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Abstract. In this paper, we construct two types of vortex patch equilibria for the two-
dimensional Euler equations in a disc. The first type is called the “N+1 type” equilibrium,
in which a central vortex patch is surrounded by N identical patches with opposite signs,
and the other type is called the “2N type” equilibrium, in which the centers of N iden-
tical positive patches and N negative patches lie evenly on a circle. The construction is
performed by solving a variational problem for the vorticity in which the kinetic energy
is maximized subject to some symmetry constraints, and then analyzing the asymptotic
behavior as the vorticity strength goes to infinity.

1. Introduction and main results

Let D ⊂ R2 be a simply connected bounded domain. We consider a steady ideal flow in
D whose motion is governed by the following Euler equations:

(v · ∇)v = −∇P in D,

∇ · v = 0 in D,

v · n = 0 on ∂D,

(1.1)

where v = (v1, v2) is the velocity field and P is the scalar pressure, n is the outward unit
normal of ∂D.

Define the vorticity of the Euler flow ω := ∂x1v2 − ∂x2v1 and take curl to both sides of
the first equation in (1.1). Thus it becomes the following vorticity equation

∇ · (ωv) = 0. (1.2)

On the other hand, since v is divergence free, there exists a function ψ, called the stream
function, such that v = ∇⊥ψ := (∂x2ψ,−∂x1ψ). The boundary condition v ·n = 0 requires
ψ to be a constant on ∂D and thus we can assume ψ = 0 by adding a suitable constant
to ψ. Therefore by direct calculation it is not difficult to see that ω and ψ satisfy the
following Poisson’s equation: {

−∆ψ = ω, in D,

ψ = 0, on ∂D.
(1.3)

So ψ can be expressed as
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ψ(x) = Gω(x) :=

∫
D

G(x,y)ω(y)dy, (1.4)

where G(x, y) is the Green’s function of −∆ with 0-Dirichlet boundary condition.
The energy of the flow in terms of vorticity ω is defined as

E(ω) :=
1

2

∫
D

∫
D

G(x,y)ω(x)ω(y)dxdy. (1.5)

The research for dynamically possible equilibria of planar incompressible flows and their
stability analysis have been extensively studied by many authors; see [1, 2, 3, 5, 8, 9, 10,
12, 13, 14, 17, 27, 22, 24, 26, 28, 29, 30, 31] and the references therein. It is also worth
mentioning that in [32] the authors studied N+1 type vortex patch equilibrium numerically
based on contour dynamics, and stability is also discussed therein.

Since in this paper, we are going to deal with vortex patch solution, namely, the vorticity
of the fluid is a piecewise constant function, it is necessary to interpret (1.6) in a weak
sense. To do this we first reformulate the Euler equations (1.1) in terms of the vorticity as
follows

∇ · (ω∇⊥Gω) = 0 in D. (1.6)

We will mainly consider (1.6) instead of (1.1) in the rest of this paper.

Definition 1.1. We call ω ∈ L 4
3 (D) a weak solution to (1.6) if∫

D

ω∇⊥Gω · ∇φdx = 0 (1.7)

for any φ ∈ C∞0 (D).

To state our main results we need to introduce some definitions first. It is well known
that G has the following decomposition

G(x,y) :=
1

2π
ln

1

|x− y|
− h(x,y), x,y ∈ D, (1.8)

where h(x,y) is the regular part of G. We will call h(x,x) Robin function of D.
Let k be a positive integer and κ1, κ2, ..., κk be k non-zero real numbers. The corre-

sponding Kirchhoff-Routh function Hk is defined by setting:

Hk(x1, · · · ,xk) := −
∑

1≤i 6=j≤k

κiκjG(xi,xj) +
k∑
i=1

κ2
ih(xi,xi), (1.9)

where (x1, · · · ,xk) ∈ D(k) := D ×D × · · · ×D︸ ︷︷ ︸
k

such that xi 6= xj for i 6= j.

In [28, 29], Turkington firstly proved existence of steady vortex patches in general bound-
ed domains. He introduced a weakly star closed subset in L∞ that contains all “isovortical”
patches, and by maximizing the kinetic energy on that subset he showed that any max-
imizer is in fact a steady vortex patch. He also considered asymptotic behavior of the



STEADY VORTEX PATCH 3

maximizers as the vorticity strength goes to infinity and found that the limit is a point
vortex located at a global minimum point of the Robin function of the domain. Later Bur-
ton set up a complete theory on the extremization of the energy functional on “isovortical”
rearrangements; see [7, 8, 9, 10]. In particular, he proved existence of maximizer, minimizer
and minimax solutions of the corresponding variational problems, including Turkington’s
result as a special case. But Burton did not consider the case when the vorticity strength
goes the infinity, which has practical interest and is closely related to the desingularization
of point vortices; see [30]. As an application of Burton’s theory and by using Turkington’s
asymptotic estimate, Elcrat and Miller [18, 19] considered that case and constructed steady
multiple vortex flows near any given strict local minimum point of the Kirchhoff-Routh
function.

A crucial assumption in [18, 19] is that the minimum point of the Kirchhoff-Routh
function must be strict, which is usually difficult to verify. In fact, there is no general result
that guarantees the existence of such minimum point except for several special cases; see
Remark 3.1 in [15]. For the simplest domain, an open disc, due to rotational invariance
of the Kirchhoff-Routh function, there is no strict local minimum point for more than two
vortices. To circumvent this difficulty, the authors in [16] improved the vorticity method
by adding some symmetry constraints in the variational problem. They constructed steady
vortex patches, each of which consists of a positive part and a negative part, concentrating
near two antipodal points respectively. Moreover, the combination of these two points is
the unique minimum point of the corresponding Kirchhoff-Routh function up to rotational
invariance.

Our aim in this paper is to extend the result in [16] to the case with multiple patches
concentrating near some prescribed points. To state our main results, we need to introduce
more notations and terminology which will also be used later. From now on D will be the
unit disc centered at the origin in R2, that is

D = {x = (x1, x2) ∈ R2 | |x| =
√
x2

1 + x2
2 < 1}, (1.10)

and the regular part of G in this case is

h(x,y) := − 1

2π
ln |y| − 1

2π
ln |x− y

|y|2
|, x,y ∈ D. (1.11)

We shall use the following notation for convenience. For any measurable set A ⊂ D, IA
denotes the characteristic function of A, that is, IA = 1 on A and IA = 0 elsewhere, |A|
denotes the two-dimensional Lebesgue measure of A, and A denotes the closure of A in
the usual Euclidean topology.

Throughout the sequel we shall use the following notations. Let N be a positive integer.
For any x ∈ D with x = ρx(cos θx, sin θx), where [ρx, θx] denotes the polar coordinates of
x, define

eiθ(x) := ρx(cos(θx + θ), sin(θx + θ)),

Ri(x) := ρx(cos(
4π(i− 1)

N
− θx), sin(

4π(i− 1)

N
− θx)), i = 1, · · ·, N,
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Tj(x) := ρx(cos(
2π(j − 1)

N
− θx), sin(

2π(j − 1)

N
− θx)), j = 1, · · ·, 2N.

It is easy to see that eiθ(x) represents the anticlockwise rotation through θ of x, Ri(x)

is the reflection point of x with respect to the line x2 =
(

tan 2π(i−1)
N

)
x1, and Tj(x) is the

reflection point of x with respect to the line x2 =
(

tan π(j−1)
N

)
x1.

Let f be a real-valued function defined in D, define eiθ(f)(x) := f(eiθ(x)), Ri(f)(x) :=
f(Ri(x)) for each i = 1, · · ·, N and Tj(f)(x) := f(Tj(x)) for each j = 1, · · ·, 2N . Let
A be a subset in D, define eiθ(A) := {eiθ(x) | x ∈ A}, Ri(A) := {Ri(x) | x ∈ A} and
Tj(A) := {Tj(x) | x ∈ A}.

Now we are ready to state the main results of this paper. The first one is the following.

Theorem 1.2. Let N be a positive integer, κ, µ be two positive real numbers such that µ/κ
is sufficiently large(depending only on N). Then there exists a λ0 > 0, such that for any
λ > λ0, there exists a weak solution ωλ of (1.6) with the following properties:

(1) ωλ = λIΩλ0
−
∑N

i=1 λIΩλi
with Ωλ

0 =
{
x ∈ D | Gωλ(x) > νλ0

}
∩Bδ0(QN+1) and Ωλ

i ={
x ∈ D | Gωλ(x) < −νλ1

}
∩Bδ0(Qi), where νλ0 , ν

λ
1 are positive numbers depending on

λ, Qi = ρ̃
(

cos 2π(i−1)
N

, sin 2π(i−1)
N

)
for some ρ̃ ∈ (0, 1) determined only by N and κ/µ,

QN+1 = 0 and δ0 is chosen to be sufficiently small such that Bδ0(Qi) ∩Bδ0(Qj) = ∅
if 1 ≤ i 6= j ≤ N + 1;

(2) λ|Ωλ
0 | = µ, λ|Ωλ

i | = κ for i = 1, · · · , N ;

(3) ei
2π(i−1)

N (ωλ) = ωλ and Ri(ω
λ) = ωλ for i = 1, · · · , N ;

(4) Ωλ
0 shrinks to the origin 0 and Ωλ

i shrinks to Qi for each i = 1, · · · , N as λ→ +∞,
or equivalently,

lim
λ→+∞

sup
x∈Ωλ0

|x| = 0, lim
λ→+∞

sup
x∈Ωλi

|x−Qi| = 0, i = 1, · · · , N.

Let us remark that Theorem 1.2 deals with N+1 type vortex patch equilibrium, in which
a central positive patch is surrounded by N identical negative patches. By the physical
meaning of ω, Theorem 1.2 implies the existence of flow with one piece of fluid rotating at
the angular velocity of 1

2
λ and another N pieces of fluid rotating at the angular velocity

of −1
2
λ which almost evenly distributed on the circle centered at the origin with radius

determined only by N for λ large.
The second result is the following theorem which is concerned with the existence of 2N

type vortex patch equilibrium in D. More precisely, we construct steady vortex patches,
each of which consists of N positive patches and N negative patches whose centers lie
evenly near 2N different points on a circle centered at the origin radius determined only
by N . As before one can get the physical interpretation.

Theorem 1.3. Let N be a positive integer. Then there exists λ0 > 0, such that for any
λ > λ0, there exists a weak solution ωλ of (1.6) with the following properties:

(1) ωλ =
∑2N

i=1(−1)i−1λIUλi with Uλ
i =

{
x ∈ D | (−1)i−1Gωλ(x) > τλ

}
∩Bδ0(Pi) for i =

1, · · · , 2N , where τλ ∈ R+ depends on λ, Pi = ρ̄
(

cos π(i−1)
N

, sin π(i−1)
N

)
for some ρ̄ ∈
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(0, 1) determined by N , and δ0 is chosen to be sufficiently small such that Bδ0(Pi)∩
Bδ0(Pj) = ∅ if i 6= j;

(2) λ|Uλ
i | = 1 for i = 1, · · · , 2N ;

(3) ei
π(i−1)
N (ωλ) = (−1)i−1ωλ and Ti(ωλ) = ωλ for i = 1, · · · , 2N ;

(4) for each 1 ≤ i ≤ 2N , Uλ
i shrinks to Pi as λ→ +∞, or equivalently,

lim
λ→+∞

sup
x∈Uλi

|x− Pi| = 0.

The outline of proofs for the two results is as follows. First we calculate the minimum
point of the Kirchhoff-Routh function subject to some symmetry constraints. Then we solve
a variational problem for the vorticity in which some symmetry constraints are added in
the admissible class originally used by Elcrat and Miller in [19]. Finally by analyzing the
asymptotic behavior of the maximizers we show that they are in fact steady solutions to
the Euler equation.

This paper is organized as follows. In Section 2 we give proof of Theorem 1.2. In Section
3 we give a sketch of the proof for Theorem 1.3.

2. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2.
Throughout this section we choose k = N + 1 in (1.9), where N is a given positive

integer. We also assume that κi = −κ for i = 1, · · ·, N and κN+1 = µ for two given positive
real numbers κ, µ. From (1.9), the Kirchhoff-Routh function is

HN+1(x1, · · · ,xN+1) = −κ2
∑

i 6=j,1≤i,j≤N

G(xi,xj) + 2κµ
N∑
i=1

G(xi,xN+1)

+
N∑
i=1

κ2h(xi,xi) + µ2h(xN+1,xN+1).

(2.1)

For the discussion in the sequel, define

SN+1 :=

{
(x1, · · · ,xN+1) ∈ D(N+1) | xN+1 = 0,

xi = ρ

(
cos

2π(i− 1)

N
, sin

2π(i− 1)

N

)
, 1 ≤ i ≤ N, ρ ∈ (0, 1)

}
.

(2.2)

2.1. Constrained minimum point of the Kirchhoff-Routh function. First we show
that HN+1 has a unique minimum point on SN+1, which depends only on N , provided that
µ/κ is sufficiently large.

Lemma 2.1. There exists C0 > 0, depending only on N , such that for any µ, κ > 0 with
µ/κ > C0, there exists a unique minimum point for HN+1 on SN+1.
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Proof. On SN+1, HN+1 is the function of ρ for ρ ∈ (0, 1). To prove the lemma, it suffices
to show that limρ→0+ HN+1 = +∞, limρ→1− HN+1 = +∞ and HN+1 is strictly convex in
(0, 1) if µ/κ is sufficiently large.

By direct calculation, we get

HN+1(x1, · · · ,xN+1)

= −
∑

1≤i 6=j≤N,

κ2G(xi,xj) + 2
N∑
i=1

κµG(xi,xN+1) +
N∑
i=1

κ2h(xi,xi) + µ2h(xN+1,xN+1)

= 2κµ
N∑
i=1

[
− 1

2π
ln |xi − xN+1|+

1

2π
ln |xi|+

1

2π
ln |xN+1 −

xi
|xi|2
|
]

− κ2
∑

1≤i 6=j≤N

[
− 1

2π
ln |xi − xj|+

1

2π
ln |xj|+

1

2π
ln |xi −

xj
|xj|2

|
]

+ κ2

N∑
i=1

h(xi,xi) + µ2h(xN+1,xN+1)

:= A1 + A2 + A3.

For simplicity we write xi = ρ
(

cos 2π(i−1)
N

, sin 2π(i−1)
N

)
for i = 1, · · · , N , then we get

|xi − xj| = 2ρ2

(
1− cos

2π(i− j)
N

)
,

∣∣∣∣xi − xi
|xi|2

∣∣∣∣ = ρ− 1

ρ
,∣∣∣∣xi − xj

|xj|2

∣∣∣∣ = ρ2 +
1

ρ2
− 2 cos

2π(i− j)
N

, h(0,0) = 0, h(x,x) = − 1

2π
ln(1− |x|2).

It is easy to check that

A1 =
Nκµ

π
ln

1

ρ
,

A2 = −κ2
∑

1≤i 6=j≤N

[
− 1

4π
ln

(
2ρ2(1− cos

2π(i− j)
N

)

)
+

1

2π
ln ρ

+
1

4π
ln

(
ρ2 +

1

ρ2
− 2 cos(

2π(i− j)
N

)

)]
,

A3 = −Nκ
2

2π
ln
(
1− ρ2

)
,

from which we obtain

HN+1(ρ) =
Nκµ

π
ln

1

ρ
− κ2

∑
1≤i 6=j≤N

[
− 1

4π
ln

(
2ρ2(1− cos

2π(i− j)
N

)

)
+

1

2π
ln ρ+

1

4π
ln

(
ρ2 +

1

ρ2
− 2 cos(

2π(i− j)
N

)

)]
− Nκ2

2π
ln(1− ρ2).

(2.3)
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Denote γ := µ/κ, then

HN+1(ρ) =
κ2

2π

[
− 2Nγ ln ρ−

∑
1≤i 6=j≤N

[
− ln ρ− 1

2
ln
(
2− 2 cos

2π(i− j)
N

)
+ ln ρ

+
1

2
ln
(
ρ2 +

1

ρ2
− 2 cos

2π(i− j)
N

)]
−N ln(1− ρ2)

]

=
κ2

2π

[
− 2Nγ ln ρ−N ln(1− ρ2)−

∑
1≤i 6=j≤N

[
− 1

2
ln
(
2− 2 cos

2π(i− j)
N

)
+

1

2
ln
(
ρ2 +

1

ρ2
− 2 cos

2π(i− j)
N

)]]
:=

κ2

2π
f(ρ),

where

f(ρ) = −2Nγ ln ρ−N ln(1− ρ2)−
∑

1≤i 6=j≤N

[
− 1

2
ln

(
2− 2 cos

2π(i− j)
N

)
+

1

2
ln

(
ρ2 +

1

ρ2
− 2 cos

2π(i− j)
N

)]
= −N ln

(
ρ2γ(1− ρ2)

)
− 1

2

∑
1≤i 6=j≤N

ln

(
ρ2 +

1

ρ2
− 2 cos

2π(i− j)
N

)
+

1

2

∑
1≤i 6=j≤N

ln

(
2− 2 cos

2π(i− j)
N

)
.

Using the above expression of f(ρ), it is easy to prove the following properties:

(1) limρ→1− f(ρ) = +∞, limρ→0+ f(ρ) = +∞;
(2) f ′′(ρ) > 0 for ρ ∈ (0, 1), provided γ sufficiently large.

Since the proof is elementary we will not go into details here. Indeed, as parameter γ
sufficiently large, one shows that the function f/γ is a small C2 perturbation of a strictly
convex coercive function −2N ln ρ, and hence is itself convex and coercive.

Thus, there must be a unique global minimum point ρ̃ ∈ (0, 1) of HN+1(ρ) on SN+1,
which completes the proof of Lemma 2.1.

�

2.2. Variational problem. From now on we assume that µ/κ is sufficiently large such
that there is a unique minimum point of HN+1 on SN+1, say (Q1, · · ·, QN , QN+1), with

Qi = ρ̃
(

cos 2π(i−1)
N

, sin 2π(i−1)
N

)
for i = 1, · · · , N and QN+1 = 0. ρ̃ is uniquely determined

by N and µ/κ.
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We also choose δ0 > 0 sufficiently small such that
Bi := Bδ0(Qi) ⊂⊂ D, i = 1, · · · , N + 1,

Bδ0(Qi) ∩Bδ0(Qj) = ∅, 1 ≤ i 6= j ≤ N + 1,

Bδ0(Qi) ⊂⊂ {(ρ, θ) | 2π(i−1)
N
− π

N
< θ < 2π(i−1)

N
− π

N
}, i = 1, · · · , N.

(2.4)

Here [ρ, θ] represents some point in polar coordinates.
Define the following admissible class:

Mλ(D) :=

{
ω ∈ L∞(D) | ω =

N+1∑
i=1

ωi, suppωi ⊂ Bi, 0 ≤ ωN+1 ≤ λ,−λ ≤ ωi ≤ 0,∫
D

ωi(x)dx = −κ for i = 1, · · · , N,
∫
D

ωN+1(x)dx = µ,

ei
2π(i−1)

N (ω) = ω and Ri(ω) = ω for i = 1, · · · , N
}
.

Remark 2.2. It is easy to see that Mλ(D) is not empty when λ is sufficiently large. In fact,

λIBε2 (0) − λ
N∑
i=1

IBε1 (Qi) ∈Mλ(D),

where λπε2
1 = κ, λπε2

2 = µ. By the symmetry of ω and Green’s function G, we also note
that for any ω ∈Mλ(D), the stream function ψ := Gω satisfies

ei
2π(i−1)

N (ψ) = ψ, Ri(ψ) = ψ.

Let E(ω), the energy of the vorticity ω, be as defined in (1.5). First, we show the
existence of maximizers of E(ω) on the admissible class Mλ(D).

Lemma 2.3. There exists ωλ ∈Mλ(D), such that E(ωλ) = supω∈Mλ(D) E(ω).

Proof. Since G(x,y) ∈ L1(D ×D), we have

E(ω) =
1

2

∫
D

∫
D

G(x,y)ω(x)ω(y)dxdy ≤ λ2

2

∫
D

∫
D

|G(x,y)|dxdy < +∞, (2.5)

which means that E(ω) is bounded from above.
Now let {ωn} be a maximizing sequence of E, that is, limn→∞E(ωn) = supω∈Mλ(D)E(ω).

Since |ωn| ≤ λ and the unit disc of L∞(D) is sequentially compact in weakly star topology
in L∞(D), there exists ωλ ∈ L∞(D) such that ωn → ωλ weakly star in L∞(D)(up to a
subsequence). Now we show that ωλ ∈ Mλ(D). In fact, by the definition of convergence
in weakly star topology,

lim
n→∞

∫
D

ωn(x)φ(x)dx =

∫
D

ωλ(x)φ(x)dx, for any φ ∈ L1(D). (2.6)
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(1) By taking φ ∈ L1(D) such that suppφ ⊂ D \ ∪N+1
i=1 Bδ0(Qi) in (2.6), we get∫

D

ωλ(x)φ(x)dx = lim
n→∞

∫
D

ωn(x)φ(x)dx = 0, (2.7)

which implies

suppωλ ⊂
N+1⋃
i=1

Bδ0(Qi). (2.8)

(2) Define ωλi = ωλIBδ0 (Qi). Taking φ = IBδ0 (Qi) ∈ L1(D) in (2.6), we get∫
D

ωλi (x)dx =

∫
D

ωλ(x)φ(x)dx = lim
n→∞

∫
D

ωn(x)φ(x)dx = −κ,

for i = 1, · · · , N and∫
D

ωλN+1(x)dx =

∫
D

ωλ(x)φ(x)dx = lim
n→∞

∫
D

ωn(x)φ(x)dx = µ.

(3) Now we prove 0 ≤ ωλN+1 ≤ λ and −λ ≤ ωλi ≤ 0 a.e. in D for i = 1, · · · , N . First,

we prove ωλN+1 ≤ λ a.e. in D. Assume that
∣∣ {x ∈ D | ωλN+1(x) > λ

} ∣∣ > 0, then

there exists δ1 > 0 and ε0 > 0 such that
∣∣ {x | ωλN+1(x)− λ > δ1

} ∣∣ > ε0. Take
φ = I{x∈D|ωλN+1(x)−λ>δ1} ∈ L

1(D) into (2.6), then we get

0 ≥ lim
n→∞

∫
D

(ωn(x)− λ)φ(x)dx =

∫
D

(
ωλ(x)− λ

)
φ(x)dx

>δ1

∣∣ {x | ωλN+1(x)− λ > δ1

} ∣∣ > δ1ε0,

(2.9)

which is an obvious contradiction. Thus we get ωλN+1 ≤ λ a.e. in D. Similarly, we
can prove ωλN+1 ≥ 0 a.e. in D. Other conclusions can be proved similarly.

(4) We prove ei
2π(i−1)

N

(
ωλ
)

= ωλ for i = 1, · · · , N . For any x0 ∈ D, by taking φ =

1
πs2

[
IBs(x0) − I

Bs

(
ei

2π(i−1)
N (x0)

)
]

in (2.6) for small s > 0, we get

0 = lim
n→∞

∫
D

ωn(x)φ(x)dx =

∫
D

ωλ (x)φ(x)dx

=
1

πs2

∫
Bs(x0)

ωλ (x) dx− 1

πs2

∫
Bs

(
ei

2π(i−1)
N (x0)

) ωλ (x) dx,

that is,

1

πs2

∫
Bs(x0)

ωλ (x) dx =
1

πs2

∫
Bs

(
ei

2π(i−1)
N (x0)

) ωλ (x) dx.

By Lebesgue’s differential theorem, we get

ei
2π(i−1)

N

(
ωλ
)

(x0) = ωλ (x0) a.e in D. (2.10)
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Similarly, we can also prove Ri

(
ωλ
)

= ωλ a.e. in D for i = 1, · · ·, N .

Therefore, we get ωλ ∈ Mλ(D). To finish the proof, it suffices to note that E is weakly
star continuous on Mλ(D). In fact, since ωn → ωλ weakly star in L∞(D), we deduce that
ωn → ωλ in weak topology in Lp(D) for any p > 1, so we get

Gωn → Gωλ weakly in W 2,p(D). (2.11)

By Rellich’s compact embedding theorem, we get Gωn → Gωλ in Lp
′
(D), where p′ = p

p−1
.

Therefore

lim
n→∞

E(ωn) = lim
n→∞

∫
D

ωn(x)Gωn(x)dx =

∫
D

ωλ (x)Gωλ (x) dx = E
(
ωλ
)
, (2.12)

which completes the proof.
�

Remark 2.4. From now on, we use ψλ := Gωλ to denote the stream function of ωλ. More-
over, since W 2,p(D) is continuously embedded into Cα(D) for α ∈ (0, 1), we know that
ψλ ∈ Cα(D).

2.3. Profile of ωλ. In this subsection, we show that the maximizer ωλ is in fact a vortex
patch and has a explicit form.

Lemma 2.5. Let ωλ be a maximizer of E(ω) on Mλ(D), then there exist νλ0 , ν
λ
1 ∈ R+

depending on λ, such that

ωλ = λI{x∈D|ψλ(x)>νλ0}∩BN+1
− λ

N∑
i=1

I{x∈D|ψλ(x)<−νλ1}∩Bi . (2.13)

Proof. Define ωλi = ωλIBi , then obviously ωλ =
∑N+1

i=1 ωλi . It suffices to show that ωλN+1 =
λI{x∈D|ψλ(x)>νλ0 }∩BN+1

for some νλ0 ∈ R+, since we can use similar methods to calculate ωλi .

For any z1, z2 ∈ L∞(D) satisfying

suppz1, suppz2 ⊂ BN+1,

z1, z2 ≥ 0, a.e. in D,
∫
D
z1(x)dx =

∫
D
z2(x)dx,

Ri(z1) = z1, Ri(z2) = z2 for i = 1, · · · , N,
ei

2π(i−1)
N (z1) = z1, ei

2π(i−1)
N (z2) = z2 for i = 1, · · · , N,

z1 = 0 in D \
{
x ∈ D | ωλ(x) ≤ λ− a

}
,

z2 = 0 in D \
{
x ∈ D | ωλ(x) ≥ a

}
.

(2.14)

where a > 0 is sufficiently small, we define a family of test functions ωs = ωλ + s(z1 − z2),
s > 0. It is easy to check that if s is sufficiently small(depending on a, ||z1||L∞(D) and
||z2||L∞(D)), then ωs ∈Mλ(D). So we have

dE(ωs)

ds
|s=0+ ≤ 0. (2.15)
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Repeating the previous argument we get∫
D

ψλ (x) z1(x)dx ≤
∫
D

ψλ (x) z2(x)dx,

from which we deduce that

sup
{x∈D|ωλ(x)<λ}∩BN+1∩{(ρ,θ)|0<θ< π

N }
ψλ (x) = inf

{x∈D|ωλ(x)>0}∩BN+1∩{(ρ,θ)|0<θ< π
N }

ψλ (x) .

Therefore, if we define

νλ0 := sup
{x∈D|ωλ(x)<λ}∩BN+1∩{(ρ,θ)|0<θ< π

N }
ψλ (x) = inf

{x∈D|ωλ(x)>0}∩BN+1∩{(ρ,θ)|0<θ< π
N }

ψλ (x) ,

it is easy to check that{
ωλ = λ a.e. in BN+1 ∩

{
(ρ, θ) | 0 < θ < π

N

}
∩
{
x ∈ D | ψλ(x) > νλ0

}
,

ωλ = 0 a.e. in BN+1 ∩
{

(ρ, θ) | 0 < θ < π
N

}
∩
{
x ∈ D | ψλ(x) ≤ νλ0

}
.

Taking into account the symmetry of ψλ and ωλ, we get{
ωλN+1 = λ a.e. in BN+1 ∩

{
x ∈ D | ψλ(x) > νλ0

}
,

ωλN+1 = 0 a.e. in BN+1 ∩
{
x ∈ D | ψλ(x) ≤ νλ0

}
,

(2.16)

or equivalently,
ωλN+1 = λI{x∈D|ψλ(x)>νλ0}∩BN+1

.

By using strong maximum principles and the definition of νλ0 , we get νλ0 > 0.
Finally, using similar methods we can also prove that there exists some νλ1 ∈ R+ such

that
ωλi = −λI{x∈D|ψλ(x)<−νλ1}∩Bi ,

for i = 1, · · · , N . Thus, we complete the proof.
�

2.4. Limiting behavior. In this subsection, we analyze the limiting behavior of ωλ as
λ→ +∞. To begin with, we need the following estimates for ωλ. For convenience, we will
use C to denote various positive numbers independent of λ in the rest of this section.

Lemma 2.6. Let ωλ be a maximizer obtained in Lemma 2.3. Then
(1) E(ωλ) ≥ −Nκ2

4π
ln ε1 − µ2

4π
ln ε2 − C, where ε1 =

√
κ
λπ

and ε2 =
√

µ
λπ

;

(2) νλ0 ≥ −
µ
2π

ln ε2 + C and νλ1 ≥ − κ
2π

ln ε1 + C;

(3) diam(suppωλi ) ≤ Rε1 for i = 1, · · · , N and diam(suppωλN+1) ≤ Rε2, where R is a
positive number independent of λ;

(4) There holds

lim
λ→+∞

∣∣∣∣− 1

κ

∫
D

xωλi (x)dx−Qi

∣∣∣∣ = 0, for i = 1, · · · , N,

lim
λ→+∞

∣∣∣∣ 1µ
∫
D

xωλN+1(x)dx

∣∣∣∣ = 0.
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Proof. The proof is analogous to that in [28]. The key point is to estimate the total energy
E(ωλ) and the energy of the vortex core.

Note that πλε2
1 = κ, πλε2

2 = µ. Firstly, taking test function ω̃λ into E(ω), which is

ω̃λ = −
N∑
i=1

λIBε1 (Qi) + ωλN+1 :=
N+1∑
i=1

ω̃λi , (2.17)

we get ω̃λ ∈Mλ(D) for λ sufficiently large. Therefore E(ωλ) ≥ E(ω̃λ), or equivalently,

E(ωλ) ≥ 1

2

∫
D

∫
D

G(x,y)
N+1∑
i=1

ω̃λi (x)
N+1∑
j=1

ω̃λj (y)dxdy

=
1

2

N+1∑
i=1

∫
D

∫
D

G(x,y)ω̃λi (x)ω̃λi (y)dxdy +
1

2

∑
1≤i 6=j≤N+1

∫
D

∫
D

G(x,y)ω̃λi (x)ω̃λj (y)dxdy

=
1

2

N∑
i=1

− 1

2π

∫
D

∫
D

ln |x− y|ω̃λi (x)ω̃λi (y)dxdy − 1

2

N∑
i=1

∫
D

∫
D

h(x,y)ω̃λi (x)ω̃λi (y)dxdy

+
1

2

∑
1≤i 6=j≤N+1

∫
D

∫
D

G(x,y)ω̃λi (x)ω̃λj (y)dxdy +
1

2

∫
D

∫
D

G(x,y)ω̃λN+1(x)ω̃λN+1(y)dxdy

:= I1 + I2 + I3 +
1

2

∫
D

∫
D

G(x,y)ωλN+1(x)ωλN+1(y)dxdy.

(2.18)

Since suppω̃λi = Bε1(Qi), we get

I1 ≥
1

2

N∑
i=1

− 1

2π
ln 2ε1

∫
D

∫
D

ω̃λi (x)ω̃λi (y)dxdy = −Nκ
2

4π
ln ε1 + C. (2.19)

By the choice of δ0, we get

|I2| ≤
1

2

N∑
i=1

sup
x,y∈suppBδ0 (Qi)

|h(x,y)|
∣∣∣∣ ∫

D

ω̃λi (x)dx

∣∣∣∣∣∣∣∣ ∫
D

ω̃λi (y)dy

∣∣∣∣ ≤ C,

|I3| ≤
1

2

∑
1≤i 6=j≤N+1

sup
x∈Bδ0 (Qi),y∈Bδ0 (Qj)

|G(x,y)|
∣∣∣∣ ∫

D

ω̃λi (x)dx

∣∣∣∣∣∣∣∣ ∫
D

ω̃λi (y)dy

∣∣∣∣ ≤ C.

(2.20)

By combining (2.18), (2.19) and (2.20), we obtain

E(ωλ) ≥ −Nκ
2

4π
ln ε1 + C +

1

2

∫
D

∫
D

G(x,y)ωλN+1(x)ωλN+1(y)dxdy. (2.21)

Similarly, taking a test function ω̃λ = −
∑N

i=1 λIBε1 (Qi) + λIBε2 (QN+1) into (2.17) and
combing (2.18), (2.19) with (2.20), we can get

E(ωλ) ≥ −Nκ
2

4π
ln ε1 −

µ2

4π
ln ε2 − C,
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which proves (1).
To estimate νλ1 , we divide E(ωλ) into two parts:

E(ωλ) =
1

2

∫
D

ψλ(x)ωλ(x)dx =
1

2

N+1∑
i=1

∫
D

ψλ(x)ωλi (x)dx

=T1(ωλ) +
Nκ

2
νλ1 +

1

2

∫
D

ψλ(x)ωλN+1(x)dx,

(2.22)

where the energy of vortex core T1(ωλ) is defined as

T1(ωλ) :=
1

2

N∑
i=1

∫
D

(
ψλ(x) + νλ1

)
ωλi (x)dx.

Note that∫
D

ψλ(x)ωλN+1(x)dx =
N+1∑
i=1

∫
D

∫
D

G(x,y)ωλi (x)ωλN+1(y)dxdy

=
N∑
i=1

∫
D

∫
D

G(x,y)ωλi (x)ωλN+1(y)dxdy +

∫
D

∫
D

G(x,y)ωλN+1(x)ωλN+1(y)dxdy

≤ C +

∫
D

∫
D

G(x,y)ωλN+1(x)ωλN+1(y)dxdy.

(2.23)

Repeating the same argument as in the proof of lemma 3.5 in [14], we can get that

0 ≤ T1(ωλ) =
1

2

N∑
i=1

∫
D

(
ψλ(x) + νλ1

)
ωλi (x)dx ≤ C. (2.24)

Combining this with (2.21), (2.22), (2.23) and (2.24), we can get

νλ1 =
2

Nκ

(
E(ωλ)− T1(ωλ)− 1

2

∫
D

ψλ(x)ωλN+1(x)dx

)
≥ − κ

2π
ln ε1 + C. (2.25)

Similarly, taking a test function ω̃λ =
∑N

i=1 ω
λ
i + λIBε2 (QN+1) as in (2.17), we obtain

νλ0 ≥ −
µ

2π
ln ε2 + C. (2.26)

Now using the same idea as in [28] we can estimate the diameter of the support of each
ωλi . Without loss of generality, by the symmetry of ωλ and ψλ, it suffices to prove the
case of i = N + 1. For any x ∈ suppωλN+1, by Lemma 2.5 we know ψλ(x) ≥ νλ0 . By the
definition of ψλ and (2.26), we get

− µ

2π
ln ε2 + C ≤ νλ0

≤ − 1

2π

∫
D

ln |x− y|ωλN+1(y)dy −
∫
D

h(x,y)ωλN+1(y)dy +
N∑
i=1

∫
D

G(x,y)ωλi (y)dy.

(2.27)
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Since h ∈ C∞(D ×D) and G ∈ C∞(BN+1 ×Bi) for i = 1, · · · , N , we have∣∣∣∣ ∫
D

h(x,y)ωλN+1(y)dy

∣∣∣∣ ≤ max
x,y∈BN+1

|h(x,y)|
∫
D

ωλN+1(y)dy ≤ C,∣∣∣∣ ∫
D

G(x,y)ωλi (y)dy

∣∣∣∣ ≤ max
x∈BN+1,y∈Bi

|G(x,y)|
∫
D

−ωλi (y)dy ≤ C.

Thus from (2.27), we get

− 1

2π

∫
D

ln |x− y|ωλN+1(y)dy ≥ − µ

2π
ln ε2 + C,

namely, ∫
D

ln
ε2

|x− y|
ωλN+1(y)dy ≥ C. (2.28)

On the other hand, for any fixed R > 1, by rearrangement inequality we get∫
BRε2 (x)

ln
ε2

|x− y|
ωλN+1(y)dy ≤

∫
Bε2 (0)

ln
ε2

|x|
λdx =

µ

2
. (2.29)

Combining (2.28) and (2.29), we obtain

C ≤
∫
D\BRε2 (x)

ln
ε2

|x− y|
ωλN+1(y)dy ≤ (− lnR)

∫
D\BRε2 (x)

ωλN+1(y)dy,

which gives ∫
D\BRε2 (x)

ωλN+1(y)dy ≤ C

lnR
.

Taking R > 1 sufficiently large, we have for any x ∈ suppωλN+1∫
D\BRε2 (x)

ωλN+1(y)dy ≤ µ

4
, (2.30)

thus for any x ∈ suppωλN+1,
∫
BRε2 (x)

ωλN+1(y)dy ≥ 3µ/4. Using the same calculation as in

[28], we can get

diam(suppωλN+1) ≤ 2Rε2. (2.31)

By similar methods we can also get diam(suppωλi ) ≤ 2Rε1 for i = 1, · · · , N.
From now on, we have proved (3) of Lemma 3.4, which shows that the support of each

piece of vorticity ωλ concentrates on some point as λ tends to infinity. Since suppωλi (x) ⊂
Bi, we obtain that up to a subsequence

− 1

κ
lim

λ→+∞

∫
D

xωλi (x)dx = x̄i, for i = 1, · · · , N,

1

µ
lim

λ→+∞

∫
D

xωλN+1(x)dx = x̄N+1.

(2.32)
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for some x̄i ∈ Bi. Since Ri(ω
λ) = ωλ, we obtain x̄N+1 = 0. Moreover, since ei

2π(i−1)
N (ωλ) =

ωλ and Ri(ω
λ) = ωλ, we obtain x̄i = ρ0

(
cos 2π(i−1)

N
, sin 2π(i−1)

N

)
for some ρ0 ∈ (0, 1),

i = 1, · · · , N .
In the following, we show that (x̄1, · · · , x̄N+1) ∈ D(N+1) is a minimum point of the

Kirchhoff-Routh function HN+1 on the set SN+1 ∩
{

(x1, · · · ,xN+1) ∈ D(N+1) | xi ∈ Bi

}
.

Thus combining with Lemma 2.1, we can easily deduce x̄i = Qi for i = 1, · · · , N + 1. In
fact, for each z0 ∈ B1 such that z0 = ρ(1, 0) for some ρ ∈ (0, 1), we take the following test
function

ω̄λ = −λ
N∑
i=1

I
Bε1

(
ei

2π(i−1)
N (z0)

) + λIBε2 (0) :=
N+1∑
i=1

ω̄λi .

It is easy to check that ω̄λ(x) ∈ Mλ(D) for λ sufficiently large. Therefore E(ωλ) ≥
E(ω̄λ), or equivalently,

∫
D

∫
D

G(x,y)
N+1∑
i=1

ω̄λi (x)
N+1∑
j=1

ω̄λj (y)dxdy ≤
∫
D

∫
D

G(x,y)
N+1∑
i=1

ωλi (x)
N+1∑
j=1

ωλj (y)dxdy.

(2.33)
On the one hand, by using the rearrangement inequality we have

∫
D

∫
D

G(x,y)
N+1∑
i=1

ωλi (x)
N+1∑
j=1

ωλj (y)dxdy

=
N+1∑
i=1

∫
D

∫
D

G(x,y)ωλi (x)ωλi (y)dxdy +
∑

1≤i 6=j≤N+1

∫
D

∫
D

G(x,y)ωλi (x)ωλj (y)dxdy

=
N+1∑
i=1

− 1

2π

∫
D

∫
D

ln |x− y|ωλi (x)ωλi (y)dxdy −
N+1∑
i=1

∫
D

∫
D

h(x,y)ωλi (x)ωλi (y)dxdy

+
∑

1≤i 6=j≤N+1

∫
D

∫
D

G(x,y)ωλi (x)ωλj (y)dxdy

≤
N+1∑
i=1

− 1

2π

∫
D

∫
D

ln |x− y|ω̄λi (x)ω̄λi (y)dxdy −
N+1∑
i=1

∫
D

∫
D

h(x,y)ωλi (x)ωλi (y)dxdy

+
∑

1≤i 6=j≤N+1

∫
D

∫
D

G(x,y)ωλi (x)ωλj (y)dxdy.

(2.34)
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On the other hand, it follows from the decomposition of G that∫
D

∫
D

G(x,y)
N+1∑
i=1

ω̄λi (x)
N+1∑
j=1

ω̄λj (y)dxdy

=
N+1∑
i=1

− 1

2π

∫
D

∫
D

ln |x− y|ω̄λi (x)ω̄λi (y)dxdy −
N+1∑
i=1

∫
D

∫
D

h(x,y)ω̄λi (x)ω̄λi (y)dxdy

+
∑

1≤i 6=j≤N+1

∫
D

∫
D

G(x,y)ω̄λi (x)ω̄λj (y)dxdy.

(2.35)

Combining (2.33), (2.34) and (2.35), we get

∑
1≤i 6=j≤N+1

∫
D

∫
D

G(x,y)ω̄λi (x)ω̄λj (y)dxdy −
N+1∑
i=1

∫
D

∫
D

h(x,y)ω̄λi (x)ω̄λi (y)dxdy

≤
∑

1≤i 6=j≤N+1

∫
D

∫
D

G(x,y)ωλi (x)ωλj (y)dxdy −
N+1∑
i=1

∫
D

∫
D

h(x,y)ωλi (x)ωλi (y)dxdy.

(2.36)

Using (2.31), (2.32) and taking λ to infinity, we get

−HN+1

(
z0, e

i 2π
N (z0), · · · , ei

2π(N−1)
N (z0),0

)
≤ −HN+1 (x̄1, x̄2, · · · , x̄N+1) (2.37)

for any z0 ∈ {z ∈ B1 | z = ρ(1, 0), ρ ∈ (0, 1)}. By (2.37), we obtain that (x̄1, x̄2, · · · , x̄N+1)
is a minimum point of HN+1 on SN+1 ∩

{
(x1, · · · ,xN+1) ∈ D(N+1) | xi ∈ Bi

}
. Thus we get

ρ0 = ρ̃ by Lemma 2.1. Namely, x̄i = Qi for i = 1, · · · , N + 1. �

2.5. Proof of Theorem 1.2. Before proving Theorem 1.2, we give a lemma from [11],
which is a criterion for weak solutions of (1.6).

Lemma A. Let ω ∈ L
4
3 (D). Suppose that ω = f(ψ) a.e. in D for some monotonic

function f : R→ R, then ω is a weak solution of (1.6).

Now, we are able to prove Theorem 1.2. The basic idea is to show that ωλ satisfies the
condition in Lemma A if λ is sufficiently large.

Proof of Theorem 1.2. It suffices to show that ωλ is a weak solution of (1.6). First we show
that

sup
∂B1

|ψλ| ≤ C. (2.38)

By Lemma 2.1 and Lemma 2.6, for δ2 = δ0
2

, there exists λ0 > 0 such that for any λ > λ0,

dist
(
suppωλ1 , ∂B1

)
> δ2.
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Thus for each x ∈ ∂B1,

|ψλ(x)| =
∣∣∣∣ ∫

D

G(x,y)
N+1∑
i=1

ωλi (y)dy

∣∣∣∣
=

∣∣∣∣− 1

2π

∫
D

ln |x− y|ωλ1 (y)dy +

∫
D

h(x,y)ωλ1 (y)dy +

∫
D

G(x,y)
N+1∑
i=2

ωλi (y)dy

∣∣∣∣
≤
∣∣∣∣− 1

2π

∫
D

ln |x− y|ωλ1 (y)dy

∣∣∣∣+

∣∣∣∣ ∫
D

h(x,y)ωλ1 (y)dy

∣∣∣∣+

∣∣∣∣ ∫
D

G(x,y)
N+1∑
i=2

ωλi (y)dy

∣∣∣∣
≤ 1

2π

∣∣∣∣ ∫
D

ωλ1 (y)dy · ln δ2

∣∣∣∣+ max
x∈∂B1,y∈suppωλ1

|h(x,y)| ·
∣∣∣∣ ∫

D

ωλ1 (y)dy

∣∣∣∣
+ max

x∈∂B1,y∈∪N+1
i=2 Bi

|G(x,y)| ·
N+1∑
i=2

∣∣∣∣ ∫
D

ωλi (y)dy

∣∣∣∣
≤− κ ln δ2

2π
+ C,

where we use the regularity of G and h and the fact that the integral of each ωλi is −κ and
µ.

Similarly, we can prove that |ψλ| ≤ C on ∪N+1
i=2 ∂Bi. Thus ψλ is harmonic in D \∪N+1

i=1 Bi

and by the maximum principle it is easy to deduce that

|ψλ| ≤ C in D \ ∪N+1
i=1 Bi.

Combining (2) in Lemma 2.6 we get that, there exists λ0 > 0 such that for each λ > λ0,
there holds {

x ∈ D | ψλ(x) > νλ0
}
∩BN+1 =

{
x ∈ D | ψλ(x) > νλ0

}
,{

x ∈ D | ψλ(x) < −νλ1
}
∩

N⋃
i=1

Bi =
{
x ∈ D | ψλ(x) < −νλ1

}
.

(2.39)

Recall that by Lemma 2.3 ωλ has the following form

ωλ = λI{x∈D|ψλ(x)>νλ0}∩BN+1
− λ

N∑
i=1

I{x∈D|ψλ(x)<−νλ1}∩Bi .

Taking into account (2.39) we get for each λ > λ0,

ωλ = λI{x∈D|ψλ(x)>νλ0} − λI{x∈D|ψλ(x)<−νλ1}.

Applying lemma A, we get that ωλ is a weak solution to (1.6), which completes the proof
of Theorem 1.2.

�
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3. Proof of Theorem 1.3

In this section, we give the proof Theorem 1.3 by solving a variational problem for
the vorticity and studying the limiting behavior. Throughout this section, we will choose
k = 2N in (1.9), where N is a given positive integer. We also assume that κi = (−1)i−1

for each i = 1, · · ·, 2N . The construction is similar to the one for Theorem 1.2, so we only
sketch the proof and emphasize the different parts.

Let us start with the minimization of H2N on the following subset of D(2N):

V2N :=

{
(x1, · · ·,x2N) ∈ D(2N) | xi = ρ

(
cos(

π(i− 1)

N
), sin(

π(i− 1)

N
)

)
, 1 ≤ i ≤ 2N, ρ ∈ (0, 1)

}
.

We have

Lemma 3.1. There exists an isolated minimum point (P1, · · ·, P2N) for H2N on V2N .

Proof. For any (x1, · · ·,x2N) ∈ V2N with xi = ρ
(

cos(π(i−1)
N

), sin(π(i−1)
N

)
)

for i = 1, · · · , 2N ,

by the symmetry of the Green’s function, the Kirchhoff-Routh function H2N can be written
as

H2N(x1, · · · ,x2N) =− 2N
N∑
i=2

G(x1,x2i−1) + 2N
N∑
i=1

G(x1,x2i) + 2Nh(x1,x1)

:=B1 +B2 +B3.

Note that

G(xi,xj) =
1

2π
ln
|xj|
∣∣xi − xj

|xj |2
∣∣

|xi − xj|
=

1

2π
ln
ρ
√
ρ2 + 1

ρ2
− 2 cos π(i−j)

N

2ρ sin π(i−j)
2N

, h(xi,xi) =
1

2π
ln

1

1− ρ2
,

so we get

B1 =− 2N

4π

N∑
i=2

ln
ρ4 + 1− 2ρ2 cos 2π(2i−2)

2N

4ρ2 sin2 π(2i−2)
2N

= −N
2π

N∑
i=2

ln
ρ4 + 1− 2ρ2 cos 2π(i−1)

N

4ρ2 sin2 π(i−1)
N

,

B2 =
2N

4π

N∑
i=1

ln
ρ4 + 1− 2ρ2 cos 2π(2i−1)

2N

4ρ2 sin2 π(2i−1)
2N

=
N

2π

N∑
i=1

ln
ρ4 + 1− 2ρ2 cos π(2i−1)

N

4ρ2 sin2 π(2i−1)
2N

,

B3 =
N

π
ln

1

1− ρ2
.

By direct calculation, we have

H2N(ρ) = B1 +B2 +B3

=
N

2π
ln

[
N∏
i=2

4ρ2 sin2 π(i−1)
N

ρ4 + 1− 2ρ2 cos 2π(i−1)
N

N∏
i=1

ρ4 + 1− 2ρ2 cos π(2i−1)
N

4ρ2 sin2 π(2i−1)
2N

1

(1− ρ2)2

]

:=
N

2π
ln g(ρ),
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where

g(ρ) =
N∏
i=2

4ρ2 sin2 π(i−1)
N

ρ4 + 1− 2ρ2 cos 2π(i−1)
N

N∏
i=1

ρ4 + 1− 2ρ2 cos π(2i−1)
N

4ρ2 sin2 π(2i−1)
2N

1

(1− ρ2)2

=

∏N
i=1(ρ4 + 1− 2ρ2 cos π(2i−1)

N
)∏N

i=2(ρ4 + 1− 2ρ2 cos 2π(i−1)
N

)ρ2(1− ρ2)2
·
∏N

i=2 sin2 π(i−1)
N

4
∏N

i=1 sin2 π(2i−1)
2N

.

(3.1)

Since cos π(2i−1)
N

< 1 for each i = 1, · · · , N and cos 2π(i−1)
N

< 1 for each i = 2, · · · , N ,

we know that there exists δ̄ > 0, such that ρ4 + 1 − 2ρ2 cos π(2i−1)
N

≥ δ̄ and ρ4 + 1 −
2ρ2 cos 2π(i−1)

N
≥ δ̄ for any ρ ∈ (0, 1). Taking into account (3.1), we get

lim
ρ→0+

g(ρ) = +∞, lim
ρ→1−

g(ρ) = +∞.

On the other hand, since g is continuous and nonnegative in (0, 1), g attains its minimum
in (0, 1). Since the numerator and denominator of g(ρ) are both polynomials, it is easy
to check that each minimum point of g must be isolated. Therefore, there must exist a

ρ̄ ∈ (0, 1) being an isolated minimum point of H2N(ρ). Let Pi := ρ̄
(

cos π(i−1)
N

, sin π(i−1)
N

)
for i = 1, · · · , 2N , then (P1, · · · , P2N) is an isolated minimum point of H2N(x1, · · · ,x2N)
on V2N .

�

Let (P1, · · ·, P2N) be an isolated minimum point of H2N obtained in Lemma 3.1. Since
Pi 6= Pj for i 6= j, we can choose a sufficiently small δ0 > 0 such that Bδ0(Pi) ⊂⊂ D for

i = 1, · · ·, 2N and Bδ0(Pi) ∩ Bδ0(Pj) = ∅ for i 6= j. Moreover, since (P1, · · ·, P2N) is an
isolated minimum point of H2N , by choosing a smaller δ0, we assume that (P1, · · ·, P2N) is

a unique minimum point on V2N ∩
{

(x1, · · · ,x2N) ∈ D(2N) : xi ∈ Bδ0(Pi)
}

.

Define the following admissible class

Kλ(D) =

{
ω ∈ L∞(D) | ω =

2N∑
i=1

ωi, suppωi ⊂ Bδ0(Pi),

ωi = ωIBδ0 (Pi),

∫
D

ω1(x)dx = 1, 0 ≤ ω1 ≤ λ a.e. in D,

ei
π(i−1)
N (ω) = (−1)i−1ω and Ti(ω) = ω for i = 1, · · · , 2N

}
.

Note also that Kλ(D) is not empty when λ is sufficiently large.
Now we consider the maximization of E(ω) on the admissible class Kλ(D). By exactly

the same as the one in Lemma 2.3 we can prove

Lemma 3.2. There exists ωλ ∈ Kλ(D), such that E(ωλ) = supω∈Kλ(D) E(ω).

Similar to Lemma 2.5, we can also obtain the profile of ωλ obtained in Lemma 3.2.



Lemma 3.3. There exists τλ ∈ R+ such that for each i = 1, · · · , N ,

ωλ2i−1 = λI{x∈D|ψλ(x)>τλ}∩Bδ0 (P2i−1),

ωλ2i = −λI{x∈D|ψλ(x)<−τλ}∩Bδ0 (P2i)
.

(3.2)

As in Lemma 2.6, we can obtain the following limiting behavior of ωλ as λ→ +∞.

Lemma 3.4. Let ε =
√

1
πλ

. Then

(1) E(ωλ) ≥ −N
π

ln ε− C;

(2) τλ ≥ − 1
2π

ln ε− C;

(3) there exists R > 0 not depending on λ, such that diam(suppωλi ) ≤ Rε for i = 1, · · ·, 2N ;
(4) for each i = 1, · · ·, 2N , we have

lim
λ→+∞

∫
D

xωλi (x)dx = Pi, (3.3)

where C is used to denote various constants independent of λ.

Remark 3.5. By (3) and (4) in Lemma 3.4 it is easy to check that for λ sufficiently large,{
x ∈ D | ψλ(x) > τλ

}
∩Bδ0(P2i−1) ⊂⊂ Bδ0(P2i−1),{

x ∈ D | ψλ(x) < −τλ
}
∩Bδ0(P2i) ⊂⊂ Bδ0(P2i),

(3.4)

for each i = 1, · · · , N . In other words, the support of ωλi is strictly contained in Bδ0(Pi).

Now we are ready to prove Theorem 1.3.
Similar as the proof of Theorem 1.2, it suffices to show that ωλ is a steady vortex patch.

By Lemma 3.4 and using the same analysis as in proof of Theorem 1.2, we get that there
exists λ0 > 0 such that for λ > λ0, there holds{

x ∈ D | ψλ(x) > τλ
}
∩Bδ0(P2i−1) =

{
x ∈ D | ψλ(x) > τλ

}
,{

x ∈ D | ψλ(x) < −τλ
}
∩Bδ0(P2i) =

{
x ∈ D | ψλ(x) < −τλ

}
.

(3.5)

Moreover by Lemma 3.3, we obtain that ωλ has the following form:

ωλ = λ

N∑
i=1

I{x∈D|ψλ(x)>τλ}∩Bδ0 (P2i−1) − λ
N∑
i=1

I{x∈D|ψλ(x)<−τλ}∩Bδ0 (P2i)
.

Thus we obtain that for λ > λ0, there holds

ωλ = λI{x∈D|ψλ(x)>τλ} − λI{x∈D|ψλ(x)<−τλ}.

By Lemma A, we finish the proof of Theorem 1.3.
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