator in
[1]. In fact, when d = 1, let A(z) be a Lipschitz function in R and denote a(z) = A’(z) € L= (R).
By using mean value formula, the Calderén commutator can be written as

Alx) = Aly) fly) , LI A '
p.V./R p— x_ydy—p.v./Rx_y/O (1 + (1 — D)t - F(y)dy.
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Obviously, the right hand side of the equality above is just the Christ-Journé type commutator
when d = 1.

Notice that for d > 2, the kernel K(x — y) is smooth but m, ,a has no smoothness about
variable z and y if a € L>(R?). Therefore the standard Calderén-Zygmund theory cannot be
applied directly. Christ and Journé [2] proved that T, is bounded on LP(R?) for 1 < p < oo.
In 1995, Hofmann [11] gave the weighted LP (1 < p < oo) boundedness of T, when the kernel
K(z) = Q(z/|z|)|z|~® with Q € L>®(S"™1). In 2012, Grafakos and Honzik [9] proved that T, is
of weak type (1, 1) for d = 2. Later, Seeger [13] showed that T, is still weak type (1,1) bounded
for all d > 2. In [3], we showed that T is bounded on LP(w) with w € A,(1 < p < c0) for d > 2
and T, is weighted weak type (1,1) with power weight |z|™%(—2 < a < 0) in dimension d = 2.

In this paper, our goal is to show T}, is also weighted weak type (1,1) bounded in dimension
d > 2. In the sequel, for 1 < p < oo, Ap(]Rd) denotes the Muckenhoupt weight class and LP(w)
denotes the weighted LP(R?) space with norm | - [|,.,. We also denote w(E) = [, w(z)dz for a

measurable set F in R%.

Theorem 1.1. Suppose K satisfies (1.1),(1.2) and (1.3) for d > 2. Let a € L®(R?%) and
w € Ay (RY). Then there exists a constant C > 0 such that

w({z e R?: |Tuf(2)] > A}) < CAHallool | f 11,0
for all A >0 and f € L'(w).

Remark 1.2. In dimension d = 2, Grafakos and Honzik [9] used the 77" method to obtain weak
type (1,1) bound. In [3], we followed the idea in [9], using the weighted 77" method to prove
weighted weak (1,1) boundedness of T, with power weight. The key point in [3] is to show the
smoothness of the kernel of (T77}),,. However, the method in [3] can not be used to prove that
T, is of weighted weak type (1,1) for the general A; weight even when d > 2. Indeed, the reason
why the smoothness of the kernel of (7)), could be established in [3] is based on the fact that
the power weight is smooth, but the general A; weight does not have smoothness.

The method presented in this paper is different from [3]. We will use some interpolation
argument, which allows us to get weighted weak type (1,1) boundedness for the general A;
weight. More precisely, we will obtain an unweighted weak type estimate with nice decay
bound (see Lemma 2.3 below) and a weighted weak type estimate without decay bound (see
(2.3) below). Interpolating these two estimate together, we may get a weighted weak type
estimate with enough decay property. This kind of idea was first used to prove the weighted L?

boundedness. For more details, we refer to see [6], [16], [15] and [7].

Remark 1.3. In this paper, we have to get the unweighted weak type estimate with enough
decay (i.e. Lemma 2.3 below). However, by using the original argument in [13], one may obtain
n~2logn as the decay bound in Lemma 2.3. This bound is not sufficient to prove weighted
bound for A; weight. To obtain a enough decay bound, we should modify the whole progress of

Seeger’s argument and it is not trivial. Recall in [13], in proving the weak type (1,1) estimate
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of T,, Seeger used a microlocal decomposition for the kernel and the Fourier transform of the
function a, which involves the Littlewood-Paley decomposition and direction decomposition of
the function a (see the proof of Proposition 2.3 in [13]). In this paper, we will follow some
nice idea from Seeger [13] but there are some difference. First, we do not use this kind of
decompositions on the function a because we observe that m, ,ya has some smoothness in some

sense. In fact, if writing mg 4a as

1 |z—yl _ 1 [T
/ a(y—i—sx y)ds:/ a(y + s0)ds
[z =yl Jo [z —yl rJo

by making a polar transform z —y = 76, then even a € L®(R?), Mg ya has some smoothness

about r for a fixed y and 6. The proof of Lemma 2.3 is based on this observation. Secondly, we
adopt a different method to use the cancelation of bad function (see subsection 5.3). It seems

to be more direct though complicated. Here we also use some ideas from [12], [4] and [5].

This paper is organized as follows. In Section 2, we complete the proof of Theorem 1.1 based
on Lemma 2.3. In Section 3, we prove Lemma 2.3 based on some lemmas, their proofs will be
given in Section 4 and Section 5, respectively. Throughout this paper, the letter C' stands for
a positive constant which is independent of the essential variables and not necessarily the same
one in each occurrence. A < B means A < CB for some constant C' and A ~ B means that
A< Band B< A For aset E CR% we denote by |E| the Lebesgue measure of E. Ff and f
denote the Fourier transform of f defined by

Fi©) = [ 0 a)da.

Z. denotes the set of all nonnegative integers and Z‘i =Z4 X -++ X Zy . [z] denotes the integer
N———

d
part of x.

2. PROOF OF THEOREM 1.1

In this section we give the proof of Theorem 1.1 based on a lemma, its proof will be given

in Section 3. Let us begin with giving the definition of A;(R?) weight.

Definition 2.1 (A;(R?) weight). A nonnegative local integrable function w on R? is said to be
a A1(R?) weight if there is a constant C' > 0 such that
Muw(x) < Cw(z),

where M denotes the Hardy-Littlewood maximal operator defined by

Mf(x) = sup f(y)ldy,

=
r>0 |Q<$,7’)’ Q(z,r) ’

here Q(x,r) denotes the cube with center at x and side length r and its sides parallel to the

coordinate axes.
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Fix A > 0 and f € L'(w), the following Calderén-Zygmund decomposition of f € L'(w) is

well known, see the proof of Theorem 3.5 in [10], for example.

Lemma 2.2. Let w € A;(R?) and f € L'(w). Then for a € L®¥(R%) and X\ > 0, there exist
functions g and b such that

(i) f=g+b;

() 913, S 731

(iii) b = >_ by, suppb, C Qn, Qn’s are disjoint dyadic cubes, set Q = {Q,};
(iv) [ bn =0, [Iball S 2= 1@nls [0ll1w SIS
(
(

alloo Lws

v) Each @Q satisfies |Q| < % Jo £ (2)ldz;
vi) Set E= |J @, then w(E) < 18l 7|, ,,.
QeQ

We only focus on the dimension d > 2. By the property (i) in Lemma 2.2,

w({z € R |T,f(z)| > A < w({x e R : |Tog(z)| > %}) +w({x € R : T b(x)| > %})

Since g € L?(w), by [3, Theorem 1.2], we have ||T,g|l2.w < [/l |lg]/2,0- Hence, use Chebychev’s

inequality and the property (ii) in Lemma 2.2,

ITugl3..
22
For Q € Q, denote by I(Q) the side length of cube Q. For ¢ > 0, let tQ be the cube with the

same center of @ and [(tQ) = t1(Q). Let E* = Ugeg 2290Q). Then we have

11110
-

w({zr € RY: [Tug(2)| > A/2}) S S llalle

w({|Tub(@)] > A/2}) < w(E*) +w({z € (BY)° : [Tub(x)| > A/2}).

Since w satisfies the doubling condition, by (vi) in Lemma 2.2, the set E* satisfies

w(B") S w(B) < 1= g,
Denote Q1. = {Q € Q: I(Q) = 2"} and let By, = QZ;] bg. Then b can be rewritten as b = z:z%j.
€ VIS

Let ¢ be a radial C°°(R?) function such that (&) = 1 for |¢] < 1, ¥(&) = 0 for |¢] > 2 and
0 <(€) < 1forall £ € RY. Define ¢(z) = th(z) —p(2z). Then supp ¢ C {z € R?: § < |z < 2}
and ), ¢j(z) = 1forallz € RN {0}, where ¢;(z) = ¢(277x). Now we define the operator T} as

(21) T, = [ oi(e =K@ —pmeya- Fo)dy.
Then T, = ) Tj. For simplicity, we set K;(x) = ¢;(x)K(x). We write
J

Tob(x) =Y Ti%B; .

neL jEZL
Note that T8, (z) =0, for z € (E*)¢ and n < 100. Therefore

w<{:r € (B*)° : |Tub(z)] > 2}) - w<{:17 e(5) | Y Y T%; )

n>100 jEZ

4
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To finish the proof of Theorem 1.1, it is enough to show
A 1
22 w({zers| & 1800 > 5}) £ el

n>100 jeZ
Fix n > 100. By using Fubini’s theorem and (iv) in Lemma 2.2, for any nonnegative function

(), we get

H ZTj%y‘—n
J

RS [12-uI( [ 1556 = itz )y
Sl Y [y [ ey

j QEQJ N ( 2]+2)
< |lal|so /b mf— w(x)dzdy
a3 3 fhowintog: [, ., 0
Shaled 3 [ oo inf M) )y
J Qe n
A (QIint M (p),
QEQ

where in the third inequality we use the fact that Q € Q;_, has side length 2/~" and info M (u) =
inf,eq M(1)(2). Then by Chebyshev’s inequality,

(2.3) ({xeRd ‘ZT%jn ( }) ZyQ\égng

Here we should point out that the right side of (2.3) is bounded by %H fll1w by using the
property (v) in Lemma 2.2 if we set 4 = w € A;(R?). So to prove (2.2), we need to get a
estimate better than (2.3) with a decay bound like 27" with £ > 0. It may be difficult to obtain
this kind of estimate directly for higher dimension (in [3], we got similar estimates with enough
decay bounds directly when d = 2). However, we will use an interpolation arguments between

the estimate (2.3) and the following lemma.

Lemma 2.3. There exists an € > 0 such that for any integer n > 100,
(2.4) erRd:)ZT%] n ‘>)\H<n2 =37 1Ql.
QeQ

The proof of Lemma 2.3 will be given in Section 3. We continue the interpolation arguments.

For convenience, define
By ={veRr?: ’ZT%J n ‘>)\}

Lemma 2.4. For any constant u > 0 and nonnegative function p(z),

(2.5) min{u(z), uldr < Z |Q| min{un2—°" infM( )}
EX QeQ

where € is determined by Lemma 2.5.
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Proof. For u > 0, we set
¢, ={QeQ: ing(,u) < un2” "}

and €, = Q\ &,. For each j, split B; into two parts B; = %; + %;’, where

V= > bg and Bj= Y  bo

1(Q)=27,Q€C, UQ)=27,Qecg,

E;’:{xeRd:‘ZT% ’>>\}
By ={zer?: ’ZTj%j_n(x)‘ > A}
j

Define

By the linearity of T}, EY C E”/2 U EQ}IQ. Therefore

/ min{p(z), utdr < /n /A/2 min{u(x), u}dx

2/2
< / w(x)dz —|—/ udx
%o %o
=T+1II

By using (2.3) and Lemma 2.3, we get the estimates of I and II, respectively,
1< Z ]Q\lnfM Z |Q| min{un2™" inf M (u)},

Qe, Qe
IT Sun2™" Z Q| = Z |Q| min{un2™°" 1nfM( )}
Qecs, Qece
Combining these estimates for I and I, we finish the proof. O

Now we return to the proof of Theorem 1.1. Multiply both sides of the inequality (2.5) by
u~*9(0 € (0,1)), and integrate them on (0,00) with respect to the measure du/u. Using the
following formula

> _110du 9
min{A, u}u — = ChA’,
0 u
then by Fubini’s theorem , we could get

[ we)'ds 5 3 1QIm2 ) int M

A QEeQ

(2.6) <A m2=) 0l 3 inf M () /\f J|dz
QeQ @

< AL (127 a oo / |F(@)|M () (2)da
Rd

where the second inequality follows from the property (v) in Lemma 2.2. Since w € A;(R%)

which means w(z) is nonnegative, we can substitute w'/? for y in (2.6). So we obtain

w(Bp) = [ w)ds S 3702l [ 17@IM, (w)e)da,
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where M, is the Hardy-Littlewood maximal operator of order ¢ defined by

1 a 1/q
50 =3 (e 10 )

Choose o > 1 and C, > 0 such that C, anloo n 7 = % Then we have

(2.7) w(EY, ) S n”+1‘92‘”€(1‘9)>\‘1Halloo\lflll,M% (w)-

an*U% ~

By using the pigeonhole principle, it is easy to see that
Since Y5190 Con ™7 = %, we may get

{:U S Rd: Z ‘ZTj’Bj_n(x)’ > %} C U Eg’an*")\'
n>100 jEZ n>100
By (2.7), we obtain
29)  w({eer: Y |S 1B >0)) < D wlE ) S inarooufHLMé(w).

n>100 j€Z n>100

Since w is an A1 (R?) weight, there exists 7 > 1 such that w" € A;(R?) (see [8, Theorem 7.2.5]).
Thus, we take § = 1 in (2.9). By the definition of A;(R?) weight, we have M, (w)(z) < w(x).
Hence we get (2.2) by (2.9) and finish the proof of Theorem 1.1 once we show Lemma 2.3.

3. PROOF oF LEMMA 2.3

To prove Lemma 2.3, we will make a series of decomposition of 7. Some important estimates
play a key role in the proof. We present them by some lemmas, which will be proved in Section 4
and Section 5, respectively. The first estimate tells us that the operator 7T} can be approximated
by an operator TJ" in measure, which is defined below.

Let I;(n) = ™ + 2, where 0 < 7 < 1 will be chosen later. Let 1 be a nonnegative,
radial C°(R?) function which is supported in {|z| < 1} and satisfies [pan(z)dz = 1. Set
ni(x) = 274y(27z). Define

Ki(x) = nj_i,(n) * Kj ().

Since K;(x) is supported in {2771 < |z| < 271} and n;_; (,,)(z) is supported in {|z| <
J j—lr(n)
21—l (M1 e see that K7(z) is supported in {2772 < |z| < 27%2}. Therefore

(3.1) K7 (2)] < 27jdX{21‘—2§|z|§2j+2}
and similarly for multi-indices «

(3.2) 0K ()] < 279 m=lely oo cairey.
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Let p, be a smooth, nonnegative function defined on R such that p,(s) =1 on [277",1 —
277"], supp pn C (277771, 1 —277"71) and the derivatives of p,, satisfy the natural estimates

dk

@pn(s) <2k forall k e Z.

Let .
my ,a = / pn(s)a(sx + (1 — s)y)ds.
0
Define the operator 17" by
1) = [ K7 = yma- by
Lemma 3.1. With the definitions above, for n > 100,

o e B[S0 (185 0(0) - 178 0@)] > 3} <27 Tl
J Q

By Lemma 3.1, it is easy to see that the proof of Lemma 2.3 now is reduced to find € > 0
such that

(3.3) Hx ERY: D TIB; (x)

JET.

)‘ —n
> 4}‘ < n2 6%:|Q|.

In the following, we need to make a microlocal decomposition of the kernel. To do this,
we give a partition of unity on the unit surface S~!. Choose n > 100. Let ©,, = {e"}, be a
collection of unit vectors on S¢~! which satisfies the following two conditions:

() [e] — ey > 274, if v £ o

(b) If @ € S?~1, there exists an e such that |e? — 0] < 27"7~4,
The constant v in (a) and (b) satisfying 7 < v < 1 will be chosen later. In fact, we may simply
take a maximal collection {e"}, for which (a) holds. Notice that there are C2"7(@~1) elements in
the collection {e},. For every # € S%~!, there only exists finite e? such that |e! — ] < 2774,
Now we can construct an associated partition of unity on the unit surface S*~!. Let ¢ be a
smooth, nonnegative, radial function on R? with ¢(u) =1 for |u| < 1 and ((u) = 0 for |u| > 1.

Set
3

&) = 2" (= — el
26 = ¢(27 (g — D)
and define
N - ~1
re) = Y me)
enco,
Then it is easy to see that I'}! is homogeneous of degree 0 with » I'"'(§) = 1, for all £ # 0 and

all n. In addition, the following estimate holds for multi-indices o and £ # 0,
(3.4) DT (€)] < 2mljg 1o,

Now we define operator T;l’v by

n,v _ n,v n
(3.5) T;""hz) = | K;(z—y)mg,a-h(y)dy,

x7
Ra
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where K"*(z) = K}'(x)I'} (). Therefore, we have
R
T =27

v

In the sequel, we need to separate the phase into different directions. Hence we define a

multiplier operator by

G h(€) = (2" (€L, /I A(E),
where h is a Schwartz function and ® is a smooth, nonnegative, radial function such that
0 < ®(z) <1and ®(z) =1 on [z] <2, &(x) =0 on |z] > 4. Now we can split 7" into two
parts:

T = G T 4 (I G ) TJ,
where I denotes the identity operator. The following lemma gives the L? estimate involving

GW)T;L’U, which will be proved in next section.

Lemma 3.2. With the definitions above, for n > 100,
2
: —ny )2
| Gty 8y, S 270 EQ]Q\-
Vi v

The estimates of the terms involving (I — Gnﬂ,)Tf’v are more complicated. In Section 5, we

shall prove the following lemma.

Lemma 3.3. For any n > 100, there exists a € > 0 such that

H:c eRY: ‘ > zv:(l . va)Tf’v%j_n(:E)‘ > )\H <n2 3 Q).

Q
Now we can finish the proof of Lemma 2.3. It suffices to consider (3.3). By Chebychev’s

inequality,

Hx cR%: ‘Zf]}”%j_n(x)’ > %}’

S S e e | ST o] )
i v J v

By Lemma 3.2 and Lemma 3.3, we can get the estimates for the first term and the second term

above, respectively. We hence complete the proof of Lemma 2.3 once Lemmas 3.1-3.3 hold.

4. PROOFS OF LEMMAS 3.1-3.2

4.1. Proof of Lemma 3.1.
We first focus on the proof of Lemma 3.1. By the definitions of Tj and T7', we see

Hﬂf—ﬂﬂhz/

R4

[ (856 = pmaya— K5 = gy o) F)in]do

< I+11,
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1:/
R4

Il = / K} (z —y)(mzya — mgya)f(y)dy‘dx.
Rd | JRA

Consider I firstly. By the definition of K7'(z), we see

where

[ (Eola =) = K3 = p)maya- F)dyda,

Kyl =) = Ko=) = | a0 &)@ =) = Ko =y = )
Notice that
[Kj(z —y) = Kj(x —y = 2)[ < |gj(x —y)(K(z —y) - K(z —y — 2))|
+10j(@ —y) — ¢j(x —y — 2) | K(x —y — 2)|.

Consider the first term. Note that |z| < 277 (") and 271 < |z — y| < 2%, then we have
2|z| < |z — y|. By the regularity condition (1.3), the first term above is bounded by

|Z’ —Tno—jd
7= g X ey} S 272 X i <y

For the second term, by the fact |2| < 277" (") and the support of ¢;, we have |z —y| ~ |z — 2z —y|
and 2772 < |z — y| < 2772, By (1.1), the second term is controlled by

2_j|z| . ) < 2—TTL2—jd ) )
|z — 2 — y[d 22 sloyl<242) X{27-2< |z —y| <2742}

Consider 11, we get
1
maya — iyl = | [ (1= pu(s)atse + (1= ))ds| £ 277 al
0

Combining the above three estimates and applying Minkowski’s inequality, we obtain

5 =T s 2 e [ [ o [ (el ) e
(41) 7|I—y|7

sz a2 ] F()ldyde < 2 lalluol £
R J2i-2< g —y| <242

By Chebychev’s inequality, Minkowski’s inequality, (4.1) and the property (iv) in Lemma
2.2, we get the bound

Hx cR?: ( 1B u(a) - T;L%j,n(x)‘ > 2}‘

—1
SA Z HTj’Bj—n —T3"Bjn||,
J
SA Mlalloe2 ™D Bl S2777 ) Q)
J Q

which is the required estimate. O
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4.2. Proof of Lemma 3.2.

The proof of this part is similar to [13]. For completeness, we still give a proof here. As
usually, we adopt the 77* method in the L? estimate. Moreover, we also use some orthogonality
argument based on the following observation of the support of F (GWJT;I’U): For a fixed n > 100,

we have

(4.2) Supz 222" (e, /1€1))] S 2742,
€40

In fact, by the homogeneousness of ®, it suffices to take the supremum over the surface S¢1.
For |¢] = 1 and £ € supp ®(2"7(e?, £/|€])), denote by £+ the hyperplane perpendicular to &.
Thus

(4.3) dist(e?, ¢1) <27,

Since the mutual distance of €?’s is bounded by 27"7~4, there are at most ony(d=2)

(4.3). We hence get (4.2).
By applying Plancherel’s theorem and Cauchy-Schwartz inequality, we have
2

HZZGMT”U o —HZ«MM en /I F (ZT”" B5-0) 9)]
(4.4) S F ()|
v J
<@ 3 S|
v

Once it is showed that for a fixed e},

vectors satisfy

S 272 DN [alloo D 11B-alh,
i

2
(4.5) | >z,
J

then by card(0,) < 2741 and applying (4.4), (4.5) and the property (iv) in Lemma 2.2 we
get

DIy
v

which is just desired bound of Lemma 3.2. Thus, to finish the proof of Lemma 3.2, it is enough

2
LS 2 Alallso Y 11B5-alh S 27770 Y1,
j Q

to prove (4.5). By applying (3.1) and the support of ',
779 -0l)| ol || T3 = )| 2 0) 18,00y
< flalloc HE2 5 195 ] (2)
where H"(z) := 2—jdXE;w (x) and X (x) is a characteristic function of the set

E} :={re R : [(z,el)| <2072 and |z — (z,el)el] < 27F277},
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For a fixed e}, we write

| >z,
J

2 < 2 n,v n,v
S alB S [ H 10 @) B (o)l da
J
(46) o
Y Y [ B ) - 1By )
j 1=—00
Observe that |H;""||; < 27m(E") < 27™@=1) therefore for any i < j,

HY s H () < 27 Dgmidy B

where E]"U = E;-L’U + EJ"U Hence for a fixed j, n, el and x, we get

7j—1
HY s H % |8, nl(x) + > HP s« HY % |8 (2)

1=—00

< 2n'y(d1)21d2/ . 1Bi—n(y)|dy
T+ j ’

i<j

< 2—m(d—1)2_jdz Z /Rd 1bo(y)|dy

1<j Qeﬂjfn
(4.7) QN{e+E V)0

v (d—1)e—i A
SRR VRN DR vl

i<j Q€
Qnia+ BV )0

A

lalloo

< 2—nw(d—1)2—jd2jd—n'\/(d—1)

A 272n7(d71)

~Y )
lalloo

where in the third inequality above, we use [ |bg(y)|dy < AQ|/||lalls (see the property (iv) in
Lemma 2.2) and in the fourth inequality we use fact that the cubes in Q are disjoint (see the
property (iii) in Lemma 2.2). By (4.6) and (4.7), we obtain (4.5) and complete the proof of
Lemma 3.2. g

5. PROOF OoF LEMMA 3.3

To prove Lemma 3.3, we have to deal with some oscillatory integrals which come from
(I — Gm,)Tjn’v. We first introduce Mihlin multiplier theorem, which can be found in [8].

Lemma 5.1. Let m be a complez-value bounded function on R%\ {0} that satisfies
o m(©)] < Alg|~*

for all multi indices |o| < [4] + 1, then the operator T,, defined by

—

T f(€) =m(&)f(&)
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can be extended to a weak type (1,1) bounded operator with bound Cy(A + ||m||co)-

Before stating the proof of Lemma 3.3, let us give some notations. We first introduce the
Littlewood-Paley decomposition. Let ¢ be a radial C*°(R?) function such that v (£) = 1 for
€] <1, (&) = 0 for |¢] > 2 and 0 < (€) < 1 for all & € RL Define 9y,(€) = (2F¢) and

Br(€) = Yr(€) — Prr1(E), then By is supported in {€ : 2771 < [¢] <271} and 32, Br(€) = 1
for ¢ € R%\ {0}. Define the convolution operators V; and A, with Fourier multipliers 1 (-) and
B, respectively. That is,

Vil (€) = vn(€) F(6)

and
ARf(€) = Br(&) f(£).

Then by the construction of £, and v, we have

I:ZAk:Vm—i— ZAk for every m € Z.
keZ k<m

Set A" = Vo, 1" and D'y = (I — G ART]. White

(I = Gno) T = (I = Grp) VT + > (1 = G o) AT

k<m

= (I = Gno)Af + > DY,

k<m

where m = j — [neg], 9 > 0 will be chosen later. To prove Lemma 3.3, we split the measure in

Lemma 3.3 into two parts,

Ha: eR: ’ S S u- Gn,v)Tj’”%j_n(:c)‘ > )\H
v
< ‘{ZL‘ e R?: ‘Z(I— Gnm)(ZAZ’TZ‘Bj_n)(x)‘ > %}‘
+ e R SN DByl > %})

v j k<m
= 1T+1I.

5.1. First step: basic estimates of I and I1.
For I, notice that F[(I — Gp,)f](€) = (1 — ®(277(e?, £/|€]))) - f(€). Tt is easy to see that
(1 =2 (e, &/|€]))) is bounded and

08 (1 — B2 (e, £/1¢]))| < 2 (B¢ e

for all multi indices || < [4]+1. Then by Lemma 5.1, I — Gy, is of weak type (1,1) with bound
com([51+1)
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Since card(6,,) 2 2"(?=1) then there exists C, 4 such that >~ Cz27™d=1) = +. Therefore
eneo,

{zer?: \Z(I—Gn,y>(ZA"”% -)@)| >3}
= Hm cR%: ‘Z (I —Gpp) ( )(x) > ZC%dQ_M(d_I))\H
o) - ZH‘” — ‘ (1= Go) ( S Am o )(a;) > C%dQ_”’Y(d—l))\}‘

n n Q nv
< ZZ o2 m +1>||A Bl

<22 Z 01,\2M(d_1)+m A7 bal

i @)=z

where the second inequality follows from (2.8) and in the third inequality we use I — G, is
weak type (1,1) bounded and Minkowski’s inequality.

For II, we use L' estimate directly

2 n.ov 2 n,v
(5.3) <3>3 D I8l <5023 > 1Dl

v J k<m v J k<m(Q)=29—"
Now the problem is reduced to estimate [|A}; boll1 and [|D}’bgll1. Recall in (3.5), the

kernel of operator Tj"’v is

K (z) =T (z — y) Kj' (z — y)mg ya.

Now we see K]"yv(x) as a function of x for a fixed y € Q). Thus, by Fubini’s theorem,

Al bo(x) = /Q Vin K (2) - bo(y)dy =: /Q Am(z,9)bo(y)dy
and
Ditba(r) = | (= Gua MKy @) -baldy = | Dite pibalwiy
5.2. L' estimate of Dj.
Lemma 5.2. For a fized y € Q, there exists N > 0, such that
(5.4) IDk(y)ls < G2 =Dpithm 2N g
where C is independent of y.
Proof. Denote hyny(§) = (1 — (2" (ey, £/[€]))) 51 (§), then
Dy(w.9) = (T = Gu) MK 0) = g [ ™ hun(€) [ e O9RS o= o - s

Next we make a polar transform w — y = rf. By Fubini’s theorem, the integral above can be

written as

(5.5) (21) /Sd T {/Rd/ eHr=y=r0.) hknU(g)K;?(re)rd—lmgwaya-drdg}de.
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Consider the support of K7'(z) in (3.1), we see 27=2 <y < 2712 So integrate by parts with r
first. Then the integral involving r can be rewritten as
(e.9]
/0 109 (140, €))7 0, K2 (r0)r 1 aldr
Since 6 € supp I'?, then |§ — e?| < 27™7. By the support of ®, we see |{e?, £/|€])] > 2177,
Thus,

(5.6) €0, €/1ENT = ey, €/1EN] = ey — 0, /1€l = 277,

Note that ¢ is supported in {27771 < |¢] < 27%+1} so we can integrate by parts with &.

Therefore the integral in (5.5) can be rewritten as

1 n i(x—y—r0, > n d—1,n
W/Sdlrv(g) /Rde< y 5)/0 Oy (Kj (ro)r my_i_,ﬂ@’ya)x

(I —27%AN
(14+272k2 —y —1rb|2)

(5.7)

5 (Phnn (€346, €))7 ) drdede.

In the following, we give an exploit estimate of the term in (5.7). By the definition of K7 (z)

n
and My 4@

o TN —(j=l-(n))|a
08K (2)] =2 (=l (n)lf

/ (021)j—1-(my (2 = Z)Kj(Z)dz‘

(5.8) < 27 U=l K ()| oo 102711

< 9-(-l-(m)lal—jd_

where the third inequality follows from (3.1) and

o.(* / "onaly + s6)ds) | £ Lall.

r

(5.9) |0 (my 4 g ya)| =
By using product rule, (5.8) and (5.9), and note that 2972 < r < 2/+2,

(5.10)

0, (K3 r0)r "y 10.40) | S 2700 .
Now we turn to give an estimate of (I — 2 2*Ag)N[(0,€) " hy .0 (€)]. By (5.6), we get

[(=i(8,€) " - A, (€)] S (6, 6)| 71 S 277FE

Now using product rule,

[0, i, (€)| = | = O, [@(27 (€}, €/I€1)] - Br(€) + e, Br(€) - (1 — @(2" ey, €/I€)))] < 2.

Therefore by induction, we have [O¢ hknv(§)] < 2+l for any multi-indices a € Z7. By

using product rule again and (5.6), we have

‘8522“0’ §>)_1hk’,n,v(§))‘

= (0,67 207 by — 200,€) %+ 0:0¢, s o0 (€) + (0, ) TLOE By, (€)]
< 23(n7+k).



16 YONG DING AND XUDONG LAI

Hence

2_2k‘AE[(<91 §>)_1h’k’,n,v(€)] ‘ S 2(”’Y+k)+2n7.
Proceeding by induction, we obtain
(5.11) ‘(I — 27%A5)N[<6’§>71hk,n,v(f)]‘ 5 2(n*y+k)+2n,yN'

Now we choose N = [d/2] + 1. Since we need to get the L' estimate of (5.5), by the support of

hk,n,va

—N
/ /(1+22k\x—y—r0\2) dwd¢ < O,
supp(hi,n,v)

Integrating with =, we get a bound 2/. Then integrating with 6, we get a bound 2-77(d-1),
Combining (5.10), (5.11) and above estimates, (5.4) is bounded by

27n27n'y(d71)2(*j+k)+n'y(1+2N) ”aHoo
Hence we complete the proof of Lemma 5.2 with N =[] + 1. O

1 s )
5.3. L! estimate of A;l:;

By using Fubini’s theorem, we can write A,,(z,y) as

1 i(zx—w n,v n
<27r)d/w /Rd Oty (O K (w — y) - ml} yadwde.

Integrating by part N = [d/2] 4+ 1 times with £ in the above integral and using Fubini’s theorem

again, the above integral is equal to

(271r /O {/Rd/Rd R ¢ K (w = y)a(sw + (1 - s)y)

(L= 272" AN (¥m) (€) dédw} e
(142722 — w|? )

By making a transform w + %y = z, the above integral is equal to

(271T)d/01pn(8) /Rda(sz) /R e+ 0 oo (s )

(I =27 AN () (€)
(1+272mz — 2+ %yP)N

dédzds.

Using the cancellation of bg (see the property (iv) in Lemma 2.2), we get

Aol = | (An) — Auo )bty
where yq is the center of Q. Split A,,(z,y) — Am(x,yo) into three parts:

Am(xay) - Am(l', yO) = m,l(%y) + Fm,2($7y) + Fm,S(xay)?
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where

1 1 /1—s - 1—s -
— 7'< S y,S) _ Z( S y07£> 7‘<I_Z’£>
Foai(z,y) (27r)d/0 Pn(s) /]Rd a(sz) /]Rd (e e Je
(1= 272" AN () (&)
(14272m|g — » 4 Losy2)V

1! (gl (I =272 AN () (€)
_ =2+ 122 0.6) ¢
Fm,Q(DCy y) (27‘r)d /0 pn(S) /Rd a(SZ) /I‘Qd € (1 + 2_2m‘x — 24+ %y‘Q)N

x K" (2 — Y dédzds,
s

< (K] (e = 4) = K (s = 20 dedzds

s
and
1 1 . 1—s

— (x—2+-2y0,8) _ 9—2m N no, Yo

Fuata) = g [ ool [ ate2) [ e {1 =272 AN (W) (@) LK (2~ )
1 1
X — d€dzds.
<(1+2_2m|m—z—1gsy|2)N (1+2—2m|x—z—1;9y02)N>

Hence
(5.12) A7 mballh < sup(1Fma (5 9) e+ 1 Fm2 ()l + 1 Em s 9) 1) 10g -

YEQ

For Fy,1(x,y) and Fy, 3(z,y), we have the following similar estimates.

Lemma 5.3. For a fixed y € @,
1P ()| < 27 =DH=n=m g
where C' is independent of y.

Proof. We use the same method in proving Lemma 5.2 but don’t apply integrating by parts.
Note that y € Q and yq is the center of @, then |y — yo| < 277", Therefore we see

G208 _ i8] < L7 Sgjn-m

~

It is easy to see that
(1 =272 D)™ () (€)] < C.

Since we need to get the L! estimate of Fy, 1(+,y), by the support of ¥, (&), we obtain

1— -N
/ /(1+22m|x—2+ SyP) dwd¢ < O,
‘§|§21—nz S

The function a(sz) is bounded by ||a||s. Note that

Iy < 2=,

(5.13) 1 1—
[ o) s
0 S

Combining these, we can get the required estimate for F, 1(-,y). O
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Lemma 5.4. For a fized y € Q,

1P 3(,9) |1 < Cn2=d=DHi=n=m)q|
where C is independent of y.

Proof. For Fy, 3(-,y), we can deal with it in the same way as F},, 1(-,y) once we have the following

observation
1
W) = Wso)| = | [ (=0, YOty + (= )t

N2z — 2+ L5ty + (1 — t)yo)|

1
— S
S w2 [ - it
s 0 (L4220 — 2+ =5ty + (1— o))V

-N
where ¥(s,y) = (1 +272M g — 2 + 1—;33/|2> . It is easy to see

(1 =272 Ag)N (¥m) (§)] < C.

Since we need to get the L! estimate of Fy, 3(+,y), by the support of ¥, (&), we obtain

N2™™|g — 1= ¢ 1—t
[ oo Ly Ot
lg|<21-m (1+2_2m|1‘—2+ Ts(ty+ (1 —t)y0)|2)N+1

Since y € Q and yo is the center of @, we have |y — yo| < 2/7". The function a(sz) is
bounded by ||a||oc. Combining (5.13) and the above estimates, we can get the required estimate
for Frn3(-,v). O

Lemma 5.5. For a fized y € Q, we get
1Fm2(9) 1 < Cn(27 4 27")27 @D 77 g |,
where C' is independent of y.

Proof. By the mean value formula, we can write K;""(z — 4) — K;""(z — %) as

1
Y=Y nw ty + (1 —1t)y
[ (e Ay,

S S

Since y € Q and g is the center of @, we have |y — yg| < 297", It is easy to check

(1 =272 AN (¥m) (€)] < C.

Since we need to get the L' estimate of F, 2(-,y), by the support of ,,(€), we obtain

1— —N
/ / (1+2_2m\x—z+ 78y\2) dzd¢ < C.
‘£|S21—m S

The function a(sz) is bounded by ||a||~. Notice that by (3.2) and (3.4), we see
||VKJ7MH1 < (QZT(TL)—J' + 2m—]‘>2—m(d—1).

Combining with these estimates, the L' norm of Fy, 5(-,y) is bounded by

1
ds v (d—1)—
W—WMApd$sWV@WMMMSn@m+TQ2Wd”Www
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which is the required bound. O

5.4. Proof of Lemma 3.3.
Let us come back to the proof of Lemma 3.3, it is sufficient to consider I and IT in (5.1).
By (5.2), (5.3) and (5.12), we have

ryr<? ZZ Z (G a2 @D AT b1y + 3 |ID) bl

=2i—n k<m
ZZ Z sup [0 L @D (15, 4 ()
- QJnGQ
+ [ Fma )|!1+|!Fm3 D) + 32 1Dk, w)l] el
k<m

Notice m = j — [neg] and card(0,,) < 2"(4=D_ Now applying Lemma 5.2 with N = [%] +1,
then Lemma 5.3, Lemma 5.4, Lemma 5.5 and the fact [neg] < neg < [neg] + 1 imply

RS ;l(Q)Zm " 1b@ll1llalloo [2(2°1™ 4 2727 4 2737) 4 2% ],

where

slzw(d—l)—i-’y([g}—i—l)—l—i-ao,
32:y(d—1)+7([g}+1)—1+7,
2 =7(d= 1)+ ([ +1) =1+,

d
sa=—c0+7+2([5

Now we choose 0 < v < g < 1 and 0 < 7 < g such that

]+ 1)y 4+

max{si, $2, 83,54} < 0.

Set ¢ = —max{si, 2, S3, 54}. Then by the property (iv) in Lemma 2.2,
1411 2 10070 S gy S m2 Y
Q Q

Hence we finish the proof of Lemma 3.3, thus we prove Theorem 1.1. O
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