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It is known that there are several approaches to define a Sobolev class for Banach
valued functions. We compare the usual definition via weak derivatives with the
Reshetnyak–Sobolev space and with the Newtonian space; in particular, we provide
sufficient conditions when all three agree. Also, we revise the difference quotient
criterion and the property of Lipschitz mapping to preserve Sobolev space when
it is acting as a superposition operator.
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1. Introduction

Our primary motivation behind this work is to provide a non-differential characterization of Sobolev
spaces. In particular, this would supply us with tools for analysing functions valued in a family of Banach
spaces, e.g. [7]. Such functions typically appear in the theory of evolution PDEs. The other side of the work
is that we consider Sobolev type spaces built upon a general Banach function norm.

A general idea of our study is to make use of analysis in metric spaces but taking into account the
presence of a linear structure. The theory of Sobolev spaces on metric measure spaces is quite developed
now. For a detailed treatment and for references to the literature on the subject, one may refer to the [11]
by J. Heinonen, [9] by P. Hajlasz and P. Koskela, and [12] by J. Heinonen, P. Koskela, N. Shanmugalingam
and J.T. Tyson.

In the present paper, we study the Sobolev space of vector-valued functions W 1X(Ω ;V ) based on a
anach function space X(Ω), where Ω ⊂ Rn. We discuss the connection W 1X with the Newtonian space
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1X and with the Reshetnyak–Sobolev space R1X and provide sufficient conditions when W 1X = R1X =
1X. More precisely, we prove that W 1X = R1X if and only if V has the Radon–Nikodým property,
hereas R1X = N1X whenever the Meyers–Serrin theorem holds true for W 1X(Ω ;R). Besides, we provide

he difference quotient criterion and, as a consequence, obtain a version of pointwise description for Sobolev
unctions. Finally, we consider a question when Lipschitz mapping f : V → Z preserves a Sobolev class. It
s always the case for R1X and N1X, while we should assume that Z enjoys the Radon–Nikodým property
o have inclusion f(W 1X(Ω ;V )) ⊂ W 1X(Ω ;Z). In particular, this means that the nonlinear superposition
perator Nfu = f ◦ u is correctly defined.

We briefly discuss the limitations of the present work. In this study, functions are defined on a domain Ω in
n, and this provides us an opportunity to compare the weak gradient with upper gradients. In principle, all

he introduced classes but W 1X(Ω ;V ) could be considered in metric settings. As we do not prove embedding
heorems, we do not require any specific regularity of the domain Ω . On the other hand, embedding theorems
ould be recovered from the results for scalar functions (see Theorem 4.6). Finally, we point out that we
onsider a general Banach function space, and do not treat any specific examples, such as Orlicz or Lorentz
paces. At this stage, most of the methods are extensions of ones from the theory of Lp-spaces.

It happened that merely in the same time I. Caamaño, J. A. Jaramillo, Á. Prieto, and A. Ruiz in [5] did
he research which partly intersects with ours.

. Preliminaries

Throughout the paper Ω ⊂ Rn and | · | denotes n-dimensional Lebesgue measure, and we use µn−1(·) for
n−1)-dimensional Lebesgue measure. It should not cause any ambiguity that the modulus of a real number
s also denoted via | · |.

Let M(Ω) be the set of all real-valued measurable functions on Ω . A Banach space X(Ω) is said to be a
anach function space if it satisfies the following conditions:

P1) if |f | ≤ g a.e. with f ∈ M(Ω) and g ∈ X(Ω), then f ∈ X(Ω) and ∥f∥X(Ω) ≤ ∥g∥X(Ω) (the lattice
property);

P2) if 0 ≤ fn ↗ f a.e., then ∥fn∥X(Ω) ↗ ∥f∥X(Ω) (the Fatou property);
P3) for any measurable set A ⊂ Ω with |A| < ∞, we have χA ∈ X(Ω);
P4) for any measurable set A ⊂ Ω with |A| < ∞, there exists a positive constant CA such that ∥f∥L1(A) ≤

CA∥f · χA∥X(Ω) for all f ∈ X(Ω).

hen there is no ambiguity, we write ∥ · ∥X for ∥ · ∥X(Ω).
Here we collect some notions and properties from the theory of Banach function spaces that are necessary.

or a comprehensive exposition of the theory, we refer the reader to book [20].
Let {An} be a sequence of measurable subsets of Ω , we say An → ∅ if χAn → 0 a.e. on Ω . Function space

(Ω) has absolutely continuous norm if ∥f ·χAn∥X(Ω) → 0 whenever An → ∅ for any f ∈ X(Ω). (Examples
p (1 ≤ p < ∞), Lorentz Lp,q (1 ≤ q < ∞), see [20, p. 216].)
Define the translation operator τh, with h ∈ Rn for u ∈ M(Ω) by

τhu(x) =
{
u(x+ h), if x+ h ∈ Ω ,

0, if x+ h ̸∈ Ω .

e say that ∥ · ∥X(Ω) has the translation inequality property if for all u ∈ X(Ω) and all h ∈ Rn ∥τhu∥X ≤
u∥X . Note that every rearrangement invariant function norm possesses the translation inequality property.

Let X(Ω) be a Banach function space and let X ′(Ω) be its associate space. Then, for functions u ∈ X(Ω)
nd v ∈ X ′(Ω) the following Hölder inequality holds∫

|uv| dx ≤ ∥u∥X∥v∥X′ ,

Ω

2
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ee [20, Theorem 6.2.6]. We will need the following Fatou lemma for Banach function spaces.

emma 2.1 ([20, Lemma 6.1.12]). Let X(Ω) be a Banach function space and assume that fn ∈ X(Ω) and
n → f a.e. on Ω for some f ∈ M(Ω). Assume further that

lim inf
n→∞

∥fn∥X ≤ ∞.

hen f ∈ X(Ω) and
∥f∥X ≤ lim inf

n→∞
∥fn∥X .

Minkowski’s integral inequality for function norms ∥∥f(x, y)∥Y ∥
X

≤ M∥∥f(x, y)∥X∥
Y

holds for all
measurable functions and some fixed constant M whenever there is p ∈ [1,∞] such that ∥ · ∥X is p-concave
and ∥ · ∥Y is p-convex [22]. In particular, ∫

A

f(·, y) dy


X

≤
∫

A

∥f(·, y)∥X dy. (2.1)

Also, we briefly provide some notions and facts from the analysis in Banach spaces. Let V be a Banach
space. A function u : Ω → V is said to be (strongly) measurable if there is a sequence of simple functions
uk =

∑Nk
i=1 viχAi

, vi ∈ V such that ∥u− uk∥V → 0 a.e. on Ω . And function u : Ω → V is weakly measurable
if ⟨v∗, u⟩ is measurable for all v∗ ∈ V ∗. We say that u is almost separably valued if there exists a set Σ of
measure zero such that u(Ω \Σ ) is separable. The strong and weak measurability are compared in the next
theorem (see also [19, Theorem 1.1], [14, Theorem 1.1.20]).

Theorem 2.2 (Pettis Measurability Theorem). A function u : Ω → V is measurable if and only if it is weakly
measurable and almost separably valued.

There is the theory of Bochner integral, which allows us to integrate vector-valued functions and supplies
us with all necessary tools. By X(Ω ;V ) we denote the collection of all strongly measurable functions
u : Ω → V for which ∥u(·)∥V ∈ X(Ω). Together with the norm ∥u∥X(Ω ;V ) =

∥u(·)∥V


X(Ω), it becomes a

Banach space (see [16, p. 177]). We say that ũ is a representative of u if u = ũ a.e.
There are several notions connected to absolute continuity that we use. A function u : [a, b] → V is said

to be absolutely continuous if for any ε > 0 there exists δ > 0 such that
∑m

i=1 ∥u(bi) − u(ai)∥V ≤ ε for any
collection of disjoint intervals {[ai, bi]} ⊂ [a, b] such that

∑m
i=1(bi − ai) ≤ δ. A function u : Ω → V is said to

be absolutely continuous on a curve γ in Ω if γ : [0, l(γ)] → Ω is rectifiable, parametrized by the arc length,
and the function u ◦ γ : [0, l(γ)] → V is absolutely continuous. A function u : Ω → V is said to be absolutely
continuous on lines in Ω (belongs to ACL(Ω)) if u is absolutely continuous on almost every compact line
segment in Ω parallel to the coordinate axes.

Let (Ω ,Σ , µ) be a σ-finite complete measure space. A Banach space V has the Radon–Nikodým property
(RNP) if for any measure ν : Σ → V with bounded variation that is absolutely continuous with respect to
µ, there exists a function f ∈ L1(Ω ;V ) such that ν(A) =

∫
A
f dµ for all A ∈ Σ . However, for our purposes

we make use of equivalent descriptions for this property:

Proposition 2.3 ([14, Theorem 2.5.12]). For any Banach space V , the following assertions are
equivalent:

(1) V has the Radon–Nikodým property;
(2) every locally absolutely continuous function f : R → V is differentiable almost everywhere;
(3) every locally Lipschitz continuous function f : R → V is differentiable almost everywhere.
3
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Note that each reflexive space has the RNP, and so does every separable dual (V is separable dual if it is
eparable and there is a Banach space Y such that V = Y ∗). On the other hand, there are spaces that do
ot have the RNP, such as ℓ∞, c0, L1([0, 1]). For more information on the RNP, see in [2, Chapter 5].

. Sobolev spaces based on Banach function spaces

A function v ∈ L1
loc(Ω ;V ) is said to be a weak partial derivative with respect to jth coordinate of the

unction u ∈ L1
loc(Ω ;V ) if ∫

Ω

∂φ

∂xj
(x)u(x) dx = −

∫
Ω

φ(x)v(x) dx

or all φ ∈ C∞
0 (Ω). In this case we denote v = ∂ju. The Sobolev space W 1X(Ω ;V ) is the space of all

∈ X(Ω ;V ) whose weak derivatives exist and belong to X(Ω ;V ). On W 1X(Ω ;V ) we define a norm

∥u∥W 1X = ∥u∥X(Ω ;V ) + ∥|∇u|∥X(Ω),

here |∇u| =
√∑n

j=1 ∥∂ju∥2
V . In the case of real-valued functions we will use W 1X(Ω) instead of

1X(Ω ;R).
If the norm ∥ · ∥X is absolutely continuous and has the translation inequality property, then the Meyers–

errin theorem holds true: C∞(Ω ;V ) ∩ W 1X(Ω ;V ) is dense in W 1X(Ω ;V ) with respect to the norm
· ∥W 1X . In this case, Sobolev functions are approximated with the help of standard mollification technique

8, Corollary 3.1.5].
The Sobolev X-capacity of a set E ⊂ Ω is defined as

CapX(E) = inf{∥u∥W 1X : u ≥ 1 on E}.

heorem 3.1. Let ui ∈ C∞(Ω) ∩ W 1X(Ω) and {ui} is a Cauchy sequence in W 1X(Ω). Then there is a
ubsequence of {ui} that converges pointwise in Ω except a set of X-capacity zero. Moreover, the convergence
s uniform outside a set of arbitrarily small X-capacity.

roof. This can be proved analogously to the Lp case. □

Theorem 3.2. If u ∈ W 1X(Ω), then there is a representative ũ, which is absolutely continuous and
differentiable almost everywhere on lines in Ω . Moreover, ∂ũ

∂xj
= ∂ju a.e.

roof. This follows from the fact that W 1X(Ω) ⊂ W 1,1
loc (Ω). □

.1. Reshetnyak–Sobolev space

The ultimate aim of this subsection is to provide condition on space V under which functions from
1X(Ω ;V ) possess weak derivatives. We develop the ideas that we learned from [10, Section 2] by P. Hajlasz
nd J. Tyson. The key modification is that we change the assumption “V is dual to separable” to “V has

he RNP”.

4
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The Reshetnyak–Sobolev space R1X(Ω ;V ) is the class of all functions u ∈ X(Ω ;V ) such that:

(A) for every v∗ ∈ V ∗, ∥v∗∥ ≤ 1, we have ⟨v∗, u⟩ ∈ W 1X(Ω);
(B) there is a non-negative function g ∈ X(Ω) such that

|∇⟨v∗, u⟩| ≤ g a.e. on Ω (3.1)

for every v∗ ∈ V ∗ with ∥v∗∥ ≤ 1.

function g satisfying condition (B) above is called a Reshetnyak upper gradient of u. The norm in
1X(Ω ;V ) is defined via

∥u∥R1X = ∥u∥X(Ω ;V ) + inf ∥g∥X(Ω),

here the infimum is taken over all Reshetnyak upper gradients of u.
The form of the definition above is given by Yu. G. Reshetnyak ([21, p. 573] for functions valued in a

etric space); for functions valued in a Banach space, we refer to [12] and [10].
In the next lemma, which is a modification of [10, Lemma 2.12], we provide sufficient conditions for

unction u to be in W 1X(Ω ;V ).

emma 3.3. Let V be a Banach space enjoying the Radon–Nikodým property. Suppose function u ∈ X(Ω ;V )
s so that for every j ∈ {1, . . . , n} it has a representative ũ, which is absolutely continuous on almost every
ompact line segment in Ω parallel to xj-axis and partial derivatives exist and satisfy

 ∂ũ
∂xj


V

≤ g a.e. for
ome g ∈ X(Ω). Then u ∈ W 1X(Ω ;V ) and ∥u∥W 1X ≤ ∥u∥X(Ω ;V ) +

√
n∥g∥X(Ω).

roof. Fix j ∈ {1, . . . , n}. Due to the RNP, partial derivative ∂ũ
∂xj

exists on almost every compact line
egment in Ω parallel to the coordinate axes (Proposition 2.3). Let Γ be a collection of all segments in Ω

arallel to the xj-axis, on which function ũ fails to be absolutely continuous. Denote Σ = PjΓ , which is the
projection of Γ on subspace orthogonal to the xj-axis, then µn−1(Σ ) = 0. Now, with the help of the Fubini
heorem, for any φ ∈ C∞

0 (Ω) we have∫
Ω

u
∂φ

∂xj
dx =

∫
Ω

ũ
∂φ

∂xj
dx =

∫
PjΩ

∫
lj(y)∩Ω

ũ
∂φ

∂xj
ds dy

=
∫

PjΩ\Σ

∫
lj(y)∩Ω

ũ
∂φ

∂xj
ds dy =

∫
PjΩ\Σ

∫
lj(y)∩Ω

∂ũ

∂xj
φds dy =

∫
Ω

∂ũ

∂xj
φdx,

here lj(y) is a line parallel to the xj-axis and passing through y ∈ PjΩ . Therefore, u has weak partial
erivatives which are in X(Ω ;V ). □

emark 3.4. There are some issues with original lemma 2.12 of [10]. Namely, derivatives that are
onstructed in its proof are not always strongly measurable. Authors of [10] assume that V is dual to some
eparable space. However, it seems to be not enough for their purpose. This obstacle had been first noted
n [5] and has recently been resolved in [6].

emma 3.5. Let u ∈ R1X(Ω ;V ). Then for each j ∈ {1, . . . , n} there is a representative ũ which is absolutely
ontinuous on almost every compact line segment in Ω parallel to xj-axis. Moreover, the following limit exists
nd satisfies

lim
h→0

∥ũ(x+ hej) − ũ(x)∥V

h
≤ g(x) for a.e. x ∈ Ω , (3.2)

here g ∈ X(Ω) is a Reshetnyak upper gradient of u.
5
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roof. The function u ∈ R1X(Ω ;V ) is measurable; therefore, by the Pettis Theorem 2.2, it is essentially
eparable valued. In other words, there is a subset Σ0 ⊂ Ω of measure zero so that u(Ω \Σ0) is separable in
. Let {vi}i∈N be a dense subset in the difference set

f(Ω \ Σ0) − f(Ω \ Σ0) = {f(x) − f(y) : x, y ∈ Ω \ Σ0},

and let v∗
i ∈ V ∗, ∥v∗

i ∥ = 1, be such that ∥vi∥ = ⟨v∗
i , vi⟩ (the last is due to the Hahn–Banach theorem, see

[13, p. 17]).
For each i ∈ N there is a representative ui ∈ ACL(Ω) of ⟨v∗

i , u⟩ ∈ W 1X(Ω) (Theorem 3.2), and the
nequality |∇ui| ≤ g holds true. Let Σi ⊂ Ω be a set of measure zero, where ui differs from ⟨v∗

i , u⟩.
Fix j ∈ {1, . . . , n}. Then for almost all compact line segments l : [a, b] → Ω of the form l(τ) = x0 + τej

we have:

(a) g is integrable on l;
(b) µ1(l ∩ Σ ) = 0, where Σ = Σ0 ∪

⋃
i Σi;

(c) For each i ∈ N and every a ≤ s ≤ t ≤ b

|ui(x0 + tej) − ui(x0 + sej)| ≤
∫ t

s

g(x0 + τej) dτ. (3.3)

The Fubini theorem ensures (a) and (b), while (c) follows from the estimate |∇ui| ≤ g. Let l be a segment
so that (a)–(c) hold true. If x0 + sej ̸∈ Σ and x0 + tej ̸∈ Σ , then there is a sequence vik

converging to
(x0 + tej) − u(x0 + sej) in V . It can be shown that in this case

∥u(x0 + tej) − u(x0 + sej)∥V ≤ lim sup
k→∞

|uik
(x0 + tej) − uik

(x0 + sej)|.

The last estimate together with (3.3) give us

∥u(x0 + tej) − u(x0 + sej)∥V ≤
∫ t

s

g(x0 + τej) dτ. (3.4)

If any of endpoints are in Σ , say x0+sej ∈ Σ , then we can choose a sequence sk → s so that x0+skej ∈ l\Σ .
With the help of (3.4), it is easy to see that u(x0 + skej) converges in V , and the limit does not depend
on the choice of sequence. This allows us to define the desired representative ũ(x) = u(x) if x ∈ Ω \ Σ ;
ũ(x) = limsk→0 u(x+ skej) if there is a segment with x as its endpoint; and we put ũ(x) = 0 in other cases.
It is easy to see that (3.4) holds true for ũ, and almost every compact line segment in Ω parallel to xj-axis.
Estimate (3.2) follows immediately. □

We should note that in the lemma above the constructed representatives ũ does not necessarily belong
to ACL(Ω), but this does not affect our results. However, it is possible to prove stronger property: there is
a representative that is absolutely continuous on almost every rectifiable curve γ in Ω , see [5, Theorem 4.5]
and the proof of [13, Theorem 7.1.20].

Theorem 3.6. Let Ω ⊂ Rn be open.

(1) If u ∈ W 1X(Ω ;V ), then u ∈ R1X(Ω ;V ). Moreover, |∇u| is a Reshetnyak upper gradient of u and
∥u∥R1X ≤ ∥u∥W 1X .

(2) If V has the Radon–Nikodým property and u ∈ R1X(Ω ;V ), then u ∈ W 1X(Ω ;V ) and ∥u∥W 1X ≤√
n∥u∥R1X .
6
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roof. (1) Let u ∈ W 1X(Ω ;V ), and v∗ ∈ V ∗ with ∥v∗∥ ≤ 1. Then ⟨v∗, u⟩ ∈ X(Ω) since ⟨v∗, u⟩ is
easurable (Theorem 2.2) and |⟨v∗, u⟩| ≤ ∥u∥V . Using the property of the Bochner integral that

∫
⟨v∗, u⟩ =

v∗,
∫
u⟩, it is easy to show that ⟨v∗, u⟩ has weak derivatives in X(Ω), and ∂j⟨v∗, u⟩ = ⟨v∗, ∂ju⟩. Moreover,

∂j⟨v∗, u⟩| ≤ ∥∂ju∥V ≤ |∇u| a.e. on Ω .
(2) Let u ∈ R1X(Ω ;V ). Then Lemma 3.5 and the RNP of V imply the assumptions of Lemma 3.3. Thus,

∈ W 1X(Ω ;V ). □

heorem 3.7. A Banach space V has the Radon–Nikodým property if and only if R1X(Ω ;V ) =
1X(Ω ;V ).

roof. Due to Theorem 3.6, it remains to prove that V has the RNP in the case R1X(Ω ;V ) ⊂ W 1X(Ω ;V ).
et f : I → V be Lipschitz continuous, where I is a bounded interval. We may assume that Ω = I since
e can embed Id into Ω and treat the function x ↦→ f(x1). For any v∗ ∈ V ∗ with ∥v∗∥ ≤ 1 function
v∗, f⟩ : I → R is Lipschitz continuous with the same Lipschitz constant L and its derivative |⟨v∗, f⟩′| ≤ L.
s constant function x ↦→ L belongs to X(I), by Lemma 3.3 ⟨v∗, f⟩ ∈ W 1X(I). Thus, conditions (A) and

B) are fulfilled; therefore, f ∈ R1X(I;V ), by the assumption f ∈ W 1X(I;V ) ⊂ W 1,1
loc (I;V ). From the last

act, we obtain that the derivative f ′ exist almost everywhere on I. □

emark 3.8. Theorem 4.6 of [5] exhibits the same phenomenon in the case X = Lp, 1 ≤ p < ∞.

There are other definitions of Reshetnyak–Sobolev space.

heorem 3.9. Let Ω be a bounded domain and u : Ω → V be a measurable function. Then the following
our conditions are equivalent:

(i) u ∈ R1X(Ω ;V ).
(ii) There exists a non-negative function ρ ∈ X(Ω) with the following property: for each 1-Lipschitz function

φ : V → R function φ ◦ u ∈ W 1X(Ω) and |∇φ ◦ u| ≤ ρ a.e. on Ω .
(iii) There exists a non-negative function ρ ∈ X(Ω) with the following property: for each v ∈ u(Ω) function

uv(x) = ∥u(x) − v∥V belongs to W 1X(Ω) and |∇uv| ≤ ρ a.e. on Ω .

roof. (i)⇒(ii) follows from Theorem 4.2. (ii)⇒(iii) is obvious. To prove (iii)⇒(i), we use the same approach
s in the proof of Lemma 3.5. For now we take a dense set {vi}i∈N in u(Ω \ Σ0). Let Σi ⊂ Ω be a set of
easure zero, where ∥u− vi∥V differs from its absolutely continuous representative. Fix j ∈ {1, . . . , n}. Let

(τ) = x0 + τej be a segment in Ω so that (a)–(c) hold true. Then choosing a sequence vik
→ u(x0 + tej)

e obtain

|⟨v∗, u(x0 + tej)⟩ − ⟨v∗, u(x0 + sej)⟩| ≤ ∥u(x0 + tej) − u(x0 + sej)∥

= lim
k→∞

⏐⏐∥u(x0 + tej) − vik
∥V − ∥u(x0 + sej) − vik

∥V

⏐⏐ ≤
∫ t

s

ρ(x0 + τej) dτ.

o there is a representative uv∗ of ⟨v∗, u⟩, which is absolutely continuous on almost every compact line
egment in Ω parallel to xj-axis, and its partial derivative exists and satisfies

⏐⏐ ∂uv∗
∂xj

⏐⏐ ≤ ρ. Due to Lemma 3.3
v∗, u⟩ ∈ W 1X(Ω), and by the estimate above |∇⟨v∗, u⟩| ≤

√
nρ. Thus, conditions (A) and (B) are

ealized. □

.2. Newtonian space

The concept of Newtonian spaces is based on the Newton–Leibniz formula and employs the idea of
stimating the difference of function values in two distinct points by the integral over a curve that connects
7
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hose points. An extensive study of Newtonian spaces N1,p could be found in [13], whereas, in [18], L. Malý
onstructed the theory of Newtonian spaces based on quasi-Banach function lattices. Here we make use of
lements of the theory from [18], taking into account that X(Ω), in particular, is a quasi-Banach function

lattice.
The X-modulus of the family of curves Γ is defined by

ModX(Γ ) = inf ∥ρ∥X(Ω),

where the infimum is taken over all non-negative Borel functions ρ that satisfy
∫

γ
ρ ds ≥ 1 for all γ ∈ Γ

such functions are called admissible densities for Γ ).

Lemma 3.10 (Estimates for Cylindrical Curve Families). Consider a cylinder G = E × J , where E is a
orel set in Rn−1 with µn−1(E) < ∞, and J ⊂ R is an interval of length h ∈ (0,∞). Let Γ (E) be the family

of all curves γy : J → G, γy(t) = (y, t) for y ∈ E \ Σ , with µn−1(Σ ) = 0. Then

µn−1(E) ≤ ∥χG∥X′ · ModX(Γ (E)) (3.5)

nd
ModX(Γ (E)) ≤ ∥χG∥X · h−1. (3.6)

roof. Let ρ be an admissible density for Γ (E). By the Fubini theorem and Hölder’s inequality we have

µn−1(E) ≤
∫

E

∫
γy

ρ ds dy =
∫

G

ρ dx ≤ ∥ρ∥X · ∥χG∥X′ ,

hich implies (3.5). To obtain (3.6), we observe that 1
h · χG is an admissible density for Γ (E). □

The next lemma is a modification of [5, Lemma 2.4]

emma 3.11. Let H be a hyperplane in Rn and PH : Rn → H be the orthogonal projector. Suppose we are
given some family Γ consisting of line segments orthogonal to H. If ModX(Γ ) = 0, then µn−1(PHΓ ) = 0.

Proof. Let w ∈ Rn be a unit normal of H. Each curve in Γ is of the form γy = y + wt, for some y ∈ H,
nd defined on some interval a ≤ t ≤ b.

To prove the assertion we construct a countable family of sets of measure zero which form a covering of
PHΓ . For k ∈ N, we consider a (n − 1)-ball B(y0, k) in H with centre y0 and radius k. Then, we pick a
subfamily Γk in the following way: for each y ∈ Bn−1

k take one if any γ ∈ Γ so that PHγ = y and γ is
efined on interval [a, b] ⊂ [−k, k] (see Fig. 1).

Denote Ek := PHΓk and take a Borel set Ẽk ⊃ Ek with the property µn−1(Ẽk) = µn−1(Ek). Consider an
dditional family Γ̃k consisting of curves γy(t) = y+wt for each y ∈ Ẽk defined on interval [−k, k]. Making
se subadditivity of ModX and estimate (3.6), we conclude that ModX(Γ̃k) = 0. Then, Γ̃k and Ẽk form a

cylinder Gk with base Ẽk and height 2k.
Therefore, due to estimate (3.5)

µn−1(Ek) = µn−1(Ẽk) ≤ ∥χGk
∥X′ · ModX(Γ̃k) = 0.

So
µn−1(PHΓ ) ≤

∑
k

µn−1(Ek) = 0. □
8
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Fig. 1. Subfamily Γk and its projection Ek on hyperplane H. The grey area is PHΓk, and the black area is the projection PHΓk.

Lemma 3.12 (Fuglede’s Lemma). Assume that gk → g in X(Ω) as k → ∞. Then, there is a subsequence
(which we still denote by {gk}) such that∫

γ

gk ds →
∫

γ

g ds, as k → ∞

for ModX-a.e. curve γ, while all the integrals are well defined and real-valued.

Lemma 3.13 ([17, Proposition 5.10.]). Let E ⊂ Ω be an arbitrary set, define ΓE = {γ ∈ Γ (Ω) : γ−1(E) ̸= ∅},
which is the collection of all curves in Ω that meet E. If CapX(E) = 0, then ModX(ΓE) = 0.

The Newtonian space N1X(Ω ;V ) consists of all functions u ∈ X(Ω ;V ) for which there is a non-negative
Borel function ρ ∈ X(Ω) such that

∥u(γ(0)) − u(γ(lγ))∥V ≤
∫

γ

ρ ds

or ModX -a.e. curve γ in Ω . Each such function ρ is called X-weak upper gradient of u. Define a semi-norm
n N1X(Ω ;V ) via

∥f∥N1X = ∥f∥X(Ω ;V ) + inf ∥ρ∥X(Ω),

here the infimum is over all X-weak upper gradients of u. Furthermore, we assume that N1X(Ω ;V ) consists
f equivalence classes of functions, where u1 ∼ u2 means ∥u1 − u2∥N1X = 0. We write N1X(Ω) instead of

1X(Ω ;R).

heorem 3.14. Let Ω be a domain in Rn and X(Ω) be a Banach function space.
(1) If u ∈ N1X(Ω), then u ∈ W 1X(Ω) and |∇u| ≤

√
nρ a.e. on Ω , where ρ is any X-weak upper gradient

of u.
(2) Suppose norm ∥ · ∥X is absolutely continuous and has the translation inequality property. If u ∈

W 1X(Ω), then there is a representative ũ ∈ N1X(Ω), and as a X-weak upper gradient of ũ, one can choose
a Borel representative of |∇u|.

Proof. (1) Let u ∈ N1X(Ω) and ρ ∈ X(Ω) be a X-weak upper gradient of u. Function u is absolutely
continuous on ModX -a.e. curve γ in Ω . Thanks to Lemma 3.10, u is absolutely continuous on almost all
lines parallel to coordinate axes. Moreover,

⏐⏐⏐ ∂u
∂xj

⏐⏐⏐ ≤ ρ a.e. on such lines. Thus, applying Lemma 3.3, we infer
that u ∈ W 1X(Ω).

(2) Let u ∈ W 1X(Ω), then there is a sequence of smooth functions {uk} so that uk → u and ∇uk → ∇u
in X(Ω), as k → ∞. For any curve γ we have

|uk(γ(0)) − uk(γ(lγ))| ≤
∫

|∇uk| ds.

γ

9
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hoose a Borel representative of |∇u|, then, by Fuglede’s Lemma 3.12∫
γ

|∇uk| ds →
∫

γ

|∇u| ds as k → ∞

olds for ModX -a.e. curve. Furthermore, due to Theorem 3.1, we can assume that uk → u pointwise, except
set E of capacity zero. On the other hand, by Lemma 3.13, X-modulus of the family of curves that meet

E is zero. Therefore, we can pass to the limit and obtain that

|u(γ(0)) − u(γ(lγ))| ≤
∫

γ

|∇u| ds

holds for ModX -almost every curve. □

Theorem 3.15. Let Ω be a domain in Rn, V be a Banach space, and X(Ω) be a Banach function space.
(1) If u ∈ N1X(Ω ;V ), then u ∈ R1X(Ω ;V ) and

√
nρ is its Reshetnyak upper gradient, where ρ is arbitrary

X-weak upper gradient of u.
(2) Suppose the norm ∥ · ∥X is absolutely continuous and has the translation inequality property. If

u ∈ R1X(Ω ;V ), then there is a representative ũ ∈ N1X(Ω ;V ). Moreover, a Borel representative of any
Reshetnyak upper gradient of u is X-weak upper gradient of ũ.

Proof. (1) Let ρ be a X-weak upper gradient of u. For any v∗ ∈ V ∗ with ∥v∗∥ ≤ 1 and curve γ, we have

|⟨v∗, u⟩(γ(0)) − ⟨v∗, u⟩(γ(lγ))| ≤ ∥u(γ(0)) − u(γ(lγ))∥ ≤
∫

γ

ρ ds

Therefore, ⟨v∗, u⟩ ∈ N1X(Ω) with X-weak upper gradient ρ, which is not depend on v∗. Due to
heorem 3.14, ⟨v∗, u⟩ ∈ W 1X(Ω) and |∇⟨v∗, u⟩| ≤

√
d · ρ. So u ∈ R1X(Ω ;V ).

(2) Let u ∈ R1X(Ω ;V ) and g ∈ X(Ω) be its Reshetnyak upper gradient. Then, due to Theorem 3.14,
or any v∗ ∈ V ∗ with ∥v∗∥ ≤ 1, function ⟨v∗, u⟩ has a representative in N1X(Ω). Moreover, a Borel
epresentative of g is a X-weak upper gradient for each of those representatives above (not depending on
∗). Therefore, to construct the desired representative of u, we can proceed as in the proof of Lemma 3.5
also see the proof from [13, p. 182–183]). □

.3. Description via difference quotients

Here we extend the characterization of Sobolev spaces via difference quotients known for Lp-spaces to
he case of Banach function spaces. For the real-valued case see [3, Theorem 2.1.13] and [4, Proposition 9.3],
nd for the vector case see [14, Proposition 2.5.7] and [1, Theorem 2.2].

heorem 3.16. Let X(Ω) be a Banach function space having the Radon–Nikodým property. If u ∈ X(Ω)
nd there is a constant C ∈ [0,∞) such that

∥τtej
u− τsej

u∥X(ω) ≤ C|t− s|, j ∈ 1, . . . , n (3.7)

for all ω ⋐ Ω with max{|t|, |s|} < dist(ω, ∂Ω), then u ∈ W 1X(Ω) and ∥∇u∥X(Ω) ≤ nC.

Hereinafter ω ⋐ Ω means that the closure of ω is a compact subset of Ω .

roof. Fix j ∈ 1, . . . , n and let ω ⋐ Ω be bounded. First, we prove that weak derivatives of u|ω exist in
(ω) and their norms are bounded by C. Let ω ⋐ ω′ ⋐ Ω and 0 < δ < dist(ω′, ∂Ω). Consider function
: (−δ, δ) → X(ω′) defined by the rule t ↦→ τtej

u. By the assumption (3.7), we have

∥G(t) −G(s)∥ ′ = ∥τ u− τ u∥ ≤ C|t− s|,
X(ω ) tej sej X(ω)

10
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eaning that G is Lipschitz continuous. Due to the RNP of X, mapping G is differentiable a.e. Then fix
0 ≤ t0 < dist(ω, ∂ω′) so that

G′(t0) = lim
h→0

u(· + (t0 + h)ej) − u(· + t0ej)
h

(3.8)

exists in X(ω′). Choose a sequence hk → 0 such that limit (3.8) exist a.e. in ω′ and, in particular, in
ω − t0ej ⊂ ω′. For x ∈ ω, we define

gω(x) := lim
k→∞

u(x+ hkej) − u(x)
hk

.

hen gω is measurable, and by Lemma 2.1, gω ∈ X(ω) with ∥gω∥X(ω) ≤ C. Denote gk
ω(x) = u(x+hkej)−u(x)

hk

nd show that for any φ ∈ C∞
0 (ω) the next equality holds

lim
k→∞

∫
ω

gk
ω(x)φ(x) dx =

∫
ω

gω(x)φ(x) dx.

ndeed: ⏐⏐⏐⏐ ∫
ω

gk
ω(x)φ(x) dx−

∫
ω

gω(x)φ(x) dx
⏐⏐⏐⏐ ≤

∫
ω

|gk
ω(x) − gω(x)| · |φ(x)| dx

=
∫

ω−t0ej

|gk
ω(y + t0ej) −G′(t0)(y)| · |φ(y + t0ej)| dy

≤
u(· + (t0 + hk)ej) − u(· + t0ej)

hk
−G′(t0)


X(ω′)

∥φ(· + t0ej)∥X′(ω′) → 0.

e deduce that gω is a weak derivative:∫
ω

gω(x)φ(x) dx = lim
k→∞

∫
ω

u(x+ hkej) − u(x)
hk

φ(x) dx

= lim
k→∞

∫
ω

φ(x+ hkej) − φ(x)
hk

u(x) dx =
∫

ω

u(x) ∂φ
∂xj

(x) dx.

ow we take a monotone sequence of bounded domains ωn ⋐ ωn+1 ⋐ Ω such that
⋃

n ωn = Ω . Functions
ωn agree on the intersections of their supports; therefore, they can be pieced together to a globally defined
easurable function g. Once again, thanks to Lemma 2.1, g ∈ X(Ω) and ∥gω∥X(Ω) ≤ C. In the same manner

s above, we derive that g = ∂ju on Ω . □

Theorem 3.17. Let V be a Banach space and X(Ω) be a Banach function space. If u ∈ X(Ω ;V ) and there
is a constant C ∈ [0,∞) such that

∥τtej
u− τsej

u∥X(ω;V ) ≤ C|t− s|, j ∈ 1, . . . , n

for all ω ⋐ Ω with max{|t|, |s|} < dist(ω, ∂Ω), then u ∈ R1X(Ω ;V ), and there is g a Reshetnyak upper
gradient of u so that ∥g∥X(Ω) ≤ nC.

Proof. For any v∗ ∈ V ∗ with ∥v∗∥ ≤ 1, it is clear that ⟨v∗, u⟩ ∈ X(Ω). Have the following estimate

|τtej
⟨v∗, u⟩(x) − τsej

⟨v∗, u⟩(x)| = |⟨v∗, τtej
u(x)⟩ − ⟨v∗, τsej

u(x)⟩|
= |⟨v∗, τtej

u(x) − τsej
u(x)⟩| ≤ ∥τtej

u(x) − τsej
u(x)∥V .

Then, for any ω ⋐ Ω with max{|t|, |s|} < dist(ω, ∂Ω), we have

∗ ∗
∥τtej
⟨v , u⟩ − τsej

⟨v , u⟩∥X(ω) ≤ ∥τtej
u− τsej

u∥X(ω;V ) ≤ C|t− s|.
11
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hus, all the assumptions of Theorem 3.16 are fulfilled. So ⟨v∗, u⟩ ∈ W 1X(Ω). Now, find a majorant. Define

gj(x) := lim inf
h→0

∥u(x+ hej) − u(x)∥V

|h|
,

hich belongs to X(Ω) and ∥gj∥X(Ω) ≤ C (due to Lemma 2.1). Applying the next estimate

|⟨v∗, u(x+ h)⟩ − ⟨v∗, u(x)⟩|
|h|

≤ ∥u(x+ hej) − u(x)∥V

|h|
,

e derive that

|∂j⟨v∗, u⟩(x)| = lim
h→0

|⟨v∗, u(x+ h)⟩ − ⟨v∗, u(x)⟩|
|h|

≤ lim inf
h→0

∥u(x+ hej) − u(x)∥V

|h|
= gj(x).

o g =
√∑

j g
2
j is a Reshetnyak upper gradient of u, and the estimate ∥g∥X(Ω) ≤

∑
j ∥gj∥X(Ω) ≤ nC holds

rue. □

heorem 3.18. Let V be a Banach space and X(Ω) be a Banach function space.
(1) Suppose the norm ∥ · ∥X is absolutely continuous and has the translation inequality property. If

∈ W 1X(Ω ;V ), then

∥τtej
u− τsej

u∥X(ω;V ) ≤ ∥∂ju∥X(Ω ;V )|t− s|, j ∈ 1, . . . , n (3.9)

or all ω ⋐ Ω with max{|t|, |s|} < dist(ω, ∂Ω).
(2) Suppose X and V have the Radon–Nikodým property. If u ∈ X(Ω ;V ) and there is a constant C ∈ [0,∞)

uch that
∥τtej

u− τsej
u∥X(ω;V ) ≤ C|t− s|, j ∈ 1, . . . , n (3.10)

or all ω ⋐ Ω with max{|t|, |s|} < dist(ω, ∂Ω), then u ∈ W 1X(Ω ;V ) and ∥∇u∥X(Ω) ≤ nC.

roof. (1) By the density it is sufficient to consider u ∈ C∞(Ω ;V ) ∩W 1X(Ω ;V ). Then,

u(x+ tej) − u(x+ sej) =
∫ t

s

d

dr
u(x+ rej) dr =

∫ t

s

∂

∂xj
u(x+ rej) dr.

Applying Minkowski’s inequality (2.1) and then the translation inequality property, we derive (3.9).
(2) It is a consequence of Theorems 3.6 and 3.17. □

In [1], W. Arendt and M. Kreuter obtained the following characterization of the Radon–Nikodým
property: A Banach space V has the RNP iff the difference quotient criterion (3.10) characterizes the space

1,p(Ω ;V ), p ∈ (1,∞]. We are interested whether there exists such kind of property for a base space X(Ω).
amely, we suppose that the following would be reasonable.

onjecture 3.19. If the difference quotient criterion (3.7) characterizes the space W 1X(Ω), then the
anach function space X(Ω) has the Radon–Nikodým property.

At least for Lp-spaces, it is true.

12
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.4. A maximal function characterization

Another fruitful observation consists in pointwise description of Sobolev functions via maximal
unction.

heorem 3.20. Let Ω ⊂ Rn, V be a Banach space, X(Ω) have the Radon–Nikodým property, and the
orm ∥ · ∥X(Ω) have the translation inequality property. If u ∈ X(Ω ;V ) and there is a non-negative function
∈ X(Ω) such that

∥u(x) − u(y)∥V ≤ |x− y|(h(x) + h(y)), a.e. on Ω , (3.11)

hen u ∈ R1X(Ω ;V ) and ∥g∥X(Ω) ≤ 2n∥h∥X(Ω), where g is some Reshetnyak upper gradient of u.

Proof. For all j = 1, . . . , n and any ω ⋐ Ω with max{|t|, |s|} < dist(ω, ∂Ω), taking into account the
translation inequality property, we deduce

∥τtej
u− τsej

u∥X(ω;V ) ≤ |t− s| · ∥τtej
h+ τsej

h∥X(ω) ≤ |t− s| · 2∥h∥X(Ω).

By Theorem 3.17, we conclude that u ∈ R1X(Ω ;V ). □

Corollary 3.21. In the assumptions of Theorem 3.20 suppose that V has the Radon–Nikodým property.
Then it follows that u ∈ W 1X(Ω ;V ) and ∥∇u∥X(Ω) ≤ 2n∥g∥X(Ω).

A sufficiency counterpart to Theorem 3.20 (and to Corollary 3.21) sounds in the following way:

Theorem 3.22. Let Ω ⊂ Rn, V be a Banach space, X(Ω) be a Banach function space such that
Hardy–Littlewood maximal operator M is bounded in X(Ω). If u ∈ W 1X(Ω ;V ), then

∥u(x) − u(y)∥V ≤ C|x− y|
(
M(|∇u|)(x) +M(|∇u|)(y)

)
holds for some constant C and almost all x, y ∈ Ω with B(x, 3|x− y|) ⊂ Ω .

This result has been recently obtained in [15] by P. Jain, A. Molchanova, M. Singh, and S. Vodopyanov
for the real-valued case. It is easy to see that the proof of [15, Theorem 2.2] works for vector-valued functions
as well.

4. Composition with Lipschitz continuous function

If u ∈ N1X(Ω ;V ) and f : V → Z is Lipschitz continuous with f(0) = 0, then it is obvious that f ◦ u
belongs to N1X(Ω ;Z) and Lip(f)·ρ is its X-weak upper gradient. Here we discuss superpositions of Lipschitz
mapping and functions from classes W 1X and R1X.

Theorem 4.1. Suppose that V and Z are Banach spaces such that Z has the Radon–Nikodým property,
and X(Ω) is a Banach function space. Let f : V → Z be Lipschitz continuous and assume that f(0) = 0 if
|Ω | = ∞. Then f ◦ u ∈ W 1X(Ω ;Z) for any u ∈ W 1X(Ω ;V ).

Proof. Let u ∈ W 1X(Ω ;V ). There is a representative ũ which is absolutely continuous on lines in Ω ; then

the same holds for f ◦ũ, which is a representative of f ◦u. Due to the RNP of Z there exist partial derivatives

13
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∂f◦ũ
∂xj

. For almost all x ∈ Ω we have∂f ◦ ũ
∂xj

(x)


Z

= lim
h→0

∥f ◦ ũ(x+ hej) − f ◦ ũ(x)∥Z

|h|

≤ lim
h→0

L
∥ũ(x+ hej) − ũ(x)∥V

|h|
= L

 ∂ũ

∂xj
(x)


V

= L∥∂ju(x)∥V ,

here L = Lip(f). Let g(x) = L|∇u(x)|, then, by Lemma 3.3, f ◦ u belongs to W 1X(Ω ;Z). □

heorem 4.2. Let Ω ⊂ Rn be open, V and Z be Banach spaces, and f : V → Z be a Lipschitz continuous
mapping (f(0) = 0 in the case |Ω | = ∞). Then, f ◦ u ∈ R1X(Ω ;Z) whenever u ∈ R1X(Ω ;V ).

Proof. Let u ∈ R1X(Ω ;V ), and z∗ ∈ Z∗ with ∥z∗∥ ≤ 1. It is clear that f ◦ u ∈ X(Ω ;V ). Define function
ψ : V → R by the rule ψ(v) = ⟨z∗, f(v)⟩. Then, ψ is Lipschitz continuous, and ⟨z∗, f ◦ u⟩ = ψ ◦ u. With the
help of Theorem 4.1, the last guarantees ⟨z∗, f ◦ u⟩ ∈ W 1X(Ω) and |∇⟨z∗, f ◦ u⟩| ≤ Lg. Thus, we conclude
that f ◦ u ∈ R1X(Ω ;Z). □

Theorem 4.3. Let Ω ⊂ Rn be open and V , Z be Banach spaces, V ̸= {0}. If for any Lipschitz mapping
f : V → Z we have f ◦u ∈ W 1X(Ω ;Z) whenever u ∈ W 1X(Ω ;V ), then Z has the Radon–Nikodým property.

Proof. Suppose Z does not have the RNP. Then there is a Lipschitz function h : [a, b] → Z, which is
not differentiable almost everywhere. Fix elements v0 ∈ V and v∗

0 ∈ V ∗ so that ⟨v∗
0 , v0⟩ = 1. Consider the

next function f(v) = h(⟨v∗
0 , v⟩); it is clear that f : V → Z is Lipschitz continuous. We can assume that

Q = [a, b]n ⋐ Ω . Choose a function η ∈ C∞
0 (Ω) such that η(x) = 1 when x ∈ Q. Then, we define function

u(x) = v0 ·x1η(x), which is in W 1X(Ω ;V ). Therefore, by the assumption f ◦u ∈ W 1X(Ω ;V ). On the other
hand, f ◦ u(x) = h(x1) when x ∈ Q, meaning that f ◦ u is not differentiable almost everywhere on intervals
in Q, and this contradicts Theorem 3.2. □

Remark 4.4. We define a nonlinear operator (autonomous Nemytskii operator) Nf : W 1X(Ω ;V ) →
W 1X(Ω ;Z) by Nfu = f ◦ u. Then Theorem 4.1 implies that Nf is bounded. However, the question of
whether it is continuous requires additional investigations.

The following lemma is similar to [1, Corollary 3.4. and Corollary 3.4.].

Lemma 4.5. If u ∈ R1X(Ω ;V ), then ∥u(·)∥V ∈ W 1X(Ω) and |∂j∥u(·)∥V | ≤ g a.e., where g ∈ X(Ω) is a
Reshetnyak upper gradient of u.

Proof. Let u ∈ R1X(Ω ;V ), then, by Theorem 4.2, ∥u(·)∥V ∈ R1X(Ω) = W 1X(Ω). Then, with the help
f Lemma 3.5, we infer

lim
h→0

|∥u(x+ hej)∥V − ∥u(x)∥V |
|h|

≤ lim
h→0

∥u(x+ hej) − u(x)∥V

|h|
≤ g(x)

or almost all x ∈ Ω . □

heorem 4.6. Let Ω ⊂ Rn be open such that we have a continuous embedding W 1X(Ω) ↪→ Y (Ω) for some
anach function space Y (Ω). Then we also have a continuous embedding R1X(Ω ;V ) ↪→ Y (Ω ;V ).

roof. Let u ∈ R1X(Ω ;V ). Then by Lemma 4.5 ∥u∥V ∈ W 1X(Ω), and by the assumption ∥u∥V ∈ Y (Ω).
he last implies u ∈ Y (Ω ;V ).
14
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Now let C be the norm of the real-valued embedding. Again, using Lemma 4.5, we derive

∥u∥Y (Ω ;V ) =
∥u∥V


Y (Ω) ≤ C

∥u∥V


W 1X(Ω) ≤ C

√
n∥u∥R1X(Ω ;V ). □

As an example we have the classical result of embedding Sobolev space into Lorentz space.

Corollary 4.7. W 1,p(Rn;V ) ↪→ L
pn

n−p ,p(Rn;V ), when 1 ≤ p < n.
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