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Abstract. In this paper, we establish the full Lp boundedness of noncommutative
Bochner-Riesz means on two-dimensional quantum tori, which completely resolves an
open problem raised in [7] in the sense of the Lp convergence for two dimensions. The
main ingredients are sharp estimates of noncommutative Kakeya maximal functions
and geometric estimates in the plane. We make the most of noncommutative theories
of maximal/square functions, together with microlocal decompositions in both proofs
of sharper estimates of Kakeya maximal functions and Bochner-Riesz means.

1. Introduction and main results

Inspired by operator algebras, harmonic analysis, noncommutative geometry and
quantum probability, noncommutative harmonic analysis has rapidly developed recent-
ly (see e.g. [4, 7, 15, 16, 22, 27, 28, 35, 36, 38, 40, 60, 61]). The purpose of this paper
is to study the noncommutative Bochner-Riesz means. We start by introducing the
classical Bochner-Riesz means in Euclidean spaces.

It is well-known that the boundedness and convergence of Bochner-Riesz means are
among the most important problems in harmonic analysis. The study of Bochner-Riesz
means can also be regarded as making precise the sense in which the Fourier inversion
formula holds. Recall that the Bochner-Riesz means on the usual torus Td are defined
by

(1.1) Bλ
R(f)(x) =

∑
m∈Zd

(1− |m|2

R2
)λ+f̂(m)e2πi⟨m,x⟩

where λ ≥ 0, R > 0, (x)+ = max{x, 0} and f̂(m) =
∫
Td f(x)e

−2πi⟨m,x⟩dx. The central

topic of Bochner-Riesz means is to seek the optimal range of λ such that Bλ
R(f) con-

verges to f in some sense. In particular, the problem of the Lp convergence turns out

to show (1− |·|2
R2 )

λ
+ : Zd → R is a uniform Lp Fourier multiplier in R > 0, which can be

formulated as the so called Bochner-Riesz conjecture as follows (see e.g. [47]).

Conjecture. Suppose λ > 0 and 2d
d+1+2λ < p < 2d

d−1−2λ . Then we have

sup
R>0

∥Bλ
R(f)∥Lp(Td) . ∥f∥Lp(Td).
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One can also define the Bochner-Riesz means on Rd by

(1.2) Bλ
R(f)(x) =

∫
Rd

(
1− |ξ|2

R2

)λ
+
f̂(ξ)e2πi⟨ξ,x⟩dξ,

where f̂ is the Fourier transform of f on Rd. By the standard transference technique
(see e.g. [17]), the uniform Lp boundedness of Bλ

R in R > 0 on Td is equivalent to that

of Bλ
R on Rd. Because of this equivalence, in modern literature, researchers prefer to

study the Bochner-Riesz means on Rd.
The study of Bochner-Riesz means originated from S. Bochner [1]. The necessity of

the conditions of λ and p in the Bochner-Riesz conjecture was given by C. Herz [20].
In dimension two, this conjecture has been completely resolved by L. Carleson and P.
Sjölin [6], independently later by C. Fefferman [14], L. Hörmander [24] and A. Córdoba
[10]. When dimension d ≥ 3, the Bochner-Riesz conjecture is still open. We refer to
some substantial progress in [3, 19, 31, 52, 53] and the references therein.

Concerning the pointwise convergence of Bλ
R(f), it is natural to investigate the max-

imal Bochner-Riesz means defined by Bλ
∗ (f)(x) = supR>0 |Bλ

R(f)(x)|. It is conjectured
that Bλ

∗ is bounded on Lp(Rd) for λ > 0 and 2d−1
d+2λ < p < 2d

d−1−2λ (see [51]), where the
range of p ≤ 2 is different from that of the Bochner-Riesz conjecture. It is clear that
the study of Bλ

∗ is hander than that of Bλ. Up to now, this maximal Bochner-Riesz
conjecture is even open for two dimensions. For some important progress, we refer the
reader to [5, 33, 51] in the two-dimensional case and [31, 32, 46] for higher dimensions.

It should be pointed out that the study of Bochner-Riesz means is also quite re-
lated to several conjectures in harmonic analysis: Fourier restriction conjecture, local
smoothing conjecture, maximal Kakeya function conjecture and Kakeya set conjecture
(see e.g. [50]). To investigate the Bochner-Riesz conjecture, except some fundamen-
tal theories of maximal operators, Calderón-Zygmund operators, oscillatory integral
operators, etc, researchers in harmonic analysis have invented many new and deep
tools: bilinear or multilinear Fourier restriction (see [3, 31, 53]), incident geometry (see
[2, 58]), decoupling and polynomial partitioning (see [19, 33]) in the last two decades.
These new methods not only greatly improve the ranges of λ and p in the study of
Bochner-Riesz means, but also open new promising research directions in harmonic
analysis.

On the other hand, many useful theories in harmonic analysis, such as Littlewood-
Paley-Stein square functions, Hardy-Littlewood maximal operators, duality of H1-
BMO, Calderón-Zygmund operators and multiplier operators, have been successfully
transferred to the noncommutative setting (see e.g. [4, 21, 23, 36, 37, 40, 62]). Motivat-
ed by the development of this noncommutative harmonic analysis, the noncommutative
Bochner-Riesz means on quantum tori have been investigated partially by Z. Chen, Q.
Xu and Z. Yin [7] with limited indexes of λ and p. Due to the lack of commutativity,
the study of noncommutative Bochner-Riesz means seems to be more challenging. For
example, Z. Chen, Q. Xu and Z. Yin [7] established the boundedness of the maximal
Bochner-Riesz means on the Lp space over quantum tori for λ > (d− 1)|12 −

1
p |, which

is an analogue of a classical result by E. M. Stein [46], but with a much more technical
proof. Compared with the fruitful theories of commutative Bochner-Riesz means, the
noncommutative Bochner-Riesz means deserve to be investigated further. This lead-
s to a natural question that whether we can transfer the modern and powerful tools
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mentioned before into the noncommutative setting and apply them to studying non-
commutative Bochner-Riesz means. Since the study of two-dimensional Bochner-Riesz
means is relatively simple (note the Bochner-Riesz conjecture is resolved in this case),
in this paper we focus on two dimensions and our main purpose is to obtain the full
boundedness of noncommutative Bochner-Riesz means on quantum tori by developing
a new tool—the noncommutative Kakeya maximal function.

Quantum tori are also known as noncommutative tori or rotational algebras (see
[44]). One can regard quantum tori as analogues of usual tori. Quantum tori are basic
examples in operator algebras (see [11]) and are interesting objects in noncommutative
geometry which have been extensively studied (see e.g. [8, 44, 54]). The research of
analysis on quantum tori was started in [45, 56, 57] and the first systematic work of
harmonic analysis on quantum tori was given later in [7]. For recent work related to
quantum tori in the direction of noncommutative analysis, we refer to see [27, 29, 34,
43, 60, 61] and the references therein.

To illustrate our main results, we should give the definition of quantum torus. Sup-
pose that d ≥ 2, θ = (θk,j)1≤k,j≤d is a real skew symmetric d × d matrix. The d-
dimensional noncommutative torus Aθ is a universal C∗-algebra generated by d unitary
operators U1, · · · , Ud satisfying the following commutation relation:

UkUj = e2πiθk,jUjUk, 1 ≤ k, j ≤ d.

A well-known fact is that Aθ admits a faithful tracial state τ . Define Td
θ the weak

∗-closure of Aθ in the GNS representation of τ . We call Td
θ the d-dimensional quantum

torus. The state τ also extends to a normal faithful state on Td
θ , which will be denoted

again by τ . Notice that when θ = 0, Aθ = C(Td) and Td
θ = L∞(Td). Thus quantum

torus Td
θ is a deformation of classical torus Td. Let Lp(Td

θ) be the noncommutative

space associated to pairs (Td
θ, τ) with the Lp norm given by ∥x∥Lp(Td

θ)
= (τ(|x|p))1/p.

In the following, we consider the Bochner-Riesz means on quantum tori which are
defined by

(1.3) Bλ
R(f) =

∑
m∈Zd

(
1− |mR |2

)λ
+
f̂(m)Um, f ∈ Lp(Td

θ),

where U = (U1, · · · , Ud), U
m = Um1

1 · · ·Umd
d and f̂(m) = τ((Um)∗f). A fundamental

problem raised in [7, Page 762] is that in which sense the Bochner-Riesz means converge
back to f . In this paper we consider this problem in two-dimensional case and state
our main results as follows.

Theorem 1.1. Suppose 0 < λ <∞ and 4
3+2λ < p < 4

1−2λ . Let B
λ
R be the Bochner-Riesz

means defined in (1.3) for d = 2. Then we have

sup
R>0

∥Bλ
R(f)∥Lp(T2

θ)
. ∥f∥Lp(T2

θ)
.

Consequently for f ∈ Lp(T2
θ), B

λ
R(f) converges to f in Lp(T2

θ) as R→ ∞.

This theorem is in fact a noncommutative version of the two-dimensional Bochner-
Riesz conjecture. Thus we completely resolve an open problem raised in [7] in the sense
of the Lp convergence for two dimensions. In the following, we briefly introduce the
strategy used in the proof of Theorem 1.1.
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Notice that Bλ
R(f) is fully noncommutative and its analysis seems to be rather d-

ifficult. Nevertheless there is a clever trick that transfers the problem of multiplier
operator on quantum tori to the operator-valued setting on usual tori (see [7]). Hence
using this method, the Lp boundedness of Bochner-Riesz means on quantum tori can

be reduced to that of the operator-valued Bochner-Riesz means on usual tori Td (see
Theorem 5.1). Next we use the noncommutative transference of multiplier (see The-
orem 5.4), we can transfer the study of the operator-valued Bochner-Riesz means on
Td to that on Rd, in which case we can do analysis based on some known noncom-
mutative theories of harmonic analysis. However to establish the full boundedness of
two-dimensional operator-valued Bochner-Riesz means on R2, the previous noncommu-
tative theories may not be sufficient and some new tools in harmonic analysis related
to the geometry of Euclidean spaces should be brought in.

Our main new tool is the noncommutative Kakeya maximal function. Define the
Kakeya average operator by

KRf(x) = |R|−1

∫
R
f(x− y)dy,

where R is a rectangle centered at the origin with arbitrary orientation and eccentricity
N (see Section 3 for its definition). As aforementioned, the study of the Kakeya maximal
function supR |KRf(x)| is another important problem in harmonic analysis related to
Bochner-Riesz means (see e.g. [59]). Notice that the study of noncommutative Kakeya
maximal functions is more difficult since it can not be defined directly. It is easy to see
that KR could be dominated by the Hardy-Littlewood average operator with bound N .
This implies that the noncommutative Kakeya maximal operator is L2 bounded with

norm N
1
2 . In this paper, we shall establish its sharp L2 norm—logN (see Theorem 3.1),

which is crucial to our study of noncommutative Bochner-Riesz means. To the best
knowledge of the author, it is the first time that a sharp estimate of the noncommutative
Kakeya maximal function is obtained in noncommutative analysis. The proof here is
quite technical and our strategy is the microlocal decomposition, together with theories
of the Fourier transform and noncommutative square/maximal functions.

Below we sketch out the proof of the Lp boundedness of the operator-valued Bochner-
Riesz means on R2 (i.e. Theorem 4.1). To get the full boundedness of Bochner-Riesz
means, by the duality and the noncommutative analytic interpolation theorem (see the
appendix), it suffices to show the result for the case p = 4. We first make a dyadic
decomposition: Bλ =

∑
k Tk and matters are reduced to proving the L4 norm of Tk has

enough decay in k. We next make a microlocal decomposition: Tk =
∑

l Tk,l where the
support of each Tk,l lies in a small piece (denoted by Γk,l) of annulus with the major

direction e2πil2
− k

2 . Notice that the L4 norm of Tk(f) has an expression∥∥∥∑
l

Tk,l(f)
∥∥∥
L4(N )

=
∥∥∥∑

l

∑
l′

Tk,l(f)
∗Tk,l′(f)

∥∥∥ 1
2

L2(N )
.

If the major directions of these pieces are closed to each other (i.e. |l − l′| ≤ C), then

the above term is bounded by a column square function norm
∥∥(∑

l |Tk,l(f)|2
) 1

2
∥∥
L4(N )

.

If |l− l′| ≥ C, then we need a very important geometric observation: {Γk,l −Γk,l′}l,l′ is
finite overlapped. With this geometric estimate, the L4 norm of Tkf is bounded by a
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row square function norm
∥∥(∑

l |Tk,l(f)∗|2
) 1

2
∥∥
L4(N )

. Consequently we use both column

and row square function norms to control the L4 norm of Tk(f), which is consistent with
the theory of noncommutative square functions. To estimate this column/row square
functions, we should do more analysis for the kernel of Tk,l. Roughly speaking, a key
fact in our proof is that Tk,l can be bounded by a sum of Kakeya average operators KRs
where orientations of Rs are just in a fixed direction—the major direction of Γk,l. By
the dual theory between Lp′(M; ℓ∞) and Lp(M; ℓ1), our estimates for noncommutative
square functions can be reduced to that of Kakeya maximal functions, which will be
systematically studied in Section 3.

The methods above heavily rely on the geometry of the plane. For the higher dimen-
sional case, to get some nontrivial boundedness of Bochner-Riesz means, some more
new tools in harmonic analysis should be transferred to the noncommutative setting.
We hope to work this problem in the future.

This paper is organized as follows. First we give some preliminaries of noncommu-
tative Lp spaces, noncommutative maximal/square functions and related lemmas in
Section 2. In Section 3, we investigate the noncommutative Kakeya maximal function
and establish its sharper estimate there. In Section 4, we obtain the full Lp bounded-
ness of the operator-valued Bochner-Riesz means on R2. The proof is based on sharper
estimates of noncommutative Kakeya maximal functions and a square function inequal-
ity studied in the previous sections. Section 5 is devoted to the study of Bochner-Riesz
means on quantum tori. In this section, we first establish the full estimates of the
operator-valued Bochner-Riesz means on usual tori T2 and then transfer this result
to that on two-dimensional quantum tori (i.e. Theorem 1.1). Finally for the reader’s
convenience, we give a proof of the noncommutative analytic interpolation theorem in
the appendix which may be known to experts.

Notation. Throughout this paper, the letter C stands for a positive finite constant
which is independent of the essential variables, not necessarily the same one in each
occurrence. A . B means A ≤ CB for some constant C. By the notation Cε we mean
that the constant depends on the parameter ε. A ≈ B means that A . B and B . A.
For any measurable set A ⊂ Rd, we denote the Lebesgue measure by |A|. Z+ denotes
the set of all nonnegative integers and Zd

+ = Z+ × · · · × Z+ with d-tuples product. For

α ∈ Zd
+ and x ∈ Rd, xα = xα1

1 · · ·xαd
d . Set R+ = (0,∞). ∀s ∈ R+, ⌊s⌋ denotes the

integer part of s. We use LHS to represent left hand side of an expression. Given a

function f on Td, the Fourier transform of f is defined by f̂(k) =
∫
Td f(x)e

−2πix·kdx.

For a function f on Rd, define Ff (or f̂) and F−1f (or f̌) the Fourier transform and
the inversion Fourier transform of f by

Ff(ξ) =
∫
Rd

e−2πi⟨x,ξ⟩f(x)dx, F−1f(ξ) =

∫
Rd

e2πi⟨x,ξ⟩f(x)dx.

2. Preliminaries and some lemmas

In this section, we introduce some basic knowledge of noncommutative harmonic
analysis including noncommutative Lp spaces, maximal functions, square functions and
many operator-valued inequalities which are useful in this paper.
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2.1. Noncommutative Lp-spaces. Let M be a semifinite von Neumann algebra e-
quipped with a normal semifinite faithful (n.s.f. in short) trace τ . Denote by M+ the
positive part of M and let S+ be the set of all x ∈ M+ whose support projections have
finite trace. Let S be the linear span of S+, then S is a weak ∗ dense ∗-subalgebra of
M. Consider 0 < p <∞. For any x ∈ S, |x|p ∈ S and we set

∥x∥Lp(M) =
(
τ(|x|p)

)1/p
, x ∈ S,

where |x| = (x∗x)
1
2 is the modulus of x. Define the noncommutative Lp space associated

with (M, τ) by the completion of (S, ∥ · ∥Lp(M)) and set it as Lp(M). For convenience,

if p = ∞, we define L∞(M) = M equipped with the operator norm ∥·∥M. Let L+
p (M)

denote the positive part of Lp(M). A lot of basic properties of classical Lp spaces,
such as Minkowski’s inequality, Hölder’s inequality, dual property, real and complex
interpolation, have been transferred to this noncommutative setting. In particular, the
following monotone properties are frequently used in this paper: for a, b ∈ M and
α ∈ R+,

(2.1) ∥a∥Lp(M) ≤ ∥b∥Lp(M), if 0 ≤ a ≤ b;

(2.2) aα ≤ bα, if 0 ≤ a ≤ b and 0 < α < 1.

For more about noncommutative Lp spaces, we refer to the very detailed introduction
in the survey article [42] or the book [62].

In this paper, we are interested in the noncommutative Lp space on the tensor von

Neumann algebra N = L∞(Rd)⊗M. Set the tensor trace φ =
∫
Rd dx ⊗ τ . Define

the noncommutative space Lp(N ) associated with pairs (N , φ). Notice that Lp(N ) is

isometric to Lp(Rd;Lp(M)) the Bochner Lp space on Rd with values in Lp(M).

2.2. Noncommutative maximal functions. It is difficult to define a noncommuta-
tive maximal function straightforwardly since two general elements in a von Neumann
algebra may not be comparable. This obstacle can be overcome by defining the max-
imal norm directly. We adopt the definition of the noncommutative maximal norm
introduced by G. Pisier [41] and M. Junge [26].

Definition 2.1 (Lp(M; ℓ∞)). We define Lp(M; ℓ∞) the space of all sequences x =
{xn}n∈Z in Lp(M) which admits a factorization of the following form: there exist
a, b ∈ L2p(M) and a bounded sequence y = {yn}n∈Z in L∞(M) such that xn = aynb,
∀ n ∈ Z. The norm of x in Lp(M; ℓ∞) is given by

∥x∥Lp(M;ℓ∞) = inf
{
∥a∥L2p(M) sup

n∈Z
∥yn∥L∞(M) ∥b∥L2p(M)

}
,

where the infimum is taken over all factorizations of x as above.

If x = {xn}n∈Z is a sequence of positive elements, then x ∈ Lp(M; ℓ∞) if and only if
there exists a positive element a ∈ Lp(M) such that 0 < xn ≤ a, and

(2.3) ∥x∥Lp(M;ℓ∞) = inf{∥a∥Lp(M) : 0 < xn ≤ a, ∀n ∈ Z}.
Similarly if x = {xn}n∈Z is a sequence of self-adjoint elements, then x ∈ Lp(M; ℓ∞)

if and only if there exists a positive element a ∈ Lp(M) such that −a ≤ xn ≤ a, and

(2.4) ∥x∥Lp(M;ℓ∞) = inf{∥a∥Lp(M) : −a ≤ xn ≤ a, ∀n ∈ Z}.
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More generally, if Λ is an index set, we define Lp(M; ℓ∞(Λ)) as the space of all
x = {xλ}λ∈Λ in Lp(M) that can be factorized as

xλ = ayλb with a, b ∈ L2p(M), yλ ∈ L∞(M), sup
λ

∥yλ∥L∞(M) <∞.

Then the norm of Lp(M; ℓ∞(Λ)) is defined by

∥x∥Lp(M;ℓ∞(Λ)) = inf
xλ=ayλb

{
∥a∥L2p(M) sup

λ∈Λ
∥yλ∥L∞(M) ∥b∥L2p(M)

}
.

It was shown in [30] that x ∈ Lp(M; ℓ∞(Λ)) if and only if sup
{
∥x∥Lp(M;ℓ∞(J)) : J ⊂

Λ, J is finite
}
<∞ and moreover in this case, the norm ∥x∥Lp(M;ℓ∞(Λ)) is equal to the

above supremum.
If x = {xλ}λ∈Λ is positive (resp. self-adjoint), ∥x∥Lp(M;ℓ(Λ)) has the similar property

of (2.3) (resp. (2.4)).
We will often use ∥ sup

λ∈Λ
xλ∥Lp(M) to represent ∥x∥Lp(M;ℓ(Λ)). However we point out

that ∥ sup
λ∈Λ

xλ∥Lp(M) is just a notation since sup
λ∈Λ

xλ makes no sense in the noncommu-

tative setting.
To study the dual property of the above spaces Lp(M; ℓ∞), we need to introduce

another space.

Definition 2.2 (Lp(M; ℓ1)). Define Lp(M; ℓ1) as the space of all sequences {yn} in
Lp(M) which could be factorized as

yn =
∑
k

u∗k,nvk,n, ∀n ∈ Z,

for two families {uk,n}k,n∈Z and {vk,n}k,n∈Z in L2p(M) such that
∑

k,n∈Z u
∗
k,nuk,n ∈

Lp(M) and
∑

k,n∈Z v
∗
k,nvk,n ∈ Lp(M). Lp(M; ℓ1) is equipped with the norm

∥{yn}∥Lp(M;ℓ1) = inf
∥∥∥ ∑
k,n∈Z

u∗k,nuk,n

∥∥∥ 1
2

Lp(M)

∥∥∥ ∑
k,n∈Z

v∗k,nvk,n

∥∥∥ 1
2

Lp(M)
,

where the infimun is taken over all decompositions of {yn} as above.

It is not difficult to see that if yn ≥ 0 for all n ∈ Z, {yn} ∈ Lp(M; ℓ1) if and only if∑
n∈Z yn ∈ Lp(M) (see e.g. [62]). In such a case, we have the following equality

∥{yn}∥Lp(M;ℓ1) =
∥∥∥∑
n∈Z

yn

∥∥∥
Lp(M)

.

We introduce the following basic duality theorem of Lp(M; ℓ1), which has been
established by M. Junge and Q. Xu in [30].

Lemma 2.3. (i). Suppose 1 ≤ p < ∞. Let p′ be the conjugate index: 1
p + 1

p′ = 1.

Then the dual space of Lp(M; ℓ1) is Lp′(M; ℓ∞). The element x = {xn} ∈ Lp′(M; ℓ∞)
acts on Lp(M; ℓ1) as follows

⟨x, y⟩ =
∑
n∈Z

τ(xnyn), ∀y = {yn} ∈ Lp(M; ℓ1).
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(ii). Suppose 1 ≤ p ≤ ∞. For any x ∈ Lp(M; ℓ∞), we have

∥{xn}∥Lp(M;ℓ∞) = sup
{∑

n

τ(xnyn) : y = {yn} ∈ Lp′(M; ℓ1) and ∥y∥Lp′ (M;ℓ1) ≤ 1
}
.

Moreover if x is positive, then

∥{xn}∥Lp(M;ℓ∞) = sup
{∑

n

τ(xnyn) : yn ∈ L+
p′(M) and ∥

∑
n

yn∥Lp′ (M) ≤ 1
}
.

2.3. Noncommutative square functions. To define the noncommutative square
function, we should first introduce the so-called column and row function spaces. Let
f = {fj} be a finite sequence in Lp(M) where 1 ≤ p ≤ ∞. Define

∥{fj}∥Lp(M;ℓr2)
=

∥∥(∑ |f∗j |2)
1
2

∥∥
Lp(M)

, ∥{fj}∥Lp(M;ℓc2)
=

∥∥(∑ |fj |2)
1
2

∥∥
Lp(M)

.

Definition 2.4 (Lp(M; ℓrc2 )). We define the spaces Lp(M; ℓrc2 ) as follows:

(i). If p ≥ 2, Lp(M; ℓrc2 ) = Lp(M; ℓc2) ∩ Lp(M; ℓr2) equipped with the intersection
norm:

∥{fj}∥Lp(M;ℓrc2 ) = max{∥{fj}∥Lp(M;ℓc2)
, ∥{fj}∥Lp(M;ℓr2)

}.

(ii). If p < 2, Lp(M; ℓrc2 ) = Lp(M; ℓc2) + Lp(M; ℓr2) equipped with the sum norm:

∥{fj}∥Lp(M;ℓrc2 ) = inf{∥{gj}∥Lp(M;ℓc2)
+ ∥{hj}∥Lp(M;ℓr2)

},

where the infimun is taken over all decompositions fj = gj + hj with gj and hj
in Lp(M).

It is easy to see that L2(M; ℓr2) = L2(M; ℓc2) = L2(M; ℓrc2 ). Next we introduce some
inequalities for Lp(M; ℓrc2 ). The first one is Hölder type inequality whose proof can be
found in [62].

Lemma 2.5. Let 0 < p, q, r ≤ ∞ be such that 1/r = 1/p + 1/q. Then for any
f ∈ Lp(M; ℓc2) and g ∈ Lq(M; ℓc2),∥∥∥∑

i

f∗i gi

∥∥∥
Lr(M)

≤
∥∥∥(∑

i

|fi|2
) 1

2
∥∥∥
Lp(M)

∥∥∥(∑
i

|gi|2
) 1

2
∥∥∥
Lq(M)

.

The second one is the noncommutative Khintchine inequality for the Rademacher
sequence as follows.

Lemma 2.6 (see [62]). Let 1 ≤ p <∞ and {xn} be a finite sequence in Lp(M). Then∥∥∑
n

xnεn
∥∥
Lp(Ω;Lp(M))

≈ ∥{xn}∥Lp(M;ℓrc2 ),

where {εn} is a Rademacher sequence on a probability space (Ω, P ).

We also require some convexity inequalities for the operator-valued function in this
paper. The following one is Cauchy-Schwarz type inequality which can found in [36,
Page 9]).
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Lemma 2.7. Let (Σ, µ) be a measure space. Suppose that f : Σ → M is a weak-∗
integrable function and g : Σ → C is an integrable function. Then

(2.5)
∣∣∣ ∫

Σ
f(x)g(x)dµ(x)

∣∣∣2 ≤ ∫
Σ
|f(x)|2dµ(x)

∫
Σ
|g(x)|2dµ(x),

where ≤ is understood as the partial order in the positive cone of M.

Finally we introduce the following vector-valued Plancherel theorem which will be
mostly used in square function estimates: Let N = L∞(Rd)⊗M, then we have

(2.6) ∥Ff∥L2(N ) = ∥f∥L2(N ),

which is a consequence of the fact L2(M) is a Hilbert space. Such vector-valued
Plancherel theorem is sufficient in most part of our proof though sometimes we need a
more general operator-valued Parseval’s relation: for f, g ∈ L2(L∞(Rd)⊗M), we have

(2.7)

∫
Rd

g∗(x)f(x)dx =

∫
Rd

(Fg)∗(ξ)F(f)(ξ)dξ.

3. Noncommutative Kakeya maximal functions

In this section, we study the boundedness of noncommutative Kakeya maximal func-
tions. Before that we give several definitions and lemmas. We only consider d = 2. Set
N = L∞(R2)⊗M and φ =

∫
R2 dx ⊗ τ . Denote Lp(N ) the noncommutative Lp space

associated with pairs (N , φ).
The main preliminaries of noncommutative maximal functions have been given in

Subsection 2.2. We introduce the noncommutative Kakeya maximal function as follows.
Define the eccentricity of a rectangle by the ratio of the length of its long side to that
of its short side. Let N be a positive integer. Define the set RN as rectangles in the
plane of arbitrary orientation whose center is the origin and eccentricity is N . For
f ∈ Lp(N ), we define the Kakeya average operator as follows

(3.1) KRf(x) = |R|−1

∫
R
f(x− y)dy,

where R is a rectangle belonging to RN . We are mainly interested in the maximal L2

norm of noncommutative Kakeya average operator, since it is a crucial estimate in the
study of noncommutative Bochner-Riesz means.

Let us first give a trivial bound of its L2 norm. Recall that the Hardy-Littlewood
average operator is defined by

MQf(x) =
1

|Q|

∫
Q
f(x− y)dy,

where Q is a cube in R2 with center zero and arbitrary orientation. For any rectangle
R ∈ RN , there exists a cube Q such that R ⊂ Q and l(Q) equals to the length of
long side of R. Consider f as a positive function in N . Then KRf(x) ≤ NMQf(x).
Using the noncommutative Hardy-Littlewood maximal operator is of weak type (1, 1)
(see [36]), we get the Kakeya maximal operator is of weak type (1, 1) with bound N .
Applying the noncommutative Marcinkiewicz interpolation theorem in [30], together
with the fact that the maximal operator of KR is of (∞,∞), we get that the maximal

operator of KR is of strong (2, 2) type with bound N
1
2 . However this bound is quite
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rough and not sufficient for our later application. The following improved bound is our
main result in this section.

Theorem 3.1. Let KR be the Kakeya average operator defined in (3.1). Then for
f ∈ L2(N ), we have

∥ sup
R∈RN

KRf∥L2(N ) . (logN)∥f∥L2(N ).

Combining the noncommutative Marcinkiewicz interpolation theorem (see [30]), to-
gether with a trivial weak type (1, 1) bound and a strong (∞,∞) bound of KR, we
immediately get the following corollary.

Corollary 3.2. Let KR be defined in (3.1). Then for any 1 < p <∞, we have

∥ sup
R∈RN

KR∥Lp(N )→Lp(N ) .
{
N

2
p
−1

(logN)
2
p′ , if 1 < p < 2;

(logN)
2
p , if 2 ≤ p <∞.

It should be pointed out that the bound logN in Theorem 3.1 is sharp even in
the commutative case, see [18, Proposition 5.3.4]. A. Córdoba [9] first obtained the
boundedness of the Kakeya maximal function on L2(R2) with norm (logN)2. The
sharp bound logN was later established by J. O. Strömberg [49] where he used several
estimates of distribution functions and some geometric constructions. S. Wainger [55]
also obtained the sharp bound logN without a proof but he mentioned that the idea
given by A. Nagel, E. M. Stein, S. Wainger [39] can be modified to his setting. It is
well-known that the distribution function is difficult to deal with in the noncommuta-
tive setting (for example the weak (1, 1) boundedness problem is a challenge problem).
Hence the method from J. O. Strömberg [49] may be difficult to be applied in the
noncommutative setting. The strategies used in our proof below are the Fourier trans-
form, square and maximal function theories and the microlocal decomposition, which
are mainly motivated by [39] and [55].

Before giving the proof of Theorem 3.1, we introduce the noncommutative directional
Hardy-Littlewood average operator defined by

(3.2) M e
h(f)(x) =

1

2h

∫ h

−h
f(x− ey)dy,

where e is a unit vector in R2. By using the standard method of rotation, the defini-
tion of maximal norm in (2.3) and the fact one dimensional noncommutative Hardy-
Littlewood maximal operator is of strong type (p, p) for 1 < p ≤ ∞ (see [36]), the
author and his collaborators recently established the following result in [21, Lemma
6.3].

Lemma 3.3. Let e be a unit vector. Define M e
h in (3.2). Let 1 < p ≤ ∞. Then we

have
∥ sup
h>0

M e
h(f)∥Lp(N ) . ∥f∥Lp(N ).

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let us start with several reductions. Without loss of generality,
we suppose that f is positive since the general case just follows by decomposing f as
linear combination of four positive functions.
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To prove our estimate, it suffices to consider the case N = 2m. In fact, assume
that we show this theorem for N = 2m, we can prove the general case for arbitrary
N as follows. For any positive integer N , there exists a positive integer m such that
2m−1 < N ≤ 2m, i.e. m− 1 < logN ≤ m. Then for any R ∈ RN , by enlarging the long
side of R such that its eccentricity increases to 2m, we get a new rectangle R̃. Then
KRf(x) ≤ 2m

N KR̃f(x). Therefore we get

∥ sup
R∈RN

KRf∥L2(N ) ≤
2m

N
∥ sup
R∈R2m

KRf∥L2(N ) . m∥f∥L2(N ) ≈ (logN)∥f∥L2(N ).

Similar to that in the commutative case, by symmetry and rotation, we only need
to control the average over those rectangles that have eccentricity N , but whose major
axes make angles θk with the x-axis such that tan θk = k/N, k = 0, · · · , N − 1 (see
e.g. Section 3.11, Chapter X in [47]). We abuse notation and still define RN as those
preceding rectangles.

After these reductions, below we smooth the average operator. Set uNk = (N, k), k =
0, · · · , N − 1 and let e2 = (0, 1) ∈ R2. Choose a nonnegative, radially decreasing and
smooth function ψ such that ψ(x) = 1 if |x| < 1

2 and suppψ ⊂ {|x| < 2}. Define

ψh(t) = h−1ψ(t/h). To prove our theorem, it is sufficient to consider the average
operator

Ak,N
h (f)(x) =

∫
R

∫
R
f(x− uNk t− e2s)ψh(t)ψh(s)dsdt, h > 0.

Indeed, since f ≥ 0, by some elementary geometric observation, for any R ∈ RN with
the major direction eiθ where tan θ = k

N for some k = 0, · · · , N − 1, there exists h such
that

KRf(x) ≤ CAk,N
h (f)(x)

where the constant C is independent of k,N, f . On the other hand, for 0 ≤ k ≤ N − 1,
h ∈ R+, there exists R ∈ RN with the major direction eiθ such that tan θ = k

N ,

Ak,N
h (f)(x) ≤ CKRf(x).

Therefore by the definition of positive maximal norm in (2.3), we get∥∥∥ sup
R∈RN

KRf
∥∥∥
L2(N )

≈
∥∥∥ sup

0≤k<N
h>0

Ak,N
h (f)

∥∥∥
L2(N )

.

Notice that there are two averages for two different directions in the operator Ak,N
h .

Our next goal is to reduce it to one average with the help of the directional Hardy-
Littlewood maximal operator. By our choice of ψ, it is easy to see that

Ak,N
h (f)(x) .M e2

2h[M
k,N
h (f)](x)

where M e2
2h is the directional Hardy-Littlewood average operator defined in (3.2) and

Mk,N
h (f) is defined as

Mk,N
h (f)(x) =

∫
R
f(x− uNk t)ψh(t)dt.
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Therefore by the L2 boundedness of maximal operator of M e
h in Lemma 3.3, to prove

our theorem, it suffices to show

(3.3)
∥∥∥ sup

0≤k<N
h>0

Mk,N
h (f)

∥∥∥
L2(N )

. (logN)∥f∥L2(N ).

Next we reduce the study of Mk,N
h (f)(x) to its lacunary case Mk,N

2j
(f)(x). For any

h > 0, there exists j ∈ Z such 2j−1 ≤ h < 2j . Then we get

Mk,N
h (f)(x) =

1

h

∫
R
f(x− uNk t)ψ(

t

h
)dt . 1

2j

∫
R
f(x− uNk t)ψ(

t

2j
)dt =Mk,N

2j
(f)(x),

where the second inequality just follows from the radially decreasing property of ψ.

Hence we only need to consider the lacunary operator Mk,N
2j

(f)(x). At present time,
we conclude that the proof of our main theorem is reduced to show

(3.4)
∥∥∥ sup

0≤k<N
j∈Z

Mk,N
2j

(f)
∥∥∥
L2(N )

. (logN)∥f∥L2(N ).

Let N = 2m. In the following, we will establish a key inequality

(3.5)
∥∥∥ sup

0≤k<2m

j∈Z

Mk,2m

2j
(f)

∥∥∥
L2(N )

≤ C∥f∥L2(N ) +
∥∥∥ sup

0≤k<2m−1

j∈Z

Mk,2m−1

2j
(f)

∥∥∥
L2(N )

with the constant C independent of m. Notice that when m = 1, M0,1
2j

(f) ≤M e1
2j+1(f),

where e1 = (1, 0) and M e
h is the noncommutative directional Hardy-Littlewood average

operator in (3.2). Using the L2 boundedness of maximal M e
h in Lemma 3.3, we get∥∥∥ sup

j∈Z
M0,1

2j
(f)

∥∥∥
L2(N )

. ∥f∥L2(N ).

Then it is easy to see that the required estimate (3.4) just follows from (3.5) with an
induction argument.

The rest of this section is devoted to the proof of (3.5). For convenience, set elm =

(1, l
2m ). Define Γl = {ξ : |⟨ ξ

|ξ| , e
l
m⟩| ≤ c

2m } where c is a constant independent of m

such that Γ1,Γ2, · · · ,Γ2m−1−1 are disjoint from each other. Notice that Γls are equally
distributed in {(x, y) : |x| ≤ |y|, x ≤ 0, y ≥ 0} or {(x, y) : |x| ≤ |y|, x ≥ 0, y ≤ 0} (see
Figure 1 later). We split f as fl and rl which are defined by

f̂l(ξ) = χΓ2l+1∪Γ2l
(ξ)f̂(ξ), r̂l(ξ) = χΓc

2l+1∩Γ
c
2l
(ξ)f̂(ξ).

Recall that φ =
∫
R2 dx ⊗ τ . Since Mk,N

2j
(f)(x) is positive in L2(N ), by the duality

(see (ii) in Lemma 2.3), there exists a positive sequence {hk
2j
} ∈ L2(N ; ℓ1) with norm

∥
∑

0≤k<2m

j∈Z

hk
2j
∥L2(N ) ≤ 1 such that

∥∥∥ sup
0≤k<2m

j∈Z

Mk,2m

2j
(f)

∥∥∥
L2(N )

= φ
( ∑

0≤k<2m

j∈Z

Mk,2m

2j
(f)hk2j

)
≤ I + II

where

I =
∣∣∣φ( ∑

0≤k<2m

j∈Z

[M
⌊ k
2
⌋,2m−1

2j+1 (f)]hk2j
)∣∣∣,
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II =
∣∣∣φ( ∑

0≤k<2m

j∈Z

[Mk,2m

2j
(f)−M

⌊ k
2
⌋,2m−1

2j+1 (f)]hk2j
)∣∣∣.

We consider the first term I. Notice that for every 0 ≤ k < 2m−1, we have

(3.6) M
⌊ 2k

2
⌋,2m−1

2j+1 (f) =M
⌊ 2k+1

2
⌋,2m−1

2j+1 (f).

Recall that Mk,2m−1

2j+1 (f) is positive in N . Then by the duality (see (ii) in Lemma 2.3),
the definition of L2(N ; ℓ∞) in (2.3) and the preceding equality (3.6), we get

I ≤
∥∥∥ sup

0≤k<2m

j∈Z

M
⌊ k
2
⌋,2m−1

2j+1 (f)
∥∥∥
L2(N )

=
∥∥∥ sup

0≤k<2m−1

j∈Z

Mk,2m−1

2j+1 (f)
∥∥∥
L2(N )

=
∥∥∥ sup

0≤k<2m−1

j∈Z

Mk,2m−1

2j
(f)

∥∥∥
L2(N )

,

which is exact the second term in right side of (3.5).
Now we turn to II. To finish the proof of (3.5), we only need to show that II is

controlled by ∥f∥L2(N ). By making a dilation, it is easy to check that for 0 ≤ l < 2m−1,

(3.7) M l,2m−1

2j+1 (f)(x) =M2l,2m

2j
(f)(x).

Therefore we see that the terms related to even k in the sum of II equal to zero.
Applying (3.6) and (3.7) again, we rewrite the odd terms in II as follows

II =
∣∣∣φ( ∑

0≤l<2m−1

j∈Z

[M2l+1,2m

2j
(f)−M2l,2m

2j
(f)]h2l+1

2j

)∣∣∣
≤

∣∣∣φ( ∑
0≤l<2m−1

j∈Z

[M2l+1,2m

2j
(fl)h

2l+1
2j

]
)∣∣∣+ ∣∣∣φ( ∑

0≤l<2m−1

j∈Z

[M2l,2m

2j
(fl)h

2l+1
2j

]
)∣∣∣

+
∣∣∣φ( ∑

0≤l<2m−1

j∈Z

[M2l+1,2m

2j
(rl)−M2l,2m

2j
(rl)]h

2l+1
2j

)∣∣∣ =: II1 + II2 + II3.

Let us consider II1 firstly. Using the duality in (ii) of Lemma 2.3, we get

II1 ≤
∥∥ sup

0≤l<2m−1

j∈Z

M2l+1,2m

2j
(fl)

∥∥
L2(N )

.

Recall elm = (1, l
2m ). Let ẽ2l+1

m be the unit vector in the direction along e2l+1
m , i.e.

ẽ2l+1
m = e2l+1

m /|e2l+1
m |. Then it is straightforward to verify that for a positive function g,

M2l+1,2m

2j
(g)(x) .M ẽ2l+1

m

2j+m (g)(x),

where the right side of the above inequality is the directional Hardy-Littlewood average
operator defined in (3.2). Now using the L2 boundedness of maximal operator of M e

h
in Lemma 3.3, we get for any positive function g ∈ L2(N ),

(3.8)
∥∥ sup

j∈Z
M2l+1,2m

2j
(g)

∥∥
L2(N )

. ∥g∥L2(N ).
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Consequently (3.8) holds for any g ∈ L2(N ) by decomposing it as linear combination
of four positive functions.

Observe that M2l+1,2m

2j
(fl) may not be positive. So we can not apply the maximal

norm in (2.3). Recall that for any a ∈ N , we can decompose it as linear combination
of two self-adjoint elements:

a = Re(a) + iIm(a), where Re(a) =
1

2
(a+ a∗), Im(a) =

1

2i
(a− a∗).

Hence we can write M2l+1,2m

2j
(fl) = Re[M2l+1,2m

2j
(fl)] + iIm[M2l+1,2m

2j
(fl)]. Then utiliz-

ing Minkowski’s inequality, we get

II1 ≤
∥∥ sup

0≤l<2m−1

j∈Z

Re[M2l+1,2m

2j
(fl)]

∥∥
L2(N )

+
∥∥ sup

0≤l<2m−1

j∈Z

Im[M2l+1,2m

2j
(fl)]

∥∥
L2(N )

.

We first consider the real part. Notice that M2l+1,2m

2j
(fl)

∗ =M2l+1,2m

2j
(f∗l ). Then by

Minkowski’s inequality and (3.8), we get∥∥ sup
j∈Z

Re[M2l+1,2m

2j
(fl)]

∥∥
L2(N )

≤1

2

∥∥ sup
j∈Z

M2l+1,2m

2j
(fl)

∥∥
L2(N )

+
1

2

∥∥ sup
j∈Z

M2l+1,2m

2j
(f∗l )

∥∥
L2(N )

. ∥fl∥L2(N ).

Rewrite this estimate via the equivalent definition of Lp(M; ℓ∞) in (2.4), we obtain
that there exists Fl > 0 such that for each j ∈ Z,

−Fl ≤ Re[M2l+1,2m

2j
(fl)] ≤ Fl and ∥Fl∥L2(N ) . ∥fl∥L2(N ).

Then by setting F = (
∑

l F
2
l )

1
2 , we see that for each 0 ≤ l < 2m−1, j ∈ Z, we have

−F ≤ Re[M2l+1,2m

2j
(fl)] ≤ F because of Fl ≤ (

∑
l F

2
l )

1
2 which is just by an elementary

inequality (2.2). Moreover we get

∥F∥L2(N ) = (
∑
l

∥Fl∥2L2(N ))
1
2 . (

∑
l

∥fl∥2L2(N ))
1
2

=
(
τ

∫
R2

∑
l

χΓ2l+1∪Γ2l
(ξ)|f̂(ξ)|2dξ

)1/2
. ∥f∥L2(N )

where in the third equality we use vector-valued Plancherel’s theorem (2.6), the last
inequality just follows from Γ1, · · · ,Γ2m−1−1 are disjoint from each other and vector-
valued Plancherel’s theorem (2.6) again. Thus we prove that∥∥ sup

0≤l<2m−1

j∈Z

Re[M2l+1,2m

2j
(fl)]

∥∥
L2(N )

. ∥f∥L2(N ).

By applying the similar argument to the imaginary part, we could also get∥∥ sup
0≤l<2m−1

j∈Z

Im[M2l+1,2m

2j
(fl)]

∥∥
L2(N )

. ∥f∥L2(N ).

Combining these estimates of real and imaginary parts, we obtain the desired estimate
of II1.
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For the term II2, using the similar argument as we have done in the proof of II1, we
also get that II2 is bounded by ∥f∥L2(N ).

At last we turn to the term II3. We first introduce an inequality as follows:

(3.9) |φ(ab)|2 ≤ φ(|a|b)φ(|a∗|b), ∀ a, b ∈ N with b ≥ 0.

This inequality could be verified by writing a as the polar decomposition a = u|a| and
using Cauchy-Schwarz’s inequality,

|φ(ab)|2 = |φ(b1/2u|a|b1/2)|2 ≤ φ(b1/2u|a|u∗b1/2)φ(b1/2|a|b1/2)

= φ(b1/2|a∗|b1/2)φ(b1/2|a|b1/2) = φ(|a∗|b)φ(|a|b).

For simplicity, we define Bl,2m

2j
(g) = M2l+1,2m

2j
(g) −M2l,2m

2j
(g). Then by the above

inequality (3.9) and Cauchy-Schwarz’s inequality, we have

II3 ≤
∑

0≤l<2m−1

j∈Z

φ(|Bl,2m

2j
(rl)|h2l+1

2j
)
1
2φ(|Bl,2m

2j
(rl)

∗|h2l+1
2j

)
1
2

≤ φ
( ∑

0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)|h2l+1

2j

) 1
2 · φ

( ∑
0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)

∗|h2l+1
2j

) 1
2

≤
∥∥∥ sup

0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)|

∥∥∥ 1
2

L2(N )
·
∥∥∥ sup

0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)

∗|
∥∥∥ 1

2

L2(N )
,

where in the last inequality we apply the dual property (ii) in Lemma 2.3.

We first consider the part |Bl,2m

2j
(rl)|. Our goal is to show that

(3.10)
∥∥∥ sup

0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)|

∥∥∥
L2(N )

. ∥f∥L2(N ).

The strategy here is to use a square function to control the maximal function, which has
been appeared in the proof of II1. In fact applying an equivalent norm of Lp(M; ℓ∞)
in (2.3), monotone properties in (2.2) and (2.1), we have∥∥∥ sup

0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)|

∥∥∥
L2(N )

≤
∥∥∥( ∑

0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)|2

) 1
2
∥∥∥
L2(N )

.

It is straightforward to show that F [M2l,2m

2j
(g)](ξ) = ψ̂(2j+m⟨e2lm, ξ⟩)ĝ(ξ). Then utilizing

vector-valued Plancherel’s theorem (2.6) and the definitions of Bl,2m

2j
, rl, we get that∥∥∥( ∑

0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)|2

) 1
2
∥∥∥2
L2(N )

= τ

∫
R2

∑
j∈Z

∑
0≤l<2m−1

∣∣∣ψ̂(2j+m⟨e2l+1
m , ξ⟩

)
− ψ̂

(
2j+m⟨e2lm, ξ⟩

)∣∣∣2χΓc
2l+1∩Γ

c
2l
(ξ)|f̂(ξ)|2dξ.
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To prove (3.10), again by vector-valued Plancherel’s theorem (2.6), we only need to
show the multiplier above is bounded, i.e.

(3.11)
∑
j∈Z

∑
0≤l<2m−1

∣∣∣ψ̂(2j+m⟨e2l+1
m , ξ⟩

)
− ψ̂

(
2j+m⟨e2lm, ξ⟩

)∣∣∣2χΓc
2l+1∩Γ

c
2l
(ξ) ≤ C

holds uniformly for ξ ̸= 0. Fix ξ ̸= 0. It suffices to consider the sum of l such that
ξ ∈ Γc

2l+1 ∩ Γc
2l which means that

|⟨e2l+1
m , ξ′⟩| > c2−m, |⟨e2lm, ξ′⟩| > c2−m

where ξ′ = ξ/|ξ|. Such lower estimates may be not enough to prove (3.11). In the
following, we obtain some better lower estimates via some geometric observations of
the plane. Denote L = {l : 0 ≤ l < 2m−1, ξ ∈ Γc

2l+1 ∩ Γc
2l}. Then by using the mean

value formula and Cauchy-Schwarz’s inequality, we see that

LHS(3.11) ≤
∑
j∈Z

∑
l∈L

[ ∫ 1

0
2j |ξ| · |∇ψ̂(2j+m⟨e2l+s

m , ξ⟩)|ds
]2

≤
∫ 1

0

∑
j∈Z

∑
l∈L

[
2j |ξ| · |∇ψ̂(2j+m⟨e2l+s

m , ξ⟩)|
]2
ds.

Let e⊥ denote the orthogonal unit vector of e in R2. Then we observe that el,⊥m s,
where l = 0, · · · , 2m−1 − 1, are equally distributed with distance 2−m in the plane
{(x, y) : |x| ≤ |y|, x ≤ 0, y ≥ 0} or {(x, y) : |x| ≤ |y|, x ≥ 0, y ≤ 0}(see Figure 1 below).

Γ2l+1Γ2l
Γ2l−1

e2l+1
m

e2lm

e2l−1
m

ξ1

ξ2

e2l+1,⊥
m

e2l,⊥m

e2l−1,⊥
m

ξ′

Figure 1. {elm}l is equally distributed. Γls are disjoint from each other.
|⟨e2lm, ξ′⟩| is the distance between the point ξ′ and the line along the direction

e2l,⊥m .
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Notice that the geometric illustration of |⟨e, ξ′⟩| is the distance between the point ξ′

and the line along the direction e⊥. Recall that ξ′ is a fixed unit vector. By the equally

distributed property of {el,⊥m }l∈{0,··· ,2m−1−1}, we can separate the set L into at most

2m−1 subsets L1, · · · , L2m−1 such that each Li has cardinality less than some absolute
constant and for each i,

|⟨e2l+1
m , ξ′⟩| > ci2−m, |⟨e2lm, ξ′⟩| > ci2−m, ∀l ∈ Li.

This fact can be easily seen from the geometry in Figure 1. Therefore by the above

inequality, for any s ∈ [0, 1], l ∈ Li, we get |⟨e2l+s
m , ξ′⟩| > ci2−m. Since ψ̂ is a Schwartz

function, so ∇ψ̂ is smooth and rapidly decays at infinity. We finally conclude that

LHS(3.11) ≤
∑
j∈Z

∑
1≤i≤2m−1

22j |ξ|2min{1, (2j |ξ|i)−100}

.
∑

1≤i≤2m−1

i−2
∑
j∈Z

[i2j |ξ|]2[1 + (2j |ξ|i)]−100 ≤ C

which proves (3.10). For the term |Bl,2m

2j
(rl)

∗|, we can also obtain∥∥∥ sup
0≤l<2m−1

j∈Z

|Bl,2m

2j
(rl)

∗|
∥∥∥
L2(N )

. ∥f∥L2(N )

by using the same argument if observing that

F [Bl,2m

2j
(rl)

∗](ξ) =
[
ψ̂
(
− 2j+m⟨e2l+1

m , ξ⟩
)
− ψ̂

(
− 2j+m⟨e2lm, ξ⟩

)]
χΓc

2l+1∩Γ
c
2l
(−ξ)f̂(ξ).

Combining these estimates of |Bl,2m

2j
(rl)| and |Bl,2m

2j
(rl)

∗|, we get II3 is majorized by
∥f∥L2(N ) which ends the proof this theorem. �

4. Bochner-Riesz means on L∞(R2)⊗M

In this section, we study the operator-valued Bochner-Riesz means on Lp(N ), where
N = L∞(R2)⊗M throughout this section. The main tools are noncommutative Kakeya
maximal functions which have been investigated in the previous section. Our main
result can be stated as follows.

Theorem 4.1. Let 0 < λ ≤ 1
2 and 4

3+2λ < p < 4
1−2λ . Then for the Bochner-Riesz

means Bλ
R given in (1.2), set Bλ = Bλ

1 , we have

(4.1) ∥Bλ(f)∥Lp(N ) . ∥f∥Lp(N ), sup
R>0

∥Bλ
R(f)∥Lp(N ) . ∥f∥Lp(N ).

Consequently for f ∈ Lp(N ), Bλ
R(f) converges to f in Lp(N ) as R→ ∞.

Before giving the proof, let us start with some definitions and lemmas. We first
define the following Fourier multiplier on Lp(N ) for convenience.

Definition 4.2. We say m : R2 → C is an Lp(N ) Fourier multiplier if the operator Tm
defined by

T̂m(f)(ξ) = m(ξ)f̂(ξ), f ∈ S(R2)⊗ S,
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extends to a bounded operator on Lp(N ), where S(R2) is the class of Schwartz functions
on R2 and S is the linear span of all x ∈ M+ whose support projections have finite
trace defined in Subsection 2.1. Denote by Mp(N ) the space of all Lp(N ) multipliers
and ∥ · ∥Mp(N ) the Lp multiplier norm.

Notice that for Reλ > 1
2 , the convolution kernel associated to (1−|· |2)λ+ is integrable

over R2 with the bound e6|Imλ|2 (see e.g. [18, Proposition 5.2.2]). Then we immediately
get the following lemma.

Lemma 4.3. Let λ ∈ C. If Reλ > 1
2 , then for all 1 ≤ p ≤ ∞, we have

∥(1− | · |2)λ+∥Mp(N ) . e6|Imλ|2 .

Next we introduce a noncommutative Littlewood-Paley-Rubio de Francia’s square
function inequality for equal intervals whose proof can be found in [25]. This inequality
is also a key step in our study of Bochner-Riesz means.

Lemma 4.4. Set N = L∞(R)⊗M. Let Ijs be intervals of equal length with disjoint

interior, j ∈ Z and
∪

j∈Z Ij = R. Define P̂jf(ξ) = χIj (ξ)f̂(ξ). Then for all 2 ≤ p <∞,
we have

∥{Pj(f)}∥Lp(N ;ℓrc2 ) . ∥f∥Lp(N ).

Now we begin to prove Theorem 4.1.

Proof of Theorem 4.1. We first point out the norm convergence in Lp(N ) is a direct
consequence of (4.1). In fact for any f ∈ S(R2) ⊗ S, i.e. f(x) =

∑n
i=1 ψi(x)ai with

ψi ∈ S(R2) and ai ∈ S, Bλ
R(f) converges to f in Lp(N ) as R→ ∞. Then by the density

argument and the second inequality in (4.1), we could get for every f ∈ Lp(N ), Bλ
R(f)

converges to f in Lp(N ). So in our proof below, it is sufficient to consider (4.1). Since
the multiplier in Mp(N ) is invariant under the dilation:

∥m(R−1·)∥Mp(N ) = ∥m∥Mp(N ),

we only need to consider the first inequality in (4.1). Throughout the proof, we suppose
that λ is a complex number with Reλ > 0. When p = 2, the estimate just follows from
vector-valued Plancherel’s theorem (2.6). By the duality, it is enough to show (4.1)
holds for 2 < p < 4

1−2Reλ .
We first make a dyadic decomposition of the multiplier. To do that, we choose a

smooth function ϕ supported in [−1
2 ,

1
2 ] and a smooth function ψ supported in [18 ,

5
8 ]

such that

ϕ(t) +

∞∑
k=0

ψ(2k(1− t)) = 1, ∀t ∈ [0, 1).
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Using this equality, we can decompose the multiplier (1− |ξ|2)λ+ as follows

(1− |ξ|2)λ+ =
[
ϕ(|ξ|) +

∞∑
k=0

ψ(2k(1− |ξ|))
]
(1− |ξ|2)λ+

= ϕ(|ξ|)(1− |ξ|2)λ +

∞∑
k=0

2−kλ(2k(1− |ξ|))λψ(2k(1− |ξ|))(1 + |ξ|)λ

=: m00(ξ) +

∞∑
k=0

2−kλmk(ξ).

(4.2)

Below we give some observations of Fourier multipliers m0,0 and mk. It is easy to
see that m00 is a smooth function with compact support, hence the multiplier m00 lies
in Mp(N ) for all 1 ≤ p ≤ ∞. Notice that each function mk is also smooth, radial and
supported in a small annulus:

1

8
2−k ≤ 1− |ξ| ≤ 5

8
2−k.

Therefore each mk also lies in Mp(N ) for 1 ≤ p ≤ ∞, but its bound may depend on k.
To sum over the series in (4.2), it is crucial to determine exactly the bound of multiplier
mk in k. Our main goal in this proof is to show that for each k,

(4.3) ∥mk∥M4(N ) . (1 + |k|)1/2(1 + |λ|)3.

Suppose we have (4.3) for the moment. Then summing over the series in (4.2) with
these estimates in (4.3), we get

∥Bλ(f)∥L4(N ) . ∥F−1[m00] ∗ f∥L4(N ) +
∞∑
k=0

2−kReλ∥F−1[mk] ∗ f∥L4(N )

. ∥f∥L4(N ) + (1 + |λ|)3∥f∥L4(N ) . (1 + |λ|)3∥f∥L4(N ).

Applying the noncommutative Riesz-Thorin interpolation theorem (see [62]), we get
(4.1) for 2 < p < 4. Next we use the analytic interpolation theorem (see Theorem
A.1 in the appendix) to show the remaining part. Let ε > 0 be a small constant (for
example less than 1

2). Then

∥Bλ(f)∥L4(N ) . (1 + |Imλ|)3∥f∥L4(N ), Reλ = ε;

∥Bλ(f)∥L∞(N ) . e6|Imλ|2∥f∥L∞(N ), Reλ =
1

2
+ ε,

where the second inequality just follows from Lemma 4.3. Define a new operator Tz by

Tz(f) = B
1
2
z+ε(f).

To apply Theorem A.1, we should verify the hypothesis of Theorem A.1. It is easy to
see that z → Tz is an analytic family of linear operators with admissible growth and

∥Tiy(f)∥L4(N ) ≤ C1(1 + |y|)3∥f∥L4(N ),

∥T1+iy(f)∥L∞(N ) ≤ C2e
3
2
|y|2∥f∥L∞(N ).
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Let p and θ satisfy 1
p = 1−θ

4 + θ
∞ and 1

2θ + ε = Reλ. Set M0(y) = C1(1 + |y|)3 and

M1(y) = C2e
3
2
|y|2 . Then applying Theorem A.1, we get

∥Tθ(f)∥Lp(N ) ≤M(θ)∥f∥Lp(N ),

where M(θ) is a finite constant defined in Theorem A.1. This immediately implies our
required estimate (4.1) since BReλ(f) = Tθ(f) and p =

4
1−2Reλ+2ε <

4
1−2Reλ .

Now we turn to prove (4.3). Fix k in the rest of proof. To estimate the L4 norm of
the Fourier multiplier mk, we need an additional decomposition (the called microlocal
decomposition) of mk that takes into the radial nature of mk. We usually identify the
plane R2 as complex plane C by (x, y) ↔ z = x+ iy. The reason to do this is that the
expression z = re2πiθ in C can be easily understood in the geometric point (note that
r is length of |z| and θ is an argument). Next we define sectorial arcs as follows:

Γk,l = {re2πiθ : (r, θ) ∈ R+ × [0, 1), |θ − l2−
k
2 | < 2−

k
2 , 1− 5

8
2−k ≤ r ≤ 1− 1

8
2−k},

for all l ∈ {0, 1, 2, · · · , ⌊2k/2⌋}. We choose a smooth function ω such that ω(u) = 1 for
|u| < 1

4 , ω(u) = 0 for |u| > 1 and
∑

l∈Z ω(x− l) = 1 holds for all x ∈ R. Define

mk,l(re
2πiθ) = mk(re

2πiθ)ω(2k/2θ − l).

It should be pointed out that mk(re
2πiθ) is a function about variable r. Then by our

construction of ω, we see that

mk(ξ) =
∑
l∈Z

mk,l(ξ) =

r(k)∑
l=0

mk,l(ξ),

where r(k) = ⌊2k/2⌋ − 1 if k is even and r(k) = ⌊2k/2⌋ if k is odd. By some elementary
calculations, it is not difficult to get that

(4.4) |∂αr ∂
β
θmk,l(re

2πiθ)| . (1 + |λ|)α2kα2
k
2
β, supp mk,l(re

2πiθ) ⊂ Γk,l.

Next we split all {mk,l}l into five subsets whose supports satisfy the following con-
ditions:

(a). suppmk,l ( Qa =: {(x, y) ∈ R2 : x > 0, |y| < |x|};
(b). suppmk,l ( Qb =: {(x, y) ∈ R2 : x < 0, |y| < |x|};
(c). suppmk,l ( Qc =: {(x, y) ∈ R2 : y > 0, |y| > |x|};
(d). suppmk,l ( Qd =: {(x, y) ∈ R2 : y < 0, |y| > |x|};
(e). The support suppmk,l intersects Qe = {(x, y) ∈ R2 : |x| = |y|}.

We first observe that there are only at most eight mk,ls in the case (e). In such a
case, it is straightforward to get that

(4.5) ∥mk,l∥Mp(N ) . (1 + |λ|)3

as we will see below (which will be pointed out in our later proof). By symmetry, we
only need to concentrate on the case (a). Denote the index set I = {l : Γk,l ( Qa}.
For each l ∈ I, define a Fourier multiplier operator Tk,l by

T̂k,lg(ξ) = mk,l(ξ)ĝ(ξ).
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Our purpose below is to show
∑

l∈Imk,l satisfies (4.3), i.e.

(4.6)
∥∥∥∑

l∈I
Tk,l(f)

∥∥∥
L4(N )

. (1 + |k|)
1
2 (1 + |λ|)3∥f∥L4(N ).

By decomposing f as linear combination of four positive functions, we may suppose
that f is positive. In the following we should separate the sum of l ∈ I into two parts,∥∥∥∑

l∈I
Tk,l(f)

∥∥∥4
L4(N )

= τ

∫
R2

|
∑
l∈I

∑
l′∈I

Tk,l(f)
∗(x)Tk,l′(f)(x)|2dx

. τ

∫
R2

|
∑
l∈I

∑
l′∈I,|l−l′|≤103

Tk,l(f)
∗(x)Tk,l′(f)(x)|2dx

+ τ

∫
R2

|
∑
l∈I

∑
l′∈I,|l−l′|>103

Tk,l(f)
∗(x)Tk,l′(f)(x)|2dx

=: I + II.

(4.7)

For the term I, the sum of l′ is taking over l− 103 ≤ l′ ≤ l+ 103 which is finite. By
Hölder’s inequality of the square function in Lemma 2.5, we get

I .
103∑

i=−103

τ

∫
R2

|
∑

l∈I,l+i∈I
Tk,l(f)

∗(x)Tk,l+i(f)(x)|2dx

≤
103∑

i=−103

∥∥∥(∑
l∈I

|Tk,l(f)|2
) 1

2
∥∥∥2
L4(N )

∥∥∥( ∑
l+i∈I

|Tk,l+i(f)|2
) 1

2
∥∥∥2
L4(N )

.
∥∥∥(∑

l∈I
|Tk,l(f)|2

) 1
2
∥∥∥4
L4(N )

.

For the term II, using vector-valued Plancherel’s theorem (2.6), we get

II = τ

∫
R2

∣∣∑
l∈I

∑
l′∈I,|l−l′|>103

T̂k,l(f)∗ ∗ T̂k,l′(f)(ξ)
∣∣2dξ.

Since f is positive, it is easy to see Tk,l(f)
∗ = F−1[m̃k,l] ∗ f where we use the notation

ã(·) = a(−·). Then we have

suppT̂k,l(f)∗ ⊂ Γ̃k,l, suppT̂k,l′(f) ⊂ Γk,l′ ,

where Γ̃k,l = {x : −x ∈ Γk,l}. Applying these support conditions, we rewrite the above
integral of II as

τ

∫
R2

∣∣∑
l∈I

∑
l′∈I,|l−l′|>103

T̂k,l(f)∗ ∗ T̂k,l′(f)(ξ)χΓ̃k,l+Γk,l′
(ξ)

∣∣2dξ.
Next using the convexity operator inequality (2.5), this term is bounded by

τ

∫
R2

(∑
l∈I

∑
l′∈I,|l−l′|>103

|T̂k,l(f)∗ ∗ T̂k,l′(f)(ξ)|2
)(∑

l∈I

∑
l′∈I,|l−l′|>103

χΓ̃k,l+Γk,l′
(ξ)

)
dξ.

Before proceeding our proof further, we need the following geometric estimate.
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Lemma 4.5. There exists a constant C independent of k and ξ such that∑
l∈I

∑
l′∈I,|l−l′|>103

χΓ̃k,l+Γk,l′
(ξ) ≤ C.

Remark 4.6. The geometric estimate of this lemma is different from the classical com-
mutative one stated in [10]. The main difference is that there is no involution ∗ of Tk,lf
in the commutative case because of |a|4 = |aa|2 if a is a complex number. This yields
a geometric estimate in the form

∑
l∈I

∑
l′∈I χΓk,l+Γk,l′ (ξ) which is simpler than that

of Lemma 4.5. In fact, all Γk,ls are contained in {(x, y) : x > 0, |x| < |y|} and the
pieces Γk,l + Γk,l′s are well distributed. However in the noncommutative setting, for
an element a ∈ M, we have |a|4 = |a∗a|2. Our argument above leads to the geometric

estimate
∑

l∈I
∑

l′∈I χΓ̃k,l+Γk,l′
(ξ) . Notice Γ̃k,l stays in an oppositive direction of Γk,l,

i.e. Γ̃k,l ⊂ {(x, y) : x < 0, |x| < |y|}. These pieces Γ̃k,l +Γk,l′s may accumulate near the
origin if Γk,l and Γk,l′ are close enough, which can be easily seen in view of geometric
observation. Hence if ξ is close to the origin,

∑
l∈I

∑
l′∈I χΓ̃k,l+Γk,l′

(ξ) may be infinite.

This is the reason why we split the sum of I into two parts in (4.7). Luckily we can

show {Γ̃k,l + Γk,l′}l,l′ is finite overlapped if |l − l′| > 103.

The proof of Lemma 4.5 will be given later. Applying this geometric estimate, we
get II is bounded by∑

l∈I

∑
l′∈I

τ

∫
R2

|T̂k,l(f)∗ ∗ T̂k,l′(f)(ξ)|2dξ =
∑
l∈I

∑
l′∈I

τ

∫
R2

|Tk,l(f)∗(x)Tk,l′(f)(x)|2dx

=
∑
l∈I

∑
l′∈I

τ

∫
R2

Tk,l′(f)
∗(x)Tk,l(f)(x)Tk,l(f)

∗(x)Tk,l′(f)(x)dx

= τ

∫
R2

(∑
l∈I

|Tk,l(f)∗(x)|2
)2
dx =

∥∥∥(∑
l∈I

|Tk,l(f)∗|2
) 1

2
∥∥∥4
L4(N )

,

where in the first equality we use vector-value’s Plancherel theorem (2.6) and the third
equality follows from the tracial property of τ : τ(ab) = τ(ba). Combining these esti-
mates of I and II, together with (4.7), we get

(4.8)
∥∥∥∑

l∈I
Tk,l(f)

∥∥∥4
L4(N )

.
∥∥∥(∑

l∈I
|Tk,l(f)|2

) 1
2
∥∥∥4
L4(N )

+
∥∥∥(∑

l∈I
|Tk,l(f)∗|2

) 1
2
∥∥∥4
L4(N )

.

This kind of estimate is consistent with the estimate of square functions in noncommu-
tative analysis in the sense that we should use both row and column square functions
to control the Lp norm for p ≥ 2 (see Subsection 2.3).

Now we should study carefully the multiplier mk,l. Consider mk,0 firstly. Note that

mk,0 is supported in a rectangle parallel to axes with side length 2−k−1 and 2−
k
2
+1

(along the ξ1-axis and ξ2-axis, respectively). Roughly speaking in such a rectangle
∂ξ1 ≈ ∂r, ∂ξ2 ≈ ∂θ. In fact by some straightforward calculations, we get the smooth
function mk,0 satisfies

(4.9) |∂αξ1∂
β
ξ2
mk,0(ξ1, ξ2)| .α,β (1 + |λ|)α2kα2

k
2
β
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for all positive integers α and β which is an analogue of (4.4). We can rewrite (4.9) as
follows

|∂αξ1∂
β
ξ2
[mk,0(2

−kξ1, 2
− k

2 ξ2)]| .α,β (1 + |λ|)α.
With these estimates and using integration by parts, we obtain that

(4.10) 2
3
2
k|F−1[mk,0](2

kx1, 2
k
2 x2)| . (1 + |λ|)3(1 + |x1|+ |x2|)−3.

Let vl and v
⊥
l be the unit vectors corresponding the directions e2πil2

− k
2 and ie2πil2

− k
2 ,

respectively. According our definition, mk,l(ξ) = mk,0(Aξ) where A =
(

vl
v⊥l

)
. By a

rotation, we see that

(4.11) F−1[mk,l](x1, x2) = F−1[mk,0](Ax) = F−1[mk,0](x · vl, x · v⊥l ).

Hence combining with (4.10), we have

|F−1[mk,l](x1, x2)| . 2−
3
2
k(1 + |λ|)3(1 + 2−k|x · vl|+ 2−

k
2 |x · v⊥l |)−3,

which immediately implies that

(4.12) sup
k>0

sup
l∈I

∥F−1[mk,l]∥L1(R2) . (1 + |λ|)3.

Here we point out that (4.5) follows from (4.12). Obviously all the above estimates
hold for m∗

k,l since m
∗
k,l = mk,l.

We turn to give some geometric observations of the support of mk,l. Let Jk,l be the
ξ2 projection of the support of mk,l. If the support of mk,l lies in the upper half plane
of Qa (i.e. ξ2 > 0), then we see

Jk,l = R× [(1− 5
82

−k) sin(2π2−
k
2 (l − 1)), (1− 1

82
−k) sin(2π2−

k
2 (l + 1))].

Similarly if the support of mk,l lies in the lower half plane of Qa (i.e. ξ2 ≤ 0), then

Jk,l = R× [(1− 1
82

−k) sin(2π2−
k
2 (l − 1)), (1− 5

82
−k) sin(2π2−

k
2 (l + 1))].

Since k is a fixed integer, the sets Jk,ls are almost disjoint for different l ∈ I because
Γk,l is only joint with Γk,l−1 and Γk,l+1. Next our goal is to construct congruent strips

containing Jk,l. If we set J̃k,l as a strip centered at ξ2 = (1 − 3
82

−k) sin(2π2−
k
2 l) with

width 20 · 2−
k
2 , i.e.

J̃k,l = R× [(1− 3
82

−k) sin(2π2−
k
2 l)− 10 · 2−

k
2 , (1− 3

82
−k) sin(2π2−

k
2 l) + 10 · 2−

k
2 ].

Then Jk,l ⊂ J̃k,l. For any σ ∈ Z, υ ∈ {0, 1, · · · , 39}, define the strips as follows

Sk,σ,υ = R× [40σ2−
k
2 + υ2−

k
2 , 40(σ + 1)2−

k
2 + υ2−

k
2 ].

Note that Sk,σ,υ has width 40 · 2−
k
2 and each J̃k,l must be contained in one of Sk,σ,υ

for some σ ∈ Z and υ ∈ {0, 1, · · · , 39} in view of some simple geometric observation

of Sk,σ,υ. We say J̃k,l ⊂ Sk,σl,υl and define Sk,σl,υl = Bk,l. Let fk,l = F−1[χBk,l
f̂ ] =

(F−1[χBk,l
]) ∗ f . According the definition of Tk,l, we see

Tk,l(f) = F−1[mk,l] ∗ fk,l = Tk,l(fk,l).
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Now we come back to the estimate in (4.8). We first consider the column square
function. Using the convexity operator inequality (2.5) and the uniform boundedness
of F−1[mk,l] in (4.12), we get

|Tk,l(f)(x)|2 =
∣∣∣ ∫

R2

F−1[mk,l](x− y)fk,l(y)dy
∣∣∣2

≤
∫
R2

|F−1[mk,l](x− y)|dy ·
∫
R2

|F−1[mk,l](x− y)| · |fk,l(y)|2dy

. (1 + |λ|)3|F−1[mk,l]| ∗ |fk,l|2(x).

Plugging the above inequality into the column square function in (4.8) and applying
the monotone property (2.1), we get∥∥∥(∑

l∈I
|Tk,l(f)|2

) 1
2
∥∥∥4
L4(N )

. (1 + |λ|)6τ
∫
R2

(∑
l∈I

|F−1[mk,l]| ∗ |fk,l|2(x)
)2
dx

= (1 + |λ|)6 sup
g

[
τ

∫
R2

∑
l∈I

|F−1[mk,l]| ∗ |fk,l|2(x)g(x)dx
]2

where in the last equality we use the duality [Lp(N )]∗ = Lp′(N ) and the supremum
is taken over all positive g in L2(N ) with norm less than one. Continue the above
estimate, we obtain

(1 + |λ|)6 sup
g

(
τ
∑
l∈I

∫
R2

|fk,l(y)|2 · |F [mk,l]| ∗ g(y)dy
)2

≤ (1 + |λ|)6 sup
g

∥ sup
l∈I

|F [mk,l]| ∗ g∥2L2(N )

∥∥∑
l∈I

|fk,l|2
∥∥2
L2(N )

= (1 + |λ|)6 sup
g

∥ sup
l∈I

|F [mk,l]| ∗ g∥2L2(N )

∥∥(∑
l∈I

|fk,l|2)
1
2

∥∥4
L4(N )

,

where the first inequality follows from the duality in Lemma 2.3. If we can prove the
following two estimates:

(4.13) ∥ sup
l∈I

|F [mk,l]| ∗ g∥L2(N ) . (1 + |λ|)3(1 + k)∥g∥L2(N ),

(4.14)
∥∥(∑

l∈I
|fk,l|2)

1
2

∥∥
L4(N )

. ∥f∥L4(N ),

then we finally get that∥∥∥(∑
l∈I

|Tk,l(f)|2
) 1

2
∥∥∥
L4(N )

. (1 + |λ|3)(1 + k)
1
2 ∥f∥L4(N ),

which is the required estimate of (4.6). For the row square function, we can use the
similar method to obtain the desired estimate∥∥∥(∑

l∈I
|Tk,l(f)∗|2

) 1
2
∥∥∥
L4(N )

. (1 + |λ|3)(1 + k)
1
2 ∥f∥L4(N ).
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In fact, Tk,l(f)
∗ = F [m∗

k,l]∗f∗k,l. Then repeating these arguments for the column square
function above, we see the proof is reduced to the following two inequalities:

(4.15) ∥ sup
l∈I

|F [m∗
k,l]| ∗ g∥L2(N ) . (1 + |λ|)3(1 + k)∥g∥L2(N ),

(4.16)
∥∥(∑

l∈I
|f∗k,l|2)

1
2

∥∥
L4(N )

. ∥f∥L4(N ).

Below we give the proofs of (4.13), (4.15) and (4.14), (4.16). We first consider (4.13)
and (4.15). Recall (4.10), F [mk,0] is integrable over R2 and satisfies

2
3
2
k|F [mk,0](2

kx1, 2
k
2 x2)| .

(1 + |λ|)3

(1 + |x|)3
. (1 + |λ|)3

∞∑
s=0

2−s

22s
χ[−2s,2s]×[−2s,2s](x).

By making a change of variables, we immediately get

|F [mk,0](x)| . (1 + |λ|)3
∞∑
s=0

2−s 1

|Rs|
χRs(x),

where Rs = [−2s+k, 2s+k] × [−2s+
k
2 , 2s+

k
2 ]. Notice that a general function F [mk,l] is

obtained from F [mk,0] by a rotation A =
(

vl
v⊥l

)
(see (4.11)). Therefore we get

|F [mk,l](x)| . (1 + |λ|)3
∞∑
s=0

2−s 1

|Rs,l|
χRs,l

(x),

where Rs,l is a rectangle with principal axes along the directions vl and v
⊥
l with half

side length 2s+k and 2s+
k
2 , respectively. Since g is positive, we see that

|F [mk,l]| ∗ g(x) . (1 + |λ|)3
∞∑
s=0

2−s 1

|Rs,l|

∫
Rs,l

g(x− y)dy,

where . should be understood as partial order in the positive cone of L2(N ). For
convenience, we setMRs,l

g(x) = |Rs,l|−1
∫
Rs,l

g(x−y)dy. Notice thatMRs,l
g =MR

2k/2
g

the Kakeya average operator defined in (3.1). Now using the estimate of the Kakeya
maximal function in Theorem 3.1, we get

∥ sup
l∈I

|F [mk,l]| ∗ g∥L2(N ) . (1 + |λ|)3
∞∑
s=0

2−s∥ sup
s∈N,l∈I

MRs,l
g∥L2(N )

. (1 + |λ|)3
∞∑
s=0

2−s∥ supMR
2k/2

g∥L2(N )

. (1 + |λ|)3(1 + k)∥g∥L2(N ),

which is the just required estimate of (4.13). The proof of (4.15) is similar, we omit
the details here.

We turn to the proofs of (4.14) and (4.16). Recall the strips

Sk,σ,υ = R× [40σ2−
k
2 + υ2−

k
2 , 40(σ + 1)2−

k
2 + υ2−

k
2 ]
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which is defined for σ ∈ Z and υ ∈ {0, 1, · · · , 39}. These strips have width 40 · 2−
k
2 and

each J̃k,l belongs to one of them, which we call Sk,σl,υl = Bk,l.
The family {Bk,l}l∈I may have duplicate sets, so we split it into 40 subfamilies by

placing Bk,l into different subfamilies if the indices υl and υl′ are different. Thus we
write the set I as I = I1 ∪ I2 ∪ · · · ∪ I40 where elements in each Ii are different.

We next observe that the multiplier operator

f̂k,l = χBk,l
f̂

satisfies fk,l = (idx1 ⊗ Pl)f where idx1 is the identity operator in x1 variable and Pl

is an operator with the multiplier χ{ξ2:(ξ1,ξ2)∈Bk,l}. Now using Lemma 4.4, we get for
2 < p <∞,∥∥{fk,l}l∈Ii∥∥Lp(N ;ℓrc2 )

=
∥∥{(idx1 ⊗ Pl)(f)}l∈Ii

∥∥
Lp(N ;ℓrc2 )

=
(∫

R

∥∥{Pl(f(x1, ·))}l∈Ii
∥∥∥p
Lp(L∞(R)⊗M;ℓrc2 )

dx1

) 1
p

.
(∫

R
∥f(x1, ·)∥pLp(L∞(R)⊗M)

dx1

) 1
p
= ∥f∥Lp(N ).

Specially the case p = 4 is our required estimate for (4.14) and (4.16). Now we prove
(4.14) and (4.16) for one Ii. Since I = I1 ∪ I2 · · · ∪ I40, the full forms of (4.14) and
(4.16) just follow from Minkowski’s inequality. �

In the remain part of this section, we turn to Lemma 4.5. This lemma is stated in
[13, Exercise 3.4] without a proof. For the sake of self-containment, we give a proof
here.

Proof of Lemma 4.5. We only need to show that for each integer k, the following esti-
mate ∑

l∈I

∑
|l−l′|>103

χΓk,l−Γk,l′ (ξ) ≤ C

holds. If k is finite, there exist only finite many pairs of sets Γk,l − Γk,l′ depending on
k and this lemma is trivial. Therefore we can assume that k is a large integer. Set
δ = 2−k. Then δ is sufficient small. For simplicity, denote the set Γk,l by Γl. Elements
of Γl − Γl′ have the form

E := re2πi(l+α)δ
1
2 − r′e2πi(l

′+α′)δ
1
2 ,

where α, α′ ∈ [−1, 1] and r, r′ ∈ [1− 5
8δ, 1−

1
8δ]. We first give some geometric observa-

tions of Γl − Γl′ . Set

(4.17) w(l, l′) := e2πilδ
1
2 − e2πil

′δ
1
2 = 2 sin(π(l − l′)δ

1
2 )ieπi(l+l′)δ

1
2 ,

then it is easy to see that the direction of w(l, l′) is along ieπi(l+l′)δ
1
2 . Next we rewrite

E as follows

w(l, l′)+
[
re2πi(l+α)δ

1
2 −re2πi(l′+α′)δ

1
2 −rw(l, l′)

]
+
[
(r−1)w(l, l′)+(r−r′)e2πi(l′+α′)δ

1
2
]
.
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By some elementary calculations, we further get the second term above equals to

rw(l, l′)(
e2πiαδ

1
2 + e2πiα

′δ
1
2 − 2

2
) + r(e2πil

′δ
1
2 + e2πilδ

1
2 )(

e2πiαδ
1
2 − e2πiα

′δ
1
2

2
).

Combining this equality, we see that E equals

w(l, l′) + ir(e2πil
′δ

1
2 + e2πilδ

1
2 )

sin 2παδ
1
2 − sin 2πα′δ

1
2

2

+ r(e2πil
′δ

1
2 + e2πilδ

1
2 )

cos 2παδ
1
2 − cos 2πα′δ

1
2

2
+E(r, r′)

where

E(r, r′) = (r − 1)w(l, l′) + (r − r′)e2πi(l
′+α′)δ

1
2 + rw(l, l′)

cos 2παδ
1
2 + cos 2πα′δ

1
2 − 2

2

+ irw(l, l′)
sin 2παδ

1
2 + sin 2πα′δ

1
2

2
.

On the other hand, utilizing the following equality

e2πil
′δ

1
2 + e2πilδ

1
2 = 2 cos(π(l − l′)δ

1
2 )eπi(l+l′)δ

1
2 ,

we see that i(e2πil
′δ

1
2 +e2πilδ

1
2 ) has the same direction as w(l, l′). Thus, (e2πil

′δ
1
2 +e2πilδ

1
2 )

is perpendicular to w(l, l′). Before proceeding further, we need the following inequalities
which will be frequently used in later manipulations:

(i) : | sin t| ≤ |t|; (ii) : |1− cos t| ≤ |t|2/2; (iii) : | sin t| ≥ 2|t|
π
, ∀|t| ≤ π

2
.(4.18)

By the first and second inequalities in (4.18), it is straightforward to verify that the
error term satisfies

|E(r, r′)| ≤ 5

4
δ +

δ

2
+ 4π2δ + 4π2δ|l − l′| ≤ 50δ + 4π2δ|l − l′|.

We therefore conclude that Γl − Γl′ contains in a rectangle R(l, l′) centered at w(l, l′)
with half-length

4πδ
1
2 + 50δ + 4π2δ|l − l′| < 100δ

1
2

in the direction along w(l, l′) since δ is sufficient small and half-width

4π2δ + 50δ + 4π2δ|l − l′| < 90|l − l′|δ < 100δ
1
2

in the direction along iw(l, l′) since |l− l′| > 103. Moreover R(l, l′) ⊂ B(w(l, l′), 150δ
1
2 )

a disk centered at w(l, l′) with radius 150δ
1
2 .

Our next goal is to show that for a fixed (l, l′) ∈ (I, I) with |l− l′| > 103, there exist
only finite pairs (m,m′) ∈ (I, I) with |m−m′| > 103 such that (Γm−Γm′)∩(Γl−Γl′) ̸= ∅.
Once we prove this fact, the geometric estimate in Lemma 4.5 immediately follows from

it. If |w(l, l′)−w(m,m′)| > 300δ
1
2 , then (Γm −Γm′)∩ (Γl −Γl′) = ∅. Therefore if these

two sets intersect, we get

(4.19) |w(l, l′)− w(m,m′)| ≤ 300δ
1
2 .
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In the following we should give a lower bound for |w(l, l′) − w(m,m′)|. Before that
we need a fundamental inequality which could be found in [18, Exercise 5.2.2]:

(4.20) |r1eiθ1 − r2e
iθ2 | ≥ min(r1, r2) sin |θ1 − θ2|, ∀ |θ1|, |θ2| <

π

4
.

By some elementary calculations and using the inequality (4.20) with (iii) of (4.18), we
get a lower bound as follows

|w(l, l′)− w(m,m′)| = |2 cos(π(l −m′)δ
1
2 )eπi(l+m′)δ

1
2 − 2 cos(π(l′ −m)δ

1
2 )eπi(l

′+m)δ
1
2 |

≥ 4

π
cos(

π

4
)|π[((l +m′)− π(l′ +m))]|δ

1
2

where we use our hypothesis that all the supports of mk,l are contained in Qa (i.e.

|2πlδ
1
2 |, |2πl′δ

1
2 |, |2πmδ

1
2 |, |2πm′δ

1
2 | < π

4 ). Thus combining the above estimate and
(4.19), we obtain

(4.21) |(l − l′)− (m−m′)| < 200.

However (4.21) is not enough to show that the number of (m,m′) is finite. In the follow-
ing, we give more exact information of lower and upper bound of |w(l, l′)− w(m,m′)|.

According our condition, |l−l′| > 103 and |m−m′| > 103. Without loss of generality,
we suppose that l > l′,m > m′. Then by (4.21), we get

l − l′ ≈ m−m′.

This implies |w(l, l′)| ≈ |w(m,m′)| ≈ (l − l′)δ
1
2 in view of the identity (4.17) and (i),

(iii) of (4.18).
Next we see that the rectangle R(l, l′) is centered at point w(l, l′) with a distance to

the origin |w(l, l′)| = 2 sin(π(l− l′)δ
1
2 ). Recall that R(l, l′) has half-length 100δ

1
2 in the

direction w(l, l′) and in the direction iw(l, l′) has half-width 90(l − l′)δ (see Figure 2
below). This implies that R(l, l′) is far from the origin (0, 0). In fact, by (iii) of (4.18),

dist(R(l, l′), (0, 0)) ≥ 2 sin(π(l − l′)δ
1
2 )− 100δ

1
2 ≥ 3(l − l′)δ

1
2 .

Similar properties also hold for R(m,m′). Since Γl − Γl′ intersects Γm − Γm′ , then
R(l, l′) intersects R(m,m′). Note that the angle θ between w(l, l′) and w(m,m′) is

π|l + l′ −m−m′|δ
1
2 (see Figure 2 below).

Then the distance of w(l, l′) and w(m,m′) has an upper bound

|w(l, l′)− w(m,m′)| ≤ 90(l − l′)δ + 90(m−m′)δ + 100δ
1
2 θ.

On the other hand, the distance of w(l, l′) and w(m,m′) has the following lower bound

|w(l, l′)− w(m,m′)| ≥ 2
(
sin(π(l − l′)δ

1
2 ) + sin(π(m−m′)δ

1
2 )
)
sin θ

2

≥ 4((l − l′) + (m−m′))|l + l′ −m−m′|δ,

where we use (iii) of (4.18). The upper and lower estimates, together with our hypoth-
esis l − l′ > 103, m−m′ > 103, finally yield that

(4.22) |l + l′ −m−m′| ≤ 200.
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θ

w(l, l′)

w(m,m′)

90(l − l′)δ

90(m−m′)δ

100δ
1

2

100δ
1

2

R(l, l′)

R(m,m′)

A0

Figure 2. R(l, l′) has half-length 100δ
1
2 in the direction along w(l, l′) and

in the direction along iw(l, l′) has half-width 90(l − l′)δ. R(l, l′) intersects
R(m,m′) at the point A.

Combining (4.22) and (4.21), we get that |l − m| < 200, |l′ − m′| < 200. Hence we
prove that for a fixed (l, l′), there exist only finite pairs (m,m′) such that (Γl − Γl′) ∩
(Γm − Γm′) ̸= ∅, which completes our proof. �

5. Bochner-Riesz means on quantum tori

In this section, our goal is to establish the full boundedness of Bochner-Riesz means
on two-dimensional quantum tori, i.e. Theorem 1.1. We first establish the correspond-
ing results on usual torus based on Theorem 4.1 in Section 4.

5.1. Bochner-Riesz means on usual tori. Recall that the d-torus Td is defined as
Rd/Zd. We often set Td as the cube [0, 1]d with opposite sides identified. The function
on Td can be regarded as an 1-periodic function on Rd in every coordinate. Haar
measure on Td is the restriction of Lebesgue measure to [0, 1]d which is still denoted by
dx.

Our previous main theorem of Bochner-Riesz means in Section 4 is in the frame of
the tensor von Neumann algebra L∞(Rd)⊗M. To extend our main result to the fully
noncommutative quantum torus, we should first transfer them to the setting of the
tensor von Neumann algebra L∞(Td)⊗M.

Given a function f : Td → M, define the Bochner-Riesz means Bλ
R(f)(x) by (1.1). By

the transference method (see Theorem 5.4 later), we can formulate the noncommutative
Bochner-Riesz conjecture on tori with ranges of indexes r and p the same as that in
the commutative case in the introduction. Our main result in this subsection is stated
as follows.

Theorem 5.1. Suppose 0 < λ ≤ 1
2 and 4

3+2λ < p < 4
1−2λ . Let Bλ

R be defined in (1.1)
for d = 2. Then we have

sup
R>0

∥Bλ
R(f)∥Lp(L∞(T2)⊗M) . ∥f∥Lp(L∞(T2)⊗M).
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Consequently for f ∈ Lp(L∞(T2)⊗M), Bλ
R(f) converges to f in Lp(L∞(T2)⊗M) as

R→ ∞.

To prove Theorem 5.1, we should introduce some definitions and lemmas.

Definition 5.2. For x ∈ Rd, a bounded function m on Rd taking values in C is called
regulated at the point x if

lim
ε→0

1

εd

∫
|t|≤ε

(m(x− t)−m(x))dt = 0.

The function m is called regulated if it is regulated at every x ∈ Rd.

The above definition of regulated function was first appeared in [12]. Next we intro-
duce the Fourier multiplier on L∞(Td)⊗M.

Definition 5.3. Given a bounded functionm : Zd → C, we say {m(z)}z∈Zd is a Fourier

multiplier on Lp(L∞(Td)⊗M) if the operator S defined by

S(f)(x) =
∑
z∈Zd

m(z)f̂(z)e2πix·z

where f : Td → M and f̂(z) =
∫
Td e

−2πizxf(x)dx, extends to a bounded operator on

Lp(L∞(Td)⊗M). The space of all these multipliers is denoted by Mp(L∞(Td)⊗M).

For simplicity, we denote the norm of Lp(L∞(Td)⊗M) multiplier by ∥ ·∥Mp(L∞(Td)⊗M).

Theorem 5.4. Let m be a regulated function which lies in Mp(L∞(Rd)⊗M) for some

1 ≤ p < ∞. Then the sequence {m(z)}z∈Zd belongs to Mp(L∞(Td)⊗M) and more
precisely

∥{m(z)}z∈Zd∥Mp(L∞(Td)⊗M) ≤ ∥m∥Mp(L∞(Rd)⊗M).

Moreover for all R > 0, the sequence {m(z/R)}z∈Zd lies in Mp(L∞(Td)⊗M) and

sup
R>0

∥{m(z/R)}z∈Zd∥Mp(L∞(Td)⊗M) ≤ ∥m∥Mp(L∞(Rd)⊗M).

Proof. The proof of this theorem is quite similar to that in the commutative case (see
e.g. the proof of Theorem 4.3.7 in [17]), so we omit the details of the proof here. �

Now we can apply Theorem 4.1 and Theorem 5.4 to show Theorem 5.1. Indeed
notice that the function m(z) = (1− |z|2)λ+ is continuous on Rd. Hence it is regulated.
Now utilizing Theorem 4.1 and Theorem 5.4, it is easy to obtain Theorem 5.1.

5.2. Bochner-Riesz means on quantum tori. In this subsection, we finally consider
the Bochner-Riesz means on two-dimensional quantum tori and prove our main results
Theorem 1.1. We begin by introducing some notation.

Suppose that d ≥ 2, θ = (θk,j)1≤k,j≤d is a real skew symmetric d× d matrix. The d-
dimensional noncommutative torus Aθ is a universal C∗-algebra generated by d unitary
operators U1, · · · , Ud satisfying the following commutation relation:

UkUj = e2πiθk,jUjUk, 1 ≤ k, j ≤ d.

By the unitary property of Uks, if we multiply U∗
k in both left and right sides of the

above equality, we get

UjU
∗
k = e2πiθk,jU∗

kUj , 1 ≤ k, j ≤ d.
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For a multi-index k = (k1, · · · , kd) ∈ Zd and U = (U1, · · · , Ud), we define Uk =

Uk1
1 · · ·Ukd

d . We call

(5.1) f =
∑
k∈Zd

αkU
k, with αk ∈ C,

is a polynomial in U if the sum in (5.1) is finite, i.e. αk ̸= 0 holds only for finite
multi-indexes. Let Pθ be the involution algebra of all such polynomials. Then Pθ is
dense in Aθ. A well-known fact is that Aθ admits a faithful tracial state τ such that
τ(Uk1

1 · · ·Ukd
d ) = 1 if and only if k = (k1, · · · , kd) = 0 where 0 = (0, · · · , 0) (see e.g.

[44]). Hence for any polynomial f with form (5.1), we can define

τ(f) = α0.

Define Td
θ the weak ∗-closure of Aθ in the GNS representation of τ . We call Td

θ the
d-dimensional quantum torus associated to θ. The state τ also extends to a normal
faithful state on Td

θ, which will be denoted again by τ . Notice that when θ = 0,

Aθ = C(Td) and Td
θ = L∞(Td). Thus quantum torus Td

θ is a deformation of classical

torus Td.
Let Lp(Td

θ) be the noncommutative space associated with (Td
θ, τ). Using τ is a state

and Hölder’s inequality, we see that Lq(Td
θ) ⊂ Lp(Td

θ) for 0 < p < q < ∞. For any

f ∈ L1(Td
θ), there exists a formal Fourier series

f ∼
∑
m∈Zd

f̂(m)Um

where f̂(m) = τ((Um)∗f) is called the Fourier coefficient of f . Analogous to the classi-

cal analysis, a fundamental problem here is that when the Fourier series
∑

m∈Zd f̂(m)Um

converges to f . In the following, we consider the most important Bochner-Riesz means
on quantum tori which is defined by

(5.2) Bλ
R(f) =

∑
m∈Zd

(
1− |mR |2

)λ
+
f̂(m)Um.

The Bochner-Riesz means on quantum tori was firstly studied by Z. Chen, Q. Xu and
Z. Yin [7]. A fundamental problem raised in [7, Page 762] is that in which senses Bλ

R(f)
converge back to f . We consider the Lp convergence here. In fact similar to that of the
commutative case, one can formulate the following problem of quantum Bochner-Riesz
means.

Conjecture. Suppose λ > 0 and 2d
d+1+2λ < p < 2d

d−1−2λ . Consider the Bochner-Riesz

means defined in (5.2), then we have

sup
R>0

∥Bλ
R(f)∥Lp(Td

θ)
. ∥f∥Lp(Td

θ)
.

The main result here is to show that the preceding conjecture holds for two di-
mensions, i.e. Theorem 1.1. For the reader’s convenience, we restate this theorem as
follows.
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Theorem 5.5. Suppose 0 < λ ≤ 1
2 and 4

3+2λ < p < 4
1−2λ . Let the Bochner-Riesz

means Bλ
R be defined in (5.2) for d = 2. Then we have

sup
R>0

∥Bλ
R(f)∥Lp(T2

θ)
. ∥f∥Lp(T2

θ)
.

Consequently for f ∈ Lp(T2
θ), B

λ
R(f) converges to f in Lp(T2

θ) as R→ ∞.

The proof is based on a transference technique which is a standard method. Consider
the tensor von Neumann algebra Nθ = L∞(Td)⊗Td

θ equipped with the tensor trace
v =

∫
Td dx ⊗ τ . Let Lp(Nθ) be the noncommutative Lp space associated with (Nθ, v).

Observe that

Lp(Nθ) ∼= Lp(Td;Lp(Td
θ))

where the space on the right hand side is the Bochner Lp space on Td with values in

Lp(Td
θ).

For every x ∈ Zd, we define πx as

πx(U
k) = e2πix·kUk = e2πix1k1 · · · e2πixdkdUk1 · · ·Ukd

which is an isomorphism of Td
θ . It is easy to see that τ(πx(f)) = τ(f) for any x ∈ Td.

Hence πx is trace preserving. Therefore it extends to an isometry on Lp(Td
θ) for 1 ≤

p <∞, i.e.

(5.3) ∥πx(f)∥Lp(Td
θ)

= ∥f∥Lp(Td
θ)
.

The following transference method has been showed by Z. Chen, Q. Xu and Z. Yin
in [7, Proposition 2.1 & Corollary 2.2].

Lemma 5.6. For any f ∈ Lp(Td
θ), the function f̃ : x → πx(f) is continuous from Td

to Lp(Td
θ) (with respect to the weak ∗-topology for p = ∞). Moreover f̃ ∈ Lp(Nθ) and

∥f̃∥Lp(Nθ) = ∥f∥Lp(Td
θ)

for 1 ≤ p ≤ ∞. Thus, f → f̃ is an isometric embedding from

Lp(Td
θ) to Lp(Nθ).

Proof of Theorem 5.5. The proof just follows from Theorem 5.1 and Lemma 5.6. In
fact, by the density argument, it suffices to consider f as a polynomial

∑
k∈Z2 f̂(k)Uk.

Define f̃ in Lemma 5.6. Then f̃ ∈ Lp(Nθ) and ∥f̃∥Lp(Nθ) = ∥f∥Lp(T2
θ)

by Lemma 5.6.

Using Theorem 5.1, we get

(5.4) sup
R>0

∥Bλ
R(f̃)∥Lp(T2;Lp(T2

θ))
. ∥f̃∥Lp(T2;Lp(T2

θ))
.

On the other hand, it is easy to see
̂̃
f(k) = f̂(k)Uk. According the definition of

Bochner-Riesz means,

Bλ
R(f̃)(x) =

∑
k∈Z2

(
1−

∣∣ k
R

∣∣2)λ
+
̂̃
f(k)e2πik·x =

∑
k∈Z2

(
1−

∣∣ k
R

∣∣2)λ
+
f̂(k)e2πik·xUk = πx[B

λ
R(f)].

This, together with (5.3) and (5.4), implies the desired estimate in Theorem 5.5. The
convergence follows from the standard limiting argument. �



NONCOMMUTATIVE BOCHNER-RIESZ MEANS 33

Appendix A. Interpolation of analytic families of operators on
noncommutative Lp spaces

In this appendix, we state precisely an analytic interpolation theorem which may be
known to experts. Let S be the linear span of all x ∈ M+ whose support projections
have finite trace. Suppose that Tz is a linear operator mapping S to itself for every z
in the closed strip S̄ = {z ∈ C : 0 ≤ Rez ≤ 1}. We say the family {Tz}z is analytic if
the function

z → τ(gTz(f))

is analytic in the open strip S = {z ∈ C : 0 < Rez < 1} and continuous on S̄ for any
functions f and g in S. Moreover we say the analytic family {Tz}z is of admissible
growth if there exists a constant 0 < a < π such that

e−a|Imz| log |τ(gTz(f))| <∞
for all z ∈ S̄. Now we can state the following analytic interpolation theorem.

Theorem A.1. Suppose that Tz is an analytic family of linear operators of admissible
growth. Let p0, p1, q0, q1 ∈ (0,∞) and assume that M0,M1 are positive functions on R
such that

(A.1) sup
y∈R

e−b|y| logMj(y) <∞

for j = 0, 1 and some b ∈ (0, π). Let p, θ satisfy 1
p = 1−θ

p0
+ θ

p1
and 1

q = 1−θ
q0

+ θ
q1
.

Suppose that

∥Tiy(f)∥Lq0(M) ≤M0(y)∥f∥Lp0 (M), ∥T1+iy(f)∥Lq1 (M) ≤M1(y)∥f∥Lp1 (M)(A.2)

hold for all f ∈ S. Then for any θ ∈ (0, 1), we have

∥Tθ(f)∥Lq(M) ≤M(θ)∥f∥Lp(M),

where for 0 < t < 1,

M(t) = exp
{sin(πt)

2

∫ ∞

−∞

[ logM0(y)

cosh(πy)− cos(πt)
+

logM1(y)

cosh(πy) + cos(πt)

]
dy

}
.

To prove this theorem, we need an extension of the three lines theorem which could
be found in [48, Page 206, Lemma 4.2].

Lemma A.2. Suppose that F is analytic on the open strip S and continuous on its
closure such that

sup
z∈S̄

e−a|Imz| log |F (z)| <∞

for some a ∈ (0, π). Then for any 0 < x < 1, we have

|F (x)| ≤ exp
{sin(πx)

2

∫ ∞

−∞

[ log |F (iy)|
cosh(πy)− cos(πx)

+
log |F (1 + iy)|

cosh(πy) + cos(πx)

]
dy

}
.

Proof of Theorem A.1. The proof is quite similar to that in the commutative case. Let
f, g ∈ S with polar decompositions f = u|f | and g = v|g|. Without loss of generality,
we may suppose that ∥f∥Lp(M) = 1 = ∥g∥Lq′ (M). By the duality, to prove our theorem,

it suffices to show
|τ(gTθ(f))| ≤M(θ).
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For z ∈ S̄, define f(z) = u|f |
p(1−z)

p0
+ pz

p1 and g(z) = v|g|
q′(1−z)

q′0
+ q′z

q′1 where the continuous
functional calculus is defined by complex powers of positive operators. By the den-
sity argument, we could suppose that |f | and |g| are linear combinations of mutually
orthogonal projections of finite trace, i.e.

|f | =
n∑

j=1

αjej , |g| =
m∑
k=1

βkẽk

where αjs, βks are real and ejs, ẽks are mutually orthogonal basis. Then

f(z) =

n∑
j=1

α
p(1−z)

p0
+ pz

p1
j uej .

Therefore the function z → f(z) is an analytic function on C taking values in M.
Similar properties hold for the function z → g(z). Define

F (z) = τ(g(z)Tz(f(z))).

Then we have

F (z) =

n∑
j=1

m∑
k=1

α
p(1−z)

p0
+ pz

p1
j β

q′(1−z)

q′0
+ q′z

q′1
k τ(vẽkTz(uej)).

By our assumption, τ(vẽkTz(uej)) is analytic. Hence F (z) is an analytic function
satisfying the hypothesis of Lemma A.2. Recall a property of polar decomposition:
|f | = |f |u∗u = u∗u|f |, then by the continuous functional calculus of |f |, we obtain

(A.3) ω(|f |) = ω(|f |)u∗u = u∗uw(|f |),
where ω is a continuous function on R+. Since

f(iy) = u|f |iyp(
1
p1

− 1
p0

)+ p
p0 ,

then by (A.3), we get

|f(iy)|2 = f∗(iy)f(iy) = |f |−iyp( 1
p1

− 1
p0

)+ p
p0 u∗u|f |iyp(

1
p1

− 1
p0

)+ p
p0 = |f |

2p
p0 .

Therefore we get ∥f(iy)∥Lp0 (M) = 1. Similarly ∥f(1+iy)∥Lp1 (M) = 1 = ∥g(iy)∥Lq′0
(M) =

∥g(1 + iy)∥Lq′1
(M). Hölder’s inequality and our assumption show that for all y ∈ R,

|F (iy)| ≤ ∥Tiy(f(iy))∥Lq0 (M)∥g(iy)∥Lq′0
(M)

≤M0(y)∥f(iy)∥Lp0 (M)∥g(iy)∥Lq′0
(M) =M0(y).

Similarly for all y ∈ R, |F (1 + iy)| ≤ M1(y). Now applying Lemma A.2 with the
preceding two estimates and notice that cosh(πy) = 1

2(e
πy + e−πy) ≥ 1 ≥ cos(πx), we

get
|τ(gTθ(f))| = |F (θ)| ≤M(θ),

which implies the required estimate. �
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