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Abstract. The rank of partitions play an important role in the combinatorial interpreta-
tions of several Ramanujan’s famous congruence formulas. In 2005 and 2008, the D-rank
and Ms-rank of an overpartition were introduced by Lovejoy, respectively. Let N (m,n)
and N2(m,n) denote the number of overpartitions of n with D-rank m and M,-rank
m, respectively. In 2014, Chan and Mao proposed a conjecture on monotonicity prop-
erties of N(m,n) and N2(m,n). In this paper, we prove the Chan-Mao monotonicity
conjecture. To be specific, we show that for any integer m and nonnegative integer n,
N2(m,n) < N2(m,n +1); and for (m,n) # (0,4) with n # |m| + 2, we have N(m,n) <
N(m,n+ 1). Furthermore, when m increases, we prove that N(m,n) > N(m +2,n) and
N2(m,n) > N2(m + 2,n) for any m,n > 0, which is an analogue of Chan and Mao’s
result for partitions.
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1 Introduction

The aim of this paper is to study monotonicity properties of the D-rank and Ms-rank on
overpartitions and therefore prove a conjecture of Chan and Mao [16].

Recall that a partition of a nonnegative integer n is a finite weakly decreasing sequence
of positive integers A = (A1, A, ..., Ap) with >, .., A = n. Here A\j, Ay, ..., A are called
parts of the partition A (see [I]). The rank of a partition was defined by Dyson [20] as
the largest part of the partition minus the number of parts. Dyson first conjectured and
then proved by Atkin and Swinnerton-Dyer [§] that the rank can provide combinatorial
interpretations to the following Ramanujan’s famous congruence for the partition function
modulo 5 and 7, respectively:

p(bn+4) = 0 (mod 5), (1.1)
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p(Tn+5) = 0 (mod 7), (1.2)

where p(n) denotes the number of partitions of n. Since then, various results on the rank
of partitions have been obtained by many mathematicians (For example, see [2,[5H7,9HI4)
16HI8, 211,23 27H34,139]).

Let N(m,n) denote the number of partitions of n with rank m. Chan and Mao [16]
established the following monotonicity properties for N(m,n).

Theorem 1.1 (Chan and Mao [16]). Forn > 12, m >0 and n # m + 2,
N(m,n) > N(m,n —1). (1.3)
Theorem 1.2 (Chan and Mao [16]). Forn >0 and m > 0,

N(m,n) > N(m+2,n). (1.4)

At the end of their paper, Chan and Mao [16] proposed a conjecture on monotonicity
properties of the D-rank and Ms-rank of an overpartition. Recall that an overpartition
was defined by Corteel and Lovejoy [19] as a partition of n in which the first occurrence
of a part may be overlined. For example, there are 14 overpartitions of 4:

4), ), 3,1, G 3,1), (2,2),
(2,2) (2,1,1), (2,1,1), (2, 1,1,1,1), (1,1,1,1).
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Lovejoy [35] defined the D-rank of an overpartition as the largest part minus the
number of parts, which is an analogue of the rank on ordinary partitions. Let N(m,n)
denote the number of overpartitions of n with D-rank m. Lovejoy [35, Proposition 1.1]
gave the following generating function of N(m,n):
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(1.5)

Here and throughout the rest of this paper, we adopt the common g¢-series notation [1J:

; —OO —aq™) an a; —M
(a7Q>OO_;Ll;[O(1 Q> d (7Q>n_(aqn;q>oo‘

The Ms-rank on overpartitions was also introduced by Lovejoy [36]. For an overpar-
tition A, let A; denote the largest part of A, £(\) denote the number of parts of A, and A,
denote the partition consisting of the non-overlined odd parts of A. Then define

M

My-rank(\) = { 5

J ) + €00 — XN, (1.6)



where x(A) = 1 if the largest part of A is odd and non-overlined, and otherwise x(\) = 0.
For instance, let A\ = (7,5,4,4,2,2,1,1). Then \; = 7, {(\) = 8, X\, = (5,1,1)
l(N\,) = 3 and x(\) = 0. Therefore,

My-rank(\) =3 —8+3 = —2.

Let N2(m,n) denote the number of overpartitions of n with Ms-rank m. Lovejoy [36]
found the generating function of N2(m,n) as follows:

o0

—1;q)o
ZZNmn Z q2/zq) (1.7)

n=0 m=—o0 =0 Zq q

Various results on the D-rank and Msy-rank of overpartitions can be found in [3]4]
,IZZLIQ_—ZII—IELBQ—BEH. In 2014, Chan and Mao [16] proposed the following monotonicity
conjecture on N(m,n) and N2(m,n):

Conjecture 1.3 (Chan and Mao [16]). For (m,n) # (0,4) with n # |m| + 2, we have
N(m,n) > N(m,n—1). (1.8)

Form € Z and n > 0,

N2(m,n) > N2(m,n — 1). (1.9)

The main purpose of this paper is to give analogues of Theorems [Tl and To be
specific, we obtain the following results:

Theorem 1.4. For m,n > 0 with n # m+ 2 and (m,n) # (0,4),

N(m,n) > N(m,n —1). (1.10)

Form,n > 0, we have

N2(m,n) > N2(m,n — 1). (1.11)

Theorem 1.5. For m,n >0, we have

N(m,n) > N(m+2,n), (1.12)
and o o
N2(m,n) > N2(m+ 2,n), (1.13)
By the generating functions (L3) and (L), it is easy to see that N(—m,n) = N(m,n)
and N2(—m,n) = N2(m,n). Therefore Theorem [[.4] verifies Conjecture

This paper is organized as follows. Some preliminary results are given in Section 2l
Then in Section [B we establish a nonnegativity result Lemma [3.1] and use it to give a
proof of Theorem [[4l Section @ is devoted to prove Theorem
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2 Preliminary

In order to prove Theorems [[4 and Theorem [[L5, we need to recall the definition of a
function f, x(q), which was first given by Chan and Mao [16].

Definition 2.1. Define f,,1(q) as coefficients in the following formal power series:

[e.e]

> fusle) = (2.1)

2¢; Q)e(a/2 Or

m=—0Q

When k£ = 0, by definition we see that foo(¢) =1 — ¢ and f,,0(¢) = 0 for all m # 0.
Chan and Mao [16, Lemma 9] gave the following expressions for f,,1(q) and f,,2(q).

Theorem 2.2 (Chan and Mao [16]). For all integer m,

(e}

o m+n _n __ ﬂ
fma(q) = n;m(_l) "= 1+q (2.2)
Form =0,
B 1 q2 q8
foald) = —q+ 1= Pt T i) (2.3)
and for m # 0,
_ 1 — q|m|+1 q\m\+3 )
poatd) =" (2 =+ =) 2

Chan and Mao [16, Lemma 11] also found the following nonnegative property for
fmk(q) when k > 2. For the remainder part of this paper, let {b,}°°, be any sequence of
nonnegative integers but not necessarily the same in different equations.

Theorem 2.3 (Chan and Mao [16]). When k > 2,

forla) = —q+@+ > bad"; (2.5)
n=0
fir(@) = ¢+ bad’; (2.6)
n=0
fmila) = D buq", form > 2. (2.7)
n=0

By definition, it is easy to check that the constant term of fy(q) is equal to 1. Hence
[Z3) yields the following corollary:



Corollary 2.4. When k > 2,

for(@) =1=q+ @+ buq" (2.8)

n=0

We also need the following two lemmas in [16].
Lemma 2.5 (See Lemma 8 of [16]). When k > 0, we have

q(k—l—l)\m n|

n=—oo

Lemma 2.6 (See Lemma 10 of [I6]). For any positive integer m,

1— qm-i-l
(1—¢*)(1—¢)

has nonnegative power series coefficients.

3 The proof of Theorem [1.4

In this section, we give a proof of Theorem [[.4l To this end, we need the following lemma.

Lemma 3.1. For any nonnegative integer a,b and c, the coefficient of ¢" in

q ¢

g (-0

is nonnegative for n > b+ 6.

Proof. 1t is clear that

( Z Z qb+3z+4j
1—¢q?)

=0 75=0
Note that for any n > 6, there exists i, j > 0 such that 3i + 45 = n. To be specific,
(k,0) if n = 3k;
(i,§) = (k—1,1) if n=3k+1; (3.1)
(k—2,2) ifn=3k+2.
Hence we see that, the coefficient of ¢" in

(1—=¢*)(1—q*)

bt




is at least 1. On the other hand,

a m cm+a 33
1 + q° ; (3:3)
Evidently, for any nonnegative integer n, the coefficient of ¢ in Y >° (—1)"¢“"" is
either —1, 0 or 1. Thus when n > b+ 6, the coefficient of ¢" in
¢ q"
1+g¢ (1-¢*)(1—q")
is nonnegative. This yields the desired result. |

We are now in a position to prove Theorem T4l

Proof of Theorem[1.7] We first prove (ILI0) with the aid of Lemma B} and then show
(CID.
From ([LT), it is clear to see that

[e.e] o0 [e.e]

1+ % (N(m,n) - Nmn—1)) Z 1q k(kﬂ)ﬂ(l_q). (3.4)

(2¢; O/ @)k

n=1 m=—o0 =0

By the definition of f,, x(q) (see ([Z))), we derive that

[e.9] oo

1+ZZ N(m,n —1)) szz ~1;9)k ¢ V2 £k (9)-

n=1 m=—o0 m=—oo

Hence for fixed integer m # 0,

> (N(m.n)=N(m,n—1))q" = (-1 kD21 (q). (3.6)

n=1 k=0

When m = 0, by B3]), (3.0) and Theorem 2.2 we find that

n=1
2 1 & 8
= —qg+——+2(1+q)¢* | —q+ +
T ( q)q< T T (1—q3)(1—q))
+) (=L "I fok(q). (3.7)
k=3
By Corollary 2.4 we derive that
> (N(0,n) = N@O,n—1))q"
n=1



2(1 3 9(1 5 2412
_ ot o 2O 20+ 4)g q

1— ¢ 1—q¢t (1-¢*)(1—q"
2 2 11
+ ! + 3q 4
1+q¢ (1—-¢*)(1—-q")
+ Y (=1 g I <1 LD bnq"> : (3.8)
k=3 n=0

The last term in (3.8]) can be transformed as follows:

D (=1iq)k gt (1 —q+ @+ bm”)

k=3 n=0

=3 21+ Q) (% D2 " FTIPA = g+ ) + D (11 q)r "D " bgn
k=3 k=3 =

= 201+ ¢") (% Qr2g" " + Z(—l; Q)i "I Z bng", (3.9)
k=3 k=3 n=0

which clearly has nonnegative coefficients. Moreover, by Lemma [3.1] the coefficient of ¢"
in % . 2!
1+q¢ (1-¢)(1-q")
is nonnegative for n > 17. From the above analysis, we see that
N(0,n) > N(0,n — 1)
for n > 17. It is trivial to check that for 1 < n < 16,

N(0,n) > N(O0,n—1)

except for n = 2 or n = 4. Therefore Theorem [I.4] holds for m = 0.
We now assume that m > 1. Substituting (2.2) and (2.4]) into (B.4), we have

_ 2;1m+1 N i(—l'q) g kD/2 ¢ ()
l+q &= "
s 1— qm+1 qm+3 )
#2000 (= g oA, (310

From Theorem 23], we see that for k > 3, f,,.x(¢) has nonnegative coefficients. We proceed
to show the coefficients of ¢" in

mt3 1— qm+1 qm+3
+2(1+q)q <(1_q2)(1_q3) + (1_q3)(1_q4)> (3.11)

7

2qm+1

1+4+¢




is nonnegative for all n > m + 3.

We first assume that m # 1,3. In this case, we transform (B.I1]) as follows:

2 qm+1 5 1— qm-‘rl qm+3
+2(1+q)¢"" +
l+gq 1+a) (1-¢)(1-¢*) (1-¢*)(1—q"
_ 2 qm+1 _— 1 — qm—l—l

i+q¢ T 0=p0—¢)

s 1— qm 1 q2m+6
+2¢™ +2(1+¢q) : (3.12)
(1=¢*)(1—¢% (1=¢*)(1—q")
By Lemma 2.6 we find that
1— qm+1
2qm+3 5 -
(1=¢*)(1—¢*
has nonnegative coefficients in ¢" for all n > 1. Moreover,
9 m+1 1— m+1 2 m+1 1 — 3 3 _ ,m+1
@ gy A AT gl a "
1+gq (1-¢)(1—¢% 1+gq (1=¢*)(1—¢
2 m—+1 2 m-+4 _ m—2
_ 2T 2T e T
l+q 1-g¢ (1-¢*)(1—¢%
l—q+¢ 1—qgm?
— 2 m+1—- 4 74 + 2 m-+7
1—¢ (1=¢*)(1—¢%
2qm+1 1 — qm—2
— o 2qm+2 4 2qm+7 )
1—¢? (1-¢*)(1—-¢%

Notice that when m # 1,3, by Lemma [2.6] we obtain

1—
2 m+7 bn
BT 1—q 2; T

This yields that (B.I2]) has nonnegative coefficients in ¢" for n > m + 3, as desired.

It remains to consider the case m = 1 or 3. For m = 1, it is trivial to calculate that
BII) is equal to
2¢° N 2q* + 2¢°
l+qg (1-¢*)(1—¢")
From Lemma B.1], we see that for n > 10, the coefficient of ¢™ in

(3.13)

2q> . 2q*

I+q (1-¢*)(1-q")
is nonnegative. Hence we_derive that N(l, n) > N(1,n — 1) for n > 10. It is trivial to
check that for 4 <n <9, N(1,n) > N(1,n—1) also holds. This yields the case for m = 1.

8



Finally, for m = 3, (811)) is equal to:

2 4 2 12 2 13 2 1+ 1+ 2\ .6
@ 2 - 2 i (1+4)( 361)61. (3.14)
l+qg (1-¢)(1—¢") (1-¢)(1—q") l—gq
Using Lemma B.I] we find that for n > 18, the coefficient of ¢" in
2 4 2 12
1 a (3.15)

T+q -1 —q)

is nonnegative. This yields that N(3,n) > N(3,n — 1) for n > 18. After checking
N(3,n) > N(3,n—1) for 6 <n <17, we find that (LI0) is valid for m = 3.

We next prove (LII]). From (7)), we see that

1+Z Z (N2(m,n) — N2(m,n — 1)) z2™¢"

n=1 m=—oco

% 1
== Q) — (2¢° (q )k?)gl;i )k
s 2
:1‘“2;(< ToRrETo
=1—q+2i(—q2;q)2k_zqk i 2" fne (7). (3.16)
k=1 m=-—00
Hence
1+Z —~N2(0,n—1))¢" —1—q+2z —¢*;@Q)or—24" for(a®),  (3.17)
k=1
and for m > 1,
N N—m n) m(m,n—l Qi 0% Qan—2 4" frn o (@) (3.18)
n=1 k=1

Similar to the proof of (LI0), we first assume that m = 0. From Theorem and
Corollary 241 we deduce that

1+Z ~N2(0,n—1)) ¢"

q 1 q4 qlﬁ
oo P20+ +a)e (—q2+ + + 5 5



+2) (~¢" Qan-2" (1 —+d+D ban")
k=3

n=0
2q N 2q18_'_2q20_'_2q21+2q23
1+ ¢ (1=¢%(1—¢*

+2(1+q2)(1+q3)q2< L, @ )

=1-q—2¢"—2¢° —2¢" = 2¢" +

1—¢5 1—¢8
+2) (=" Q20" D bag™ +2> (—¢% Qs " (1 + ¢°). (3.19)
k=3 n=0 k=3

Setting a = 0, b = 10 and replace ¢ with ¢* in Lemma [B.1], we find that for n > 33, the

coefficient of ¢™ in
2q 2q21

_l’_
T+q>  (1-¢%(1—¢)
is nonnegative. Thus the coefficient of ¢" in ([B.I9) is nonnegative for n > 33, which
implies that N2(0,n) > N2(0,n—1) for n > 33. It is trivial to check that for 1 <n < 32,
N2(0,n) > N2(0,n — 1) also holds. This yields (LIl for m = 0.
We proceed to show that (ILII) holds for m > 1. From Theorem 22 and ([BI8), we
have

=24 fin1(0°) + 2(=0% 0)4¢" frn3(q +QZ 5 @)2k-2 4" fn(4”)

k#J
B i) ) + 23 (P Qoo (). (3:20)
1 —l— q2 7 5 ) 3
k#3
From Lemma 2.5 we see that
3\m n| 3\m n|
fms(q Z fa2la = frn2(@) + fro(a (3.21)

n;ém

By Theorem 23] the coefficient of ¢" in f,, 2(¢) is nonnegative for all integer m and n > 0.
This allows us to transform f,, 5(¢) as follows:

fm,3( fm2 ‘I'anq

_ . m 1_qm m+
! ((1_q2)(1—q3)+(1—q )1 — ) )+anq (3.22)

10



Hence

2(—=4% @)1 @* fn3(d®)

) o3 1— q2m+2 q2m+6
™ (it aseae) Z "
. S 1— q2m+2 ) 5 4m+9
1 _ q2m+2 q4m+9 1 . q2m+2
:2 2m~+3 2 2 4 5 9 2m—+3
T—pi- T-ei-g O T aa =g
) 5 . q4m+9
2 bq" 3.23
v+ 4 ) (s 1_q)+2 . (3.23)
From Lemma 2.6] we see that
1 — q2m+2
(1—¢*)(1—¢*)
has nonnegative coefficients. Together with (3.23)), we deduce that
1— q2m+2 2q4m+9
2(=¢% Q)1 @ frms(q®) = 247 buq".  (3.24
(=@ @)1 a0 fm3(a") = 2q AP0 - T +§ q". (3.24)
Moreover, from Theorem 2.3 we see that
Z( 7 Q)2k—24" (4 anq (3.25)
k=2
k#3

Next we show that N2(m,n) > N2(m,n — 1) for m > 2. Substituting (3.24) and (B.27)
into (3.20), we derive that

[e.e]

Z (N2(m,n) — N2(m,n — 1)) ¢"
n=1
2q2m+1 o3 1— q2m+2 2q4m+9
= + 2¢q " + + bnq
1+ ¢ 1-¢)1-¢*) (1-¢)(1—-¢") g
_ 2q2m+1 N q2m+31 _ q3 + q3 _ q2m+2 N 2q4m+9 _'_ Z ) q
1+ ¢ 1-¢)1-¢) (A=) -¢")
2q2m+1 2q2m+3 ) 1 — q2m—1 2q4m+9
= + + 2¢7 0 + 7t bnq"
v 1-¢ 0 A=) 1) Z !
2q2m+1 + 2q2m+5 ) 6 1 — q2m—1 2q4m+9
= + 2¢°" + + b,q". 3.26
= T-P0—¢) G- —q) > (3:26)

n=0

11



By Lemma 2.6, we see that when m > 2,
1— q2m—1 0
2m+6 n
q N 3 Z bag".
1-¢*)1-¢")

This gives N2(m,n) > N2(m,n — 1), as desired.

Finally, we consider the case m = 1. In this case, by (3.24)),

14+¢°
2 o) o 2) — 940 bq" 92
(=% )1 ¢’ fr3(0%) i +(1_q +Z q". (3.27)
Substituting ([3.25]) and [B.27) into ([B:20), we see that
(N2(1,n) = N2(1,n—1)) ¢" = +2¢° - + bnq"
=1 (=) Ir¢ T1-¢ (1—q Z “
" (3.28)

From Lemma B.1] we find that for n > 19, the coefficient of ¢™ in

3 13

2q . 2q
I+¢  (1-¢3)(1—q

is nonnegative. This gives N2(1,n) > N2(1,n —1) for n > 19. Tt can be checked that for
1 <n <18, N2(1,n) > N2(1,n — 1) still holds. This completes the entire proof. |

4 The proof of Theorem

In this section, we give a proof of Theorem [L.LEl To this end, we need the following lemma.

Lemma 4.1. For integer k > 0, let

D IPIE

n=0 m=—oc0

(a2; Q)i Q/ 25q)k

Then for m > 0, we have aym(n) > agmia(n). Equivalently, for m > 0, the coefficient of
2™Mq" in
1—272

(2, 0)r(q/ 2 Ok

1S nonnegative.

Proof. By definition, we see that
agm(n) = ag —m(n). (4.1)

12



Moreover, it is clear that

Zzakﬂmzq_ } !

n=0 m=—00 (925 Q)rs1(0/ 25 @) g1

_(1_qu+1 1_qk+1/z Z Z g m (1

n=0 m=—oco

= Z ZT—2iq7‘(k+1) Z Z ak’m(n)zmqn' (42)
r=0 =0 n=0 m=—o00
Thus we have
lez)
ag+1,m(n) = Ueym—rt2i (N —1(k+1)). (4.3)
r=0 =0

We prove this lemma by induction on k. For k = 1, it is trivial to check that

0y m(n) = 1 ifm=n (mod2)andn > |m|;
P10 otherwise.

This gives our desired result.

Set by,m(n) = akm(n) — ak m+2(n) and assume that by, (n) > 0 for m > 0. From (@3],
we derive that

S
birim(n) = > Y brn—rsai (n—r(k+1)). (4.4)
r=0 =0
Moreover, by (@), we see that
bem(n) = —bg—m—2(n) (4.5)

and therefore
Lk_ilJ r—m—1

> bkmeriai(n—r(k+1)) =0. (4.6)

r=m+1 i=0

Thus by ([@4]) and ([£6]), we derive that for m > 0,

moor el .
birtm() =3 Y bpmriain —r(k+ 1)+ Y Y bgmerrai(n — r(k+1))
r=0 =0 r=m+1 i=0
moor leds) .
=3 bemrsain—r(k+ 1)+ > > bpmerei(n —r(k+1)). (47)
r=0 i=0 r=m+1i=r—m

From induction hypothesis, we find that each term in the above summation is nonnegative.
Thus bg11,m(n) > 0. This completes the proof. |
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We now give a proof of Theorem [L.3

Proof of Theorem [ 3. By (L3), for m > 0, N(m,n) > N(m + 2,n) is equivalent to that
the coefficient of 2™ in

f: (=15 q)p g"F+D/2(1 — 272)

4.8
N PR ETET (48)
is nonnegative. But by Lemma [.T],
2 (~1; q IR - 277 & 1272
Z k Z 1q k(k+1)/2[ ] : : : (49)
—~ (2¢; (q/z D —~ (2¢; )ra/ 7 )n

which is clearly has nonnegative coefficients, where [2"] f(z) denotes the coefficient of 2™
in f(z). This yields (I2]).

Similarly, by (7)), for m > 0, N2(m,n) > N2(m + 2,n) is equivalent to that the
coefficient of 2™ in

— (—Lg)argi(1—272)
Z% (26% )k (0 /2 ¢ )i

is nonnegative. Again using Lemma 1] we see that

- 1Q2kq 1-27%) <« K (1-27?)
= —1:q)ak ¢"[2" ;
go (2¢% @)k (¢*/ 2 %) g( ] (2¢% ¢*)r 4/ 2 %)
which has nonnegative coefficients. This completes the proof. |

5 Conclusions

The rank of partitions gives combinatorial interpretations of several Ramanujan’s famous
congruence formulas. In this paper, we derive several monotonicity inequalities of the
D-rank and Ms-rank for overpartitions and use them to prove a conjecture of Chan and
Mao [16]. Our proofs are based on the study of generating functions for such ranks of
overpartitions, which are analytic. It would be interesting to find bijective proofs for our
results. We will work on this in the future.
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