LIPSCHITZ CONTINUOUS HYPERSURFACES WITH
PRESCRIBED CURVATURE AND ASYMPTOTIC BOUNDARY
IN HYPERBOLIC SPACE

ZHENAN SUI AND WEI SUN

ABSTRACT. We prove the existence of a complete locally Lipschitz continuous
hypersurface in weak sense with prescribed Weingarten curvature and asymp-
totic boundary at infinity in hyperbolic space under certain assumptions.

1. INTRODUCTION

This paper is devoted to the study of asymptotic Plateau type problem in hy-
perbolic space, for which, we shall use the half space model

H" = {(2, 2n41) € R" 240 > 0}

with the metric
n+1

2 _ -2 2
ds® = a:nHdei.
i=1

Given a smooth positive function ¢ in H®*! and a disjoint collection of smooth
closed (n — 1) dimensional submanifolds I' = {T'y, ..., [, } at 9., H" ! = R™ x {0},
we want to find a complete connected admissible vertical graph ¥ = {(z, u(x))|x €
0} satisfying

1
f(slu]) =0f (k) =¢(z,u)  inQ,
(1.1)
u=0 on I,
where kK = (K1, ..., ky) are the hyperbolic principal curvatures of 2 with respect to

the upward normal, the kth-Weingarten curvature
or(k) = Z Kiy " Kig
1< <. <ix<n
is defined on k-th Garding’s cone
I'y ={k eR"|o;(k) >0,j=1,...,k},

and  is the bounded domain enclosed by I' on R™ x {0}. We say ¥ is admissible
if Kk € T'.

The difficulty for Plateau type problem (1.1) lies in the singularity at I'. A

common method to deal with such problem is by studying approximating Dirichlet
problem

f(sl]) =p(@,u)  inQ,
(1.2)
U =€ on T,
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where € is a small positive constant. When ¢ = o € (0,1) is a prescribed constant
and f satisfies certain assumptions, extensive study can be found in [7, 10, 8, 9, 11],
where the estimates for solutions to (1.2) have to be e-independent in order to prove
existence results for asymptotic problem (1.1). For nonconstant v, Szapiel [24]
investigated the existence of strictly locally convex solutions to the approximating
problem (1.2).

In [23], the author constructed a new approximating Dirichlet problem by as-
suming the existence of a strictly locally convex asymptotic subsolution. Combined
with interior estimates for the case k = 2, existence results can be concluded for
strictly locally convex solutions to asymptotic problem (1.1), even when the esti-
mates for the approximating problem depend on e. In this paper, we shall continue
to adopt this idea to find admissible hypersurfaces.

Assume that there exists an admissible u € C*(Q) N C°(Q) such that

{fMWDZw@w) in €,

1.
(1.3) u=0 on I

Denote the e-level set of w and its enclosed region in R™ by
Ie={zeQ|u(x) =¢}, Qe ={z € Q|u(@) > €}.

We assume that I'. is a regular boundary of €2, when ¢ > 0 is sufficiently small.
That is to say, I'. has dimension n — 1, I, € C* and u, = |Du| > 0 on I, where
v is the unit interior normal vector field to I'c on €2.. Here the requirement for u
to be C* is for second order boundary estimate. Throughout this paper, we shall
consider the following approximating Dirichlet problem

{fWWD=¢@m) in Q,

1.4
(1.4) u=c€ onI'..

Before we state our main theorems, let us first impose some compatibility con-
ditions, which are needed for boundary gradient estimate on I'.. For any ¢ > 0
sufficiently small, let o € (0,1) be a constant which satisfies

(1.5) P(x,u) >U,§(a,...,o) on Q.

for any admissible solution u > wu to (1.4). Note that such o exists in view of
Remark 2.6, and o may depend on e. Denote by r§ the maximal radius of exterior
spheres to I'c in R™. We impose the following compatibility conditions for (1.4) and
u:

V1—o? 1+o ,
€ —
TG
We note that the compatibility conditions are mild and can embrace the case when

1 approaches 0 on I, at which problem (1.1) becomes both singular and degenerate.

Our first result is on the existence of admissible hypersurfaces to approximating
problem (1.4).

Theorem 1.7. Suppose that 0 < ¥(z,u) € C>(H" 1) satisfies

Y

and there exists an admissible u € C*(Q) N C°(Q) satisfying (1.3) and
(1.9) ~\D?*u) €Ty1 nearT.

> 0.

(1.6) 0<e<rioc and o—
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For sufficiently small constant € > 0, assume that the compatibility conditions (1.6)
hold for (5.3), (5.4) and w. Then there exists a unique smooth admissible solu-
tion u¢ > wu to the approzimating problem (1.4) in Q.. When k = n, condition
(1.8), (1.9) and (1.6) can be removed and our conclusion remains true except the
UNIQUENESS.

The proof of Theorem 1.7 relies on the establishment of a priori second order
estimates for admissible solutions u > w of (1.4). These estimates depend on ¢,
which is the minimum of » on €, and thus we are able to apply techniques for usual
Dirichlet problems. For the special case k = n, we refer the readers to [23], where
the estimates can be derived by property of strict local convexity. For general k,
we adopt the idea of Guan-Spruck [8] to derive C? estimate and boundary gradient
estimate, which rely directly and inevitably on the geometry of hyperbolic space.
For global curvature estimate, we construct a test function making use of geometric
quantities in half space model, which, easily brings us to derivations similar to Jin-
Li [15], where they used spherical coordinates to find starshaped compact radial
graphs.

For second order boundary estimate, we shall generalize the idea of Ivochkina,
Lin and Trudinger [13, 18] to hyperbolic space. For barrier construction, following
[13, 18], we need to guarantee that the principal curvatures ' = (k},...,k,_;) of
I'c with respect to 7 satisfy & € I'j, on I'¢, where

w={ eR"o;(k')>0,7=1,...,k}.

By the relation
Dapu = —u fpdap on T,

where «, 8 < n run over the principal directions on I, we observe that A\(Dysu)
and ' differ by a negative sign, which is very different from the Euclidean space
where we would have u, < 0. Therefore, we add condition (1.9). As a result,
we find two big differences due to the hyperbolic space and our problem setting.
First, condition (1.9) can not be weakened to —A(D?u) € 'y as in Euclidean space
[14]. Second, our second order boundary estimate depends on infq_t), while in the
Euclidean space [18], it can be independent.

To solve the asymptotic problem (1.1), we utilize the interior gradient estimate
to give a e-independent C' bound for solution sequence u€ of (1.4) with 0 < € < 3
on fixed €. By diagonal process, we can then prove the existence of a locally
Lipschitz continuous hypersurface to (1.1) in weak sense. At this point, we mention
that condition (1.8) is indispensable in H"*! when k < n. It is needed for both
global gradient estimate to (1.4) and interior gradient estimate (see Weng [29]). In
R+ condition (1.8) becomes 1, > 0, which was used by Wang [28] to obtain
interior gradient estimate. Before we state the existence theorem to problem (1.1),
we give an example of what our data can be.

Example 1.10. Let
Q={zeR"||z|<(1- Jf)%R},

where o1 € (0,1) and R > 0 are constants. Let ¢ = au?, where
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Choose u = /R? — |z|? — o1 R. It will become clear in section 2 that x[u] =
(01,...,01). For any 0 < ¢ < (1 — 01) R, we may pick

0'162

2(1 - 0'1)2R2 ’
Note that 7§ = co. We can verify that all the assumptions in Theorem 1.7 are
satisfied.

g =

Theorem 1.11. Under the assumptions of Theorem 1.7, there exists a sequence
of admissible solution u®¢ € C*(Q,) to (1.4) such that € \, 0 and u® converges to
u € Czo(;cl (Q)NCQ). We call u weak admissible solution to asymptotic Plateau

problem (1.1). When k = n, condition (1.8), (1.9) and (1.6) can be removed and
our conclusion remains true. When k =n =2 ork =1, u can be smooth.

Our definition of weak admissible solution may be interpreted in the spirit of
Trudinger [26], which was originally defined for Hessian equations. In Section 7, we
shall prove that u is indeed a viscosity solution to (1.1), as defined in [25]. In [23], the
author applied Guan-Qiu’s idea [12] to derive interior C? estimate for strictly locally
convex solutions when k = 2. As a result, smooth solution to asymptotic problem
(1.1) can be found in the special case k = n = 2. However, interior C? estimate
cannot be derived for higher order Weingarten curvature equations (k > 3) in view
of the counterexamples given by Pogorelov [20] and Urbas [27]. Thus, in Section 6,
we formulate some possible domains on which we wish to establish Pogorelov type
interior curvature estimate, but then we find an obstruction due to the hyperbolic
space. Therefore, we wish to answer the following questions in future work: whether
there exists a non-smooth locally Lipschitz continuous viscosity solution to (1.1)
when there is an asymptotic subsolution. If so, what is the optimal regularity of
our weak admissible solution w.

The rest of this paper is organized as follows: the proof of Theorem 1.7 is covered
in Section 2-5. Combined with interior gradient estimate in Section 6, we finish
the proof of Theorem 1.11.

2. Cl ESTIMATE

First, we shall present some preliminary knowledge which may be found in [10,
8,9, 11, 23]. The coordinate vector fields on vertical graph of u are given by

ai+uian+1a 1=1,...,n,

where 9; = a% fori=1,...,n+ 1 are the coordinate vector fields in R**!.

When X = {(z,u(z))|z € Q} is viewed as a hypersurface in R" ™!, its upward unit
normal, metric, inverse of the metric and second fundamental form are respectively

1
v=—(=Du,l), w=+/1+]|Dul?,

w
~ —iid UiUj ~ Usj
9ij = 0ij +wiug, g7 =0;; — 2 hij = W
The Euclidean principal curvatures < are the eigenvalues of the symmetric matrix
U; U

w(l+ w)

U; U
, ik = 0; .
Yik ik T 1+w

1 . . )
ayj = E’Ylkukﬂl] with "% = 6, —
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Note that y*v,; = 6;; and Yirve; = Gij-
When ¥ = {(z,u(z))|r € Q} is viewed as a hypersurface in H* !, its unit upward
normal, metric, second fundamental form are given as follows

1 1

n=uv, gij = ﬁ(éw —+ uﬂ”), hij = m(&] —+ U,;Uj + ’UJU”)

The hyperbolic principal curvatures k[u] are the eigenvalues of the symmetric ma-
trix Afu] = {a;;}, whose entries are given by

(8i5 + uyFugy).

; o1 1
ai; = u*y T hiy = E’Ylk(fskz + upuy + wug )y = "

Equation (1.1) can be written as
(2.1) f(6lu]) = F(A(A[u])) = F(A[u]) = ¢ (2, u).
From the above discussion, we obtain the following relations.
1-~ Vn—l—l _
(2.2) hij = ahij + 2 i
where ! = v - 9,41 and - is the inner product in R"*!. Note that this formula

indeed holds for any local frame on any hypersurface ¥ which may not be a graph.
In addition, we have

(2.3) ki =uf; +v"T i=1,... 0.

In the rest of this section and section 3, 4, we will establish C? a priori estimate
for admissible solutions v > u to approximating problem (1.4). Our estimate will
depend on e.

We shall need the following type of maximum principle in hyperbolic space,
which originally appears in [24].

Lemma 2.4. Let Q' C Q be a domain and u, v be positive C? functions on SV,
where u is admissible and k[v] € Ty. Assume that f(k[v]) < f(k[u]) in Q. Ifu—wv
has a local mazimum at o € ', then u(zo) # v(xo).

Proof. Prove by contradiction. Suppose that u(xzg) = v(zg). By assumption we
know that Du(xg) = Dv(x) and D?u(xg) < D?v(zg). Therefore at g,

1 ) . 1 ) .
Alu] = — (8 +uyMupy'?) < — (b5 + vy oun) = Al
Consequently, f(x[u])(xo) < f(k[v])(zo). This is a contradiction. O

2.1. CY estimate. For o € [0,1), let B = B% = B%(a) be a ball in R"! of radius
R centered at a = (a/, —oR) and S7 = S% = 9B NRT!. By (2.3), we know that
ki[S?] = o for all ¢ with respect to its outward normal.

Lemma 2.5. There exists a ball Bf(a) such that for any admissible solution u > u
to (1.4), the graph 3¢ = {(z,u(x))|zr € Qc} is contained in Bf(a).

Proof. Let o € [0,1) be a constant satisfying (1.5). Since I'c x {€} is compact, we
can choose a ball B%(a) such that I'c x {¢} C B%(a). Let X¢ be an admissible
hypersurface to (1.4). Suppose 3¢ is not contained in B%(a). Expand B continu-
ously by homothetic dilation from (a’,0) until B? contains ¥.¢ and then reverse the
procedure until S? has a first contact with €. However, S and X¢ can not have
a first contact by Lemma 2.4. Hence X¢ C B%(a). O
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Remark 2.6. We can indeed obtain the C° estimate
e<u<u<Cy onf

for any admissible solution u > w to (1.4), where € > 0 is any sufficiently small
constant, 1 is any prescribed positive function on €., and Cj is a positive constant
independent of € and ¢. In fact, we can pick a ball Bf(a) containing all I'c x {e}
for sufficiently small € and pick ¢ = 0 in the proof of Lemma 2.5.

2.2. Boundary gradient estimate. For ¢ € (0,1), let B = BY = B%(b) be a
ball in R"*! of radius R centered at b = (¥,0R) and S = S§ = 0Bg N R},
Then «,[S?] = o for all ¢ with respect to its inward normal by (2.3).

Lemma 2.7. Fore > 0, let o € (0,1) be a constant satisfying (1.5). Let B%(b)
be a ball such that b' ¢ Q. and dist(t/,Tc) > <. If BE(b) N (Qe x {e}) = 0, then
any admissible hypersurface £¢ = {(z,u(x))|x € Qc} with w > u to (1.4) satisfies
BZ(b) N %€ = 0.

Proof. Suppose that BN (Q x {e}) = 0 and B°NXc # (). Shrink B by homothetic
dilations from (¥’,0) until B° N X€ = (). Then reverse the procedure until S first
touches ¢ at some point (xg,u(zg)) where zo € €. Since ¢ is a C? graph,
(20, u(xo)) must lie on the lower half of S (not including the equator). Note that
S is locally a graph around zy. Thus we reach a contradiction by Lemma 2.4. O

We have the following lemma for boundary gradient estimate.

Lemma 2.8. Let € be a sufficiently small constant which satisfies the compatibility
conditions (1.6). Then any admissible solution u > u to (1.4) satisfies

1 V1-—o? 1+0 5\!
< (a — €— ) on T..
i TR
Proof. The proof can be found in [8] which applies Lemma 2.7. O
2.3. Global gradient estimate. We first write (2.1) as
(2.9) o) (k) = f(r) = F(A[u]) = G(D*u, Du,u) = (z, ).
For convenience, we denote
of .. OF 0G oG 0G
= , szzi’ Gst: ) s _ ’ Guzi
! Ok Oa;j Ougy Oug ou

Differentiate (2.9), we obtain
(2.10) G uspy = ey + hutn — GPug — Guus.

Lemma 2.11. We have
G5t — EFijvis,ytjy
w

Us pij, 2(wy S ug + u;y?)
w(1l+ w)

1 . 1
_ (i ,,_fE ,
Gu_u(F aij ” fl)

» 2
Fiag; + —3 Fyu;,

and



HYPERSURFACES OF PRESCRIBED CURVATURE 7

Proof. Since
1 . .
G(D*u, Du,u) = F(E(uq/““ukm” + 52‘3‘))7
by direct computation,
OF Oa;; U e i g
st __ LY Z Fiiats tj
aaij 3ust w T

= :F”—l ]:7<F” i — ‘>7
u aaij ou w’Y Uk17Y u A5 w Z fz
and
OF Oa;; y U . . 2u OyF .
Gs: 7 :sz(_is 1k lj 5 i i lj)'
Note that ‘
dy'* — P Mpq ~ak
Oug Oug ’
0Vpq _ OpslUq + 0gsUp  UplqUs _ Opstqg + upy?®
Ous 14w (14 w)?w 1+w ’
and w
P Up = ju
we thus have
s Us i ,,_2(w7isuq+ui’7qs) ij o l ijis,
G° = w2F aij w(l + ) F aq]—|-w2F Y u;.

Consider the test function
® = In |Du| 4+ Au,

where A is a positive constant to be determined. Assume the maximum of &

is attained at 2° = (x1,...,2,) € Q.. Choose the Euclidean coordinate frame
01,...,0, around z° such that at z°,
up =|Du| and wu,=0 for a=2,...,n.

We may assume that |Du| > 1, since otherwise we are done. By simple calculation,
we immediately obtain

(2.12) R =6y, —

wuy 1w, if i=k=1,
d;1, otherwise.

w(l +w)

Then Inu; + Au achieves its maximum at z2°, at which, we have
Urs
(2.13) L4 Au; =0,
u1

GYur;  GYugjuny
uy u?
From (2.13), we have

(2.15) Uy = fAu? and ui, =0 for a=2,...,n.

(2.14) + AGYu;; < 0.
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We may rotate s, ..., 0, such that at 20, {u;;} is diagonal, and so is {a;;}:

(1+
w

1
— (1 + uuii)éij, otherwise.
w

“”“) if i=j=1,

1 X .
(2.16) a;; = 6(5” + u,yzkukl,yl]) _

Consequently, {F¥/} is also diagonal at z°. -
By Lemma 2.11 and (2.12), we can see that {G%} is diagonal at 20,

u
—FY i i=i=1
(217) G” _ w3 ) 1 7 ¥ )

—F“(SU, otherwise.

By Lemma 2.11, (2.12) and (2.16), we have

s 2““”@1 11 Uy i ULUIL U
218)  ~Grun = Guan = =TLPH 4 TER TP 4 (S - T
2.19 G i = il NN i = - i
(2.19) wig = —FUyy g = — — >

By (2.14), (2.10), (2.17), (2.18) and (2.19), we have

(B )LD T

%1

2.20
(2.20) "

Pt (A Dy <o

By (2.16) and (2.15),

1 1 Auu?
= Ly = LA
w w w w

if A is chosen sufficiently large (which depends on €). It follows that

-1

1 1
11
F' =—of “op_i(az,...,ann)
k
1
:lcﬁ_l Ok_1— a1105_2(a ann)
A k k—1 110k —2(U22, ..., Unn
1 14
2E01§ Ok—1

Then by Newton-Maclaurin inequality, we have
k 1 1_
(221) el k) <SR = P < (n— ke )FY,

where c(n, k) is a positive constant.

Choosing A sufficiently large, by (2.20), (2.21), (2.15) and assumption (1.8), we

obtain an upper bound for wu;.
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3. GLOBAL CURVATURE ESTIMATE

In this section, we will derive second order estimate if we know them on the
boundary. For a hypersurface X, let g and V denote the induced metric and Levi-
Civita connection on ¥ induced from H"*!, while § and V be the ones induced
from R™*!. The Christoffel symbols with respect to V and V are related by the
formula
l(w(g 8 — s
" iOkj 7 Oik g ulgw)'
Consequently, for any v € C%(¥) and in any local frame on ¥,

k _ Tk

(3.1) Vijv = (v;); — Ffjvk = @ijv + %(U/Z‘Uj + ujv; — gklulvkgij).
Lemma 3.2. In R*t!,

(3.3) §Mupuy = V> =1 - ("2,

(3.4) @iju = ﬁijun+1 and @ijxk = ﬁijuk, k=1,...,n,
(3.5) (V") = —iNLij 'y,

(3.6) V" = =g (" hihey + wVihig),

where Ty, ...,Tn 18 any local frame on X.

Proof. The identities in this Lemma can be found in [9] and the proof can be found
in [23]. O

Lemma 3.7. Let X be an admissible hypersurface in H" 1 satisfying equation (2.1).
Then in a local orthonormal frame on X,

FijVijVn+1 — Vn+1Fijhikhkj + (]_ + (1/"+1)2)Fijhij — l/n+1 Z fz

(38) 2 . 2Vn+1
— ﬁFl]hjkuiuk +

;i Uk

3
s P uuy — —y.
u u

Proof. The proof can be found in [23], which utilizes the above identities. O

Now we state the main theorem in this section on global curvature estimate,
which is equivalent to global second order estimate.

Theorem 3.9. Let ¥ = {(z,u(x)) |z € Q.} be an admissible C* graph in H" !
satisfying (2.1) for some positive function ¥ (x,u) € C2(H"*1). Then there exists
a positive constant C' depending only on n, k, €, |[ullc1(q,.) and [[¢]|c> such that

sup Ki(x) < C(l + sup m(z))
€N, zel'e
i=1,...,n i=1,...,n

Proof. First, note that

1
= >94>0 onX

V14 |Dul? —

for some positive constant a. Let kpax(x) be the largest principal curvature of ¥

at x. Consider
Kmax (X) 2
—eu

My = sup gt

xex V
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where 3 is a positive constant to be determined. Assume My > 0 is attained at an
interior point xg € X. Let 7y,...,7, be a local orthonormal frame about x; such
that h;;(x0) = K, 0;5, where k1 > ... > K, are the hyperbolic principal curvatures
of ¥ at xg. Thus, Inhy; — In(r"*! —a) + g has a local maximum at xq, at which,

hi; Vit U;
3.10 - —p—==0
( ) hiy vrtl —g u? ’
Fiihllii F“h%l FiiviiVnJrl Fu( n+1) v”u 2 2
3.11 — L Y AR L Yi <0.
(8:11) hi1 h3, g (vtl —q)? b +5 ud =
Differentiate equation (2.1) twice,
(3.12) F'hiitn + F7" hijihest = 111 > —Chiy.

By Gauss equation, we have the following commutation formula,
(3.13) hiitn = hivii + (Kik1 — 1)(ki — K1).
By (3.3), we have
1)
(3.14) Flupu = “awpuy = 1 — ("2,
u

By (3.1), (3.4), (3.14) and (2.2), we have

(3.15) —BF ””+5F” 20 _ B Sy R g
Combining (3.11), (3.13), (3.12), (3.8) and (3.15) ylelds7
n+1
(m 5” Jo- c+(ﬂ ¢ )Zfi
20+

(316) Zfz’i + Zfz R 2 _I/n+1 ZfoQ

2 1
B F”’rshz‘jlhrsl _ F“hlli F”(Vn+ )i <0
K1 K2 (vntl —a)2 —

Let 6 € (0,1) be a constant which will be determined later. Using the idea of
Jin-Li [15], we divide our discussion into two cases.

Case (i). Assume k,, < —0k;. By (3.10) and Cauchy-Schwartz inequality,
_Fiih%li Fii(ynJrl)? Fii(l/nJrl)? B (

3

1 u?
1 *) 2 iil7
+(51 ﬁ fu4

K2 (VT —q)2 = Lt )2
where §; is a positive constant to be determined later. By (3.5) and (2.2),
(3.17) "), = Lt k).
u

In view of (3.14), we have
Fiih%li Fii<yn+1)22
K2 (VT — a)2

2 26 g1
- mzﬁﬁ? - (m + (1 5*1)) > i

(3.18)
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By (3.14) and Cauchy—SChwartz inequality,
n+1
u"+1 Zfl Fi 2 N V3J1:1+ Zfl*
S Y
z/"+1—a Zfl_ Vn+1 Zfl R Zf“

where J5 is a positive constant to be determined later.
By assumption,

(3.20) > fikg > fukl > 12]‘292%? *'ﬁ i f

Therefore, by (3.18) with §; = % (3.19) with d; = § and (3.20), inequality (3.16)
reduces to

(bt e 0 ) -t - ) B

T A (L 51) do(vtl —a) wyntl —gq

)w_0+2(y”+71a Zfzﬁo

Also note that > f; > ¢(n, k) by Newton-Maclaurin inequality, we thus obtain an
upper bound for k1.

(3.19)

yn+1

+(H1—

Case (ii). Assume k, > —0k1. Denote

J=A{ilf=0%f:},  L={i| 1 <0f}.
By (3.10), Cauchy-Schwartz inequality, (3.17) and (3.14),

Z F“h%h F“( n+1)22
K2 (vl — a)2

i€J

Fn( n+1)

B*fi
V”H—azzfl_ V”JFI—GQZL ( )92u2
Using an inequality of Andrews [1] and Gerhardt [5],

FZ] Tshljlhrsl > Z fl f] h22j1 = Z

fz fl
|- hz211

izg T iz
and taking 0 = %, we have
F7 5 hijihest F”h%l S 20 Fih2,,
oy e g P 200 5 g I
1 i€L 1 i€l i€L 1

By (3.22), (3.21) with d5 = “Tj and (3.19) with do = ¢, (3.16) reduces to

ﬁ a 2(53 1 2
(u LS (vt — a)2 do(vntl —a)  wprtl — a) Zfz

Bun+1)¢ C+ S me B (1+ )§2f; <0

—i—(lﬂ—
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Taking § sufficiently large, we obtain an upper bound for ;. (Il

4. SECOND ORDER BOUNDARY ESTIMATE

4.1. Tangential-normal second derivative estimate. For an arbitrary point
on I'e, we may assume it to be the origin of R™. Choose a coordinate system so
that the positive z,, axis points to the interior normal of I'; at 0. There exists a
uniform constant r > 0 such that I'. N B,.(0) can be represented as a graph

1
0= pla') = 5 Y Buwa+O(2'P), o' = (@1, 20m0).

s,t<n

Let u € C3(Q.) be an admissible solution to (2.1) satisfying v > w in Q. and
u = € on I'c. For the tangential-normal second derivative estimate, consider for
t<mn,

1
W=t unp = 3 0l
s<n
By direct calculation,

(4'1) D;W = g + Unips + Unpri — Z UsUss,

s<n

(4.2) DisW = thssj + tnispr + tnipej + tnpri + tnprij = D Usttaj = ) _ Usills;.
s<n s<n

Following [13, 18, 14], we write equation (2.1) in the following equivalent form
(4.3) G(D?*u, Du,u) = F(u*y”uijvjm + (5lm) = ¢Y(z,u)w = ¥(z,u, Du).

Denote g g oG P
gi _ , gu _ \I,'L'
6’[1,@‘

ijo_ —— =
g 8U7 81147

8’U,ij ’

and
L=GYD;; —V¥'D,.
In order to give an estimation for LW, we need to choose a special local frame,
which was utilized by Ivochkina [13]. For fixed zg € 2, choose a local frame
T,...,Tn around xg on £ such that

Ta +Ur, Ont1, a=1,...,n

is a local orthonormal frame around (zg,u(zg)) on ¢ = {(x,u(z)) |z € Q} and in
addition they are principal directions at (xg,u(zg)) on €. In fact, we can choose

Ta = oclu,yliaia o = 17"'ana
where P = (P;;) is a constant orthogonal matrix such that
wy uigy ™ + Sim

w

Pal ({L‘()) Pﬂm
is diagonal. Then we can verify that
1
<Ta + uTQaTL-‘rla T8 + U753n+1> = ) (Ta " TR+ U-raung)

=Py (8i5 + witiy) Y™ Py = bag,
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where (, ) is the inner product in hyperbolic space, and - is the inner product in
Euclidean space. In addition,

li 2 li mj
Ury = WPy i, Uryry = U Pt Pgmy ™™ uij,

[

Li .
rory = hrory = Patuy" Pamuy™ hij

(4.4) K liamj,, . ) U
=Py (P 4 ) Py, = 08y TR
w w w uw
and ar,r,(2o) is diagonal.
Throughout this subsection, Greek letter «, 3, ... are from 1 to n. Denote
uTaTﬂ

Aag = Pat (im + w9 i) Pom = Sag + =2
Equation (4.3) can also be expressed as
(4.5) G(D*u, Du,u) = F(Asp) = f(A) = ¥(z,u, Du).

Then denote oF of
FoP = ——  fo=——.
3Aa@’ ! O
At zg, we have
Aaﬁ = )\a(saﬁv Faﬁ = fa(saﬁ'

By direct calculation similar to Lemma 2.11, we have the following lemma.

Lemma 4.6. At zo, we have

gij = UfaPal’Y”Pam’ij,

- 2P Y Pyou
Gl = ,Mﬁ!()\a —1),
w
1
u = = U — a)a
Gu=—(v-Y_1
. s
Ut = .
Y, u) ™
Proof.
17 8F 8"4 o 1. mj 7 mj
G"v = maTa'B =ulF ﬁPal’Yl Y™ P = Ufo Pty Pomy™.
« ij
4 , 1
Gu = F P i Pom™ = (€ =3 fa ).
OF 0Aup oyl .
S = = 2uF°PP, Y Pa.
9 =4, ou, N Doy, T8
Note that
N 1p g _gi Opg _ Opstiq + upy?® Ip U
ou, | ou, | ou, 1w T
Therefore,
ls qs ls
s 7 UgW + Uy 2Pa17 Paquq
= 2o PP (A — 1) = - LT (1),
6° = 2o P O Py 00 - 1) Lodla g (ho— 1)
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Differentiating (4.5), we have
(4.7) Guiji + Gluir, + Guug = (Vu, + Yuug)w + Ulugy.
By (4.1), (4.2), (4.7) and Lemma 4.6, we have
W =z, + Yuur)w + pr(Ya, + utin)w — Gu(ue + unpt)
+ 2G5 upiprj + G unprij — Cunprs — G DIW + Glupp
(4.8) = (Wrw + uuew — Guu)ug — Y Gugug

s<n s<n

<O fo+ 26 unipr; — G DiW + Glumpri — > Gttt

s<n

By Lemma 4.6,

ij i c
(49) 2g ij‘Ptj = QfaPan (>\o¢ - 1)Pam7mnpti S 51 Z fo)\i + E Zfou
where d7 is a positive constant to be determined later,

— G'DiW + Glunpys

2Pa U 2P, .u
(4.10) o faVa = DD W = fo (= Ao+ D Pary" pra

<613 fud2 + E(Zfa(DmW)Q +3" 1)

and
. 1
Z g”uisujs - afoc()\oc - 1)2 Z(Palfyls)Q
(411) sl<n s<n
25 fada D (Pans)® = C Y fa.
s<n

Taking (4.9)—(4.11) into (4.8),

LW <20, fad2 — Zfa > (Parns)?

(4.12) g g s<n
2
+ a Zfa + aZf(x(DTQW)

Using Ivochkina’s method [13], we divide our discussion into two cases.

Case (i). Suppose for any « =1,...,n,
Z(Pal'VIS)Q > 5%7
s<n
where €; is a positive constant to be determined. Picking d; < 4su: , (4.12)
reduces to
(4.13) LW <CY fa+CY  falDr, W)
Case (ii). If for some 8 € {1,...,n},

Z(PBMS)Q < el

s<n
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For any « # 3, consider the Laplace expansion along the ath row
w = det(Puyi) Z |Paivis|(n — D)™™ 4 | Pyyyin | (n — Dleyw™™
s<n
Thus, we can pick any

1
2(n — 1) (supw)n—2’

0<e <

and obtain for a # 3,

1

2. .2 . _
Z(Paﬂls) > €5 with ey = Srlsup )2

s<n
Consequently, (4.11) can be estimated as
2
ij €
(4.14) DG i > 2 ki = C Y fa
s<n a#B

Next, we shall derive an inequality in place of (4.9). Note that (4.9) can be
replaced by

2G JUmPt; < 02 Z foe>\2 (5 Zfa + 2fﬁpﬂl7 /\,BP,Bm'Ymnptza
a#fB
where d5 is a positive constant to be determined, and
fads =T = fala
a#p
Therefore, (4.9) can be replaced by
2 4
(4.15) 2G 7 Unipj < 205 Y fal + 5 Z fa.
ot B
Similarly, we can replace (4.10) by the following inequality.
— G'D;W + Gt pri
4.16) _ 2Dsqu
(#16) 20000 o 3y D, W 4 22 S SN Q(Zfa(DmW)2+Zfa)’
B

Now, we need to give an estimation for 2 B“u" fsAsD-,W. We use Ivochkina’s
method [13] to divide the discussion into two subcases

Subcase (i). Suppose 20_1(\|8) > ok—1. Then

2P, 2P 2P,
5quq fﬁA,@D 5‘1“’(1 UD. W _ 44BqlUq Z fO(AOlDleW
uw a#ﬁ
< clpw|+ 2 5 D fada +— > fa(D-
047'55 2 a#B

02 2 C 2
< C|DW| + D fadl+ 5, 2n = 2k + 1) fa(Dr, W),

aFf
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Hence, (4.16) reduces to
, , c
7 7 2 2
“G'DiW + Giunprs < C|DW| + 265 ;ﬁj Fad2 $< S faD W)+ fa).

Taking this inequality, (4.15), (4.14) into (4.8), and choosing d2 < we obtain

85upu7

(4.17) LW < C|DW]| + C(Zfa(DTaW)Q +y fa).

Subcase (ii). Suppose 20;_1(\|8) < ok—1. Then we have Ag > 0.
If o, (A|B) > 0, then

1 1.4 1 1
_ 1 % _ ZoF
O<fﬁ/\,3— k()'k ( Ok O'k()\|ﬁ)) A Oy -
Consequently,
2P

(4.18) Mmﬁpmw\ < C|DW|.

uw

Now we assume o (A|8) < 0. By (4.1) and 9; = % A Vi Tas

DTQW = utTﬁ + ptTg Up, + ptunn; - § uSuSTﬂ
s<n

=(Payie + Parvinpr) Ag — 1) + prrytin — »_ us Payis(Ag — 1).

s<n

It follows that,
2Pg,u 1 1_ 2Pg,u
755 qu)\gDTﬁ W = Ealg ! (ak — Jk()\|5)) Ba qDT/j 1%

1 1_ 2P
(4.19) §O|DW|—E0,§ 1ak(/\|ﬁ)57;}%DTBW

1 1
<CIpW| - 2ot "on(A8) (Cler + I + C).

Note that

w20) —5ok o) = ol (on = dpora9) = -

Lo =3 faa

a#f

Also, using an inequality of Ivochkina [13] (see also an improved version of Lin-
Trudinger [17])

a1(AB) < C(n,k) Y o1 (M)A,

a#fB
we have
1 1_ 1 1_

_Eaﬁ 1Uk()\|»3))\B:_EUﬁ 1(0k+1—0k+1()\|5))

1 14 9 +k 1
B LI (R owﬂw—gww)

1 1.4

<o} ( k) > o1 (Aa)A akol(w ) <03 faai+c,

a#pB a#pB



HYPERSURFACES OF PRESCRIBED CURVATURE 17
where the last inequality is true because if k > 2, then o1 (A|8) > 0; while if £ =1,

C(n, k) Zak 1(Ala)A crkal(/\w <CZ)\2+C
B oy

By (4.20) and (4.21), inequality (4.19) becomes

2P3quq 2
(4.22) =22 00D, W<C|DW|+( +O(er + il )%f@ 5 3

Taking (4.22) (which covers the case (4.18)) into (4.16), then taking the resulting
inequality as well as (4. 15) (4.14) into (4.8), and choosing €1, r further small

depending on d2, 62 < g5 Sooou We obtain

(4.23) LW < C’<|DW| > fat Y fa(DTaW)Q).
Note that (4.23) covers the cases (4.13) and (4.17).
Now, take

V=1-e " bz
By direct calculation, Lemma 4.6 and (4.23), we can verify that over Q. N B,.(0),

LV §0(|DV| + 2br) + ae_“WC( S fat fa(DTuW)Q)

2w} Zfa D, W)? — Qb—Zfa + Cbr-
Choosing a large, then b large, and r small, we have
(4.24) LV < C|DV|.
Now, we only need the following linear operator
— GiD,;.
By (4.24), we have on Q. N B,.(0),
(4.25) LV < C|DV|.

4.2. Barrier construction. Let d(x) be the distance from x to I'c in R™. Consider
the barrier as in [18],

B(x) = —agl|z|* + co(efbod(x) -1,

where ag, by and ¢ are positive constants to be determined. By assumption (1.9),
the principal curvatures of I'. with respect to -y satisfy

(K),... k1) €T} onT..

Choose 7 sufficiently small such that d is C* within {z € Q.|d(z) < r} and

/

K1 Fn—1 ) :
E S
(1—/@'1d "1—k!_d k

n—1

Choose ay sufficiently large (depending on r) such that
(4.26) B<V on 9N B.(0)).
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For fixed x € Q. N B,(0), let d(z) = |z — y| with y € T'.. We shall use the
principal coordinate system at y. Denote k), ..., k] _; the principal curvatures of
T'. at y. Then we have

/ /

K
D2B = ~2aq1 + coboe"diag (11— b ).
aogl + coboe lag L wd  1-w _d 0

By concavity of G(r, p, z) with respect to r,
LB~ C|DB| = G"(D;;B — dodij) +do ¥ G — C|DB|

>G(D?B — dol, Du,u) — G(D*u, Du,u) + GV Dyju+dy »_G" — C|DB|
(4.27) d
U _
> G(D2B — dol, Du,u) = 3 fu+ 05 D fur = C (2007 + coboe ™)
> Q(DQB —dol, Du,u) — Cleobge 01,
where the last inequality is true when constant dy is sufficiently large.
Note that if

(4.28) )\(U(BU — do(si]’) + 51‘]‘ + uluJ) € iy,
then
G(D?B — dyI, Du,u) =F (’YM (U(Bij —dpdi;) + d;5 + Uiu]')’}/jﬂ>

1
(1+ |Dul?)M/*

Take this inequality into (4.27),

> F(U(B” - do(sij) + (57;j + uzuj)

(429) LB — C|DB| Z ClF(U(Bij - d()(sij) + 5ij + Uﬂlj) - CCOb()eibod,

where ¢ is a fixed positive constant.
Choose by sufficiently large such that

/

: K1 Fn_1
A= dlag(l eyt T H;l_ld,lm) €lky1 and ¢ F(ud) > C.

Then choose ¢y sufficiently large such that

)\( - (2(10 + do)[ + Coboeibod/\) S Fk+1

and
2aq + do)ebod
oF (= MR LD, n) s
Cobo
Therefore, (4.28) is true and (4.29) reduces to
(4.30) LB > C|DB.

By (4.25), (4.30), (4.26), the maximum principle and V(0) = B(0), we obtain
U (0) > f%. If we replace W by —uy —u, py f% D os<n u2, by the same argument,
we will obtain wu, (0) < %.
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4.3. Double normal derivative estimate.
We shall give an upper bound for D.,u on I'c. For z € I, define
d(z) = wdist(x'(z), dT_,),
where k' = (K],...,k],_1) are the roots of
det(k¢gap — hap) =0,

and (gag), (hag) are the first (n—1) x (n—1) principal minors of (g;;) and (h;;) with
the indices «, 8 < n running over the tangential directions on I'. and n indicates
the normal direction to I'c.. Throughout this subsection, the range for Greek letter
a,f,...isfrom 1 ton — 1.

Here in this subsection, ' is different from the one defined in the introduction.
Note that " € I',_; since k € T'y. Assume the minimum of J(az) along I'. is
achieved at 0 € T, at which we fix the coordinate system with the positive z,, axis
points to the interior normal of I'c at 0. We want to prove that d~(0) has a uniform
positive lower bound.

Choose a local orthonormal frame ey, . .., e, around 0 on )., obtained by parallel
translation of a local orthonormal frame e, ..., e,_1 around 0 on I', satisfying

(hap)(0) is diagonal with hy1(0) < ... < hy_1,-1(0),

and e, = 7 along the lines perpendicular to I'c on Q.. In what follows in this
subsection, we may simply write a Greek letter « instead of e, in the subscripts
with o < n; while use a Latin letter s in the subscripts to represent ds. We can
check that the local frame

§1=c€e1,...,En1 =€n_1

around 0 on I', satisfies
Geuts = 0o heags (0) = k6 (0)0ap,  K1(0) < ... <y 1(0).
By Lemma 6.1 of [2], there exists p/ = (p1, ..., pn—1) € R with
1> > g > 0and Y pl =1
such that I, _; C {' € R" ' |/ - &' > 0} and
d(0) = wZuaFag‘(O) = Zua(l + Ulaa ) (0).

We may assume d(0) < 1, for otherwise we are done. Note that uag = uydas and
Uy 2> Uy > 0 on I'.. Hence we obtain

Z Mozdaa (O) < —c2

for some positive constant co. By continuity of d,, at 0,
C2 .
Zua doa(z) < -5 in QN B, (0)
for some positive constant r. Also, by Lemma 6.2 of [2], for any x € [, near 0,

Zua(l + Uty dag) = Zua(l + Ulga) > wZua/ﬁ’a(x) > d(z) > d(0).
Thus, we can define in Q. N B,.(0),

1 ~ K
o = m(d(o) —Zpa) — D, u— ?Zui

s<n
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Obviously, @+ & 3 _ w2 >0onT.NB,(0) and ®(0) = 0. In addition, similar as

how we derive (4.23), by choosing K sufficiently large we have in Q. N B,.(0),

L(®) < c(\m\ w3 fat fa(DTaq))2).

Taking V = 1 — e~® — b|x|2, and choosing a sufficiently large, then b sufficiently
large, we can verify that over Q.NB,.(0) for sufficiently small », LV < C|DV|. Thus,
on QN B,(0), LV < C|DV|. By the maximum principle, we have B, (0) < V,,(0).
Therefore, up,(0) < C and |D?*u(0)| < C. Consequently, we obtain a bound for
all principal curvatures of graph of u at 0. Since ¢ > 0 on T, dist(x(0),0Tx) has
a uniform positive lower bound. Consequently, J(O) has a uniform positive lower
bound. By applying Lemma 1.2 of [2] and similar to the proof in [23], we proved

Uyy < Con I

5. THE APPROXIMATING DIRICHLET PROBLEM (1.4)

In this section, we write equation (2.1) as

(5.1) G(D*u, Du,u) = F(ai;) = f(Maij)) = (@, u).

5.1. Existence. Motivated by Su [22], we construct a two-step continuity process
to prove the existence. For convenience, denote

Gu] = G(D*u, Du,u), GY[u]=G"Y(D?u, Du,u), etc.

Let 6 be a small positive constant such that

(5.2) Glu] = G(D*u, Du,u) > éu in €.
For ¢ € [0, 1], consider the following two equations.
Glul(z) .
2 — —
5.3 G(D*u, Du, ) _((1 I ta)u in Q,
U =€ on I',.

(5.4) G(D?*u, Du,u) =(1 — t)6u + ti)(x, u) in Q.,

: U =€ on I'..

Lemma 5.5. For z € Q. and a positive C? function u which is admissible near x,
if

Glu](z) = F(ay[u])(z) = f(r)(z) = ¢(z)u,
then we have

Gulul(z) — ¢ (x) <O0.
Proof.
1 | 1
_ ij — ik lyj _ — . X
Gu—F wV UklY _U(Zfﬂﬂ wz.ﬁ)

Since f is homogeneous of degree one, thus Y fik; = ¢(x)u. Consequently,

Go[u](z) — ¥(z) = *i > fi<o.
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Lemma 5.6. Fort € [0,1], let U and u be any admissible subsolution and solution
of (5.3). Then uw > U in Q.. In particular, (5.3) has at most one admissible
solution.

Proof. If not, U — u achieves a positive maximum at xg € €2, and
(5.7) U(xo) > u(xo), DU(xo) = Du(xg), D?*U(xo) < D*u(xo).

Note that for any s € [0, 1], the deformation u[s] = sU 4 (1 — s)u is admissible near
xo. This is because at xg,
8ij + u[sly™ (uls))my = i + uls)y" Upy?
u uls] i :
=(1- 3)(1 - E)% +1 (%‘ +Uy kaﬁl])

For s € [0,1], define a differentiable function
Glul(zo)

a(s):G[u[S]}(xo)—((l—t) oo —|—t5)u[s](z0).

Since a(0) = 0 and a(l) > 0, there exists so € [0,1] such that a(sg) = 0 and
a’(sp) > 0, that is,

(5.8) G ufso]] (z0) = ((1 - t)cm + 16 ) ulso] (o),
and B
G [ulso]] (z0) Dij (U — u) (o) + G [u[so]] (20) Ds (U — u)(z0)
O (sl o) - (- 0T 1))@ ) 20
However, inequality (5.9) can not hold b; (5.7, (5.8) and Lemma 5.5. O

Theorem 5.10. Fort € [0,1], (5.3) has a unique admissible solution u > w.

Proof. Uniqueness is proved in Lemma 5.6. We use standard continuity method
to prove the existence. By (5.2), u is a subsolution of (5.3). The C? estimate for
admissible solution u > w of (5.3) implies uniform ellipticity of this equation, which
further gives C%% estimate by Evans-Krylov theory

(5.11) [ull g2y < C
where C' is independent of ¢. Denote

Cg’a(ﬁe) ={weC*(Q.)|w=0onT.},

U={we Cy*@Q)|u+w is admissible in Q. }.
Obviously, C3**(Q,) is a subspace of C*(Q,) and U is an open subset of Ce* Q).
Define £ : U x [0,1] — C*(Q2),
L(w,t) = Glu+w] — ((1 - t)% + t6) (u+ w),
and set
S ={t€[0,1]| L(w,t) = 0 has a solution w in U}.
Since £(0,0) =0, S # 0.
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S is open in [0,1]. In fact, for any to € S, there exists wg € U such that
L(wo,t9) = 0. Note that the Fréchet derivative of £ with respect to w at (wo, to)
is a linear elliptic operator from C3*(Q,) to C*(Q),

Ew’(wo,to)(h> = GY[u+ wo|Dijh + G'[u + wo|D;h
Glyl
+<Gu[ﬂ+ wO] - (1 - tO)T - toé)h.

Lemma 5.5 implies Ew‘ (w is invertible. Thus a neighborhood of ¢y is also con-

it
tained in § by implicit fu?lc(‘gon theorem.

S is closed in [0, 1]. In fact, let ¢; be a sequence in S converging to ¢y € [0, 1] and
w; € U be the unique (by Lemma 5.6) solution to £(w;,t;) = 0. Lemma 5.6 implies
w; > 0, and (5.11) implies that u; = u + w; is a bounded sequence in C%%(,),
which possesses a subsequence converging to an admissible solution wg of (5.3).
Since wy = up — u € U and L(wyp, ty) = 0, we know that ¢y € S. O

Now we may assume u is not a solution of (1.4), for otherwise we are done.

Lemma 5.12. If u > u is an admissible solution of (5.4), then u > u in Q¢ and
(u—u)y >0 o0nT,.

Proof. Indeed, we can write (5.4) in a more general form.

{ F(Alu]) =¢(z,u) in €.,

5.13
( ) U = on I'.

Since u is a subsolution but not a solution of (5.13), we have

F(Aly) - F(Alu]) = ¥(z,u) — P(z,u).

Also,
F(Af) ~ F(AR]) = [ ZP(1 = 94k + sAlu)ds
1
= (el = asfu) [P0 = )AL + sAlu)ds
and

aijlu] — aij[u] = a;;(D*u, Du,uw) — a;;(D*u, Du, u)
=aij(D*u, Du,u) — ai;j(D*u, Du,u) + a;;(D*u, Du,u) — ai;(D*u, Du, u)
+ Qij (D2@a DU, u) — Q45 (D2u, DU, u)

Applying the Maximum Principle and Lemma H (see p. 212 of [6]) we proved the
lemma. (]

Theorem 5.14. For anyt € [0, 1], there is an admissible solution w > w to Dirichlet
problem (5.4).

Proof. By classical Schauder theory, the C% estimate for admissible solution u > u
of (5.4) further implies C*“ estimate

In addition,

(5.16) dist(k[u], 0Tk) > c2 >0 in Q,
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where C4 and ¢y are independent of . Denote
Cy*(Q) = {w e C** () |w=0o0nT.}

and

__ |w>0inQe, wy >00n e, [|[w|lqa,a@my < Ca+ llullga,0qs
O:{weC{f’“(QE) oo (09 .7“)}.
u + w is admissible in Q, dist(k[u + w],OT%) > c2 in Q.

We know that O is a bounded open subset of C’g Qo).
Define a map M, (w) : O x [0,1] — C%%(Q,),

M(w) = Glu+w] — (1 —t)d(u +w) — ty(z, u+ w).

By Theorem 5.10 and Lemma 5.6, there is a unique admissible solution u° of (5.3)
at ¢ = 1, which is also the unique admissible solution of (5.4) for ¢ = 0. By Lemma
5.6, w® = u® —u > 0 in Q.. Consequently, w® > 0 in Q. and w°, > 0 on I'c by
Lemma 5.12. Meanwhile, u + w® satisfies (5.15) and (5.16). Thus, w® € O. In
view of Lemma 5.12, (5.15) and (5.16), M, (w) = 0 has no solution on 9O for any
t € [0,1]. Note that M; is uniformly elliptic on O independent of ¢. Hence we can
define the degree of M; on O at 0, which is independent of ¢. It suffices to show
this degree is nonzero at ¢ = 0. We have known that Mo(w) = 0 has a unique
solution w® € O. The Fréchet derivative of M, with respect to w at w® is a linear
elliptic operator from Cy*(Q,) to C>*(Q2,),

Mo wlwo (h) = G| Dijh + GHu®]Dih + (G [u’] — 0)h.

By Lemma 5.5, G,[u’] —§ < 0 in Q.. Hence Mog|.0 is invertible. By degree
theory in [16] we can conclude that the degree at ¢t = 0 is nonzero, which implies
that (5.4) has at least one admissible solution u > u for any ¢ € [0, 1]. O

5.2. Comparison principle, uniqueness and monotonicity.

We have the following comparison principle.

Theorem 5.17. Under assumption (1.8), let U and u be any admissible subsolution
and solution of (5.1) in Q¢ and u>U onTe. Then u > U in Q..

Proof. If not, U — u achieves a positive maximum at xzy € €2, at which,
(5.18) Ul(xo) > u(zg), DU(xg) = Du(zo), D?*U(xo) < D?u(zo).

Note that for any s € [0, 1], the deformation u[s] = sU + (1 — s)u is admissible near
xo. For s € [0,1], define a differentiable function

a(s) = Gluls]] (zo) — ¥ (0, uls]).

Since a(0) = 0 and a(1) > 0, there exists so € [0,1] such that a(sg) = 0 and
a'(sp) > 0, that is,

(5.19) G'u[so]] (x0) = ¢ (w0, ulso]),
and

G [u[so]] (20) Dy (U — u)(20) + G [u]so]] (z0) Di(U — u) (o)

5.20
020 + (G [ulsol] (w0) — bulao, ulso]) ) (U — w)(wo) = 0.
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However, inequality (5.20) can not hold by (5.18), (5.19) and the fact that
1 1
ol (7/)(900, ulso]) — " Z fi) — 1y (20, u[so]) < 0.

u[so

Gl [uls0]] (w0) = thu (w0, u[so]) =
([l

By Theorem 5.17, we obtain the uniqueness part of Theorem 1.7. Besides, we
can deduce the following monotonicity property of u° with respect to e.

Corollary 5.21. Under the assumptions of Theorem 1.7, for 0 < €1 < €2, we have
ut > u? in Q.

6. INTERIOR ESTIMATES

6.1. Interior gradient estimate.

Let u¢ > u be an admissible solution over 2 to the Dirichlet problem (1.4).
For any fixed €y > 0, we want to establish the uniform C! estimate for u¢ for any
0 <e< % on ), namely,

€ €o

Hereinafter, C' represents a positive constant which is independent of €, but may
depend on €.
By Lemma 2.5, we obtain uniform C° estimate:

u<C on€Q., Ve>D0.

In particular, we have

€0

(6.2) .

<u*<C on Qo V0<e<%0.

Choose 7 = dist(Q,, ¢, /2), and cover Q, by finitely many open balls Bz with
radius 5 and centered in {2,. Note that the number of such open balls depends on
€o- In addition, the corresponding balls B, are all contained in {1 /o, over which,
we are able to apply (6.2). Now we want to establish interior gradient estimate on
each B, by applying Wang’s idea [28]. Since the gradient Du¢ are invariant under
change of Euclidean coordinate system, we may assume the center of B, is 0. For
convenience, we also omit the superscript in u¢ and write as u.

For z € B,(0) and £ € S"™!, consider the test function
O(z,u, &) = Inp(z) + p(u) + Inln e,

where p(z) = (r? — |z]?)? with |z = >, 27 and p(u) = Inu.

By the definition of the test function, we know that the maximum value of ©
must be attained in an interior point 2° = (x1,...,7,) € B.(0). We choose the
Euclidean coordinate frame 81, ..., 0, around z° such that the direction obtaining
the maximum is ¢ = 9;. Then at 29,

up =|Du|] and wu; =0 for i=2,...,n.
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Therefore, (2.12) holds. Rotate ds,...,8, such that at 2%, {uag} 4>, 18 diagonal

> Upy,. Consequently, we have

and uge > ...
1
7(1+uu21)’ if i=j=1,
. w w
(6.3) aijza((sl‘j + uyFuy) = w2j’ if i=lorj=1,andi+j > 2,

%(1 + uuii)éij7 otherwise.

Since the function

In p(x) + ¢(u) + Inlnwuy

achieves its maximum at z°, we have at 2,

Pi ’ U4
6.4 Ll ; =0,
(6.4) p+<p(u)u T

GY i GYp:p.: . .
Pij _ /;ij + QOI(U)G”UU 4 (plI(U)G”UiU]'

(6.5) pGijulu ’ Inug + 1

2 GYuyiup; < 0.

* uplnuy  (ugIlnwg)? Yty =

By Lemma 2.11, (2.12), (6.3), we can compute

i UrU11 Uy Uy
_Gsusl—Guul :F1Jb1j+ ( w2 _;)w‘f'@z'f“

(6.6)
where
2uuy o 2uuy 9 .
5 U11 3 U, =7 = 1,
w w3 (1 4+ w) pegt
1+ 2w) U . .
6.7) by =by =4 st oo ww
Y w*(1 + w) Urrtiag + w?(1 —&-w)ul]u”7 ! ' J ’
2uuy s
——uguy, 1, )
w2(1 + w) 1y J
Combining (2.10), (6.6) and (6.7) yields,
Gijulij Inug +1 L
_ Gy uy ;s
uplnuy;  (ugInwug)? Uit
2u u lnwu; +1 2u .
>F11( o u ) 2 , auw FYys s
- wilnwu; w3 (uglnwug)? Uit w?(1+ w)nwuy ; 133
6.8
(6:8) 2u (1+2w Inu; +1 )
w? (w—1)Inwu,

i .
+Z U11U1 w2(w + 1) Inu,

j>1
| Yy e n (U1U11 _ ﬂ) ¥

1
+uwlnulzfl+ up Inuy w2 w / uplnug

when w; is sufficiently large.
From (6.4), we have
U1 P1 /
6.9 =—-—=— .
(69) T 4O
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We may assume \%1| < 1o/ (w)u, for otherwise, we are done. Then

(6.10) up < —%g@’u% Inu; < 0.
Also, note that for j =2,...,n,
i f%gfﬂaﬂakﬂ(am, o annlayy).
Therefore, in view of (6.3),
(6.11) Fliyy; <0, j=2,...,n.

Denote J = {2 < j <nlu;; > 0}. By (6.10) and (6.11), when u; is sufficiently
large, (6.8) reduces to

Gijulij In U, + 1 :
_ Gy
uplnuy  (ugInwug)? Yty
U 2u .
> 7 plLz2 - - FYur
(6.12) ~ 2wd Inwy it w2(1+w)Inwu, = 13t

Yz, + huur <U1U11 Ul) P
Jruwlnulz:Z+ uq Inuq +

By (6.3) and (6.10), we further obtain

w? w/ulnug

1 uu 1 uo'u? Inwu
au:—(1+ ;1) §7(1_¢1721) <0
w w w 2w
as uy is sufficiently large. It follows that
1 14

Flt = Ea,f or—1(aze,...,ann)

1 14 =
(6.13) :%a'léC (Uk—l + Z a%jo'k_;g(agg, ce ,ann|ajj) - a110'k—2(a22, ey ann))

=2
1 14
Z%Ulf Ok—1-
For j € J, by (6.3),
1 1 1,4
F ULjUj5 = _%Jk a1j0k72(a227~'~vann|ajj)u1jujj
1 1_juuq; waj; — 1

= — Eo,j 2] kaz(azzw~~»ann|ajj)ule
6.14) 5 2
(6. 1 uy, 1 1 q1uy,

> —o}f ?C(m k)ags - - ap, + 2ok Wo'k—Q(@Q% o Gpnlag;)

> = Jc(nvk)Fllv

w

where in the last line, we have applied ok_1(a22, ..., Gnn) > @22 - - - aky (see formula
(19) in [17]).

Also by (6.4), we have

(6.15) U1 :fullnulﬁ, ji=2,...,n.
P
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By (6.10), (6.14) and (6.15), the inequality (6.12) reduces to

Glﬁuli]‘ B Inu; +1 Gl
) 13U
Ul In U1 (u1 In ul)

2,2
(6.16) > Uy gy, — C(n, k)u|Dp[uinuy
8wd pPwd (1 4+ w)
1 Yy + Puur (U1U11 Ul) Y
+uwlnulzfl+ wy Inug + w? w/ulnug

We may assume that

p?ui _ C(n,k)|[Dpl?

16w? = p?(14+w) ’
for otherwise we are done. Also in view of (6.9), inequality (6.16) further reduces
to

Gijuli]‘ Inug +1 .
_ Gii sy ;
uplnwuy;  (uglnw)? Y1t
> uilnu Py > fi n Yo +our  pwyy w9

— 16uw® ww lnuy wy Inuy pw? uw?  uwlnuy

For the rest terms in (6.5), by Lemma 2.11 and (2.12) we have

(6.17)

GYpi;  GYpip; _ Gij( A48i5(r? — =) 8%'%‘)

p p? p p
(6.18) 2\~ (i 2 2
i 1 y 5
2787/. ZG :787” U(7F11+ZF”)278T UZF“’
P pw \w et pw
and
ij ij 1 i u
(6.19) ¢ (WG uij + ¢ (W) G uiuy = (¢ — — D F) + ol

1, 1 1
=— (== F") = ——F'u.

uw
Taking (6.17)—(6.19) into (6.5) yields,

4 2 2
ui Inuy ug ) 11 ( 1 8reu 1 ) i
A \p1 (. e, F
( 16uw® uw? uw + pw uw In ug Z

(6.20)
prury ¢ Y Y
- - L w2 <0.
pw? ug Inuyg + uw? + (w u) Inu, —
By (6.13) and Newton-Maclaurin inequality,
I —k4+1 1_
c(n,k) < 3P = %o—j Yopy < (n—k+ P,

where c(n, k) is a positive constant. Therefore by assumption (1.8), we can deduce
plnu; < C from (6.20).

Remark 6.21. In [29], Weng also derived the interior gradient estimate. Our test
function is slightly different from Weng and the resulting estimate depends on n,
k,r, |lullcom,) and [|¢[|c1(p,). Our calculation may be easier.
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6.2. A remark on second order interior estimates.

In [23], we generalized Guan-Qiu’s interior curvature estimate for convex solu-
tions to prescribed scalar curvature equations to hyperbolic space. However, for
k > 3, there is no such estimate. Hence it is natural to think of Pogorelov type
interior curvature estimate. In this subsection, we first formulate some possible
domains on which we wish to establish Pogorelov interior curvature estimate, but
then we observe an obstruction.

For 0 < € < ¢, define

Qf, = {z € Q |u(2) > e}
It is easy to check the following properties of X .

Proposition 6.22. Under the assumptions of Theorem 1.7,
(a) For 0 < e < e < ez, we have QF, C Qf ;

€17
(b) For 0 < e < e < ¢, we have Q2 C QgL ;
(c) For any € > 0, we have Q¢ = Q;
(d) For any 0 < € < €g, we have Q¢, C QF, C Qe;

(e) For any 0 < € < o, we have u® = ey on 08 .

In order to find a domain containing all ¢ for sufficiently small e which also
stays away from I', we want to find a supersolution to the asymptotic Plateau
problem (1.1) and utilize its level set.

Note that by Newton-Maclaurin inequality,

o1(rlu]) = 03" (s[u]) > Y(w,u) in Q.
Thus, u is a subsolution to the mean curvature equation

{m(m[un —d@,u) i

2
(6.23) u=0 onlI.

By the estimates in the previous sections, we can find a unique smooth solution
7 > u to (6.23). Again by Newton-Maclaurin inequality, we have

o/ * (s[al) < o1 (k[a]) = W (z, )

or k[u] ¢ T'y, which means % is a smooth supersolution to (1.1).
Now for ¢y > 0, define

Qe = {2 € Q|T(z) > €}

Proposition 6.24. Under the assumptions of Theorem 1.7, denote ., = minu.
Qeq

(a) 0< (550 < €p;
(b) For 0 < e < de,, we have Qf C Qe C Qs -

By Proposition 6.22, 6.24 and estimate (6.1), we have

Qey CQey )2 C Q2 CQ

€n/2
and

c 1
[|lu ||c1(m) <C, V0<e< 5560/2.
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Thus we wish to establish Pogorelov type interior curvature estimate
C

(w =9

for some positive constants b and C independent of ¢ (may depend on ¢p), because

then we would obtain uniform C? bound

1
(6.25) ‘/@Z[ue](x)‘ < Ve 920/2’ Vi<e< 5550/2

1
max |k;[u]| < C, V0<e< 5550/2,
(o2
which would imply the existence of a smooth solution to asymptotic Plateau prob-
lem (1.1).
However, it is impossible to establish interior Pogorelov type estimate (6.25). In

fact, by (3.1), (3.4), (3.14) and (2.2), we have

F%Vu u? bu(u — €p) w2 by tly bu iy
b Y u = P _ Fo
u_%o (u_%o)2 (u_%o)Z Zf’u2+ u—%o u_%oz

Because of the term —ui“i) S>> F%  we are unable to use Sheng-Urbas-Wang’s
2

method [21] to establish the estimate (6.25). This term comes out due to the
ambient space H?*!.

7. VISCOSITY SOLUTIONS

In this section, we verify that u in Theorem 1.11 is indeed a viscosity solution of
(7.1) G(D*u, Du,u) = F(ai;) = f(Maij)) = (@, u).

We first give the definition of viscosity solutions of (7.1), according to the definitions
given by Trudinger [25] and Urbas [27] in Euclidean space.

Definition 7.2. A function 0 < u € C°(€) is a viscosity subsolution of (7.1) in
Q if for any function ¢ € C%(), any zo € € satisfying u(zo) = ¢(wo) and u < ¢
in a neighborhood Q,, C Q of xg, we have G(D?¢, Do, ¢)(xo) > 1 (xo, d(x0)). A
function 0 < u € C°(Q) is a viscosity supersolution of (7.1) in € if for any function
¢ € C?*(), any zg € Q satisfying u(xg) = é(x¢) and u > ¢ in a neighborhood
Qu, C Q of 2, we have either ¢ is not admissible at zg, or G(D?*¢, D¢, ¢)(z0) <
P(xg, p(x0)). A function w is a viscosity solution of (7.1) if it is both a viscosity
subsolution and supersolution.

By this definition, we can verify the following fact.

Proposition 7.3. A function 0 < u € C%(Q) is a viscosity solution of (7.1) if and
only if it is an admissible classical solution.

Proof. First, let 0 < u € C?(Q2) be a viscosity solution of (7.1). We claim that u is
admissible in §2. Suppose not, say u is not admissible at some xy € 2. There exists
a unique ag > 0 such that

1 . )
(7.4) A5 (06 +wy™ (uns + aodua)r”) ) (o) € O
and

1 ) )
A(E(aij ™ (g + oz5kl)’ylj)) (z0) €Tx, Y a > ap.
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For any o > «y, consider the function
6(x) = u(zo) + Dulzo) - (& — w0) + 3 (¢ — w0)(D?u(ao) + aT)(z — )"
It is easy to verify that ¢ is admissible at xg, ¢(xg) = u(zg) and ¢ > wu in a
neighborhood of xy. Since u is a viscosity subsolution of (7.1), we have
G(D*u+ al, Du,u)(zo) = G(D*¢, Do, ¢)(z0) = ¢ (w0, ¢) = (w0, u).
However, as a — «ag,
G(D2u + agl, Du,u) (z9) > w(xo,u(xo)) >0,

contradicting (7.4). Hence u is admissible in Q. By definition of viscosity solution,
taking ¢ = u, we can verify that u is a classical solution.
The converse direction can be easily proved by definition of viscosity solution. [

Now we prove a kind of stability result.

Proposition 7.5. The solution u in Theorem 1.11 is a viscosity solution of (7.1)
in Q.

Proof. The proof follows the idea of Lions [19]. First, we show that w is a viscosity
subsolution of (7.1) in Q. For any ¢ € C%(Q) and any x¢ € Q satisfying u(zo) =
#(x0) and u < ¢ in a neighborhood Qy, \ {z0}, let § > 0 be sufficiently small such
that Bs(zg) C §,, where Bs(xp) is an open ball centered at zo with radius §.
Then

max (u — < 0.
335(10)( (b)

Since u¢ locally uniformly converges to u in €2, we have

max (u° —¢) > max (u®—¢) with Bs(xo) C Qe
Bs(z0) 9B;(wo)

as ¢ sufficiently small. We may in addition choose ¢ = ¢(d) in such a way that
e — 0" as § — 0T. Therefore, there exists x5 € Bs(xg) such that

max (u — ¢) = (u° = ¢)(zs)-

Bg (210)

Since u€ is a classical admissible solution of (7.1) in €2, by Proposition 7.3, it is
certainly a viscosity solution of (7.1) in Q.. Hence

¢s = ¢ + max (u — ¢)
Bs(zo)
satisfies
G(D?¢s, Ds, ¢5)(25) > (s, ¢s(2s))-
Letting § — 0T, we have x5 — x¢ and u®(zs) — u(zo), or equivalently, ¢s(zs) —
é(x0). Since ¢ is C?, we have Do¢s(xs) = Dé(xs) — Do(xg) and D?¢s(xs) =
D2¢(zs5) — D?¢(zg) as § — 0F. Consequently,

G(D?¢, D$, ¢) (w0) > t(z0, p(x0))-

This implies that u is a viscosity subsolution of (7.1) in Q. Similarly, we can verify
that u is a viscosity supersolution.
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