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Abstract. We consider the synchronization problem of swing equations, a second-order
nonuniform Kuramoto model, with general connectivity and dampings. This is motivated
by its relevance to the dynamics of power grids. As an important topic in power grids,
people have been paying special attention to the transient stability which concerns the
system’s ability to reach an acceptable synchronism after a transient disturbance. For this
concern, an important problem is to determine whether the post-fault state is located in
the basin of attraction of synchronous states (sync basin). Recently this issue is becoming
more and more challenging since the highly stochastic renewable power sources exert more
transient disturbances on the power grids with increasing size and complexity. In [Proc.
Natl. Acad. Sci. USA, 110 (2013), pp. 2005-2010], it was pointed out that the sync basin is
an important unsolved problem. In [SIAM J. Control Optim., 52 (2014), pp. 2482-2511],
an explicit estimate on the region of attraction of coupled oscillators with homogenous
damping for network with diameter less than 2 was obtained. However, it turns out that
these assumptions are too restrictive in many real situations. The purpose of this work
is to study the emergence of synchronization and give an estimate for sync basin for the
nonuniform Kurmaoto model on connected graphs with general dampings, which is the
most general setting for a connected power grid. Our strategy is based on the gradient-like
formulation and energy estimate.

1. Introduction

General background.- The synchronization of large populations of weakly coupled
oscillators is very common in nature, and it has been extensively studied in various scientific
communities such as physics [1, 31], biology [16], sociology [30], etc. The scientific interest
in this topic can be traced back to Christiaan Huygens’ report on coupled pendulum clocks
[21]. However, its rigorous mathematical treatment was done by Winfree [38] and Kuramoto
[24] only several decades ago. Since then, the Kuramoto model became a paradigm for
synchronization and various extensions have been explored in scientific communities such
as applied mathematics [5, 7, 8], engineering and control theory [9, 12, 13, 14], physics
[1, 29, 31] and biology [16].

In the present work, we consider the synchronization of second-order nonuniform Kuramo-
to oscillators which is a typical model for power grids. As a complex large-scale system, the
power grid has rich nonlinear dynamics, and its synchronization and transient stability are
very important in real applications. Roughly speaking, the transient stability is concerned
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with the ability of a power network to settle into an acceptable steady state following a
large disturbance. In recent years, renewable energy has fascinated not only the scientific
community but also the industry. It is believed that the future power generations will rely
increasingly on renewables such as wind and solar power. These renewable power sources
are highly stochastic; thus, an increasing number of transient disturbances will act on in-
creasingly complex power grids. As a consequence, it is a challenge to study complex power
networks and their transient stability.

The Kuramoto models.- The classic Kuramoto model is given by the following equa-
tions:

(1.1) θ̇i = Ωi +
K

N

N∑
j=1

sin(θj − θi),

where θi and Ωi ∈ R are the phase and natural frequency of i-th oscillator, respectively. This
model has been studied in many literature and a central problem is to look for conditions
on the parameters and/or initial phase configurations leading to the existence or emergence
of phase-locked states, see for example, [5, 9, 18, 22, 25, 36]. Another well-known model of
first-order coupled oscillators is the non-uniform Kuramoto model

(1.2) diθ̇i = Ωi +
N∑
j=1

aij sin(θj − θi),

where di > 0 and Ωi ∈ R. The coefficients aij ≥ 0 represents the coupling (influence) from
j-th oscillator to i-th oscillators. We can define an associated underlying graph G = (V,W)
such that V = {1, 2, . . . , N} and W = {(i, j) : aij > 0} . In [11, 12, 23], the synchronization
condition for (1.2) was considered by using differential inequalities for the phase diameter
(difference), spectrum in algebraic graph theory or cutest projections.

Second-order coupled oscillators.- The inertial effect was first conceived by Ermen-
trout [16] to explain the slow synchronization of certain biological systems; mathematically,

incorporating the inertial effect is simply adding the second-order term mθ̈i to (1.1) where
m > 0 is the inertia constant. For mathematical results on this inertial model we refer to
[6, 7, 8]. The bistability of patterns of synchrony in two coupled populations of inertial
Kuramoto oscillators was considered in [2].

The standpoint of this paper is that the power grids can be described as a network of
nonuniform oscillators with inertia. In the past decades, the relevance of coupled oscillators
to the power grids has been reported in many literature and the study on certain proper-
ties of power grids through coupled oscillators has fascinated the scientific community in
physics, engineering and applied mathematics [12, 15, 17, 26, 28, 33]. Precisely, a model of
synchronous motors for power grids can be written as a second-order nonuniform Kuramoto
model

miθ̈i + diθ̇i = Ωi +

N∑
j=1

aij sin(θj − θi), mi, di > 0,

where the coupling between oscillators is symmetric (i.e., aij = aji) according to its physical
background (see Subsection 2.1). This system is referred as the so-called “swing equations”
in engineering community. If mi

di
=

mj

dj
for all i 6= j, the system is said to have homogeneous

dampings. The swing equations have been used in many references to study the dynamics



SECOND-ORDER NONUNIFORM KURAMOTO OSCILLATORS 3

of the power grids, for example, the paper [26] studies the coupled swing model with the
assumption of homogeneous dampings. The connections between first and second-order
models can be found by the topological conjugacy argument in [11] or singular perturbation
approach in [12].

Motivations and problems.- The transient stability, in terms of power grids, is con-
cerned with the system’s ability to reach an acceptable synchronism after a major distur-
bance such as short circuit caused by lightning, large noises in power injections to network,
a cyber attack at some generators in the network, or abrupt changes in environment. Then
a fundamental problem, as pointed in the survey [35], is: whether the post-fault state (when
the disturbance is cleared) is located in the sync basin. Thus, a relevant issue is to estimate
the sync basin or find some criteria to determine that a given state is located in the basin.

In literature for transient stability, the approaches fall into two main categories: time-
domain simulation method and direct method. The former (see [10] for example) directly
adopts numerical integration to solve the state equations of power systems which requires
a large amount of calculations and is thus hardly realized for large-scale power systems.
Another problem with computational methods is that they usually do not give intuition
about the role of different parameters of the system in the sync basin of the model. Thus
they are not suitable for design problems in power networks. The latter, so-called direct
method [3, 4], has been a celebrated approach for the transient stability analysis of power
network with a few nodes. Another tool is based on the singular perturbation theory by
which the second-order dynamics can be approximated by the first-order dynamics when
the system is sufficiently strongly over-damped, i.e., the ratio di/mi is sufficiently large [12].
In this literature the authors derived algebraic conditions that relate the synchronization
to the underlying network topology. Unfortunately there is no formula in [12] to check
whether a system with given inertia and damping coefficients is so strongly over-damped
that the result can be applied. In recent literature [15], the authors pointed out that finding
sync basin is an important unsolved problem. In the survey paper [13], it was also pointed
out that the transient dynamics of second-order oscillator networks is a challenging open
problem.

As far as the authors know, the explicit estimate on the sync basin for second-order
nonuniform Kuramoto model is very rare. In [26], the authors considered a model with
nice connectivity and homogeneous dampings; more precisely, the underlying graph has a
diameter less than or equal to 2, and the ratios di/mi for all i are equal. In [12], it is required
that the system is sufficiently over-damped and therefore the basin for second-order model
is approximated by that of the first-order model. In this paper, we will consider the swing
equations with general connectivity and dampings.

Contributions.- The main contribution of this paper is to estimate the sync basin for
lossless power grids in a general setting: (1) the underlying graph is only connected, while
completeness or denseness is not required; (2) the dampings can be homogeneous or in-
homogeneous and the over-damped property is not required. To the best of the authors’
knowledge, this is the first rigorous study on this problem for such a general setting. We use
a direct analysis on the dynamics of second-order nonuniform Kuramoto model and derive
an explicit formula to estimate the sync basin.

Among the rigorous analysis of Kuramoto oscillators, a typical method is to study the
dynamics of phase difference, for example, [5, 7, 9, 11, 26]. However, this approach is
available only when the dampings are uniform or homogeneous and the underlying graph
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has a diameter less than or equal to 2. Thus, it fails for the current case. In this paper we
will use the gradient-like formulation and energy method. Departing from the (physical)
energy for the direct method in [3, 4, 35], we will construct a virtual energy functional which
enables us to derive the boundedness of the trajectory. Then we can use  Lojasiewicz’s theory
to derive the convergence.

Organization of paper.- In Section 2, we present the models, main result and some
discussions. In Section 3, we give a proof to the main result. In Section 4 we present some
simulations. Finally, Section 5 is devoted to a conclusion.

Notation:
〈·, ·〉— standard inner product in RN ,
‖ · ‖— Euclidean norm in RN ,
d(G)— diameter of the graph G,
`∞(R+,RN ) =

{
f : R+ → RN | f is bounded

}
, R+ := {t ∈ R : t ≥ 0},

`1,∞(R+,RN ) =
{
f : R+ → RN | f is differentiable, f, f ′ ∈ `∞(R+,RN )

}
.

2. Preliminaries and main result

In this section, we present the model of power grids as a second-order Kuramoto-type
model and introduce its gradient-like flow formulation. A preliminary inequality and our
main result are also presented.

2.1. Models. A mathematical model for a lossless network-reduced power system [4, 15]
can be defined by the following swing equations:

(2.1) miθ̈i + diθ̇i = Pm,i +

N∑
j=1

|Vi| · |Vj | · =(Yij) sin(θj − θi), i = 1, 2, . . . , N, t > 0.

Here θi and θ̇i are the rotor angle and frequency of the i-th generator, respectively. The
parameters Pm,i > 0, |Vi| > 0, mi > 0, and di > 0 are the effective power input, voltage
level, generator inertia constant, and damping coefficient of the i-th generator, respectively.
For Y = (Yij) we denote the symmetric nodal admittance matrix, and =(Yij) represents
the susceptance of the transmission line between i and j. If the power network is subject to
energy loss due to the transfer conductance, then it should be depicted by a phase shift in
each coupling term [12]. We refer to [12, 15, 32] for more details or the derivation of (2.1)
from physical principles. Let us denote Ωi = Pm,i and aij = |Vi| · |Vj | · =(Yij). Then the
system (2.1) becomes a second-order nonuniform Kuramoto oscillators

miθ̈i + diθ̇i = Ωi +

N∑
j=1

aij sin(θj − θi), with aij = aji.(2.2)

Here, the coupling between oscillators is symmetric since Y is a symmetric matrix.
We acknowledge that the above model includes only generators, while a real power net-

work should contain both generators and loads. In power flow, loads can be modeled by
different ways, for example, a system of first-order Kuramoto oscillators [15] or algebraic
equations. On the other side, the loads of the system can be modeled as constant impedance
loads, then one can use the Kron reduction to obtain the so-called “network-reduced” models
where the loads are now involved in the transfer admittance [14, 37]. Thus, as a network-
reduced model, (2.2) becomes an often studied mathematical model for power grids. On
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the other hand, the Kron reduction was studied in [14] and some properties are given. As
an example, the New England power grid in [14] has a complete underlying graph after
reduction. However, this is not always the case. For example, the Northern European
power grid in [28] does not meet the nice connectivity required in [12, 26] after the Kron
reduction; this can be seen by looking into the power flow chart in [28, Fig.4] together with
the topological properties of Kron reduction in [14, Theorem III.4]. Therefore, it is worthy
to consider the network-reduced model (2.2) with general connectivity.

Next, we recall some definitions for complete synchronization of coupled oscillators.

Definition 2.1. (Synchronization and phase-locked states) Let θ(t) = (θ1(t), . . . , θN (t)) be
an ensemble of phases of Kuramoto oscillators.

(1) The Kuramoto ensemble asymptotically exhibits complete frequency synchronization
if and only if

lim
t→∞
|ωi(t)− ωj(t)| = 0, ∀ i 6= j.

Here, ωi(t) := θ̇i(t) is the frequency of i-th oscillator at time t.
(2) The Kuramoto ensemble asymptotically exhibits phase-locked state if and only if the

relative phase differences converge to some constant asymptotically:

lim
t→∞

(θi(t)− θj(t)) = θ∞ij , ∀ i 6= j.

2.2. A macro-micro decomposition. We notice that the system (2.2) can be rewritten
as a system of first-order ODEs:

θ̇i = ωi, i = 1, 2, . . . , N, t > 0,

ω̇i =
1

mi

−diωi + Ωi +

N∑
j=1

aij sin(θj − θi)

 .
We introduce micro-variables as follows:

Ωs :=

∑N
i=1 Ωi∑N
i=1 di

, θ̂i := θi − Ωs t.

Then we find
¨̂
θi = θ̈i,

˙̂
θi = θ̇i − Ωs , and the system (2.2) can be rewritten as

(2.3) mi
¨̂
θi + di

˙̂
θi = Ω̂i +

N∑
j=1

aij sin(θ̂j − θ̂i) with Ω̂i := Ωi − diΩs,

where the “micro” natural frequencies Ω̂i sum to zero:

N∑
i=1

Ω̂i = 0.

In particular, if Ωi/di = Ωj/dj for all i, j = 1, 2, . . . , N , then we have Ω̂i = 0 for each
i and the equation (2.3) reduces to a system of coupled oscillators with identical natural
frequencies:

mi
¨̂
θi + di

˙̂
θi =

N∑
j=1

aij sin(θ̂j − θ̂i).
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Note that the ensemble of micro-variables (θ̂1, . . . , θ̂N ) is a phase shift of the original en-
semble (θ1, . . . , θN ), thus, they share asymptotic properties as long as we concern the syn-

chronization or phase-locking behavior. Moreover, the equations for θi and θ̂i, i.e., (2.2)
and (2.3), have the same form. Thus, we may consider (2.3) instead of (2.2) when we con-
cern the synchronization problem. These observations enable us to assume, without loss of
generality, the natural frequencies in (2.2) satisfy

(2.4)
N∑
i=1

Ωi = 0.

Remark 2.1. In [8], the second-order model with uniform coefficients was considered:

mθ̈i + θ̇i = Ωi +
N∑
j=1

aij sin(θj − θi).(2.5)

By introducing averages and fluctuations

Ωc =
1

N

N∑
i=1

Ωi, Ω̃i = Ωi − Ωc, θc =
1

N

N∑
i=1

θi, θ̃i = θi − θc,

we can derive that

m
¨̃
θi +

˙̃
θi = Ω̃i +

N∑
j=1

aij sin(θ̃j − θ̃i),

where the “micro” terms satisfy:

N∑
i=1

Ω̃i = 0,
N∑
i=1

θ̃i = 0.

Therefore, in [8] we can assume without loss of generality that
∑N

i=1 θi = 0. We notice
that this relation relies on the uniformity of the inertia and damping parameters, and plays
an important role in the estimate there. Unfortunately, in this paper we cannot assume
this relation for (2.2). This is a main difference between the uniform case (2.5) and non-
uniform case (2.2), which means that the approach does not work for the present case. More
precisely, the energy function in [8], cannot work by simply replacing (m, d) by (mi, di). In
this paper, we will construct a modified energy to overcome this difficulty.

2.3. An inequality on connected graphs. Consider a symmetric and connected net-
work, which is associated to a graph G = (V,W). We note that the underlying network of
power grids (2.2) is undirected, i.e., the adjacency matrix A = {aij} is symmetric. We say
a graph G is connected if for any pair of nodes i, j ∈ V, there exists a shortest path from i
to j, say

i = p1 → p2 → p3 → · · · → p
dij

= j, (pk, pk+1) ∈ W, k = 1, 2, . . . , dij − 1.

In order for the complete synchronization of (2.2), we assume that the underlying graph
G is connected. The following result, which connects the total deviations and the partial
deviations along the edges in a connected graph, will be useful in the energy estimate. For
its proof, we refer to [8].
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Lemma 2.1. (Total and partial phase deviations) Suppose that the graph G = (V,W) is
connected and let θi be the phase of the i-th oscillator. Then, for any ensemble of phases
(θ1, . . . , θN ), we have

L∗

N∑
l,k=1

|θl − θk|2 ≤
∑

(l,k)∈W

|θl − θk|2 ≤
N∑

l,k=1

|θl − θk|2,

where the positive constant L∗ is given by

(2.6) L∗ :=
1

1 + d(G)|Wc|
, with d(G) := max

1≤i,j≤N
dij .

Here Wc is the complement of edge set W in V × V and |Wc|, denotes its cardinality.

Remark 2.2. (1) L∗ has a strictly positive lower bound as

L∗ ≥
1

1 + d(G)N2
.

(2) If G is a complete graph, then obviously we have L∗ = 1.

2.4. Main result. Based on Subsections 2.1 and 2.2, the network-reduced model (2.2) for
power grids can be transformed to (2.2) together with the restriction (2.4), i.e.,

miθ̈i + diθ̇i = Ωi +
N∑
j=1

aij sin(θj − θi),

N∑
i=1

Ωi = 0, aij = aji,

(2.7)

with initial data

θ(0) = θ0 = (θ10, . . . , θN0), ω(0) = ω0 = (ω10, . . . , ωN0).

We denote θ := (θ1, . . . , θN ), ω := (ω1, . . . , ωN ), and Ω := (Ω1, . . . ,ΩN ).
Before we introduce the main result, for readability we list some important notation used

here or hereafter in the following table.

name notation name notation

average phase θc =
1

N

N∑
i=1

θi weighted sum
of phases

θs =

N∑
i=1

diθi

average frequency ωc =
1

N

N∑
i=1

ωi weighted sum
of frequencies

ωs =

N∑
i=1

miωi

extremal damping
du = max1≤i≤N di
d` = min1≤i≤N di extremal inertia

mu = max1≤i≤N mi

m` = min1≤i≤N mi

fluctuation of
damping

d̂i := di −
1

N

N∑
i=1

di fluctuation of
inertia

m̂i := mi −
1

N

N∑
i=1

mi

extremal coupling
strength

au = max {aij : (j, i) ∈ W}
a` = min {aij : (j, i) ∈ W} - -

Next, we introduce our main hypotheses on the parameters and initial configurations
below.

(H1) The underlying graph G is connected.



8 CHOI AND LI

(H2) Let D0 ∈ (0, π) be given. The parameters satisfy

(2.8) 2R0a`L∗N > λ,

where L∗ is given in Lemma 2.1, and

(2.9) R0 :=
sinD0

D0
, λ :=

√
tr(D̂2)
√
N

+
2

√
tr(M̂2)
√
N

with D̂ = diag(d̂1, d̂2, . . . , d̂N ), M̂ = diag(m̂1, m̂2, . . . , m̂N ), and tr(·) denoting the
trace of a matrix.

(H3) For some ε, µ > 0 with

(2.10)
ε

µ
<

d`
2mu + λ

, and
2
√

2C1 max{ε, µ}‖Ω‖
C`C0

<
1

2
D0,

the initial data satisfy

(2.11)

√
Ẽ [θ0, ω0]

C0
<

1

2
D0,

where

C0 := min

{
µm`

2
, εd` + 2µNa`L∗

1− cosD0

D2
0

− 2ε2mu

µ

}
,

C1 := max

{
3µmu

2
, εdu +

2ε2mudu
µd`

+ µNau

}
,

C` := min {2µd` − 2εmu, 2εR0a`L∗N} − ελ,

and

Ẽ [θ0, ω0] :=ε
N∑
i=1

di(θi0 − θc0)2 + 2ε
N∑
i=1

mi(θi0 − θc0)ωi0

+ µ
N∑
i=1

miω
2
i0 + µ

N∑
i,j=1

aij (1− cos(θi0 − θj0))

(2.12)

with

θc0 :=
1

N

N∑
i=1

θi0.

The main result of this paper is as follows.

Theorem 2.1. (Main theorem for synchronization) Suppose that the hypotheses (H1)-(H3)
hold and let θ(t) be the global solution to system (2.7). Then we have:

(i) |θi(t)− θj(t)| ≤ D0 for all i, j = 1, 2, . . . , N and for all t ≥ 0, where D0 ∈ (0, π) is the
constant assigned in (H2).

(ii) θ(t) asymptotically exhibits complete frequency synchronization, more precisely,

lim
t→∞

θ̇i(t) = 0, i = 1, 2, . . . , N.

(iii) θ(t) asymptotically exhibits phase-locked state.
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Remark 2.3. (1) The connectedness of the underlying graph is indeed necessary for syn-
chronization. Otherwise, the oscillators from different components, in general, cannot
be expected to synchronize.

(2) The positivity of Ẽ [θ, ω] will be proved in Lemma 3.7.

2.5. Discussion and Comparison. We first explain about the accessibility of the hy-
potheses (H1)-(H3). The connectivity of G, i.e., (H1), guarantees the positivity of the
constant L∗. The hypothesis (H2) can hold true when the variances of inertia and damp-

ing are small. Furthermore, the hypothesis (H2) together with the condition ε
µ <

d`
2mu+λ

guarantees that C0 > 0 and C` > 0. Finally, the second condition in (2.10) can be fulfilled
when the size of (micro) natural frequencies ‖Ω‖ are small. In view of the macro-micro
decomposition in Subsection 2.2, the smallness of ‖Ω‖ means that the ratios Pm,i/di for all
i are similar.

Compared to [12, 26], the advantage of our main result lies in at least two aspects. First,
we study the power grid systems with general damping and inertia coefficients. However,
the highly over-damped property is required in [12], and the analysis in [26] is strictly
limited to the case of homogeneous dampings. Second, we are dealing with the system with
most general network topology since the hypothesis (H1) is necessary for synchronization.
In contrast, a crucial condition in [26] is that the underlying graph should have a diameter
less than or equal to 2.

In [8], the authors considered the synchronization of second-order model with uniform
inertia and damping (see (2.5) in Remark 2.1). Obviously, the current system (2.2) (or
equivalently, (2.7)) covers the above model as a special case. If we apply Theorem 2.1
for (2.5), we find λ = 0 since di = 1 and mi = m for all i ∈ {1, 2, . . . , N}. Hence, the
assumption (H2) must hold true ; in this sense, Theorem 2.1 clearly improves the result in
[8, Theorem 3.4].

Let us turn to our result. First, we would like to mention that Theorem 2.1 gives an
estimate for the sync basin of (2.7), through an explicit formula. Supposing we are given a
transient state of a power system in terms of transient phase differences and frequencies, it
could be a hard problem to quickly determine whether this state is located in the sync basin,
in particular when we are working with a large network. Nevertheless, by Theorem 2.1 we
can predicate that the transient state is going to synchronize if it meets the framework
in (H1)-(H3). Let us assume that the parameters mi, di,Ωi and aij are given, and the
coefficients D0, ε and µ are suitably pre-assigned. By Theorem 2.1, if the transient state is
located in the set

(2.13)

(θ, ω) :

√
Ẽ [θ, ω]

C0
<

1

2
D0

 ,

then the system will be synchronized. Although the set looks complicated, it is still easy to
operate since it can be fast-speed tested by carrying out simple operations with a computer.

Second, we could observe some interesting points from the statement of Theorem 2.1.
We notice that the parametric condition (H2) becomes more flexible when we increase the
constant L∗ and/or decrease the constant λ. Recalling (2.6) we see that if one decreases
the diameter of the graph or increase the number of arcs, then the value of L∗ becomes
larger and the parametric condition is relaxed. On the other hand, by (2.9), decreasing the
variances of di and mi also helps to relax this condition.
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On the other hand, we acknowledge that our rigorous estimate is conservative, in partic-
ular for graphs with small al

au
. Let G be a connected graph which satisfies the hypothesis

(H2). If we put a redundant edge with a small weight, we realize that the condition (H2)
and the initial condition (2.11) may become harder to satisfy. Actually, it will break finally
as the weight of the redundant edge decreases to some small enough value. Therefore, our
estimate is sensitive to the network “structure” in the sense that some connection is removed
or added. In despite if this point, our estimate is continuously dependent on the network
“strength” when the network structure is fixed. Another point is that the condition (H2)
depends on the number of oscillators N . If we increase N , the condition (H2) becomes
easier to satisfy, and smaller al can be allowed.

3. Proof of main result: convergence to phase-locked states

In this section, we give the proof of the main result, Theorem 2.1. Our main strategy can
be summarized as follows. First, we present a gradient formulation of the system (2.7) and
introduce some related estimates (see Subsection 3.1); they tell that the boundedness of
θ(t) implies the emergence of phase-locking. Second, in order to prove the boundedness of
θ(t), we construct a virtual energy functional and present several properties (see Subsection

3.2). Departing from [8, 19], our energy functional Ẽ(t) involves the fluctuation of phases
around their average θc(t). Finally, we combine the above estimates to prove Theorem 2.1
(see Subsection 3.3).

3.1. A gradient-like flow formulation. In this part we present a formulation of system
(2.2) as a second-order gradient-like flow if the adjacency matrix A = (aij) is symmetric.
For the classic Kuramoto model, the potential for the gradient flow was first introduced in
[34], which can be extended to the Kuramoto model with symmetric interactions.

Let M := diag{m1, . . . ,mN} and D := diag{d1, . . . , dN}. The following result was
presented in [8]; we sketch the proof here for reader’s convenience.

Lemma 3.1. The system (2.2) is a second-order gradient-like system with a real analytical
potential f , i.e.,

(3.1) Mθ̈ +Dθ̇ = ∇f(θ),

if and only if the adjacency matrix A = (aij) is symmetric.

Proof. (i) Suppose that the matrix A is symmetric, i.e., aij = aji. We define f : RN → R as

(3.2) f(θ) :=

N∑
k=1

Ωkθk +
1

2

N∑
k,l=1

akl cos(θk − θl).

It is clearly analytic in θ, and system (2.2) is a second-order gradient-like system (3.1) with
the potential f defined in (3.2).

(ii) We now assume that the system (2.2) is a gradient system with an analytic potential
f , i.e.,

∂f(θ)

∂θi
= Ωi +

N∑
j=1

aij sin(θj − θi), i = 1, 2, . . . , N.

Then the potential f must satisfy
∂2f

∂θk∂θl
=

∂2f

∂θl∂θk
for l 6= k. This concludes alk = akl for

all l, k ∈ {1, 2, . . . , N}. �
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We next present a convergence result for the second-order gradient-like system on RN :

(3.3) Mθ̈ +Dθ̇ = ∇f(θ), θ ∈ RN , t ≥ 0.

Note that the set of equilibria S coincides with the set of critical points of the potential f :

S := {θ ∈ RN : ∇f(θ) = 0}.

Based on the celebrated theory of  Lojasiewicz [27], a convergence result of the gradient-like
system with uniform inertia was established in [20]; as a slight extension the following result
was given in [26].

Lemma 3.2. [26] Assume that f is analytic and let θ = θ(t) be a global solution of (3.3).

If θ(·) ∈ `1,∞(R+,RN ), i.e., θ(·) ∈ `∞(R+,RN ) and θ̇(·) ∈ `∞(R+,RN ), then there exists
an equilibrium θe ∈ S such that

lim
t→+∞

{
‖θ̇(t)‖+ ‖θ(t)− θe‖

}
= 0.

Remark 3.1. By Lemma 3.2, if we can prove the boundedness of position (or phase) and
velocity (or frequency) for the solution of (3.3), then we immediately obtain their conver-
gences.

Before we proceed, we first clarify that the Kuramoto oscillators are treated, in this
paper, as a dynamic system on the whole space RN . Indeed, one can consider it as a system
on the N -torus S1 × · · · × S1 since the coupling function sin(·) is 2π-periodic. However, in
order to apply the  Lojasiewicz’s theory, we should treat (2.2) as a system on RN . For more
details on  Lojasiewicz’s theory and applications, please refer to [8, 20, 25, 26].

By Lemma 3.1, the system (2.2) is a special case of general second-order gradient-like
systems. This enables us to obtain a priori result for convergence of system (2.2) by using

Lemma 3.2. However, when we consider (2.2) for general natural frequencies with
∑N

i=1 Ωi 6=
0, we cannot expect θ(·) ∈ `∞(R+,RN ), since the right hand side of (2.2) sums to

∑N
i=1 Ωi 6=

0. This is why we need to apply the macro-micro decomposition and introduce the micro-
variables in Section 2.2, which allows us to assume without loss of any generality that∑N

i=1 Ωi = 0. In the following context, we will work with system (2.7).

Lemma 3.3. (Boundedness implies convergence) Let θ = θ(t) be a solution to (2.7) in
`∞(R+,RN ). Then there exists an equilibrium θ∞ such that

lim
t→∞
{‖θ̇(t)‖+ ‖θ(t)− θ∞‖} = 0.

Proof. By Lemma 3.1, the system (2.7) is a gradient like system (3.3). By Lemma 3.2, to
show the desired result it suffices to show that

θ̇(·) ∈ `∞(R+,RN ).

Next we verify this relation.
It follows from (2.7) that ωi satisfies

miω̇i + diωi = Ωi +

N∑
j=1

aij sin(θj − θi) ≤ |Ωi|+
N∑
j=1

aij .

Note that ωi is an analytic function of t. This implies that the zero-set {t : ωi(t) = 0} is
countable and finite in any finite time-interval, i.e., |ωi(t)| is piecewise differentiable and
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continuous. We multiply the above relation by sgn(ωi) and divide it by mi > 0 to get

d|ωi|
dt

+
di
mi
|ωi| ≤

1

mi

|Ωi|+
N∑
j=1

aij

 , a.e. t ≥ 0.

We now use Gronwall inequality and continuity of |ωi| to obtain that for all t > 0,

|ωi(t)| ≤ |ωi(0)|e−
di
mi
t
+

1

di

|Ωi|+
N∑
j=1

aij

(1− e−
di
mi
t
)
≤ |ωi(0)|+ 1

di

|Ωi|+
N∑
j=1

aij

 .

�

By Lemma 3.3, to prove the emergence of phase-locking for (2.7), it suffices to show
θ(·) ∈ `∞(R+,RN ). In the following subsection we will construct an energy functional and
present some estimates, which lead to the boundedness of phase.

3.2. Construction of the energy functional Ẽ. The proof of boundedness of phase along
the trajectory will rely on a virtual energy and its estimate. This method was employed
in [8] to study the second-order model with uniform parameters, i.e., (2.5). In [19] this
approach was also used to study the practical synchronization of second-order oscillators
with heterogeneous dynamics and uniform parameters.

Inspired by the approach in [8, 19], we first consider a temporal energy functional E :

E [θ, ω] := ε
N∑
i=1

diθ
2
i + 2ε

N∑
i=1

miθiωi + µ
N∑
i=1

miω
2
i︸ ︷︷ ︸

E1[θ,ω]

+µ
N∑

i,j=1

aij (1− cos(θi − θj))︸ ︷︷ ︸
E2[θ]

,
(3.4)

where ε and µ are positive constants. In order for the boundedness of phase for (2.7), we
need to derive some basic properties for E [θ, ω] and some estimates on the evolution of
E [θ, ω] along the flow (2.7).

First we can find the equivalence between E1[θ, ω] and ‖θ‖2 + ‖ω‖2.

Lemma 3.4. Let ε and µ be constants with ε
µ <

d`
2mu

. Then we have the following relation:

C̄0(‖θ‖2 + ‖ω‖2) ≤ E1[θ, ω] ≤ C̄1(‖θ‖2 + ‖ω‖2), ∀ θ, ω ∈ RN ,
where C̄0 and C̄1 are positive constants (independent of (θ, ω)) given by

C̄0 := min

{
µm`

2
, εd` −

2ε2mu

µ

}
and C̄1 := max

{
3µmu

2
, εdu +

2ε2mudu
µd`

}
.

Proof. In (3.4), the cross term θiωi can be estimated by Young’s inequality:

|θiωi| ≤
ε

µ
θ2i +

µ

4ε
ω2
i .

Then, we have

2εmi|θiωi| ≤ 2
ε2

µ
miθ

2
i +

µmi

2
ω2
i ≤ 2

ε2

µ

mu

d`
diθ

2
i +

µmi

2
ω2
i .

Therefore,

µ
N∑
i=1

mi

2
ω2
i +

(
εd` −

2ε2mu

µ

) N∑
i=1

θ2i ≤ E1[θ, ω] ≤ µ
N∑
i=1

3mi

2
ω2
i +

(
εdu +

2ε2mudu
µd`

) N∑
i=1

θ2i .
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This gives the desired result. �

For the term E2[θ], we cannot expect the equivalence relation between E2[θ] and ‖θ‖2.
Instead, we have the following lemma.

Lemma 3.5. Let D0 ∈ (0, π) and suppose that

max
1≤i,j≤N

|θi − θj | ≤ D0.

Then we have the following relation:

Ĉ0‖θ − θc‖2 ≤ E2[θ] ≤ µNau‖θ − θc‖2,

where Ĉ0 = 2µNa`L∗
1−cosD0

D2
0

and θ− θc is understood as the vector θ− θc := (θ1, . . . , θN )−
(θc, . . . , θc).

Proof. Since θi − θj ∈ [−D0, D0], we have

(3.5)
1− cosD0

D2
0

|θi − θj |2 ≤ 1− cos(θi − θj) ≤
1

2
|θi − θj |2.

Here, the left inequality relies on the fact that x 7→ 1−cosx
x2

is an even function which is
monotonically decreasing on (0, π). We then use (3.5) to estimate E2[θ] as follows:

E2[θ] ≤ µ
N∑

i,j=1

au(1− cos(θi − θj)) ≤
µau

2

N∑
i,j=1

|θi − θj |2 = µNau‖θ − θc‖2,

E2[θ] ≥ µ
∑

(i,j)∈W

a`(1− cos(θi − θj)) ≥ µa`
1− cosD0

D2
0

∑
(i,j)∈W

|θi − θj |2

≥ µa`L∗
1− cosD0

D2
0

N∑
i,j=1

|θi − θj |2 = 2µNa`L∗
1− cosD0

D2
0

‖θ − θc‖2.

Here we used the relation

(3.6)

N∑
i,j=1

|θi − θj |2 = 2N‖θ − θc‖2.

�

Next we turn to consider the evolution of E [θ, ω] along the flow (2.7). The following
lemma will be useful.

Lemma 3.6. Let D0 ∈ (0, π) and suppose that the phase configuration {θi}Ni=1 satisfies

max
1≤i,j≤N

|θi − θj | ≤ D0.

Then we have ∑
(i,j)∈W

aij sin(θj − θi)(θj − θi) ≥ 2R0a`L∗N‖θ − θc‖2,

where R0 is given by R0 := sinD0
D0

.
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Proof. It follows from the assumption

max
1≤i,j≤N

|θj − θi| ≤ D0 < π,

and the simple relation

x sinx ≥ R0x
2 for x ∈ [−D0, D0],

that ∑
(i,j)∈W

aij sin(θj − θi)(θj − θi) ≥ R0

∑
(i,j)∈W

aij |θj − θi|2

≥ R0a`L∗
∑

1≤i,j≤N
|θj − θi|2 = 2R0a`L∗N‖θ − θc‖2.

Here we used the relation (3.6), and L∗ is the positive constant defined in Lemma 2.1. �

Now we derive a differential inequality for E [θ, ω] along the flow (2.7). We recall that the
system (2.7) can be rewritten as

θ̇i = ωi,

ω̇i =
1

mi

−diωi + Ωi +
N∑
j=1

aij sin(θj − θi)

 ,
N∑
i=1

Ωi = 0, aij = aji.

(3.7)

For notational simplicity, let’s denote

E(t) := E [θ(t), ω(t)],

where (θ(t), ω(t)) is a solution to the system (2.7) or (3.7).

Proposition 3.1. Let D0 ∈ (0, π) and {θi}Ni=1 be any smooth solution to the system (2.7).
Suppose that for some T0 > 0,

max
t∈[0,T0]

max
1≤i,j≤N

|θi(t)− θj(t)| ≤ D0.

Then, for any ε, µ > 0 with ε
µ <

d`
mu

, we have

(3.8)
d

dt
E(t) + C̄`D(t) ≤ 2 max{ε, µ}‖Ω‖ (‖θ − θc‖+ ‖ω‖) , for t ∈ [0, T0],

where D(t) := D[θ(t), ω(t)] and C̄` are defined by

D[θ, ω] := ‖ω‖2 + ‖θ − θc‖2 and C̄` := min {2µd` − 2εmu, 2εR0a`L∗N} .

Proof. The proof is divided into three steps.
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• Step A.- We multiply 2ωi on both sides of the second equation in (3.7)2, sum it over i,
and then use the symmetry of aij to obtain

d

dt

N∑
i=1

miω
2
i = −2

N∑
i=1

diω
2
i + 2

N∑
i=1

Ωiωi + 2
N∑

i,j=1

aij sin(θj − θi)ωi

= −2

N∑
i=1

diω
2
i + 2

N∑
i=1

Ωiωi −
N∑

i,j=1

aij sin(θj − θi)(ωj − ωi).

On the other hand,

d

dt
E2[θ] = µ

N∑
i,j=1

aij sin(θi − θj)(ωi − ωj).

So we have

d

dt

(
µ

N∑
i=1

miω
2
i + E2[θ]

)
= −2µ

N∑
i=1

diω
2
i + 2µ

N∑
i=1

Ωiωi ≤ −2µ
N∑
i=1

diω
2
i + 2µ‖Ω‖‖ω‖.

This yields

(3.9)
d

dt
(µ〈Mω,ω〉+ E2[θ]) ≤ −2µd`‖ω‖2 + 2µ‖Ω‖‖ω‖.

• Step B.- We now multiply 2θi on both sides of (3.7)2 to obtain

2mi

(
dωi
dt

)
θi = −di

d

dt
θ2i + 2Ωiθi + 2

N∑
j=1

aij sin(θj − θi)θi.

Summing the above equality over i and using the symmetry of aij and Lemma 3.6, we find

2
N∑
i=1

mi

(
dωi
dt

)
θi = − d

dt

N∑
i=1

diθ
2
i + 2

N∑
i=1

Ωiθi + 2
∑

(j,i)∈W

aij sin(θj − θi)θi

= − d

dt

N∑
i=1

diθ
2
i + 2

N∑
i=1

Ωiθi −
∑

(j,i)∈W

aij sin(θj − θi)(θj − θi)

= − d

dt

N∑
i=1

diθ
2
i + 2

N∑
i=1

Ωi(θi − θc)−
∑

(j,i)∈W

aij sin(θj − θi)(θj − θi)

≤ − d

dt

N∑
i=1

diθ
2
i + 2‖Ω‖‖θ − θc‖ − 2R0a`L∗N‖θ − θc‖2,

(3.10)

where we used the restriction that
N∑
i=1

Ωi = 0.

On the other hand, the term in the left hand side of relation (3.10) can be rewritten as

(3.11) mi
dωi
dt
θi = mi

d

dt
(ωiθi)−miω

2
i .
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Combining (3.10) and (3.11), we obtain

d

dt

(
2

N∑
i=1

miωiθi +

N∑
i=1

diθ
2
i

)
+ 2R0a`L∗N‖θ − θc‖2 ≤ 2‖Ω‖‖θ − θc‖+ 2

N∑
i=1

miω
2
i .

Finally, we use the fact
N∑
i=1

miω
2
i ≤ mu‖ω‖2,

to conclude

d

dt
(〈Dθ, θ〉+ 2〈Mθ,ω〉) + 2R0a`L∗N‖θ − θc‖2 ≤ 2‖Ω‖‖θ − θc‖+ 2mu‖ω‖2.(3.12)

• Step C.- Taking (3.9) + ε× (3.12) yields

d

dt
E(t) + 2(µd` − εmu)‖ω‖2 + 2εR0a`L∗N‖θ − θc‖2 ≤ 2 max{ε, µ}‖Ω‖

(
‖θ − θc‖+ ‖ω‖

)
.

Then
d

dt
E(t) + C̄`D(t) ≤ 2 max{ε, µ}‖Ω‖

(
‖θ − θc‖+ ‖ω‖

)
, for t ∈ [0, T0].

This is the desired inequality and the proof is completed. �

As in [8], in order to show the boundedness of phases we expect a differential inequality
for the energy in the following form

d

dt
E(t) + β1E(t) ≤ β2

√
E(t),

where β1 and β2 are positive constants. In the case of uniform inertia and damping, without
loss of generality we can assume θc(t) = 0 for all t ≥ 0 (see [8, Subsection 2.1] or Remark 2.1).
Thus a desired differential inequality immediately follows from (3.8) by invoking Lemmas
3.4 and 3.5 with θc(t) ≡ 0. However, as we mentioned in Remark 2.1, for (2.7) we cannot
assume θc(t) = 0 due to the nonuniform parameters. This means that the functional E [θ, ω]
may not be bounded from above by D[θ, ω]. Therefore, E [θ, ω] and D[θ, ω] are not equivalent
and the relation (3.8) does not produce a desired differential inequality for E [θ, ω]. In order

to obtain the desired property, we introduce a modified energy functional Ẽ as follows:

Ẽ [θ, ω] := ε
N∑
i=1

di(θi − θc)2 + 2ε
N∑
i=1

mi(θi − θc)ωi + µ
N∑
i=1

miω
2
i︸ ︷︷ ︸

Ẽ1[θ,ω]

+µ
N∑

i,j=1

aij (1− cos(θi − θj))︸ ︷︷ ︸
E2[θ]

.

Next we derive the relation between Ẽ and E , and the relation between Ẽ and D.

Lemma 3.7. (Properties of Ẽ)

(i) The functionals E and Ẽ have the following relation:

Ẽ = E − 2εθsθc + ε tr(D)θ2c − 2εωsθc .(3.13)

(ii) The functional Ẽ [θ, ω] is positive, and it is equivalent with D[θ, ω]:

(3.14) C0D[θ, ω] ≤ Ẽ [θ, ω] ≤ C1D[θ, ω], ∀ θ, ω ∈ RN ,

where C0 and C1 are given as in (H3).
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Proof. (i) The relation between E and Ẽ immediately follows from the definition of Ẽ :

Ẽ = E − 2ε
N∑
i=1

diθiθc + ε
N∑
i=1

diθ
2
c − 2ε

N∑
i=1

miωiθc

= E − 2εθsθc + ε tr(D)θ2c − 2εωsθc .

(ii) Replacing the term θ by θ − θc in the proof of Lemma 3.4 yields

µm`

2
‖ω‖2+

(
εd` − 2

ε2mu

µ

)
‖θ−θc‖2 ≤ Ẽ1[θ, ω] ≤ 3µmu

2
‖ω‖2+

(
εdu +

2ε2mudu
µd`

)
‖θ−θc‖2.

We combine this relation with Lemma 3.5 to find the desired inequalities. The positivity of

Ẽ [θ, ω] immediately follows from the positivity of D[θ, ω]. �

We now consider the evolution of the modified energy functional along (2.7) and denote

Ẽ(t) := Ẽ [θ(t), ω(t)].

The following lemma will be useful.

Lemma 3.8. (Conservation property) The weighted sums of phases and frequencies satisfy

(3.15) θ̇s + ω̇s = 0.

Proof. This immediately follows from (2.7). Here we used the restriction
∑N

i=1 Ωi = 0. �

Proposition 3.2. (Estimate for modified energy) Let D0 ∈ (0, π) and {θi}Ni=1 be any smooth
solution to the system (2.7). Suppose that

2R0a`L∗N > λ with λ =

√
tr(D̂2)
√
N

+
2

√
tr(M̂2)
√
N

,

and

(3.16) max
t∈[0,T0]

max
1≤i,j≤N

|θi(t)− θj(t)| ≤ D0,

for some T0 > 0. Then, for any ε, µ > 0 with ε
µ <

d`
2mu+λ

, we have

(3.17)
d

dt
Ẽ(t) + C`D(t) ≤ 2

√
2 max{ε, µ}‖Ω‖√

C0

√
Ẽ(t), for t ∈ [0, T0],

where C` is a positive constant given by C` := C̄` − ελ. Moreover, we have

(3.18)
d

dt
Ẽ(t) +

C`
C1
Ẽ(t) ≤ 2

√
2 max{ε, µ}‖Ω‖√

C0

√
Ẽ(t), for t ∈ [0, T0].

Proof. It follows from Proposition 3.1 and (3.13) in Lemma 3.7 that Ẽ satisfies

d

dt
Ẽ(t) + C̄`D(t) ≤ d

dt

(
ε tr(D)θ2c − 2εθsθc − 2εωsθc

)
︸ ︷︷ ︸

I

+ 2 max{ε, µ}‖Ω‖ (‖θ − θc‖+ ‖ω‖)︸ ︷︷ ︸
J

.
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Using (3.15), we rewrite I as

I = 2ε tr(D)θcθ̇c − 2εθ̇sθc − 2εθsθ̇c − 2εω̇sθc − 2εωsθ̇c

= 2ε tr(D)θcθ̇c − 2εθsθ̇c − 2εωsθ̇c

(
∵ θ̇s + ω̇s = 0

)
= −2εθ̇c

N∑
i=1

di(θi − θc)− 2εωsθ̇c

(
∵ θs =

N∑
i=1

di(θi − θc) + tr(D)θc

)

= −2εωc

N∑
i=1

di(θi − θc)− 2εωsωc

(
∵ θ̇c = ωc :=

1

N

N∑
i=1

ωi

)
.

Note that

N∑
i=1

di(θi − θc) =
N∑
i=1

d̂i(θi − θc) and ωs =
N∑
i=1

m̂iωi + tr(M)wc.

This yields

I = −2εωc

N∑
i=1

d̂i(θi − θc)− 2ε

(
N∑
i=1

m̂iωi + tr(M)wc

)
ωc

≤ −2εωc

N∑
i=1

d̂i(θi − θc)− 2εωc

N∑
i=1

m̂iωi.

On the other hand, we find∣∣∣∣∣2εωc
N∑
i=1

d̂i(θi − θc) + 2εωc

N∑
i=1

m̂iωi

∣∣∣∣∣
=

∣∣∣∣∣2εN
(

N∑
i=1

ωi

)(
N∑
i=1

d̂i(θi − θc)

)
+

2ε

N

(
N∑
i=1

m̂iωi

)(
N∑
i=1

ωi

)∣∣∣∣∣
≤ 2ε

N

√
N‖ω‖

√
tr(D̂2)‖θ − θc‖+

2ε

N

√
tr(M̂2)‖ω‖

√
N‖ω‖

=
2ε√
N

√
tr(D̂2)‖ω‖‖θ − θc‖+

2ε

√
tr(M̂2)
√
N

‖ω‖2

≤ ε


√
tr(D̂2)
√
N

‖ω‖2 +

√
tr(D̂2)
√
N

‖θ − θc‖2
+

2ε

√
tr(M̂2)
√
N

‖ω‖2

≤ ε


√
tr(D̂2)
√
N

+
2

√
tr(M̂2)
√
N

D[θ, ω].

Thus, we have

I ≤ ε


√
tr(D̂2)
√
N

+
2

√
tr(M̂2)
√
N

D[θ, ω].
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For the estimate of J , we obtain

J = 2 max{ε, µ}‖Ω‖ (‖θ − θc‖+ ‖ω‖)

≤ 2
√

2 max{ε, µ}‖Ω‖
√
‖θ − θc‖2 + ‖ω‖2

≤ 2
√

2 max{ε, µ}‖Ω‖√
C0

√
Ẽ(t),

where we used the elementary relation a+b ≤
√

2
√
a2 + b2 for a, b ≥ 0 and (3.14) in Lemma

3.7. We now combine the above estimates for I and J to see that, for t ∈ [0, T0],

d

dt
Ẽ(t) +

(
C̄` − ελ

)
D(t) ≤ 2

√
2 max{ε, µ}‖Ω‖√

C0

√
Ẽ(t).

This is the desired inequality (3.17). Finally, the last inequality (3.18) immediately follows
from (3.14) and (3.17). �

Now we are able to prove the main result of this paper.

3.3. Proof of Theorem 2.1. For the sake of notational simplicity, we set

y(t) :=

√
Ẽ(t), t ≥ 0.

Define

T :=

{
T ∈ R+ : y(t) <

√
C0

2
D0, ∀ t ∈ [0, T )

}
, T ∗ := sup T .

Note that by the assumption (2.11),

y(0) <

√
C0

2
D0.

Due to the continuity of y, there exists a positive constant T > 0 such that T ∈ T . We now
claim that

(3.19) T ∗ =∞.

Suppose the opposite, i.e., T ∗ is finite. Then, we should have

(3.20) y(T ∗) =

√
C0

2
D0.

Note that on the interval [0, T ∗), we can derive that

max
1≤i,j≤N

|θi(t)− θj(t)|2 ≤ 4 max
1≤i≤N

|θi(t)− θc(t)|2 ≤ 4

N∑
i=1

|θi(t)− θc(t)|2

≤ 4D(t) ≤ 4

C0
Ẽ(t) ≤ 4

C0

(√
C0

2
D0

)2

= D2
0,

which means that the condition (3.16) is fulfilled, and Proposition 3.2 can be applied for
[0, T ∗]. By (3.18) we have

(3.21)
dy

dt
≤
√

2 max{ε, µ}‖Ω‖√
C0

− C`
2C1

y, for t ∈ [0, T ∗].
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Solving the above differential inequality (3.21) yields

y(t) ≤ y(0)e
− C`

2C1
t
+

2
√

2C1 max{ε, µ}‖Ω‖
C`
√
C0

(
1− e−

C`
2C1

t
)
, for t ∈ [0, T ∗].

Thus we get

y(T ∗) ≤ max

{
y(0),

2
√

2C1 max{ε, µ}‖Ω‖
C`
√
C0

}
<

√
C0

2
D0,

where we used the assumptions (2.10) and (2.11). This contradicts (3.20) and the claim
(3.19) is proved, i.e.,

Ẽ(t) <
C0

4
D2

0, ∀ t ≥ 0.

This implies that

(3.22) max
1≤i,j≤N

|θi(t)− θj(t)|2 ≤ 4D(t) ≤ 4

C0
Ẽ(t) < D2

0, ∀ t ≥ 0,

and the desired result (i) in Theorem 2.1 is obtained. On the other hand, we recall the
relation (3.15) to get

ωs(t) + θs(t) = ωs(0) + θs(0), ∀ t ≥ 0.

This means that

|θs(t)| ≤ |ωs(t) + θs(t)|+ |ωs(t)| = |ωs(0) + θs(0)|+ |ωs(t)|, ∀ t ≥ 0.

We now use the fact that ω(·) ∈ `∞(R+,RN ) in Lemma 3.3 to deduce

(3.23) |θs(t)| ≤ K0, ∀ t ≥ 0,

for some positive constant K0. Combining the relations (3.22) and (3.23), we see that the
trajectory θ(·) is bounded as a function in time t. We now apply Lemma 3.3 to obtain the
desired results (ii) and (iii) in Theorem 2.1. This completes the proof.

Remark 3.2. If, in addition, D0 ≤ π/2, then the emergent phase-locked state must be
confined in an arc with length less than π/2. Thus, the result in [26, Theorem 3.1] holds.
Furthermore, by appealing to the approach in [26] (see the Step 2 in the proof of Theorem
2.1), we can derive that the convergence to the phase-locked states is exponentially fast.

4. Numerical simulations

In this section, we present some simulation for three oscillators to visualize the region of
attraction. As we see in Theorem 2.1, the estimated region (2.13) depends on the choice of
parameters such as D0 and (ε, µ). Note that the constant D0 is actually an upper bound
of phase differences for the system (see (3.22)), while the pair (ε, µ) produces the energy
functional. In general, it is not analytically possible to find the optimal choice of the pair
(ε, µ) which leads to a best estimate of the region. In this section, we will make some
simulations for a special setting and illustrate how D0 and (ε, µ) influence the estimated
region (2.13). The numerical method is a classical fourth order Runge-Kutta one using the
built-in ode45 Matlab command.

We will consider a model of three oscillators given by

miθ̈i + diθ̇i = Ωi +

N∑
j=1

aij sin(θj − θi), i = 1, 2, 3.
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(a) (b) (c)

Figure 1. The region of attraction for special choices of D0 = 0.5π and
admissible (ε, µ) with (a): ε

µ = 1, (b): ε
µ = 1

5 , (c): ε
µ = 1

9 .

To reduce the dimension of variables, we assume that the initial frequencies are determined
by initial phases in the following way:

(4.1) diωi(0) = Ωi +
N∑
j=1

aij sin(θj(0)− θi(0)).

We set the inertias mi’s and non-homogeneous dampings di’s by using random data which
are uniformly distributed with

mi ∈ (0.10, 0.15), di ∈ (0.30, 0.40),
d`

2mu + λ
> 1,

and set the symmetric coupling as aij = 0.1 for any (i, j) ∈ W and aij = 0 otherwise. We
consider a network on a line-shaped graph (that is, 1↔ 2↔ 3).

In order to show the region of attraction in a plane, we introduce the following variables:

x = θ1 − θ2, y = θ2 − θ3,
then x+ y = θ1 − θ3 and

θ1 − θc =
2x+ y

3
, θ2 − θc =

−x+ y

3
, θ3 − θc =

−x− 2y

3
.

Therefore, the initial frequencies in (4.1) and initial energy in (2.12) are fully determined
by x and y. We will plot the region (x, y) in the plane to illustrate the region of attraction.

4.1. Varying (ε, µ). In this part, we illustrate the region of attraction for varying (ε, µ) by
fixing range of phases as D0 = 0.5π. For given parameters mi, di and aij , we can compute
the parameters R0, λ and check (2.8). For simplicity in the simulation, let us consider the
following situations:

ε = µ, or ε =
1

5
µ, or ε =

1

9
µ,

which allows us to reduce the two-parameter (ε, µ) to one-parameter ε. The regions of
attraction, registered by the gray color, are shown in Figure 1.

4.2. Varying D0. In Figure 2 and Figure 3, we illustrate the estimated region for different
choices of D0, namely, D0 = 0.3π and D0 = 0.7π. We use the same parameters and (ε, µ)
as in Figure 1 for a reasonable comparison. Figures 1-3 indicate that the larger choice of
D0 produces a larger region.
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(a) (b) (c)

Figure 2. The region of attraction for special choices of D0 = 0.3π and
admissible (ε, µ) with (a): ε

µ = 1, (b): ε
µ = 1

5 , (c): ε
µ = 1

9 .

(a) (b) (c)

Figure 3. The region of attraction for special choices of D0 = 0.7π and
admissible (ε, µ) with (a): ε

µ = 1, (b): ε
µ = 1

5 , (c): ε
µ = 1

9 .

5. Conclusion

In this paper, we studied the synchronization of second-order nonuniform Kuramoto
oscillators (swing equations) for power grids on connected networks with general dampings.
We employed the energy method and gradient-like flow approach to obtain a sufficient
condition for the synchronization, which gives an explicit estimate for sync basin. In view
of the potential application in engineering, the quantitative improvement of the estimate,
including the parametric condition and the basin, would be an interesting future problem.
The heterogeneity of the parameters and/or general connectivity mean that the method of
studying the phase difference cannot work well, while our estimate gives a way to overcome
these difficulties.
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