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Abstract. How do seasonal successions influence the propagation dynamics of an age-structured
invasive species? We investigate this problem by considering the scenario that the offsprings are
reproduced in spring and then reach maturation in fall within the same year. For this purpose, a
reaction-diffusion system is proposed, with yearly periodic time delay and spatially nonlocal response
caused by the periodic developmental process. By appealing to the recently developed dynamical
system theories, we obtain the invasion speed c∗ and its coincidence with the minimal speed of time
periodic traveling waves. The characterizations of c∗ suggest that (i) time delay decreases the speed
and its periodicity may further do so; (ii) the optimal time to slow down the invasion is the season
without juveniles; (iii) the speed increases to infinity with the same order as the square root of the
diffusion rate.
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1. Introduction. Seasonal successions bring invasive species temporally dy-
namic habitats, which then affect their life cycles, including breeding, development,
mobility, maturation, mortality, etc, and further give rise to the propagation complex-
ity during their invasion process. How seasonality influences the propagation of an
age-structured invasive species is a challenging problem from the viewpoints of both
mathematical modeling and theoretical analysis.

In this paper, we investigate such a problem for a single invasive species by con-
sidering the scenario that the species has distinct breeding and maturation seasons.
More precisely, we assume that the species has the following biological characteristics.

(B1) The species can be classified into two stages by age: mature and immature.
An individual at time t belongs to the mature class if and only if its age
exceeds the time dependent positive number τ(t). Within each stage, all
individuals share the same behavior.

(B2) Adults reproduce offsprings once a year in a fixed season (spring), and they
reach maturation in another season (fall) within the same year.

(B3) All behaviors are yearly periodic due to seasonal succession.
(B4) The spatial habitat is ideally assumed to be one dimensional and homogeneous

in locations.

We refer to Fig. 1.1 for a schematic illustration of the life cycle in a year [0, T ]. Since
the habitat is dynamic in time, the biological developmental rate of species may be
different from one time to another. So we assume that the duration τ = τ(t) from
newborn to being adult is yearly time periodic. Further, since the developmental rate
depends only on time, juveniles cannot reach maturation before those born ahead of
them. Therefore, one has the following implicit assumption.

(B5) t− τ(t) is strictly increasing in t, that is, τ ′(t) < 1 if τ is a smooth function.

∗Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001,
China (ylpanhit@gmail.com)
†Institute for Advanced Studies in Mathematics and Department of Mathematics, Harbin Institute

of Technology, Harbin, Heilongjiang, 150001, China (jfang@hit.edu.cn)
‡School of Science, Harbin Institute of Technology in Weihai, Weihai, Shandong, 264209, China

(weijj@hit.edu.cn)

1



2

0 T  t t

Breeding period Maturation period

( )t

t( )t t

Fig. 1.1. Schematic illustrations of the life cycle for the species with yearly generation, where
[α, β] is the breeding period and [tα, tβ ] is the maturation period.

To mathematically model such an invasive species, we start from the following
growth law for two stages of age-structured population (see Metz and Diekmann [14]):

(
∂

∂t
+

∂

∂a

)
p = DM (t)

∂2

∂x2
p− dM (t)p, a ≥ τ(t)(

∂

∂t
+

∂

∂a

)
p = DI(t)

∂2

∂x2
p− dI(t)p, 0 < a < τ(t),

t > 0, x ∈ R, (1.1)

where p = p(x, t, a) denotes the density of species of age a at time t and location
x, DM , DI are the diffusion rates, and dM , dI are the death rates. Clearly, the total
mature population u and immature population v at time t and location x can be
represented, respectively, by the integrals

u(t, x) =

∫ +∞

τ(t)

p(x, t, a)da, v(t, x) =

∫ τ(t)

0

p(x, t, a)da.

Keeping a smooth flow for the paper, we write down here the model while leaving
in the next section the derivation details, which are highly motivated by the ideas
behind a few recent works. We will explain the details in the next few paragraphs.

∂u

∂t
= DM (t)

∂2u

∂x2
− dM (t)u+R(t, u(t− τ(t), ·))(x),

∂v

∂t
= DI(t)

∂2v

∂x2
− dI(t)v + b(t, u(x, t))−R(t, u(t− τ(t), ·))(x),

t > 0, x ∈ R,

(1.2)
where R in general is a nonlocal term, meaning the recruitment rate of mature pop-
ulation at time t and location x, and function b is the birth rate. The recruitment
term R turns out to have the following expression

R(t, φ)(x) = (1− τ ′(t))b(t− τ(t), φ) ∗ kI(t, t− τ(t), ·)(x), (1.3)

where

kI(t, s, x) =
e−
∫ t
s
dI(ς)dς√

4πe−
∫ t
s
DI(ς)dς

exp

{
− x2

4
∫ t
s
DI(ς)dς

}
(1.4)

is the Green function of ∂tρ = DI(t)∂xx − dI(t), x ∈ R. Assumption (B5), i.e.,
τ ′(t) < 1, ensures the positivity and well-posedness of the recruitment term, in which,

(1 − τ ′(t)) exp(−
∫ t
t−τ(t)

dI(ς)dς) is the survival rate from newborn to being adult,
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1√
4πe−

∫ t
s DI (ς)dς

exp
{
− x2

4
∫ t
s
DI(ς)dς

}
is the redistribution kernel in space for newborns

upon they become mature, and
∫ t
s
DI(ς)dς, derived from the diffusion of immature

population, measures how strong the nonlocal interaction (induced by the diffusibility
of immature population) is.

Let us recall some related works that motivate our study. In a pioneer paper on
periodic delays, Freedman and Wu [4] studied the existence of a periodic solution of
a single species population model

u′(t) = u(t)[a(t)− b(t)u(t) + c(t)u(t− τ(t))], (1.5)

where the positive functions a, b, c, τ are all ω-periodic for some ω > 0. Li and Kuang
[8] investigated a two species Lotka-Volterra model with distributed periodic delays.
Wang and Wu [19] established a yearly periodic population model system of delayed
differential equations for birds, which migrate between the summer breeding ground
and the winter refuge site. By the seasonal migration nature, they reduced the model
to an iterative system and then obtained the threshold dynamics for the extinction
and persistence of the bird seasonal migration. We also refer to [18] for periodic and
delayed differential equations of avian influenza. Recently, an increasing attention has
been paid to the emerging term 1 − τ ′(t) in modeling the periodic/state-dependent
development for juveniles. We refer to Barbarossa et al. [1], Wu et al. [22] and
Kloosterman et al. [7] for the biological meanings in various scenarios. Very recently,
the basic reproduction number theory has been developed by Lou and Zhao [13] for
a large class of disease models with periodic delays, by employing which Wang and
Zhao [20] analyzed a malaria model with temperature-dependent incubation period
and Liu et al. [12] analyzed a tick population model subject to seasonal effects.

By considering a single invasive species with two stages distinguished by age, So
et al. [16] formulated a reaction-diffusion model in R with constant time delay and
spatially nonlocal interaction

∂tu = ∂xxu− du+ e−γτ b(u(t− τ, ·)) ∗ kσ(τ), x ∈ R, (1.6)

where u represents the density of mature population, the positive constant τ is the
maturation period, and the whole nonlocal term is the recruitment of mature popu-
lation, accounting for the redistribution of survived juveniles at the time when they
reach maturation. Such a mechanism generating nonlocal term has stimulated many
developments in differential equations, dynamical systems and nonlinear analysis [5].
Under suitable conditions, it has been shown in [10] that the invasion speed c∗ coin-
cides with the minimal speed of traveling waves that is determined by the variational

formula c∗ = infµ>0
λ(µ)
µ , where λ(µ) is the principal eigenvalue of

λ = µ2 − d+ e−γτ b′(0)kσ(τ) ∗ e−λ(τ+·). (1.7)

Li et al. [17] showed that the invasion speed of delayed and nonlocal reaction-diffusion
equations is decreased by time delay and sped up by the non-locality (see also [9]).

With the aforementioned works, a natural question then arises: what if the peri-
odic development rate is incorporated into the population model (1.6)? Further, how
does the periodicity affect the invasion speed c∗? For this purpose, we proposed the
model (1.2), which is a generalized version of (1.6).

If assuming all time periodic parameters are constants in (1.2), then one may
retrieve (1.6). If assuming only delay is a constant, then one has the model studied
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by Jin and Zhao [6]. If assuming that the mobility of immature population can be
ignored, i.e., passing DI → 0, then one can see that kI(t, s, ·) tends to the Dirac
measure and the nonlocal term R reduces to the local form

(1− τ ′(t))e−
∫ t
t−τ(t) dI(ς)dςb(t− τ(t), u(t− τ(t), x)). (1.8)

If assuming the mobility of mature population can be ignored, i.e., DM (t) ≡ 0, then
one has the following integro-differential equation for the mature population:

∂u(t, x)

∂t
= −dM (t)u(t, x) +R(t, u(t− τ(t), ·))(x), (1.9)

which looks simpler than the diffusive equation but has more mathematical challenges
due to the lack of regularity in spatial variable x.

Clearly, model (1.2) is partially uncoupled. But it is still hard to fully under-
stand how the time heterogeneity influences the propagation dynamics, especially
the periodicity of time delay. In virtue of biological assumption (B2), we may cast
the first equation of model (1.2) for the mature population into an iterative system
determined by its Poincaré map. This feature will be essentially of help for the math-
ematical analysis. As for the immature population, the second equation in model
(1.2) can be regarded as a linear time periodic reaction-diffusion equation with an
inhomogeneous reaction term once the invasion of mature population is understood.
To analyze such an equation, the following conservation equality will play an vital
role.∫ T

0

kI(t, s, ·) ∗ b(s, u(s, ·))ds =

∫ T

0

kI(t, s, ·) ∗R(s, u(s− τ(s), ·))ds, t ≥ T, (1.10)

where kI(t, s, x) is the Green function of ∂tρ = DI(t)∂xxρ − dI(t)ρ. Equation (1.10)
comes from a biological inequality. Indeed, let Ω ⊂ [0, T ] be the maturation season.
For the change of variable s̃ = s−τ(s), we have the inverse s = η(s̃) due to 1−τ ′(s) > 0
as assumed in (B5). Define Ω̃ = {s − τ(s) : s ∈ Ω}, which in fact is the breeding
season. Let T (t, s), t ≥ s be a family of evolution operators that will be specified
later. Then in view of (1.3) we obtain∫

s∈Ω

T (t, s)[R(s, u(s− τ(s), ·))]ds

=

∫
s∈Ω

T (t, s)[kI(s, s− τ(s), ·) ∗ b(s− τ(s), u(s− τ(s), ·))]ds

=

∫
s̃∈Ω̃

T (t, η(s̃))[kI(η(s̃), s̃, ·) ∗ b(s̃, u(s̃, ·))]ds̃

≥
∫
s̃∈Ω̃∩[0,T ]

T (t, η(s̃))[kI(η(s̃), s̃, ·) ∗ b(s̃, u(s̃, ·))]ds̃. (1.11)

In general, Ω̃ 6⊂ [0, T ], which implies that the recruitment term depends on the initial
value. But due to the nature of the yearly generated species as assumed in (B2), we
see that

Ω̃ ⊂ [0, T ],

R(s, u(s− τ(s), ·)) = 0, s ∈ [0, T ] \ Ω,

b(s, u(s, ·)) = 0, s ∈ [0, T ] \ Ω̃.

(1.12)
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Therefore, the inequality (1.11) reduces to (1.10) provided that T (t, s), t ≥ s are
chosen to be the solution maps of ∂tρ = DI(t)∂xx − dI(t), x ∈ R.

The rest of this paper is organized as follows. In section 2, we formulate the model
(1.2) and reduce its first equation to the iterative system (2.12)-(2.14). In section 3, we
investigate the global dynamics for the spatially homogeneous system of (2.12)-(2.14).
In section 4, we first employ the dynamical system theories in [3, 11, 10, 21] to obtain
the invasion speed c∗ and its coincidence with the minimal speed of traveling waves,
and then we investigate the parameter influence on c∗, including the time periodicity.
In the last section, we are back to model (1.2) and establish the propagation dynamics
with the help of (1.10).

2. Model. In this section, we first formulate the reaction-diffusion model system
(1.2) from the growth law (1.1) and then reduce it to the iterative system (2.12)-(2.14)
by using the biological characteristics as assumed in the previous section.

2.1. Reaction-diffusion model with periodic delay. Let p(t, x, a) denote
the population density of the species under consideration at time t ≥ 0, age a ≥ 0
and location x ∈ R. According to assumption (B1), the total matured population at
time t and location x is given by

u(t, x) =

∫ +∞

τ(t)

p(t, x, a)da. (2.1)

It is natural to assume that p(t, x,+∞) = 0. Differentiating the both sides of (2.1)
in time yields

∂

∂t
u(t, x) =

∫ ∞
τ(t)

∂

∂t
p(t, x, a)da− τ ′(t)p(t, x, τ(t)). (2.2)

By using the growth law (1.1), we obtain that∫ ∞
τ(t)

∂

∂t
p(t, x, a)da=

∫ ∞
τ(t)

[
− ∂

∂a
+DM (t)

∂2

∂x2
− dM (t)

]
p(t, x, a)da

= DM (t)
∂2

∂x2
u(t, x)− dM (t)u(t, x) + p(t, x, τ(t)). (2.3)

Consequently, (2.2) becomes

∂

∂t
u(t, x) = DM (t)

∂2

∂x2
u(t, x)− dM (t)u(t, x) + (1− τ ′(t))p(t, x, τ(t)). (2.4)

To obtain a closed form of the model, one needs to express p(t, x, τ(t)) by u in a
certain way. Indeed, p(t, x, τ(t)) represents the newly matured population at time t,
and it is the evolution result of newborns at t − τ(t). That is, there is an evolution
relation between the quantities p(t, x, τ(t)) and p(t − τ(t), x, 0). Such a relation is
obeyed by the second equation of the growth law (1.1). More precisely, the relation
is the time-τ(t) solution map of the following evolution equation

∂q

∂s
= DI(t− τ(t) + s)

∂2q

∂x2
− dI(t− τ(t) + s)q, x ∈ R, 0 ≤ s ≤ τ(t),

q(0, x) = p(t− τ(t), x, 0), x ∈ R.
(2.5)
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And the newborns p(t − τ(t), x, 0) is given by then birth b(t − τ(t), u(x, t − τ(t))).
Next, by solving the linear Cauchy problem (2.5) we obtain

p(t, x, τ(t)) = q(τ(t), x) =
R(t, u(t− τ(t), ·))(x)

1− τ ′(t)
, (2.6)

where R is defined in (1.3). Combining (2.2) and (2.6), we arrive at a reaction-diffusion
equation for mature population u, that is, the first equation in the model (1.2).

As for the total immature population, it is defined by v(t, x) :=
∫ τ

0
(t)p(t, x, a)da.

Then one may employ the same idea as above to derive another equation. Indeed,
differentiating v in time yields

∂

∂t
v(t, x) =

∫ τ(t)

0

∂

∂t
p(t, x, a)da+ τ ′(t)p(t, x, τ(t)), (2.7)

which, thanks to the second equation of growth law (1.1), becomes

∂

∂t
v(t, x) = DI(t)

∂2

∂x2
v(t, x)− dIv(t, x)− (1− τ ′(t))p(t, x, τ(t)), (2.8)

which, together with (2.6), gives rise to the second equation of model (1.2) for the
immature population.

2.2. Reduction to a mapping. Let T (= a year) be the period of all time
dependent functions. Assume that [α, β] ⊂ (0, T ) is the time duration of breeding
season and [tα, tβ ] ⊂ (0, T ) is the time duration of maturation season. As assumed
in (B2), the species has distinct breeding and maturation seasons, we then have the
following relation

[α, β] ∩ [tα, tβ ] = ∅. (2.9)

Further, tα and tβ satisfy

tα − τ(tα) = α, tβ − τ(tβ) = β. (2.10)

Biologically it means that within a year all newborns are given in [α, β] and then they
reach maturation in a coming season [tα, tβ ] within the same year. We refer to Fig.
1.1 for a schematic illustrations of the life cycle for this particular species. With this
in mind, we infer that for t ∈ [0, T ],

b(t, ·) ≡ 0 when t 6∈ [α, β]; R(t, ·) ≡ 0 when t 6∈ [tα, tβ ]. (2.11)

This feature helps us to further infer that in the end of n-th year the mature population
size u(nT, x) only depends on its initial size u((n − 1)T, x) at the beginning of that
year, that is, there is a relation Q mapping u((n− 1)T, x) to u(nT, x) for n ≥ 1.

Next, we figure out the expression of Q from an evolution viewpoint. During the
year [0, T ], the mature population experience only natural death and the recruitment
(with diffusion all the time), so we can decompose Q into two parts:

Q[ϕ] = S[ϕ] +R[ϕ], (2.12)

where S means the survival part of initial value after a period of evolution and R is
the new contribution at the end of this year by the next generation. Thus,

S[ϕ] = kM (T, 0, ·) ∗ ϕ (2.13)
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and

R[ϕ] =

∫ tβ

tα

kM (T, s, ·) ∗R(s, kM (s− τ(s), 0, ·) ∗ ϕ)ds, (2.14)

where kM (t, s, x) is the Green function of ∂tρ = DM (t)∂xxρ−dM (t)ρ. So far, we have
got the complete form of Q. An alternative way to obtain the expression of Q is to
solve the first equation of (1.2).

The iterative system {Qn}n≥0 will be sufficient to determine the propagation
dynamics of the mature population.

3. Dynamics of the spatially homogeneous map. Restricting Q on R we
obtain the map Q : R→ R defined by

Q[z] = zkM (T, 0) +

∫ tβ

tα

kM (T, s)R(s, zkM (s− τ(s), 0))ds, (3.1)

where R(s, z) = (1 − τ ′(s))b(s − τ(s), z)kI(s, s − τ(s)) with kM (t, s) = e−
∫ t
s
dM (ω)dω

and kI(t, s) = e−
∫ t
s
dI(ω)dω. Before analyzing the map Q̄, let us first recall the math-

ematical assumptions implied by the biological concerns.
(A1) (Seasonality) DM ≥ 0, DI ≥ 0, dM > 0, dI > 0, τ > 0, b ≥ 0 are all C1

functions and T−periodic in time.
(A2) (Distinct breading and maturation seasons) Assume that

0 < α ≤ β < tα ≤ tβ < T, (3.2)

where tα, tβ satisfy

tα − τ(tα) = α, tβ − τ(tβ) = β. (3.3)

Further, we assume that b(t, u) = p(t)h(u), where p ≥ 0, f ≥ 0 and p(t) ≡ 0
for t ∈ [0, α] ∪ [β, T ].

(A3) (Ordering in maturation) τ ′(t) < 1, t ∈ R.
We further assume that

(A4) (Unimodality) Assume that h ∈ C1 with h(0) = 0 = h(+∞) and there
exists z∗ > 0 such that h(z) is increasing for z ∈ [0, z∗) and decreasing for
z ∈ [z∗,+∞).

(A5) (Sublinearity) h(λz) ≥ λh(z) for z ≥ 0 and λ ∈ (0, 1).
The Ricker type function pze−qz is a typical example of h satisfying (A4) and (A5).

Define

L :=
kM (T, 0)

1− kM (T, 0)

∫ tβ

tα

∂ϕR(s, 0)kI(s, s− τ(s))

kM (s, s− τ(s))
ds, (3.4)

where R is defined in (2.6). By a computation we have

∂ϕR(s, 0) = (1− τ ′(s))p(s− τ(s))h′(0). (3.5)

We are now ready to present the following threshold dynamics for the map Q :
R→ R.

Theorem 3.1. Assume that (A1)-(A5) hold. Then the following statements are
valid:
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(i) If L > 1, then Q admits at least one positive fixed point. Denote the min-
imal one by u∗. Then limn→∞Q

n
[u] = u∗ provided that u ∈ (0, u∗] and

u∗kM (α, 0) ≤ z∗, where z∗ is defined in (A4).
(ii) If L < 1, then limn→∞Q

n
[u] = 0 for u ≥ 0.

Proof. (i) By the expression of R, one has

lim
z→0

R(s, zkM (s− τ(s), 0)

zkM (s− τ(s))
= ∂ϕR(s, 0)kI(s, s− τ(s)) uniformly in s ∈ [0, T ]. (3.6)

Note that

1

zkM (T, 0)
(Q[z]− z)

=1− 1

kM (T, 0)
+

∫ tβ

tα

1

kM (s, s− τ(s))

R(s, zkM (s− τ(s), 0))

zkM (s− τ(s), 0)
ds

→


[
1− 1

kM (T,0)

]
(1− L) > 0, as z → 0, due to L > 1,

1− 1
kM (T,0)

< 0, as z → +∞.
(3.7)

Then the existence of positive fixed point follows from the intermediate value theorem.
Since L > 1, we have the minimal positive fixed point u∗. If additionally u∗kM (α, 0) ≤
z∗, then one may check that Q[z] is non-decreasing in z ∈ [0, u∗]. Since Q[z] > z for
z ∈ (0, u∗), we have limn→∞Q

n
[z] exists. Clearly, the limit z∞ is a fixed point in

(0, u∗]. So z∞ must be u∗.

(ii) From the computations (3.6) and (3.7), we infer that

1

zkM (T, 0)
(Q[z]− z) ≤

[
1− 1

kM (T, 0)

]
(1− L) < 0, L < 1. (3.8)

As such, there exists δ ∈ (0, 1) such that Q[z] ≤ (1 − δ)z for z > 0. Hence, Q
n
[z] ≤

(1− δ)nz, which converges to 0 for z > 0.

4. Propagation dynamics of the iterative system {Qn}n≥0. Recall that

Q[ϕ] = kM (T, 0, ·) ∗ ϕ+

∫ tβ

tα

kM (T, s, ·) ∗R(s, kM (s− τ(s), 0, ·) ∗ ϕ)ds, (4.1)

where kM (t, s, x) is the Green function for the heat equation ∂tρ = DM (t)∂xxρ −
dM (t)ρ. Clearly, if DM ≡ 0, i.e., the mature population does not move, then

kM (t, s, x) = e−
∫ t
s
dM (ω)dω. In such a case, Q is not compact. Thus, to include

the case DM ≡ 0 we will not assume any compactness for Q.

In this section, we shall first apply the dynamical system theory in [21, 10] to
establish the existence of invasion speed as well as its variational characterization
by related eigenvalue problems. And then, we apply the results in [3] to obtain the
existence of the minimal wave speed and its coincidence with the stabled invasion
speed. To apply these theories, one needs to choose appropriate phase spaces. More
precisely, we will work in the continuous function space for the spreading speed and
monotone function space for traveling waves.
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4.1. Existence of spreading speed c∗ and its coincidence with the mini-
mal wave speed. Let C := BC(R;R), consisting of all bounded continuous functions
from R to R, be endowed with the compact open topology, which can be induced by
the following norm

‖u‖ =

∞∑
n=1

sup|x|≤n |u(x)|
2n

, u ∈ C. (4.2)

Define C+ := BC(R;R). For φ, ψ ∈ C we write φ ≥ ψ provide that φ − ψ ∈ C+. For
the positive number r, we define Cr = {v ∈ C : 0 ≤ v ≤ r}. Given y ∈ R, we define
the translation operator Ty by Ty[v](x) = v(x− y).

Lemma 4.1. Let u∗ be the minimal positive fixed point defined in Theorem (3.1).
Assume that h(u) is nondecreasing in u ∈ [0, u∗]. Assume that (A1)-(A5) hold and
L > 1. Then Q : Cu∗ → Cu∗ has the following five properties:

(i) TyQ = QTy, y ∈ R;
(ii) Q is continuous with respect to the compact open topology;

(iii) Q is order preserved in the sense that Q[u] ≥ Q[v] whenever u ≥ v in Cu∗ ;
(iv) Q : [0, u∗]→ [0, u∗] admits two fixed points 0 and u∗, and for any γ ∈ (0, u∗)

one has Q[γ] > γ.
(v) Q[λφ] ≥ λQ[φ], φ ∈ Cu∗ , λ ∈ (0, 1).

Proof. Item (i) is obvious. Item (iii) follows from the monotonicity of h. Item
(iv) follows from Theorem (3.1). Item (v) follows from (A4). It then remains to check
item (ii), that is, we need to check Q[φn]→ Q[φ] as φn → φ in Cu∗ . In virtue of (A5),
we have

|R(s, kM (s− τ(s), 0, ·) ∗ φn)(x)−R(s, kM (s− τ(s), 0, ·) ∗ φ)(x)|
≤ ∂ϕR(s, 0)kI(s, s− τ(s), ·) ∗ kM (s− τ(s), 0, ·) ∗ |φn − φ|(x).

Hence,

|Q[φn](x)−Q[φ](x)| ≤ kM (T, 0, ·) ∗ |φn − φ|(x) +K ∗ |φn − φ|(x), (4.3)

where K is defined by

K(x) :=

∫ tβ

tα

∂ϕR(s, 0)kM (T, s, ·) ∗ kI(s, s− τ(s), ·) ∗ kM (s− τ(s), 0, ·)(x)ds.
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It is not difficult to see that K ∈ L1. Therefore,

‖Q[φn]−Q[φ]‖

=

∞∑
k=1

2−k sup
|x|≤k

|Q[φn](x)−Q[φ](x)|

≤
∞∑
k=1

2−k sup
|x|≤k

[kM (T, 0, ·) +K] ∗ |φn − φ|(x)

=

∞∑
k=1

2−k sup
|x|≤k

{(∫
|y|≥C

+

∫
|y|≤C

)
[kM (T, 0, y) +K(y)]|φn − φ|(x− y)dy

}

≤2u∗
∫
|y|≥C

[kM (T, 0, y) +K(y)]dy

+

∞∑
k=1

2−k sup
|x|≤k

∫
|y|≤C

[kM (T, 0, y) +K(y)]|φn − φ|(x− y)dy

≤2u∗
∫
|y|≥C

[kM (T, 0, y) +K(y)]dy + 2C

∞∑
k=1

2−k sup
|x|≤k+C

|φn − φ|(x)

=2u∗
∫
|y|≥C

[kM (T, 0, y) +K(y)]dy + 2C+1C‖φn − φ‖, C > 0. (4.4)

Consequently,

lim sup
n→∞

‖Q[φn]−Q[φ]‖ ≤ 2u∗
∫
|y|≥C

[kM (T, 0, y) +K(y)]dy, C > 0. (4.5)

Since C is arbitrary and kM (T, 0, ·) +K ∈ L1, we obtain the continuity in item (ii).
Now we are ready to apply Theorems 2.11, 2.15 and 2.16 and Corollary 2.16 in [10]

to get the following result on the existence of spreading speed c∗ and its variational
formula.

Theorem 4.2. Assume that all conditions assumed in Lemma 4.1 are satisfied.
Define

c∗ := inf
µ>0

Φ(µ) := inf
µ>0

1

µ
ln

{∫
R
eµyK(y)dy

}
, (4.6)

where K is defined by

K(x) := kM (T, 0, x)+

∫ tβ

tα

∂ϕR(s, 0)kM (T, s, ·)∗kI(s, s−τ(s), ·)∗kM (s−τ(s), 0, ·)(x)ds.

(4.7)
Then c∗ > 0 and c∗ = Φ(µ∗) for some µ∗ > 0. And the following statements are valid:

(i) if ϕ ∈ Cu∗ has compact support, then limn→∞ sup|x|≥cnQ
n[ϕ](x) = 0 for

c > c∗.
(ii) if ϕ ∈ Cu∗ and ϕ 6≡ 0, then limn→∞ inf |x|≤cn |Qn[ϕ](x) − u∗| = 0 for c ∈

(0, c∗).
Proof. According to Lemma 4.1, we know that Q : Cu∗ → Cu∗ satisfies all the

conditions in [10, Theorems 2.11, 2.15 and 2.16, and Corollary 2.16]. Therefore, we
have reached the conclusion except for that c∗ > 0 and it can be achieved at some µ∗.
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Indeed, since K is symmetric and decays super exponentially, it then follows from the
expansion ex =

∑∞
n=0

xn

n! and Fubini’s theorem that∫
R
eµyK(y)dy =

∫
R

∞∑
n=0

µnyn

n!
K(y)dy =

∞∑
n=0

∫
R

µnyn

n!
K(y)dy =

∞∑
n=0

∫
R

µ2ny2n

(2n)!
K(y)dy.

(4.8)∫
R
eµyK(y)dy > 1 +

µ2

2

∫
R
y2K(y)dy > 1, (4.9)

which implies that Φ(µ) > 0 for µ > 0. By [10, Lemma 3.8], it then suffices to check
limµ→+∞ Φ(µ) = +∞. Note that

lim inf
µ→+∞

φ(µ) ≥ lim
µ→+∞

ln

(
1 +

µ2

2

∫
R
y2K(y)dy

) 1
µ

= lim
µ→+∞

µ

2

∫
R
y2K(y)dy = +∞.

(4.10)
The proof is complete.

As a consequence of the invasion speed, we see from [10, Theorem 4.1] that any
possible speed of traveling waves is not less than the spreading speed c∗.

Next we show that there exists traveling wave with c ≥ c∗, i.e., the spreading
speed c∗ is also the minimal wave speed. Indeed, [10, Theorem 4.2] applies to the
iterative system {Qn}n≥1 if Q is compact. However, as explained before, when the
mature population does not move, then the result mapping Q is not compact. To
include such a case, instead of [10, Theorem 4.2] we shall employ an improved version
with weaker compactness assumptions, for which we refer to [3, Theorem 3.8]. In
particular, for the standing mapping Q, we do not need to impose any compactness
condition, but the phase space is chosen to be the monotone function space

M := {φ : R→ R|φ(x) ≥ φ(y), x ≤ y}, (4.11)

which is endowed with the compact open topology. Similarly, we may define the
ordering in M and the order interval Mu∗ .

Theorem 4.3. Assume that all the conditions in Lemma 4.1 hold. Then the
spreading speed c∗ is also the minimal speed of traveling waves connecting 0 to u∗.

Proof. It is not difficult to check that the first four item of conclusions in Lemma
4.1 still hold with Cu∗ being replaced by Mu∗ . Next we check that Q :Mu∗ →Mu∗

maps left continuous function to left continuous functions. Indeed, for ϕ ∈ Mu∗ and
t > s ≥ 0, if ϕ is left continuous, then kM (t, s, ·) ∗ ϕ is left continuous, so is Q[ϕ].
Then we can employ [3, Theorem 3.8 and Remark 3.7] to obtain that c∗ is the minimal
wave speed.

In order to study the parameter influence on c∗, we use the explicit form of
Green’s function kM (t, s, x) of ∂tρ = DM (t)∂xxρ − dM (t)ρ to compute the integral∫
R e

µyK(y)dy, where K is defined in (4.7). Indeed, it is known that

kM (t, s, x) =
1√

4π
∫ t
s
DM (ς)dς

exp

{
− x2

4
∫ t
s
DM (ς)dς

−
∫ t

s

dM (ς)dς

}
.

Note that ∫
R
eµykM (t, s, y)dy = exp

{∫ t

s

[µ2DM (ς)− dM (ς)]dς

}
.
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By the expressions of K defined in (4.7), we compute to have

∫
R
eµyK(y)dy =exp

(∫ T

0

[
µ2DM (ς)− dM (ς)

]
dς

)[
1 +

∫ tβ

tα

∂ϕR(s, 0)

exp

(∫ s

s−τ(s)

[
µ2(DI(ς)−DM (ς)) + (dM (ς)− dI(ς))

]
dς

)]
ds. (4.12)

This formula will be used several times in the rest of this section.

4.2. Influence of periodic delay τ(t) on c∗. In this subsection, we compare
the spreading speeds subject to two different maturation periods; one depends on
time, the other is its average. For this purpose, we define

τav :=
1

tβ − tα

∫ tβ

tα

τ(s)ds. (4.13)

To focus on the influence of time periodicity of delay, we assume all other time periodic
functions are trivial. As such, DM (s) ≡ DM , DI(s) ≡ DI and ∂ϕR(s, 0) = (1 −
τ ′(s))ph′(0). Now we have two spreading speeds: c∗(τ) and c∗(τav). To compare
them, it suffices to compare the following two integrals thanks to the variational
formula of c∗ in (4.6) and (4.12):∫ tβ

tα

(1− τ ′(s))el(µ)τ(s)ds and

∫ tβ

tα

el(µ)τavds, (4.14)

where l(µ) = (dM − dI) + µ2(DI − DM ). Next, by Jensen’s inequality and the fact
1− τ ′(s) > 0 as assumed in (B5), we have

ln

(
1

tβ − tα

∫ tβ

tα

(1− τ ′(s))el(µ)τ(s)ds

)
≤ 1

tβ − tα

∫ tβ

tα

ln
(

(1− τ ′(s))el(µ)τ(s)
)
ds.

(4.15)
Further, since

ln
(

(1− τ ′(s))el(µ)τ(s)
)

= ln(1− τ ′(s)) + l(µ)τ(s), (4.16)

it then follows that
∫ tβ
tα

(1− τ ′(s))el(µ)τ(s)ds ≤
∫ tβ
tα
el(µ)τavds provided that∫ tβ

tα

ln(1− τ ′(s))ds ≤ 0. (4.17)

Using the inequality lnx ≤ x− 1, x > 0 we infer that (4.17) holds if
∫ tβ
tα
−τ ′(s)ds ≤ 0,

that is,

τ(tα) ≤ τ(tβ). (4.18)

Thus, c∗(τ) ≤ c∗(τav) provided that (4.18) holds.
On the other hand, to expect c∗(τ) ≥ c∗(τav) one has to assume that τ(s) is

increasing for s in some intervals. For this purpose, we consider the case where τ(s)
is a nondecreasing linear function, say

τ(s) := θ1 − θ2s, θ2 ≥ 0, s ∈ [tα, tβ ]. (4.19)



13

As such, the first term in (4.14) can be estimated from below as follows:∫ tβ

tα

(1− τ ′(s))el(µ)τ(s)ds≥ (1 + θ2)

∫ tβ

tα

el(µ)(θ1−θ2s)ds

=
1 + θ2

l(µ)θ2
el(µ)θ1

[
e−l(µ)θ2tα − e−l(µ)θ2tβ

]
(4.20)

Meanwhile, we compute the second term in (4.14) to have∫ tβ

tα

el(µ)τavds = (tβ − tα)e
l(µ)

(
θ1−θ2

tα+tβ
2

)
. (4.21)

Set ζ := 1
2 l(µ)θ2(tβ − tα). Then we arrive at∫ tβ

tα

(1− τ ′(s))el(µ)τ(s)ds ≥
∫ tβ

tα

el(µ)τavds (4.22)

provided that 1+θ2
2 ≥ ζ

eζ−e−ζ , ζ > 0, which is true because ζ
eζ−e−ζ is decreasing in

ζ > 0 and has limit 1
2 as ζ → 0+.

We summarize the above analysis to have the following result.
Proposition 4.4. (i) If τ(tα) < τ(tβ), then c∗(τ) < c∗(τav); (ii) If τ(s) =

θ1 − θ2s with θ2 > 0, then c∗(τ) > c∗(τav).
Biological interpretation: The condition τ(tα) < τ(tβ) means that more mat-

uration time is needed at the end of the breeding season than the beginning. This
appeals to be a common biological scenario, in which the time heterogeneity of devel-
opment can slow down the invasion. In other words, using the average of maturation
time to compute the invasion speed is overestimated.

4.3. Dependence of c∗ on the death rate dM (t). Assume that dM (t) consists
of two parts; one is the intrinsic death rate d(t), the other is the extrinsic death rate
η(t). For C > 0, define

Ω := {η ≥ 0 : η ∈ BC([0, T ],R+), η(0) = η(T ),
1

T

∫ T

0

η(s)ds = C}.

We plan to minimize c∗ subject to the following constraints

1

T

∫ T

0

η(s)ds = C. (4.23)

For this purpose, we write c∗(η) as a functional of η ∈ Ω. Then we have the following
result.

Proposition 4.5. minη∈Ω c
∗(η) is achieved at η = η∗ if and only if η∗(s) ≡

0, s ∈ [α, tβ ].
Proof. Using (4.12) and (4.23), we compute to have∫

R
eµyK(y)dy

=exp

(∫ T

0

[
µ2DM (ς)− dM (ς)

]
dς − TC

)[
1 +

∫ tβ

tα

∂ϕR(s, 0)

exp

(∫ s

s−τ(s)

[
µ2(DI(ς)−DM (ς)) + (dM (ς)− dI(ς)) + η(ς)

]
dς

)]
ds

:=F (η), (4.24)
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from which we clearly see that the functional F (η), subject to the constraints (4.23)
is non-increasing in η and independent of η(s), s 6∈ [α, tβ ]. Combining the definition
of c∗ in (4.6), we infer that c∗(η) is minimized if η(s) ≡ 0, s ∈ [α, tβ ].

To finish this subsection, we remark that from the above proof one may find that
a similar result holds if the diffusion rate DM (t) = D(t) + η(t) is chosen to be the
parameter.

4.4. Increasing order of c∗ on the diffusion rate DM (t). Assume that
DM (t) = kD(t), k > 0, where D(t) is a positive T periodic function. Next we investi-
gate the asymptotic behavior c∗ as k → +∞. For this purpose, we write c∗ = c∗(k).

Proposition 4.6. limk→+∞
c∗(k)√
k

= infµ>0H(µ,+∞) ∈ (0,+∞), where

H(µ,+∞) :=
1

µ

{∫ T

0

[
µ2D(ς)− dM (ς)

]
dς + ln

[
1 +

∫ tβ

tα

∂ϕR(s, 0)

exp

(∫ s

s−τ(s)

[
− µ2D(ς)) + (dM (ς)− dI(ς))

]
dς

)
ds

]}
Proof. By (4.12), we have∫
R
eµyK(y)dy =exp

(∫ T

0

[
µ2DM (ς)− dM (ς)

]
dς

)[
1 +

∫ tβ

tα

∂ϕR(s, 0)

exp

(∫ s

s−τ(s)

[
µ2(DI(ς)−DM (ς)) + (dM (ς)− dI(ς))

]
dς

)
ds

]
.

Introducing the variable change ν =
√
kµ, we then have

c∗(k)√
k

= inf
ν>0

1

ν

{∫ T

0

[
ν2D(ς)− dM (ς)

]
dς + ln

[
1 +

∫ tβ

tα

∂ϕR(s, 0)

exp

(∫ s

s−τ(s)

[
(ν2/k)DI(ς)− ν2D(ς)) + (dM (ς)− dI(ς))

]
dς

)
ds

]}
:= inf

ν>0
H(ν, k).

Since H(ν, k) is strictly decreasing in k and

lim
µ→0+

H(µ, k) = +∞ = lim
µ→+∞

H(µ, k), k ∈ (0,+∞],

infµ>0H(µ, k) can be archived at ν = ν(k). Consequently, H(ν(k), k) is non-increasing
in k. Note that H(ν,+∞) > 0 exists and infν>0H(ν,+∞) can be archived at some
finite ν. It then follows that

H(ν(k), k) ≥ H(ν(k),+∞) ≥ inf
ν>0

H(ν,+∞), k > 0.

Hence, the limit limk→+∞
c∗(k)√
k

exists and it is not less than the number infν>0H(ν,+∞).

Next, we show that the limit equals infν>0H(ν,+∞). Indeed, Assume infν>0H(ν,∞)
is archived at ν = ν∞. Then limk→∞H(ν∞, k) = H(ν∞,∞) due to the convexity of
H(µ, k) in µ and the monotonicity in k, and consequently,

lim
k→∞

c∗(k)√
k

= lim
k→∞

inf
µ>0

H(µ, k) = H(µ∞,∞) = inf
ν>0

H(ν,+∞).
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Fig. 4.1. The left figure describes how c∗ depend on the averages of delay and diffusion. The
right figure are cross cuttings of the left figure at D = 3, 5, 8.
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Fig. 4.2. τ(s) = θ(s− 3) + 1.5. The horizontal axis θ presents the slope of τ(s).

Finally, we prove infν>0H(ν,+∞) > 0. Indeed, it suffices to show thatH(ν,+∞) >
0 for ν > 0, which holds provided that

e−
∫ T
0
d(s)ds +

∫ tβ

tα

∂ϕR(s, 0)e
−
(∫ s−τ(s)

0 +
∫ T
s

)
d(ω)dω

ds > 1.

This is equivalent to the assumption L > 1 for the instability of 0, as already assumed
in Theorem 3.1. The proof is complete.

To finish this subsection, we remark that infν>0H(ν,+∞) is the spreading speed
of the extreme case where DI(t) ≡ 0, i.e., the immature population do not move.

4.5. Numerical simulation. We conduct some numerical simulations to ana-
lyze the dependence of c∗ on the flowing parameters: the average Dav of D(t), the

average of τav of τ(t) and the heterogeneity of τ(t), where τav := 1
tβ−tα

∫ tβ
tα
τ(s)ds and

Dav := 1
T

∫ T
0
D(s)ds.

We fix T = 4, DI = 5, dM = dI = 0.1, tα = 2.5 and tβ = 3.5 for all simulations.
The left figure in Fig. 4.1 describes how c∗ depends jointly on the averages of delay

and diffusion. In the simulation, we assume τ(s) and D(s) to be constant functions,
i.e. τ(s) ≡ τav and D(s) ≡ Dav. It is clear that c∗ is increasing in diffusion of mature
population. The right one suggests that c∗ is decreasing in the average of τ when the
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mature population diffuses faster than immature population, while may be increasing
if otherwise. This corresponds to question which class dominates the invasion, mature
or immature?

In Fig. 4.2, we set DM = 3. Let τ(s) be a linear function defined by

τ(s) = θ(s− 3) + 1.5. (4.25)

Clearly, τ(0) = 1.5 = τav for any θ ∈ R. The simulation illustrates the analytic results
in Proposition 4.4.

5. Propagation dynamics of model (1.2). In the previous sections, we have
obtained the propagation dynamics for the reduced iterative system {Qn}n≥0. In
particular, under appropriate conditions, there is a spreading speed c∗ that coincides
with the minimal speed of traveling waves. Now we come back to the original reaction-
diffusion model (1.2). Firstly, we employ the evolution idea introduced in [11] to show
that c∗/T is the spreading speed and the minimal speed of time periodic traveling
waves for the the mature population. Secondly, we use the conservation equality
(1.10) to prove that the immature population share the same propagation dynamics.

5.1. The mature equation. The evolution idea in [11] says that for a time
T -periodic semiflow {Pt}t≥0, the function W (t, x − ct) := Pt[U ](x − ct + ct) is a T -
time periodic traveling wave solution provided that PT [U ](x) = U(x − cT ). Thus,
we first use the u-equation of (1.2) to define a time periodic semiflow. Generally
speaking, (1.2) is a reaction-diffusion equation with time delay, one may try to choose
C([−maxs τ(s), 0] × R,R) or its subset as the phase space (see for instance [15]).
However, the first equation of (1.2), that is,

∂u

∂t
= DM (t)

∂2u

∂x2
− dM (t)u+R(t, u(t− τ(t), ·))(x) (5.1)

has a special nonlinearity due to the assumption (B2). In particular, one can use
C(R,R) as the phase space because the solution can be uniquely determined by u(0, x).
Therefore, we can define a time periodic semiflow by

Pt[φ] = u(t, ·;φ),

where u(t, x;φ) is the solution of (5.1) with u(0, ·;φ) = φ ∈ C(R,R) and 0 ≤ φ ≤ u∗.
Here u∗ is defined as in Theorem 3.1.

By the reduction process in section 2.2, we know that the map Q defined in (2.12)
equals PT . Hence, ū(t) = Pt[u

∗] is a periodic solution of (5.1). Then, as a consequence
of Theorems 3.1 and 4.3 and [11, Theorems 2.1-2.3], we have the following result.

Theorem 5.1. Let c∗ be the spreading speed of Q. Then the following statements
hold.

(i) For c ∈ (0, c∗/T ), the first equation of (1.2) has no T -time periodic traveling
wave U(t, x− ct) connecting ū(t) to 0.

(ii) For c ≥ c∗/T , the first equation of (1.2) has a T -time periodic traveling wave
solution U(t, x− ct) connecting ū(t) to 0. Moreover, U(t, ξ) is left continuous
and nonincreasing in ξ ∈ R.

5.2. The immature equation. In this section we will study the propagation
dynamics of the immature population equation, that is,

∂v

∂t
= DI(t)

∂2v

∂x2
− dI(t)v + b(t, u(x, t))−R(t, u(t− τ(t), ·))(x), (5.2)
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where u is supposed to be known.
We first prove a conservation equality, which biological means that all newborns

will become mature in the same year as when they were born.
Lemma 5.2. Let u(x, t) be a solution of equation (5.1). Then one has∫ T

0

kI(t, s, ·) ∗ b(s, u(s, ·))ds ≡
∫ T

0

kI(t, s, ·) ∗R(s, u(s− τ(s), ·))ds, t > T, (5.3)

where kI(t, s, x) is the Green function of ∂tρ = DI(t)∂xxρ− dI(t)ρ. If u(s, x)(≡ u(s))
is independent of x, then (5.3) reduces to∫ T

0

e−
∫ t
s
dI(ς)dςb(s, u(s))ds =

∫ T

0

e−
∫ t
s
dI(ς)dςR(s, u(s− τ(s)))ds. (5.4)

Proof. From the definition of R as in (1.3), we see that

R(s, φ) = (1− τ ′(s))kI(s, s− τ(s), ·) ∗ b(s− τ(s), φ), (5.5)

which, combining with the group property of kI , yields that

kI(t, s, ·) ∗R(s, u(s− τ(s), ·)) = (1− τ ′(s))kI(t, s− τ(s), ·) ∗ b(s− τ(s), u(s− τ(s), ·)).

Note that R(s, φ) ≡ 0 for s 6∈ [tα, tβ ] and b(s, φ) ≡ 0 for s 6∈ [α, β]. It then follows
that ∫ T

0

kI(t, s, ·) ∗R(s, u(s− τ(s), ·))ds=
∫ tβ

tα

kI(t, s, ·) ∗R(s, u(s− τ(s), ·))ds

=

∫ β

α

kI(t, η, ·) ∗ b(η, u(η, ·))dη

=

∫ T

0

kI(t, η, ·) ∗ b(η, u(η, ·))dη, (5.6)

where the variable change η = s− τ(s) is used.
Next we write the linear inhomogeneous reaction-diffusion equation (5.2) as the

following integral form and then investigate its propagation dynamics.

v(x, t) = kI(t, 0, ·) ∗ v(·, 0) +

∫ t

0

kI(t, s, ·) ∗ Z(s, ·)(x)ds, (5.7)

where

Z(s, x) := b(s, u(s, x))−R(s, u(s− τ(s), ·))(x). (5.8)

Now we are in a position to present the propagation dynamics of the immature
population.

Theorem 5.3. The following statements are valid:
(i) If u(t, x) ≡ ū(t), then (5.2) admits a unique nontrivial bounded periodic so-

lution v̄(t) that is independent of x.
(ii) If u(t, x) = U(t, x − ct) is a periodic traveling wave, as established in Theo-

rem 5.1, then (5.2) admits a unique periodic traveling wave V (t, x− ct) with
V (t,+∞) = 0 and V (−∞) = v̄(t).
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Proof. We first prove the uniqueness. Indeed, assume for the sake of contra-
diction that there are two solutions v1(x, t), v2(x, t). Then ṽ := v1 − v2 satisfies
ṽt = DI(t)ṽxx − dI(t)ṽ, for which the only bounded solution is zero. Thus, the
uniqueness is proved.

Next we prove the existence. Indeed, choosing v(0, x) ≡ 0, we obtain a special
solution

v(x, t) =

∫ t

0

kI(t, s, ·) ∗ Z(s, ·)(x)ds.

Now we proceed with the two cases. (i) u(t, x) ≡ ū(t). Note that Z(x, s) is assumed to
be independent of x, so is v(x, t). Thus, we may write v̄(t) and Z̄(t) instead of v(x, t)

and Z(x, t), respectively. Note that Z̄ is periodic with
∫ T

0
e−
∫ t
s
dI(ς)dς Z̄(s)ds = 0 in

virtue of (5.4). It then follows that

v̄(t+ T )=

∫ t+T

0

e−
∫ t+T
s

dI(ς)dς Z̄(s)ds

=

∫ T

0

e−
∫ t+T
s

dI(ς)dς Z̄(s)ds+

∫ T+t

T

e−
∫ t+T
s

dI(ς)dς Z̄(s)ds

= e−
∫ t+T
t

dI(ς)dς

∫ T

0

e−
∫ t
s
dI(ς)dς Z̄(s)ds+

∫ t

0

e−
∫ t+T
s+T

dI(ς)dς Z̄(s+ T )ds

=

∫ t

0

e−
∫ t
s
dI(ς)dς Z̄(s)ds

= v̄(t), (5.9)

where the periodicity of dI is also used. (ii) u(t, x) = U(t, x − ct). In this case,
Z(s, x) = b(s, U(s, x− cs))−R(s, U(s− τ(s), · − cs+ cτ(s)))(x). Define

V (t, ξ) :=

∫ t

0

kI(t, s, ·) ∗ Z(s, ·)(ξ + ct)ds. (5.10)

Obviously, V (t, x − ct) is a solution of (5.2) with zero initial value. Then we prove
that V is periodic in t with V (t,+∞) = 0 and V (t,−∞) = v̄(t). Indeed, notice that

Z(s+ T, x+ cT ) = Z(s, x) (5.11)

and there exists a constant lT > 0 such that

kI(t+ T, s, x) = lT kI(t, s, x). (5.12)

It then follows from (5.3) that

V (t+ T, ξ)=

(∫ T

0

+

∫ t+T

T

)
kI(t+ T, s, ·) ∗ Z(s, ·)(ξ + ct+ cT )ds

=

∫ t+T

T

kI(t+ T, s, ·) ∗ Z(s, ·)(ξ + ct+ cT )ds

=

∫ t

0

kI(t+ T, s+ T, ·) ∗ Z(s+ T, ·)(ξ + ct+ cT )ds

=

∫ t

0

kI(t+ T, s+ T, ·) ∗ Z(s+ T, ·+ cT )(ξ + ct)ds

= V (t, ξ). (5.13)
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Finally, we prove the limits. Indeed, since

Z(s,±∞) = b(s, U(s,±∞))−R(s, U(s− τ(s),±∞)) (5.14)

uniformly in s ∈ R due to the periodicity in s. Then in (5.10), passing ξ → ±∞
in advantage of the Lebesgue dominated convergence theorem and the periodicity of
V (t, ξ) in t, we obtain

V (t,±∞) =

∫ t

0

e−
∫ t
s
dI(ς)dςZ(s,±∞)ds (5.15)

uniformly for t ∈ R. Clearly, Z(s,+∞) = 0, so is V (t,+∞). Since Z(s,−∞) =
b(s, ū(s))−R(s, ū(s− τ(s))), we see from (i) that V (t,−∞) = v̄(t).

Theorem 5.4. Let u(x, t) be a solution of (5.1) with spreading speed c∗/T .
Then for any bounded initial value, the solution of (5.2) propagates asymptotically
with speed c∗/T . More precisely, limt→+∞ sup|x|≥ct v(x, t) = 0 for c > c∗/T and
limt→+∞ sup|x|≤ct |v(x, t)− v̄(t)| = 0 for c ∈ (0, c∗/T ).

Proof. We first claim that for any s ∈ [0, t) and y ∈ R, Z(t− s, x− y) propagates
asymptotically with speed c∗/T . Let us postpone the poof of the claim and quickly
reach the conclusion. Define M := supx∈R ‖v(x, 0)‖. By (5.7), we have

v(x, t) ≤Me−
∫ t
0
dI(ς)dς +

∫ t

0

∫
R
kI(t, t− s, y)Z(t− s, x− y)dyds. (5.16)

Using Lebesgue’s dominated convergence theorem, we obtain limt→∞ sup|x|≥ct v(x, t) =
0 for c > c∗/T . From the proof of Theorem 5.3 we know that

v̄(t) =

∫ t

0

e−
∫ t
s
dI(ς)dςZ(s,−∞)ds.

Consequently,

|v(x, t)− v̄(t)| ≤Me−
∫ t
0 dI (ς)dς +

∣∣∣∣∫ t

0

∫
R
kI(t, s, y)Z(s, x− y)dyds

−
∫ t

0

e−
∫ t
s dI (ς)dςZ(s,−∞)ds

∣∣∣∣
≤Me−

∫ t
0 dI (ς)dς +

∫ t

0

∫
R
kI(t, s, y)|Z(s, x− y)− Z(s,−∞)|dyds

=Me−
∫ t
0 dI (ς)dς +

∫ t

0

∫
R
kI(t, t− s, y)|Z(t− s, x− y)− Z(t− s,−∞)|dyds,

(5.17)

which implies that limt→∞ sup|x|≤ct |v(x, t) − v̄(t)| = 0 uniformly in t ∈ R for c ∈
(0, c∗/T ), thanks to Lebesgue’s dominated convergence theorem.

Proof of the claim. Fix s and y. By the same arguments as in the proof of [2,
Theorem 3.2], we can infer that Z(t− s, x− y) propagates asymptotically with speed
c∗/T provided that Z(t, x) propagates with the same speed. Indeed, since the birth
function b is sublinear, there holds

Z(t, x) ≤ b(t, u(t, x)) ≤ b′(t, 0)u(t, x) (5.18)
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Thus, limt→∞ sup|x|≥ct Z(t, x) = 0 for c > c∗/T . On the other side, since the birth
function b is Lipschitz continuous, there exists C > 0 such that for c ∈ (0, c∗/T ),

lim
t→∞

sup
|x|≤ct

|Z(t, x)− [b(t, ū(t))−R(t, ū(t− τ(t)))]|

≤C lim
t→∞

sup
|x|≤ct

[|u(t, x)− ū(t)|+ |u(t− τ(t), ·)− ū(t− τ(t))| ∗ kI(t, t− τ(t), ·)].

Note that, as assumed, the first term has limit zero. The second also has limit zero
thanks to the same arguments as in the proof of [2, Theorem 3.2].

6. Summary and Discussion. A time periodic and diffusive model system
in unbounded domain is proposed to study the seasonal influence on the propagation
dynamics of a single invasive species. The two-stage structure by age and the seasonal
developmental rate jointly result in a time periodic delay, which, combining with the
mobility of immature population, then gives rise to the spatial non-locality for the
recruitment of mature population. Further, the scenario of distinct breading and
maturation seasons within the same year makes the mathematical analysis presented
in this paper possible. Indeed, it is the key to reduce the model system to an explicit
mapping for the mature population, partially coupled by a linear and inhomogeneous
diffusive equation for the immature population. Finally, some recently developed
dynamical system theories apply to the mapping under suitable technical assumptions,
and the finding of the conservation equality plays a vital role in the study of the linear
inhomogeneous equation once the reduced mapping is well understood.

In Theorems 4.2 and 4.3, we established the spreading speed c∗ and its coincidence
with the minimal wave speed for model (1.2). Some seasonal influences on c∗ are also
obtained. In particular, it is known from literature [9, 17] that time delay decreases
the speed, and it is shown by Proposition 4.4 that the seasonality can further decrease
the speed if the development rate is decreasing in time during the maturation season.
Proposition 4.5 shows that the extrinsic death rate in the season without juveniles
contributes more than other seasons to decrease the speed, while the consequent
remark suggests the opposite for extrinsic diffusion rate. Proposition 4.6 shows that
the speed is asymptotic to infinity with the same order as the square root of the
diffusion rate as it increases to infinity.

In a word, a useful message for the optimal control of the biological invasion with
yearly generation structure is to kill the mature population or restrict their mobility
in the season without juveniles.

In this paper, the proposed model (1.2) with a special scenario under suitable
technical conditions, including the monotonicity and sublinearity, is analyzed. By
considering other biological scenarios, one may have several interesting and challeng-
ing mathematical questions. For instance, could the invasion be sped up if the diffusion
mechanism is modeled by the nonlocal dispersal? Is there any new dynamics if the
monotonicity condition imposed in this paper is invalid? What if a weak or strong
Allee effect in the breeding season is introduced? How to incorporate spatial hetero-
geneity into the model and how does it influence the dynamics? These questions are
under the authors’ investigations.
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