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Abstract. In this paper, we investigate the mapping properties of pseudo-differential operators

with operator-valued symbols. We prove the boundedness of regular symbols on Sobolev spaces
Hα

2 (Rd;L2(M)) and Besov spaces Bαp,q(Rd;Lp(M)) for α ∈ R and 1 ≤ p, q ≤ ∞, as well as

the boundedness of forbidden symbols on Hα
2 (Rd;L2(M)) and Bαp,q(Rd;Lp(M)) for α > 0 and

1 ≤ p, q ≤ ∞. Thanks to the smooth atomic decomposition of the operator-valued Triebel-

Lizorkin spaces Fα,c1 (Rd,M) obtained in our previous paper, we establish the Fα,c1 -regularity of

regular symbols for every α ∈ R, and the Fα,c1 -regularity of forbidden symbols for α > 0. As
applications, we obtain the same results on the usual and quantum tori.
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0. Introduction

Pseudo-differential operators were first explicitly defined by Kohn-Nirenberg [29] and Hörmander
[21] to connect singular integrals and differential operators. They can be viewed as generalizations
of Fourier multipliers, i.e., those operators acting on functions of variable s ∈ Rd, formally deter-
mined by

T (e2πis·ξ) = σ(ξ)e2πis·ξ, ∀ ξ ∈ Rd.
In this sense, σ(ξ) is called the symbol of the operator T . If T is one of those more general
operators, it is characterized by the symbol σ(s, ξ), which is now a function of s as well as ξ, i.e.,

T (e2πis·ξ) = σ(s, ξ)e2πis·ξ.

Using the inverse Fourier transform, this characterization looks like

(0.1) Tf(s) =

∫
Rd
σ(s, ξ)f̂(ξ)e2πis·ξdξ.
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To emphasize the role of the symbol σ, we often write T as Tσ. And we call this Tσ a pseudo-
differential operator.

Here are some examples of pseudo-differential operators. If σ is independent of the variable s,
then we go back to the Fourier multiplier mentioned above. On the other hand, if σ is independent
of the variable ξ, then by (0.1), we get Tf(s) = σ(s) · f(s), the pointwise multiplication. To give
an example of pseudo-differential operator whose symbol is a function of both s and ξ, we consider
the partial differential operator L =

∑
|m|1≤k am(s)Dm

s , where m ∈ Nd0 and |m|1 = m1 + · · ·+md.

This time, by (0.1) again, we know that the symbol of L is

σ(s, ξ) =
∑
|m|1≤k

am(s)(2πiξ)m.

For a general symbol σ, Tσ may be thought as a limit of linear combinations of operators composed
by pointwise multiplications and Fourier multipliers.

The study of pseudo-differential operators connects the partial differential operators with har-
monic analysis. More precisely, the regularity of the solutions of a PDE corresponds to the bound-
edness of the related pseudo-differential operator on some function spaces. This amounts to one
of the most important problems in pseudo-differential operator theory: the mapping properties of
these operators on various function spaces. Given n ∈ R and 0 ≤ δ, ρ ≤ 1, denote by Snρ,δ the

Hörmander class of symbols, consisting of all infinitely differentiable functions σ : Rd × Rd → C
such that

(0.2) |Dγ
sD

β
ξ σ(s, ξ)| ≤ Cγ,β(1 + |ξ|)n+δ|γ|1−ρ|β|1

for all s, ξ ∈ Rd. One may ask which kind of symbol classes give pseudo-differential operators
that are bounded on Lp-spaces, Sobolev, Besov, Hardy or Triebel-Lizorkin spaces. In general,
it is known that pseudo-differential operators are not necessarily bounded on the classical Hardy
space H1(Rd), or homogeneous Besov and Triebel-Lizorkin spaces. As a result, when studying
the mapping properties of pseudo-differential operators, one usually focuses on inhomogeneous
function spaces, such as the local Hardy spaces hp(Rd) defined by Goldberg [17] which provides the
inhomogeneous version of [16], or inhomogeneous Besov and Triebel-Lizorkin spaces (see Triebel
[52] and [53] for the definitions). For details on these results in the classical setting, we refer to
[7, 9, 12, 44, 46, 49, 53].

In the noncommutative setting, this line of research started with Connes and Baaj’s work [13, 4]
on pseudo-differential calculus for C∗-dynamical systems, which intended to extend the Atiyah-
Singer index theorem [3] for Lie group actions on C∗-algebras. At that time, due to the fact that
very little had been done about the analytic aspect, the work of Connes and his collaborators did
not include Lp-estimates for parametrices or error terms. Recently, inspired by the development
of noncommutative harmonic analysis, a lot of progress has been made on Fourier multiplier the-
ory and Calderón-Zygmund theory on noncommutative Lp spaces, thanks to the efforts of many
researchers [10, 11, 19, 20, 24, 26, 28, 34, 37, 38, 43, 57, 58, 59]. But so far, the mapping properties
of pseudo-differential operators are rarely studied which seems to be a good candidate to connect
the noncommutative harmonic analysis with the noncommutative differential geometry [14].

As we know, pseudo-differential operators have substantial impact on linear and non-linear PDEs
[47, 48]. In the noncommutative setting, an important motivation for us to investigate the pseudo-
differential operators is their potential applications on noncommutative PDEs. Studying their
mapping properties on the most fundamental noncommutative manifold quantum tori is surely a
good starting point for us. Our strategy is using the transference method [11, 37] to transfer the
analysis on fully noncommutative algebras to the case of semicommutative algebras, specifically,
from quantum tori to spaces of bounded functions defined on Rd or Td with values in some von
Neumann algebras.

In this paper, we consider the boundedness of noncommutative pseudo-differential operators
on operator-valued function spaces and then apply the corresponding results to quantum tori.
Our definition of symbol classes is modelled on the classical definition by Hörmander; the idea
is to consider those operator-valued functions σ : Rd × Rd → M satisfying (0.2) with operator
norms in place of absolute values of the derivatives of σ. Here M is a von Neumann algebra. If
f : Rd → L1(M)+M is a good enough function, we can consider the action of a pseudo-differential
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operator with symbol σ on this f . Because of the noncommutativity, we have two different actions:

(0.3) T cσf(s) =

∫
Rd
σ(s, ξ)f̂(ξ)e2πis·ξdξ

and

T rσf(s) =

∫
Rd
f̂(ξ)σ(s, ξ)e2πis·ξdξ.

We will mainly work on the column operators T cσ and establish their mapping properties on (po-
tential) Sobolev spaces Hα

p (Rd;Lp(M)) and Besov spaces Bαp,q(Rd;Lp(M)), as well as local Hardy

spaces hcp(Rd,M) and inhomogeneous Triebel-Lizorkin spaces Fα,cp (Rd,M). The Sobolev and
Besov spaces are defined in a similar way as their Banach-valued counterparts (see section 3 for
concrete definitions in the operator-valued setting), while the local Hardy spaces and Triebel-
Lizorkin spaces are introduced and studied in our recent papers [55] and [56].

Now we state the main results of this paper, and briefly describe the ingredients of the proofs.
We concentrate on the pseudo-differential operators with operator-valued symbols in Sn1,δ, the class

of infinitely differentiable functions σ : Rd × Rd →M such that

‖Dγ
sD

β
ξ σ(s, ξ)‖M ≤ Cγ,β(1 + |ξ|)n+δ|γ|1−|β|1 , ∀ s, ξ ∈ Rd.

The first part of the results is about the Sobolev and Besov spaces. Let σ ∈ S0
1,δ.

i) If 0 ≤ δ < 1, T cσ is bounded on the Sobolev space Hα
2 (Rd;L2(M)) for any α ∈ R.

ii) If δ = 1, T cσ is bounded on Hα
2 (Rd;L2(M)) for any α > 0.

iii) If 0 ≤ δ < 1, T cσ is bounded on the Besov space Bαp,q(Rd;Lp(M)) for any 1 ≤ p, q ≤ ∞ and
α ∈ R.

iv) If δ = 1, T cσ is bounded on Bαp,q(Rd;Lp(M)) for any 1 ≤ p, q ≤ ∞ and α > 0.

The proof of the L2 regularity in i) is similar to the corresponding classical result, relying heavily
on the Cotlar-Stein Orthogonality Lemma. But if σ ∈ S0

1,1, we no longer have this L2 regularity;

we prove the boundedness of T cσ on the Sobolev spaces Hα
2 (Rd;L2(M)) for α > 0 instead. To

demonstrate this boundedness on Sobolev spaces, we will have to treat the kernels of the dyadic
pieces of symbols, and use the relation between Sobolev and Besov spaces. The same trick will
lead to the boundedness of T cσ on Besov spaces.

The regularities of pseudo-differential operators on local Hardy spaces and Triebel-Lizorkin
spaces are much more complicated. The main part of the proof concerns the case p = 1 for
both kinds of spaces. Compared to the standard proof of the boundedness on Hardy spaces of
a usual Calderón-Zygmund operator with a commutative or noncommutative convolution kernel,
the present proof is much subtler and more technical. We need a careful analysis of the pseudo-
differential operator acting on smooth (sub)atoms given in [56]. Our results are the following.

i) If 0 ≤ δ < 1 and σ ∈ S0
1,δ, T

c
σ is bounded on Fα,cp (Rd,M) for any 1 ≤ p ≤ ∞ and α ∈ R.

ii) If σ ∈ S0
1,1, T cσ is bounded on Fα,c1 (Rd,M) for every α > 0.

For 0 ≤ δ < 1, we first prove Tσ : Fα,c1 (Rd,M) → Fα,c1 (Rd,M) is bounded. Since the adjoint of
σ ∈ S0

1,δ still belongs to S0
1,δ when δ < 1, we will deduce the boundedness on Fα,cp (Rd,M) from

duality and interpolation. And for σ ∈ Sn1,δ, we can use the Bessel potential of order n to connect

T cσ with T cσ′ for σ′ ∈ S0
1,σ, i.e. T cσ = T cσ′ ◦Jn, so as to get the boundedness of T cσ from Fα,cp (Rd,M)

to Fα−n,cp (Rd,M). For the case δ = 1, in order to to get the boundedness on Fα,cp (Rd,M) for
p > 1, we need more assumptions on the symbol.

We then apply the outcome to the usual and quantum tori, and obtain parallel results in both
cases.

Our regularity results on Sobolev and Besov spaces can be viewed as a particular case of more
general Banach-valued inequalities for pseudo-differential operators. Based on the work of Weis
[54], Portal and Štrkalj [42] proved that the pseudo-differential operators with operator-valued
symbols σ(s, ξ) : Rd×Rd → B(X) are bounded on the Bochner integrable spaces Lp(Rd;X), under
the essential assumptions (1) σ is R-bounded (defined in [54]), (2) the Banach space X is a UMD
space (see [8]). Since the noncommutative Lp spaces are UMD spaces when 1 < p < ∞, Portal

and Štrkalj’s results apply to Lp(L∞(Rd)⊗M) = Lp(Rd;Lp(M)) immediately. However, because
of the R-boundedness assumption, their results do not cover the symbol classes in this paper.
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The situation for Banach-valued Besov spaces is more satisfactory, where neither R-boundedness
nor UMD condition are needed, see [1] for results on Fourier multipliers. More recently, in [5]
the authors proved the mapping properties for operator-valued pseudo-differential operators on
toroidal Besov spaces Bαp,q(Td;X) for 1 ≤ p, q ≤ ∞ and an arbitrary Banach space X, which
covers the corresponding results in section 7. The regularity results on Sobolev and Besov spaces
obtained in our paper should be known to experts, but have not been studied systematically in the
literature. For the sake of completeness and for our use in the proofs of the regularity results on
Triebel-Lizorkin spaces, we include those results, and give proper proofs of them.

Contrary to the Sobolev or Besov case, our regularity results on Triebel-Lizorkin spaces do not
follow from any pseudo-differential operator theory in the Banach-valued setting. Let us illustrate
this at the level of Hardy spaces. For an M-valued function f on Rd, given a Littlewood-Paley
decomposition (ϕj)j≥0 on Rd, the Hardy space norm used in our paper is given by

‖f‖hp =

 inf
f=g+h

{∥∥(
∑
j≥0 |ϕj ∗ g|2)

1
2

∥∥
p

+
∥∥(
∑
j≥0 |ϕj ∗ h∗|2)

1
2

∥∥
p

}
if 1 ≤ p ≤ 2

max
{∥∥(

∑
j≥0 |ϕj ∗ f |2)

1
2

∥∥
p
,
∥∥(
∑
j≥0 |ϕj ∗ f∗|2)

1
2

∥∥
p

}
if 2 < p <∞.

By the noncommutative Khintchine inequalities [31, 32], this norm is equivalent to ‖
∑
j≥0 rj ·ϕj ∗

f‖Lp(Ω×Rd;Lp(M)), where {rj}j≥0 is a Rademacher sequence on some probability space (Ω, P ). It
seems that this later norm has not been studied so far in the literature.

Let us mention that independently and at the same time, González-Pérez, Junge and Parcet
developed in [18] the pseudo-differential theory in quantum Euclidean spaces that are the non
compact analogues of quantum tori. Although the two papers overlap in some ways, they are
very different in nature in regard to both arguments and results. The arguments of [18] are
based on a careful analysis of the L2 and semigroup BMO cases (the latter is defined in [27]),
while our proof in the case p = 1 (the main case) relies entirely on the atomic decomposition
of Fα,c1 (Rd,M) obtained in [56]. Interestingly, as far as the results are concerned, our results
deal with the asymmetric situation of boundedness of T cσ (T rσ ) on column (row) Triebel-Lizorkin
spaces Fα,cp (Rd,M) (Fα,rp (Rd,M)) with 1 ≤ p ≤ ∞. However, our methods do not yield the
Fα,rp -regularity of T cσ nor the Fα,cp -regularity of T rσ , thus in particular we are not able to get the

Lp-regularity of T cσ since Fαp (Rd,M) coincides with Lp(L∞(Rd)⊗M) when α = 0 and 1 < p <∞.

In [18], in the quantum Euclidean setting, the authors define the class of symbols Σ0
ρ,δ which

eliminates this asymmetry, and obtain the boundedness of the corresponding pseudo-differential
operators on Lp-spaces with 1 < p < ∞. Coming back to the commutative case, Σ0

ρ,δ reduces to

the case of classical Hörmander symbols, while in the fully noncommutative setting, Σ0
ρ,δ is strictly

smaller than S0
ρ,δ. Thus the Lp-regularity of T cσ (or T rσ ) is still unsolved for the whole class S0

ρ,δ.

The paper is organized as follows. In section 1, we introduce some elementary notation and
knowledge on noncommutative Lp-spaces, and the definitions of local Hardy spaces in [55] and
inhomogeneous Triebel-Lizorkin spaces in [56]. Then we present the smooth atomic decompositions
of these spaces obtained in [56]. In section 2, we give the concrete definitions and some easily
deduced useful facts on operator-valued pseudo-differential operators. In section 3 we prove the
mapping properties of pseudo-differential operators on Sobolev and Besov spaces. Section 4 is
devoted to the study of the local mapping properties of pseudo-differential operators, i.e. their
action on atoms. In sections 5 and 6, we prove the mapping properties of pseudo-differential
operators with regular and forbidden symbols respectively. The last section presents applications
to the usual and quantum tori.

We close this introduction section by the following convention. Throughout, we will use the
notation A . B, which is an inequality up to a constant: A ≤ cB for some constant c > 0. The
relevant constants in all such inequalities may depend on the dimension d, the test functions ϕ
or Φ, or p, etc., but never on the function f in consideration. The equivalence A ≈ B will mean
A . B and B . A simultaneously.

1. Preliminaries on noncommutative analysis

We begin with an introduction of notation and basic knowledge on vector-valued Fourier analysis,
i.e., Fourier analysis on functions with values in a Banach spaces X. Let S(Rd;X) be the space
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of X-valued rapidly decreasing and infinitely differentiable functions on Rd with the standard
Fréchet topology. In particular, S(Rd;C) is simply denoted as S(Rd). Let S ′(Rd;X) be the
space of continuous linear maps from S(Rd) to X; the elements of S ′(Rd;X) are the so-called
X-valued tempered distributions. All operations on S(Rd) such as derivation, convolution and
Fourier transform transfer to S ′(Rd;X) in the usual way. On the other hand, Lp(Rd;X) naturally
embeds into S ′(Rd;X) for 1 ≤ p ≤ ∞, where Lp(Rd;X) stands for the space of strongly p-integrable
functions from Rd to X. By this definition, Fourier transform and Fourier multipliers on Rd extend
to vector-valued tempered distributions in a natural way.

We give some typical Fourier multipliers that will be frequently used in the sequel. For a
real number α, the Bessel potential is the operator Jα = (1 − (2π)−2∆)

α
2 defined on S ′(Rd;X),

where ∆ denotes the Laplacian on Rd. If α = 1, we will abbreviate J1 as J . We denote also
Jα(ξ) = (1 + |ξ|2)

α
2 on Rd. It is the symbol of the Fourier multiplier Jα. Recall also the symbols

of Littlewood-Paley decomposition on Rd, which are used to define Besov and Triebel-Lizorkin
spaces. Fix a Schwartz function ϕ on Rd satisfying:

(1.1)


suppϕ ⊂ {ξ : 1

2 ≤ |ξ| ≤ 2}.
ϕ > 0 on {ξ : 1

2 < |ξ| < 2},∑
k∈Z ϕ(2−kξ) = 1,∀ ξ 6= 0.

Given k ∈ N, let ϕk be the function whose Fourier transform is equal to ϕ(2−k·) and ϕ0 be the
function whose Fourier transform is equal to 1−

∑
k>0 ϕ(2−k·). Then {ϕk}k≥0 gives a Littlewood-

Paley decomposition on Rd such that

(1.2) supp ϕ̂k ⊂ {ξ ∈ Rd : 2k−1 ≤ |ξ| ≤ 2k+1}, ∀ k ∈ N, supp ϕ̂0 ⊂ {ξ ∈ Rd : |ξ| ≤ 2}

and that

(1.3)

∞∑
k=0

ϕ̂k(ξ) = 1, ∀ ξ ∈ Rd.

Other than the above Littlewood-Paley decomposition, we will need another kind of resolution
of the unit on Rd (see [46, Section VII.2.4]). Let X0 be a nonnegative infinitely differentiable
function on Rd such that suppX0 ⊂ 2Q0,0, and

∑
k∈Zd X0(s− k) = 1 for every s ∈ Rd. Here Q0,0

is the unit cube centered at the origin, and 2Q0,0 is the cube with the same center, but twice the
side length; see the end of this section for notation of general cubes. Set Xk = X0(· − k). Then
each Xk is supported in the cube 2Q0,k = k + 2Q0,0, and all Xk’s form a smooth resolution of the
unit:

(1.4) 1 =
∑
k∈Zd

Xk(s), ∀ s ∈ Rd.

This smooth resolution of the unit will often be used to divide functions or distributions into small
pieces, which have the same smoothness as before, but have compact supports additionally.

1.1. Noncommutative Lp-spaces. Let us turn to the setting of operator-valued analysis, where
the above involved Banach spaces X are required to have some operator space structure now. In
this paper, all function spaces in consideration are based on the noncommutative Lp-spaces as-
sociated to (M, τ), where M is a von Neumann algebra τ is a normal semifinite faithful trace,
and 1 ≤ p ≤ ∞. The norm of Lp(M) will be often denoted simply by ‖ · ‖p. But if different
Lp-spaces appear in a same context, we will sometimes precise the respective Lp-norms in or-
der to avoid possible ambiguity. The reader is referred to [41, 60, 25] for more information on
noncommutative Lp-spaces. These noncommutative Lp-spaces are equipped with their natural
operator space structure introduced by Pisier [39, 40]. The structure on L1(M) is defined as the
one induced by the opposite of dual space (M′)op. For 1 < p < ∞, the natural operator space
structure on Lp(M) is given by the family of norms determined by the complex interpolation
Mn(Lp(M)) =

(
Mn(M),Mn(L1(M))

)
1
p

, where the norm of Mn(M) ⊂ Mn(B(H)) is induced by

the one on Mn(B(H)) ∼= B(`n2 (H)).
We will also need Hilbert space-valued noncommutative Lp-spaces (see [23] for more details).

Let H be a Hilbert space and v ∈ H with ‖v‖ = 1. Let pv be the orthogonal projection onto the
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one-dimensional subspace generated by v. Define

Lp(M;Hr) = (pv ⊗ 1M)Lp(B(H)⊗M) and Lp(M;Hc) = Lp(B(H)⊗M)(pv ⊗ 1M).

These are the row and column noncommutative Lp-spaces, which are 1-complemented subspaces
of Lp(B(H)⊗M).

In most part of this paper, we are interested in operator-valued functions. The involved von
Neumann algebra is the semi-commutative algebra L∞(Rd)⊗M with tensor trace, denoted by N
in the sequel. We will frequently use the following Cauchy-Schwarz type inequality,

(1.5)
∣∣ ∫

Rd
φ(s)f(s)ds

∣∣2 ≤ ∫
Rd
|φ(s)|2ds

∫
Rd
|f(s)|2ds,

where φ : Rd → C and f : Rd → L1(M) +M are functions such that all integrations of the above
inequality make sense. Here for an operator x, |x|2 denotes x∗x. (1.5) is an easy consequence of the
convexity of the operator-valued function: x 7→ |x|2, and “≤” is understood as the partial order in
the positive cone ofM. We will also require the operator-valued version of the Plancherel formula.
For sufficiently nice functions f : Rd → L1(M) +M, for example, for f ∈ L2(Rd) ⊗ L2(M), we
have

(1.6)

∫
Rd
|f(s)|2ds =

∫
Rd
|f̂(ξ)|2dξ.

1.2. Inhomogeneous Triebel-Lizorkin spaces. We follow the presentation in [56], to give the
definition of inhomogeneous Triebel-Lizorkin spaces. Let 1 ≤ p < ∞ and α ∈ R, and ϕ be the
Schwartz function determined by (1.1). The column Triebel-Lizorkin space Fα,cp (Rd,M) is defined
by

Fα,cp (Rd,M) = {f ∈ S ′(Rd;L1(M) +M) : ‖f‖Fα,cp
<∞},

where
‖f‖Fα,cp

=
∥∥(
∑
j≥0

22jα|ϕj ∗ f |2)
1
2

∥∥
Lp(N )

.

The row space Fα,rp (Rd,M) consists of all f such that f∗ ∈ Fα,cp (Rd,M), equipped with the norm

‖f‖Fα,rp
= ‖f∗‖Fα,cp

. The mixture space Fαp (Rd,M) is defined to be

Fαp (Rd,M) =

{
Fα,cp (Rd,M) + Fα,rp (Rd,M) if 1 ≤ p ≤ 2

Fα,cp (Rd,M) ∩ Fα,rp (Rd,M) if 2 < p <∞,

equipped with

‖f‖Fαp =

 inf
f=g+h

{‖g‖Fα,cp
+ ‖h‖Fα,rp

} if 1 ≤ p ≤ 2

max{‖f‖Fα,cp
, ‖f‖Fα,rp

} if 2 < p <∞.

If p =∞, define Fα,c∞ (Rd,M) as the space of all f ∈ S ′(Rd;M) such that

‖f‖Fα,c∞ = ‖ϕ0 ∗ f‖N + sup
|Q|<1

∥∥∥ 1

|Q|

∫
Q

∑
j≥− log2(l(Q))

22jα|ϕj ∗ f(s)|2ds
∥∥∥ 1

2

M
<∞,

where Q denotes any cube in Rd, |Q| its volume, and l(Q) its side length. Let 1 ≤ p < ∞, α ∈ R
and q be the conjugate index of p. Then the dual space of Fα,cp (Rd,M) coincides isomorphically

with F−α,cq (Rd,M).
The Triebel-Lizorkin spaces form an interpolation scale with respect to the complex interpolation

method [6]: For α0, α1 ∈ R and 1 < p <∞, we have(
Fα0,c
∞ (Rd,M), Fα1,c

1 (Rd,M)
)

1
p

= Fα,cp (Rd,M), α = (1− 1

p
)α0 +

α1

p
.

See [56] for the proof of this interpolation.
When α = 0 and 1 ≤ p <∞, it is proved in [56] that F 0,c

p (Rd,M) = hcp(Rd,M) with equivalent

norms, where hcp(Rd,M) (see [55] for the definition) are the local analogues of the operator-valued
Hardy spaces defined in [33]. The lifting property of Triebel-Lizorkin spaces states that, for any
β ∈ R, Jβ is an isomorphism between Fα,cp (Rd,M) and Fα−β,cp (Rd,M). In particular, Jα is an

isomorphism between Fα,cp (Rd,M) and hcp(Rd,M). In this sense, these Triebel-Lizorkin spaces
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can be viewed as an extension of local Hardy spaces. Moreover, when 1 < p < ∞, we have, with
equivalent norms,

(1.7) Lp(N ) = hp(Rd,M) = F 0
p (Rd,M),

where N = L∞(Rd)⊗M. In the classical Euclidean setting, when 1 < p < ∞, the local Hardy
space hp(Rd) is equivalent to the usual Hardy space Hp(Rd) as well as Lp(Rd), while when p = 1
one has the strict inclusions H1(Rd) ⊂ h1(Rd) ⊂ L1(Rd); see [17] for more details.

1.3. Atomic decompositions. We begin with the case α = 0, i.e., the atomic decomposition of
local Hardy space hc1(Rd,M). Much as in the classical case, the atomic decomposition of hc1(Rd,M)
can be deduced from the h1-bmo duality. The following definition of atoms is given in [55].

Definition 1.1. Let Q be a cube in Rd with |Q| ≤ 1. If |Q| = 1, an hc1-atom associated with Q is
a function a ∈ L1(M;Lc2(Rd)) such that

• supp a ⊂ Q;

• τ
( ∫

Q
|a(s)|2ds

) 1
2 ≤ |Q|− 1

2 .

If |Q| < 1, we assume additionally:

•
∫
Q
a(s)ds = 0.

Let hc1,at(Rd,M) be the space of all f admitting a representation of the form

f =

∞∑
j=1

λjaj ,

where the aj ’s are hc1-atoms and λj ∈ C such that
∑∞
j=1 |λj | < ∞. The above series converges in

the sense of distribution. We equip hc1,at(Rd,M) with the following norm:

‖f‖hc1,at = inf{
∞∑
j=1

|λj | : f =

∞∑
j=1

λjaj ; aj ’s are hc1 -atoms, λj ∈ C}.

It is proved in [55] that

(1.8) hc1,at(Rd,M) = hc1(Rd,M)

with equivalent norms. It is also evident in the proof of (1.8) given in [55] that, in Definition 1.1,
we can replace the support Q of atoms by any bounded multiple of Q.

Before proceeding further, we point out that throughout the paper, we will use the following
notations for cubes in Rd: For any cube Q ⊂ Rd and any positive integer λ, λQ is the cube with
the same center as Q but side length scaled by a factor λ; for s ∈ Rd, s + Q denotes the cube
obtained by shifting Q by the vector s = (s1, · · · , sd).

Let us introduce the smooth atomic decomposition of Fα,c1 (Rd,M), which will be a key ingredient
to obtain the boundedness of pseudo-differential operators on Fα,c1 (Rd,M). This decomposition
is an extension as well as an improvement of the atomic decomposition of hc1(Rd,M) in (1.8).
Compared to (1.8), the smoothness of atoms is improved and subatoms enter in the game.

For every l = (l1, · · · , ld) ∈ Zd, µ ∈ N0, we define Qµ,l in Rd to be the cubes centered at 2−µl,
and with side length 2−µ. For instance, Q0,0 = [− 1

2 ,
1
2 )d is the unit cube centered at the origin.

Let Dd be the collection of all the cubes Qµ,l defined above. We write (µ, l) ≤ (µ′, l′) if

µ ≥ µ′ and Qµ,l ⊂ 2Qµ′,l′ .

For a ∈ R, let a+ = max{a, 0} and [a] the largest integer less than or equal to a. Denote

|γ|1 = γ1 + · · · + γd and Dγ = ∂γ11 · · · ∂
γd
d for γ ∈ Nd0, and sβ = sβ1

1 · · · s
βd
d for s ∈ Rd, β ∈ Nd0.

Recall that Jα is the Bessel potential of order α.

Definition 1.2. Let α ∈ R, and let K and L be two integers such that

K ≥ ([α] + 1)+ and L ≥ max {[−α],−1}.
i) A function b ∈ L1(M;Lc2(Rd)) is called an (α, 1)-atom if

• supp b ⊂ 2Q0,k, k ∈ Zd;

• τ(
∫
Rd |D

γb(s)|2ds) 1
2 ≤ 1, ∀ γ ∈ Nd0 , |γ|1 ≤ K.
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ii) Let Q = Qµ,l ∈ Dd, a function a ∈ L1(M;Lc2(Rd)) is called an (α,Q)-subatom if
• supp a ⊂ 2Q;

• τ(
∫
Rd |D

γa(s)|2ds) 1
2 ≤ |Q|αd−

|γ|1
d , ∀ γ ∈ Nd0 , |γ|1 ≤ K;

•
∫
Rd s

βa(s)ds = 0, ∀β ∈ Nd0 , |β|1 ≤ L.

iii) A function g ∈ L1(M;Lc2(Rd)) is called an (α,Qk,m)-atom if

(1.9) τ(

∫
Rd
|Jαg(s)|2ds) 1

2 ≤ |Qk,m|−
1
2 and g =

∑
(µ,l)≤(k,m)

dµ,laµ,l,

for some k ∈ N0 and m ∈ Zd, where the aµ,l’s are (α,Qµ,l)-subatoms and the dµ,l’s are complex
numbers such that

(
∑

(µ,l)≤(k,m)

|dµ,l|2)
1
2 ≤ |Qk,m|−

1
2 .

We have obtained in [56, Theorem 5.7] the following smooth atomic decomposition:

Theorem 1.3. Let α ∈ R and K, L be two integers fixed as in Definition 1.2. Then any f ∈
Fα,c1 (Rd,M) can be represented as

(1.10) f =

∞∑
j=1

(
µjbj + λjgj

)
,

where the bj’s are (α, 1)-atoms, the gj’s are (α,Q)-atoms, and µj, λj are complex numbers with

(1.11)

∞∑
j=1

(|µj |+ |λj |) <∞.

Moreover, the infimum of (1.11) with respect to all admissible representations yields an equivalent
norm in Fα,c1 (Rd,M).

It is worthwhile to point out that the above K and L can be arbitrarily large, depending on the
resolution of the unit used in the proof of Theorem 1.3 given in [56]. In other words, the orders of
the smoothness and moment cancellation of the atoms are at our disposal, so that we can require
good enough conditions on the atoms. This will be a very important technique in the proofs of our
main results.

2. Pseudo-differential operators: definitions and basic properties

We introduce the definitions and some basic properties of pseudo-differential operators in this
section. The symbols of pseudo-differential operators considered here are B(X)-valued, where X
is a Banach space and B(X) denotes the space of all bounded linear operators on X. However, in
the later sections, we will only consider those symbols with values in M.

The content of this section is a straightforward generalization to the vector-valued case of the
classical theory of pseudo-differential operators, see for instance [46, 47, 48, 45]. Such a generaliza-
tion already appears in some recent papers, see [42, 5]. So we claim no originality here. Nonetheless,
for the sake of completeness, we prefer to include the definitions specifically, and provide complete
proofs of the basic properties that will be used in the next sections.

Let n ∈ R and 0 ≤ δ, ρ ≤ 1. Then Snρ,δ denotes the collection of all infinitely differentiable

functions σ defined on Rd × Rd and with values in B(X), such that for each pair of multi-indices
of nonnegative integers γ, β, the inequality

‖Dγ
sD

β
ξ σ(s, ξ)‖B(X) ≤ Cγ,β(1 + |ξ|)n+δ|γ|1−ρ|β|1

holds for some constant Cγ,β depending on γ, β and σ. Here again γ = (γ1, · · · , γd) ∈ Nd0, |γ|1 =

γ1 + · · ·+ γd and Dγ
s = ∂γ1

∂s
γ1
1

· · · ∂
γd

∂s
γd
d

.

Definition 2.1. Let σ ∈ Snρ,δ. For function f ∈ S(Rd;X), the pseudo-differential operator Tσ is a
mapping f 7→ Tσf given by

(2.1) Tσf(s) =

∫
Rd
σ(s, ξ)f̂(ξ)e2πis·ξdξ.

We call σ the symbol of Tσ.
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Proposition 2.2. Let 0 ≤ δ, ρ ≤ 1 and n ∈ R. For any σ ∈ Snρ,δ, Tσ is continuous on S(Rd;X).

Proof. By integration by parts, for any s ∈ Rd and γ ∈ Nd0, we have

‖(2πis)γTσf‖X =
∥∥∥(2πis)γ

∫
Rd
σ(s, ξ)f̂(ξ)e2πis·ξdξ

∥∥∥
X

=
∥∥∥∫

Rd
σ(s, ξ)f̂(ξ)Dγ

ξ (e2πis·ξ)dξ
∥∥∥
X

=
∥∥∥∫

Rd
Dγ
ξ [σ(s, ξ)f̂(ξ)]e2πis·ξdξ

∥∥∥
X
<∞.

Thus, Tσf is rapidly decreasing. A similar argument works for the partial derivatives of Tσf , then
we easily check that Tσf maps S(Rd;X) continuously to itself. �

Another way to write (2.1) is as a double integral:

(2.2) Tσf(s) =

∫
Rd

∫
Rd
σ(s, ξ)f(t)e2πi(s−t)·ξdtdξ.

However, the above ξ-integral does not necessarily converge absolutely, even for f ∈ S(Rd;X). To
overcome this difficulty, we will approximate σ by symbols with compact support. To this end, let
us fix a compactly supported infinitely differentiable function η defined on Rd×Rd such that η = 1
near the origin. Set

(2.3) σj(s, ξ) = σ(s, ξ)η(2−js, 2−jξ), j ∈ N.

Note that σj converges pointwise to σ and σj ∈ Snρ,δ uniformly in j. Thus, for any f ∈ S(Rd;X),

Tσjf converges to Tσf in S(Rd;X) as j →∞. Since the σj ’s have compact supports, formula (2.2)
works for Tσjf(s). Then we can define the integral (2.2) as follows:

(2.4) Tσf(s) = lim
j→∞

∫
Rd

∫
Rd
σj(s, ξ)f(t)e2πi(s−t)·ξdtdξ.

Proposition 2.3. Let 0 ≤ δ < 1, 0 ≤ ρ ≤ 1 and n ∈ R. For any σ ∈ Snρ,δ, the adjoint of Tσ is

continuous on S(Rd;X∗).

Proof. For any f ∈ S(Rd;X) and g ∈ S(Rd;X∗), by the duality relation

〈Tσf, g〉 = 〈f, (Tσ)∗g〉,

we check that

(2.5) (Tσ)∗g(s) = lim
j→∞

∫
Rd

∫
Rd
σ∗j (t, ξ)g(t)e2πi(s−t)·ξdtdξ.

By integration by parts, it is clear that (Tσ)∗ is continuous on S(Rd;X∗). �

Since S ′(Rd;X∗∗) = (S(Rd;X∗))∗ (see [51, Section 51] for more details on this duality), in the
usual way, we extend Tσ to an operator on S ′(Rd;X∗∗).

Definition 2.4. Let f ∈ S ′(Rd;X∗∗). We define Tσf by

〈Tσf, g〉 = 〈f, (Tσ)∗g〉, ∀ g ∈ S(Rd;X∗).

By Proposition 2.3, (Tσ)∗g ∈ S(Rd;X∗) whenever g ∈ S(Rd;X∗). So the bracket on the right
hand side of the above definition is well defined. Therefore, Tσf is well defined, and takes value in
S ′(Rd;X∗∗) as well.

Proposition 2.5. Let 0 ≤ δ < 1, 0 ≤ ρ ≤ 1 and n ∈ R. For any σ ∈ Snρ,δ, Tσ is continuous on

S ′(Rd;X∗∗).

Proof. For any f ∈ S ′(Rd;X∗∗), we take a sequence (fj) such that fj → f in S ′(Rd;X∗∗). Then
we have

〈Tσfj , g〉 = 〈fj , (Tσ)∗g〉 −→ 〈f, (Tσ)∗g〉 = 〈Tσf, g〉 ∀ g ∈ S(Rd;X∗).
Thus, Tσfj converges to Tσf in S ′(Rd;X∗∗). So Tσ is continuous on S ′(Rd;X∗∗). �
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The pseudo-differential operator defined above has a parallel description in terms of a distribu-
tion kernel:

Tσf(s) =

∫
Rd
K(s, s− t)f(t)dt,

where K is the inverse Fourier transform of σ with respect to the variable ξ, i.e.

(2.6) K(s, t) =

∫
Rd
σ(s, ξ)e2πit·ξdξ.

In the sequel, we will focus on the symbols in the class Sn1,δ with 0 ≤ δ ≤ 1 and n ∈ R. Similarly

to the classical case (see [12], [22], [46] and [50]), we prove that for any operator-valued symbol
σ ∈ Sn1,δ, the corresponding kernel K satisfies the following estimates:

Lemma 2.6. Let σ ∈ Sn1,δ and 0 ≤ δ ≤ 1. Then the kernel K(s, t) in (2.6) satisfies

(2.7) ‖Dγ
sD

β
t K(s, t)‖B(X) ≤ Cγ,β |t|−|γ|1−|β|1−d−n, ∀ t ∈ Rd \ {0},

(2.8) ‖Dγ
sD

β
t K(s, t)‖B(X) ≤ Cγ,β,N |t|−N , ∀N > 0 if |t| > 1.

Proof. This lemma can be deduced easily from the corresponding scalar-valued results, which can
be found in many classical works on pseudo-differential operators, for instance, [49, Lemma 5.1.6].
Given x ∈ X and x∗ ∈ X∗ with norms equal to one, it is clear that 〈x∗, σ(s, t)x〉 is a scalar-valued
symbol in Sn1,δ, with distribution kernel 〈x∗,K(s, t)x〉. Thus, we have

〈x∗, Dγ
sD

β
t K(s, t)x〉 = Dγ

sD
β
t [〈x∗,K(s, t)x〉] ≤ Cγ,β |t|−|γ|1−|β|1−d−n, ∀ t ∈ Rd \ {0}

and

〈x∗, Dγ
sD

β
t K(s, t)x〉 = Dγ

sD
β
t [〈x∗,K(s, t)x〉] ≤ Cγ,β,N |t|−N , ∀N > 0 if |t| > 1.

Then, taking the supremum over x and x∗ in the above two inequalities, we get the desired
assertion. �

In the classical case, the proof the above lemma makes use of the decomposition of the symbol
σ into dyadic pieces. Let (ϕ̂k)k≥0 be the resolution of the unit satisfying (1.3). Set

(2.9) σk(s, ξ) = σ(s, ξ)ϕ̂k(ξ), ∀ (s, ξ) ∈ Rd × Rd.

By a similar argument as in the above proof, we also have the following estimates of the corre-
sponding kernels of these pieces σk’s.

Lemma 2.7. Let σ ∈ Sn1,δ and σk be as in (2.9) and

Kk(s, t) :=

∫
Rd
σk(s, ξ)e2πit·ξdξ.

Then

‖Dγ
sD

β
t Kk(s, t)‖B(X) . |t|−2M2k(|β|1+|γ|1+d−2M+n), ∀M ∈ N0.

Now we study the composition of pseudo-differential operators. The following proposition gives
a rule of the composition of two pseudo-differential operators. Different from the proof of Lemma
2.6, we can not reduce that of the following proposition to the scalar-valued case. So we need to
perform an argument which is similar to the classical case. We refer the reader to [45, Theorem
2.5.1] or [46, p. 237], where the case δ = 0 is dealt with in the classical setting. However, for
the case 0 < δ < 1, the remainder of the Taylor expansion of σ1 is much harder to handle, which
requires a subtler expansion of σ1.

Proposition 2.8. Let 0 ≤ δ < 1 and σ1, σ2 be two symbols in Sn1

1,δ and Sn2

1,δ respectively. There

exists a symbol σ3 in Sn1+n2

1,δ such that

Tσ3
= Tσ1

Tσ2
.

Moreover,

(2.10) σ3 −
∑
|γ|1<N0

(2πi)−|γ|1

γ!
Dγ
ξ σ1D

γ
sσ2 ∈ Sn1+n2−(1−δ)N0

1,δ , ∀N0 ≥ 0.
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Proof. Firstly, we assume that σ1 and σ2 have compact supports, so we can use (2.2) as an alternate
definition of Tσ1

and Tσ2
. In this way, Tσ1

Tσ2
can be written as follows:

Tσ1(Tσ2f)(s) =

∫
Rd

∫
Rd
σ3(s, ξ)f(r)e2πi(s−r)·ξdrdξ,

where

σ3(s, ξ) =

∫
Rd

∫
Rd
σ1(s, η)σ2(t, ξ)e2πi(s−t)·(η−ξ)dtdη

=

∫
Rd
σ1(s, ξ + η)σ̂2(η, ξ)e−2πis·ηdη

(2.11)

with σ̂2 the Fourier transform of σ2 with respect to the first variable. We expand σ1(s, ξ + η) by
the Taylor formula:

σ1(s, ξ + η) =
∑
|γ|1<N0

1

γ!
Dγ
ξ σ1(s, ξ)ηγ +

∑
N0≤|γ|1<N

1

γ!
Dγ
ξ σ1(s, ξ)ηγ +RN (s, ξ, η),

with the remainder

RN (s, ξ, η) =
∑
|γ|1=N

1

γ!

∫ 1

0

Dγ
ξ σ1(s, ξ + θη)(1− θ)Nηγdθ.

Now we replace σ1(s, ξ + η) in (2.11) by the above Taylor polynomial and remainder. Notice that

1

γ!

∫
Rd
Dγ
ξ σ1(s, ξ)ηγ σ̂2(η, ξ)e−2πis·ηdη =

(2πi)−|γ|1

γ!
Dγ
ξ σ1(s, ξ)Dγ

sσ2(s, ξ).

Thus,

σ3(s, ξ) =
( ∑
|γ|1<N0

+
∑

N0≤|γ|1<N

) (2πi)−|γ|1

γ!
Dγ
ξ σ1(s, ξ)Dγ

sσ2(s, ξ)

+

∫
Rd
RN (s, ξ, η)σ̂2(η, ξ)e−2πis·ηdη.

(2.12)

For every γ, the term Dγ
ξ σ1(s, ξ)Dγ

sσ2(s, ξ) is a symbol in S
n1+n2−(1−δ)|γ|1
1,δ . Indeed, it is clear that

‖Dγ
ξ σ1(s, ξ)Dγ

sσ2(s, ξ)‖B(X) . (1 + |ξ|)n1−|γ|1(1 + |ξ|)n2+δ|γ|1 = (1 + |ξ|)n1+n2−(1−δ)|γ|1 .

Moreover, for any β1, β2 ∈ Nd0, we have Dβ1
s σ1 ∈ S

n1+δ|β1|1
1,δ , Dβ2

s σ2 ∈ S
n2+δ|β1|1
1,δ and Dβ1

ξ σ1 ∈
S
n1−|β2|1
1,δ , Dβ2

ξ σ2 ∈ Sn2−|β2|1
1,δ . Thus, we get∥∥Dβ

s [Dγ
ξ σ1(s, ξ)Dγ

sσ2(s, ξ)]
∥∥
B(X)

.
∑

β1+β2=β

∥∥Dβ1
s D

γ
ξ σ1(s, ξ)Dβ2

s D
γ
sσ2(s, ξ)

∥∥
B(X)

. (1 + |ξ|)n1+n2−(1−δ)|γ|1+δ|β|1 ,

and ∥∥Dβ
ξ [Dγ

ξ σ1(s, ξ)Dγ
sσ2(s, ξ)]

∥∥
B(X)

.
∑

β1+β2=β

∥∥Dγ+β1

ξ σ1(s, ξ)Dγ
sD

β2

ξ σ2(s, ξ)
∥∥
B(X)

. (1 + |ξ|)n1+n2−(1−δ)|γ|1−|β|1 .

By the above estimates, we see that when N0 ≤ |γ|1 < N , Dγ
ξ σ1(s, ξ)Dγ

sσ2(s, ξ) ∈ Sn1+n2−(1−δ)N0

1,δ .

Now we have to treat the last term in (2.12). For the remainder RN (s, ξ, η), we easily check
that for any |γ|1 = N and 0 ≤ θ ≤ 1,

(2.13) ‖Dγ
ξ σ1(s, ξ + θη)‖B(X) ≤ CN (1 + |ξ|)n1−N , if |ξ| ≥ 2|η|,

and

(2.14) ‖Dγ
ξ σ1(s, ξ + θη)‖B(X) ≤ C ′N , ∀ η, ξ ∈ Rd.
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For σ̂2, by integration by parts, we see that for any β ∈ Nd0 such that |β|1 = Ñ , we have

(−2πiη)β σ̂2(η, ξ) =

∫
Rd

(−2πiη)βe−2πit·ησ2(t, ξ)dt

=

∫
Rd
Dβ
t (e−2πit·η)σ2(t, ξ)dt

= (−1)β
∫
Rd
e−2πit·ηDβ

t σ2(t, ξ)dt.

Denote the compact t-support of σ2(t, ξ) by Ω. Then the above calculation immediately implies
that

(2.15) ‖σ̂2(η, ξ)‖B(X) . |Ω|(1 + |η|)−Ñ (1 + |ξ|)n2+δÑ .

We keep the constant |Ω| in this inequality for the moment, and will see in the next step that our

final result does not depend on the volume of this support. Take Ñ large enough so that

Ñ > max
{ d

1− δ̃
,

(1− δ)N0

δ̃ − δ
,
d− n1 + (1− δ)N0

1− 2δ

}
,

and take N = δ̃Ñ with 0 ≤ δ < δ̃ < 1. Continuing the estimate of the last term in (2.12),
inequalities (2.13) and (2.15) give∥∥∥∫

|η|≤ |ξ|2

∫ 1

0

Dγ
ξ σ1(s, ξ + θη)(1− θ)Nηγ σ̂2(η, ξ)e−2πis·ηdθdη

∥∥∥
B(X)

.
∫
Rd
|η|N (1 + |η|)−Ñdη · (1 + |ξ|)n1+n2−N+δÑ

≤
∫
Rd

(1 + |η|)(δ̃−1)Ñdη · (1 + |ξ|)n1+n2+(δ−δ̃)Ñ

. (1 + |ξ|)n1+n2+(δ−δ̃)Ñ .

Moreover, since Ñ ≥ (1−δ)N0

δ̃−δ
, we have

(1 + |ξ|)n1+n2+(δ−δ̃)Ñ ≤ (1 + |ξ|)n1+n2−(1−δ)N0 .

According to (2.14) and (2.15), we get∥∥∥∫
|η|> |ξ|2

∫ 1

0

Dγ
ξ σ1(s, ξ + θη)(1− θ)Nηγ σ̂2(η, ξ)e−2πis·ηdθdη

∥∥∥
B(X)

.
∫
|η|> |ξ|2

|η|N (1 + |η|)−Ñdη · (1 + |ξ|)n2+δÑ

. (1 + |ξ|)n2+N+d−(1−δ)Ñ ≤ (1 + |ξ|)n1+n2−(1−δ)N0 .

Therefore, RN (s, ξ, η) ∈ Sn1+n2−(1−δ)N0

1,δ . Combining the estimates above, we see that, if we set

RN0
(s, ξ, η) =

∑
N0≤|γ|1<N

1
γ!D

γ
ξ σ1(s, ξ)ηγ +RN (s, ξ, η), then RN0

(s, ξ, η) ∈ Sn1+n2−(1−δ)N0

1,δ . This

proves the assertion (2.10) when σ2 has compact support with respect to the first variable.
Noticing that the above proof depends on the constant |Ω| in (2.15), we now make use of the

resolution of the unit in (1.4) to deal with general symbol σ2 with arbitrary s-support. For each
k ∈ Zd, denote σ2,k(s, ξ) = Xk(s)σ2(s, ξ) and

σ3,k(s, ξ) =

∫
Rd

∫
Rd
σ1(s, η)σ2,k(t, ξ)e2πi(s−t)·(η−ξ)dtdη .

It has already been established that

(2.16) σ3,k −
∑
|γ|1<N0

(2πi)−|γ|1

γ!
Dγ
ξ σ1D

γ
sσ2,k ∈ Sn1+n2−(1−δ)N0

1,δ , ∀N0 > 0, k ∈ Zd,

with relevant constants uniform in k. Observe that if two symbols b1, b2 in some Sn1,δ have disjoint
s-supports, with

‖Dγ
sD

β
ξ bi(s, ξ)‖B(X) ≤ Ci,γ,β(1 + |ξ|)n+δ|γ|1−|β|1 , i = 1, 2,
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then b1 + b2 ∈ Sn1,δ with

‖Dγ
sD

β
ξ

(
b1(s, ξ) + b2(s, ξ)

)
‖B(X) ≤ max{C1,γ,β , C2,γ,β}(1 + |ξ|)n+δ|γ|1−|β|1 .

For our use, we construct a partition of Zd with subsets U1, U2, · · · , U2d such that for any k1, k2

in each Uj , the supports suppXk1 and suppXk2 are disjoint. More precisely, let π: Z −→ Z/2Z be
the canonical projection sending even integer to 0 and odd integer to 1. Let πd: Zd −→ (Z/2Z)d

be the d-fold product of π. Then (Uj)j∈(Z/2Z)d =
(
(πd)−1(j)

)
j∈(Z/2Z)d

gives the desired partition

of Zd. Summing over (2.16) in each Uj , we get a symbol still in S
n1+n2−(1−δ)N0

1,δ , that is,∑
k∈Uj

σ3,k −
∑
k∈Uj

∑
|γ|1<N0

(2πi)−|γ|1

γ!
Dγ
ξ σ1D

γ
sσ2,k ∈ Sn1+n2−(1−δ)N0

1,δ .

Taking the finite sum over {Uj}1≤j≤2d , we get the asymptotic formula (2.10) in this case.
Finally, let us get rid of the additional assumption that σ1 and σ2 have compact supports. We

define σj3 as follows:

Tσj3
= Tσj1

Tσj2
.

where σj1(s, ξ) = σ1(s, ξ)η(2−js, 2−jξ) and σj2(s, ξ) = σ2(s, ξ)η(2−js, 2−jξ) with η given in (2.3).

Notice that the σj1’s and the σj2’s are in the class Sn1

1,δ and Sn2

1,δ respectively with symbolic constants

uniform in j. Therefore, the above arguments ensure that σj3 belongs to Sn1+n2

1,δ and satisfies (2.10)

uniformly in j. Passing to the limit, we get that σ3 ∈ Sn1+n2

1,δ and satisfies (2.10). Furthermore, by

(2.4), we get

Tσ3 = Tσ1Tσ2 .

The proof is complete. �

By a similar argument as the above proof, we also get the asymptotic formula for the adjoint of
a pseudo-differential operator with symbol in the class Sn1,δ when 0 ≤ δ < 1.

Proposition 2.9. Let 0 ≤ δ < 1, n ∈ R and σ be a symbol in Sn1,δ. There exists a symbol σ̃ ∈ Sn1,δ
such that Tσ̃ = (Tσ)∗. Moreover,

σ̃ −
∑
|γ|1<N0

(2πi)−|γ|1

γ!
Dγ
ξD

γ
sσ
∗ ∈ Sn−(1−δ)N0

1,δ , ∀N0 ≥ 0.

Proof. By (2.5), we get the formal expression of σ̃ that

σ̃(s, ξ) =

∫
Rd

∫
Rd
σ∗(t, η)e2πi(s−t)·(η−ξ)dtdη

=

∫
Rd
σ̂∗(η, ξ + η)e2πis·ηdη,

where σ̂∗ is the Fourier transform of σ∗ with respect to the first variable. By the same argument
used in the proof of the previous proposition, we may focus on the symbol with compact t-support.
Taking the Taylor expression of σ̂∗(η, ξ + η), we get

σ̂∗(η, ξ + η) =
∑
|γ|1<N0

1

γ!
Dγ
ξ σ̂
∗(η, ξ)ηγ +

∑
N0≤|γ|1<N

1

γ!
Dγ
ξ σ̂
∗(η, ξ)ηγ +RN (ξ, η).

As before, we can show that

1

γ!

∫
Rd
Dγ
ξ σ̂
∗(η, ξ)ηγe2πis·ηdη =

(2πi)−|γ|1

γ!
Dγ
ξD

γ
s σ̂
∗(s, ξ) ∈ Sn−(1−δ)|γ|1

1,δ .

On the other hand, we can also show that∥∥∫
Rd
RN (ξ, η)e2πis·ηdη

∥∥
B(X)

. (1 + |ξ|)n−(1−δ)N0

by splitting the integral over η into two parts. Moreover, repeating the above procedure to its

derivatives, we have
∫
Rd RN (ξ, η)e2πis·ηdη ∈ Sn−(1−δ)N0

1,δ . Thus, the proposition is proved. �
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Remark 2.10. The above two propositions show that the symbol class S0
1,δ is closed under the

product and adjoint of pseudo-differential operators. This is one of the reasons why we call symbols
in S0

1,δ with 0 ≤ δ < 1 regular symbols; respectively, we call symbols in S0
1,1 forbidden symbols.

In the next section, we will see the different behaviours of regular and forbidden symbols on L2

spaces, that also distinguish these two kinds of symbols.

3. Mapping properties on Sobolev and Besov spaces

In the sequel, we will mainly consider pseudo-differential operators whose symbols take values
in some von Neumann algebra M. If we take X = L1(M) +M, then M admits an isometric
embedding into B(X) by left multiplication. In this way, these M-valued symbols can be seen as
a special case of the B(X)-valued symbols defined in the previous section. On the other hand, if
we embedM into B(X) by right multiplication, we get another kind ofM-valued symbol actions.
Accordingly, we define

T cσf(s) =

∫
Rd
σ(s, ξ)f̂(ξ)e2πis·ξdξ

and

T rσf(s) =

∫
Rd
f̂(ξ)σ(s, ξ)e2πis·ξdξ.

All the conclusions proved in the previous section still hold for both T cσ and T rσ in parallel. In the
following sections, we mainly focus on the operators T cσ.

This section is devoted to the study of the continuity of operator-valued pseudo-differential
operators on Sobolev and Besov spaces. Let us now give some background on these function
spaces.

For α ∈ R, 1 ≤ p ≤ ∞ and a Banach space X, the potential Sobolev space Hα
p (Rd;X) is the

space of all distributions in S′(Rd;X) which have finite Sobolev norm ‖f‖Hαp = ‖Jαf‖Lp(Rd;X). It
is well known that the potential Sobolev spaces are closely related to Besov spaces. We still use
the resolution of the unit (ϕk)k≥0 introduced in (1.3) to define Besov spaces. Given α ∈ Rd and
1 ≤ p, q ≤ ∞, the Besov space Bαp,q(Rd;X) is defined to be the subspace of S′(Rd;X) consisting of
all f such that

‖f‖Bαp,q =
(∑
k≥0

2qkα‖ϕk ∗ f‖qLp(Rd;X)

) 1
q

<∞.

The above vector-valued Besov spaces Bαp,q(Rd;X) have been studied by many authors, see for
instance [1].

Instead of the Banach-valued spaces defined above, we prefer to study the operator-valued spaces
Hα
p (Rd;Lp(M)) and Bαp,q(Rd;Lp(M)). Obviously, the main difference is that the Banach space X

varies for different p. The following inclusions are easy to check for every 1 ≤ p ≤ ∞,

Bαp,1(Rd;Lp(M)) ⊂ Hα
p (Rd;Lp(M)) ⊂ Bαp,∞(Rd;Lp(M)).

Besov spaces are stable under real interpolation. More precisely, if α0, α1 ∈ R, α0 6= α1 and
0 < θ < 1, then

(3.1)
(
Bα0
p,q0(Rd;Lp(M)), Bα1

p,q1(Rd;Lp(M))
)
θ,q

= Bαp,q(Rd;Lp(M)),

for α = (1 − θ)α0 + θα1, p, q, q0, q1 ∈ [1,∞]. This result is a particular case of Amann’s Banach-
valued counterpart in [1] with X = Lp(M), which can be deduced from [6, Theorem 5.6.1] by
considering the pairing between `α0

q0 (Lp(Rd;X)) and `α1
q1 (Lp(Rd;X)).

3.1. Mapping properties on L2-Sobolev spaces. We start by presenting an L2-theorem. It is
a noncommutative analogue of the corresponding classical theorem, which can be found in many
works, for instance, [46, 47, 45]. We will work on the exotic class S0

δ,δ with 0 ≤ δ < 1, since we

have the inclusion S0
1,δ ⊂ S0

δ,δ. Our argument adapts [46, Proposition VII.2.4, Theorem VII.2.5] to

the operator-valued case. The Cotlar-Stein Almost Orthogonality Lemma [15, 46] plays a crucial
role in our proof. Namely, given a family of operators (Tj)j ⊂ B(H) with H a Hilbert space, and
a positive sequence

(
c(j)

)
j

such that
∑
j c(j) = C <∞, if the Tj ’s satisfy:

‖T ∗kTj‖B(H) ≤ |c(k − j)|2
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and

‖TkT ∗j ‖B(H) ≤ |c(k − j)|2,
then we have ∥∥∑

j

Tj
∥∥
B(H)

≤ C.

Lemma 3.1. Assume σ ∈ S0
0,0. Then T cσ is bounded on L2(N ).

Proof. By the Plancherel formula, it is enough to prove the L2(N )-boundedness of the following
operator:

Scσ(f)(s) =

∫
Rd
σ(s, ξ)f(ξ)e2πis·ξdξ.

Let us make use of the resolution of the unit (Xk)k∈Zd introduced in (1.4) to decompose Scσ into
almost orthogonal pieces. Denote k = (k, k′) ∈ Zd × Zd, and set

σk(s, ξ) = Xk(s)σ(s, ξ)Xk′(ξ),

Then, the series
∑

k∈Zd×Zd S
c
σk

converges in the strong operator topology and

Scσ =
∑

k∈Zd×Zd
Scσk

.

We claim that (Scσk
)k satisfies the almost-orthogonality estimates, i.e., for any N ∈ N,

‖(Scσk
)∗Scσj

‖B(L2(N )) ≤ CN (1 + |k− j|)−2N ,

and

‖Scσk
(Scσj

)∗‖B(L2(N )) ≤ CN (1 + |k− j|)−2N ,

where the constant CN is independent of k = (k, k′) and j = (j, j′). Armed with this claim, we
can then apply the Cotlar-Stein Almost Orthogonality Lemma stated previously to the operators
(Scσk

)k with c(j) = (1 + |j|)−N , N > 2d. Then, we will have

‖Scσ‖B(L2(N )) = ‖
∑

k∈Zd×Zd
Scσk
‖B(L2(N )) ≤ C.

Now we prove the claim. Note that for any f ∈ L2(N ),

(Scσk
)∗Scσj

(f)(ξ) =

∫
Rd
σk,j(ξ, η)f(η)dη,

where

(3.2) σk,j(ξ, η) =

∫
Rd
σ∗k(s, ξ)σj(s, η)e2πis·(η−ξ)ds.

By the definition of σk, we see that if k − j /∈ 2Q0,0 (recalling that Q0,0 is the unit cube centered
at the origin), σk and σj have disjoint s-support, so

σ∗kσj = 0.

When k − j ∈ 2Q0,0, using the identity

(1−∆s)
Ne2πis·(η−ξ) = (1 + 4π2|η − ξ|2)Ne2πis·(η−ξ),

we integrate (3.2) by parts, which gives

‖σk,j(ξ, η)‖M ≤ CNXk′(ξ)Xj′(η)(1 + |ξ − η|)−2N .

Whence,

(3.3) max
{∫

Rd
‖σk,j(ξ, η)‖Mdξ,

∫
Rd
‖σk,j(ξ, η)‖Mdη

}
≤ C ′N (1 + |k− j|)−2N .

For any f ∈ L2(N ), there exists g ∈ L2(N ) with norm one such that∥∥(Scσk
)∗Scσj

f
∥∥
L2(N )

=
∣∣∣τ ∫

Rd

∫
Rd
σk,j(ξ, η)f(η) dη g∗(ξ) dξ

∣∣∣.
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Applying the Hölder inequality and (3.3), we get∣∣∣τ ∫
Rd

∫
Rd
σk,j(ξ, η)f(η) dη g∗(ξ) dξ

∣∣∣
≤
(
τ

∫
Rd

∫
Rd
‖σk,j(ξ, η)‖M|f(η)|2dηdξ

) 1
2
(
τ

∫
Rd

∫
Rd
‖σk,j(ξ, η)‖M|g(ξ)|2dξdη

) 1
2

≤ C ′N (1 + |k− j|)−2N‖f‖L2(N ).

Thus, ‖(Scσk
)∗Scσj

‖B(L2(N )) ≤ C ′N (1 + |k − j|)−2N . On the other hand, a similar argument also
shows that

‖Scσk
(Scσj

)∗‖B(L2(N )) ≤ C ′N (1 + |k− j|)−2N ,

which proves the claim. �

A weak form of Cotlar-Stein’s almost orthogonality lemma also plays a crucial role. As before,
we suppose that

∑
j c(j) = C <∞. This time we assume that the Tj ’s satisfy:

(3.4) sup
j
‖Tj‖B(H) ≤ C

and the following conditions hold for j 6= k:

(3.5) ‖TjT ∗k ‖B(H) = 0 and ‖T ∗j Tk‖B(H) ≤ c(j)c(k).

Then we have ∥∥∑
j

Tj
∥∥
B(H)

≤
√

2C.

Proposition 3.2. Let σ ∈ S0
δ,δ with 0 ≤ δ < 1. Then T cσ is bounded on L2(N ).

Proof. To prove this lemma, we apply Cotlar’s lemma as stated above. Let (ϕ̂j)j≥0 be the resolution
of the unit defined in (1.3). We can decompose T cσ as follows:

T cσ =

∞∑
j=0

T cσj =
∑
j even

T cσj +
∑
j odd

T cσj ,

where σj(s, ξ) = ϕ̂j(ξ)σ(s, ξ). Note that the symbols in either odd or even summand have disjoint
ξ-supports. We will only treat the odd part, since the other part can be dealt with in a similar
way. It is clear that T cσj (T

c
σk

)∗ = 0 if j 6= k, since T cσj (T
c
σk

)∗ = T cσMϕ̂jMϕ̂k
(T cσ)∗ and ϕ̂j , ϕ̂k have

disjoint supports. Now let us estimate the second inequality in (3.5), i.e. the norm of (T cσk)∗T cσj .
Since

(T cσk)∗(f)(s) =

∫
Rd

∫
Rd
σ∗k(t, ξ)f(t)e2πiξ·(s−t)dtdξ,

and

T cσj (f)(t) =

∫
Rd

∫
Rd
σj(t, η)f(r)e2πiη·(t−r)drdη.

Then we have

(T cσk)∗T cσj (f)(s) =

∫
Rd
K(s, r)f(r)dr,

with

K(s, r) =

∫
Rd

∫
Rd

∫
Rd
σ∗k(t, ξ)σj(t, η)e2πi[η·(t−r)+ξ·(s−t)]dtdηdξ.

Writing

e2πi(η−ξ)·t =
(1−∆t)

N

(1 + 4π2|ξ − η|2)N
e2πi(η−ξ)·t,

e2πi(t−r)·η =
(1−∆η)N

(1 + 4π2|t− r|2)N
e2πi(t−r)·η,

and

e2πi(s−t)·ξ =
(1−∆ξ)

N

(1 + 4π2|s− t|2)N
e2πi(s−t)·ξ,
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we use the integration by parts with respect to the variables t, ξ and η. By standard calculation
(see [46, Theorem 2, p. 286] for more details), we get

‖K(s, r)‖M . 4max(k,j)((δ−1)N+d)

∫
Q(s− t)Q(t− r)dt,

where Q(t) = (1 + |t|)−2N , if k 6= j. Denote K0(s, r) =
∫
Q(s− t)Q(t− r)dt, then

(3.6)

∫
Rd
K0(s, r)ds =

∫
Rd
K0(s, r)dr =

( ∫
Rd

(1 + |t|)−2Ndt
)2
<∞.

For any f ∈ L2(N ), there exists g ∈ L2(N ) with norm one such that∥∥(T cσk)∗T cσjf
∥∥
L2(N )

=
∣∣∣τ ∫

Rd

∫
Rd
K(s, r)f(r)g(s)drds

∣∣∣.
Applying the Hölder inequality and (3.6), we get∣∣∣τ ∫

Rd

∫
Rd
K(s, r)f(r)g(s)drds

∣∣∣
≤
(
τ

∫
Rd

∫
Rd
‖K(s, r)‖M|f(r)|2dsdr

) 1
2
(
τ

∫
Rd

∫
Rd
‖K(s, r)‖M|g(s)|2dsdr

) 1
2

. 4max(k,j)((δ−1)N+d)‖f‖L2(N ),

which implies that ∥∥(T cσk)∗T cσj
∥∥
B(L2(N ))

. c(j)c(k), j 6= k,

with c(j) = 2j((δ−1)N+d). If we take N > d
1−δ , the sequence

(
c(j)

)
j

is summable.

In order to apply Cotlar-Stein’s lemma, it remains to show that T cσj ’s satisfy (3.4). To this end,
we do some technical modifications. Set

σ̃j = σj(2
−jδ·, 2jδ·).

We can easily check that the σ̃j ’s belong to S0
0,0, uniformly in j. Then, by Lemma 3.1, the T cσ̃j ’s

are bounded on L2(N ) uniformly in j. If Λj denotes the dilation operator given by

Λj(f) = f(2jδ·),

then, we can easily verify that

T cσj = ΛjT
c
σ̃j

Λ−1
j .

Thus,

‖T cσj‖B(L2(N )) ≤ ‖T cσ̃j‖B(L2(N )) <∞.
Therefore, (T cσj )j≥0 satisfy the assumptions of Cotlar’s lemma. So we get

‖T cσ‖B(L2(N )) = ‖
∞∑
j=0

T cσj‖B(L2(N )) <∞.

Thus, T cσ is bounded on L2(N ). �

By Proposition 2.8 and the fact that S0
1,δ ⊂ S0

δ,δ for 0 ≤ δ < 1, we have

Corollary 3.3. Let σ ∈ S0
1,δ with 0 ≤ δ < 1. Then T cσ is bounded on Hα

2 (Rd;L2(M)) for any
α ∈ R.

Proof. If α = 0, by Proposition 3.2 and the inclusion S0
1,δ ⊂ S0

δ,δ, we see the boundedness of T cσ on

L2(Rd;L2(M)). For general α 6= 0, we use the lifting property of Hα
2 (Rd;L2(M)), which follows

easily from the definition. By Proposition 2.8,

T cσα = JαT cσJ
−α

is still a pseudo-differential operator with symbol σα in S0
1,δ. Then for any f ∈ Hα

2 (Rd;L2(M)),

‖T cσf‖Hα2 = ‖J−αT cσαJαf‖Hα2 = ‖T cσαJαf‖2 . ‖Jαf‖2 = ‖f‖Hα2 .

Therefore, T cσ is bounded on ∈ Hα
2 (Rd;L2(M)). �
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It is well known [46] that there exist symbols in S0
1,1 such that the associated pseudo-differential

operators are not bounded on L2(Rd). Alternatively, the regularity of operators with forbidden
symbols on Sobolev spaces Hα

p (Rd), Besov spaces Bαp,q(Rd) and Triebel-Lizorkin spaces Fαp,q(Rd)
with α > 0 has been widely investigated, see [35, 36, 7, 44, 49].

The following proposition states the regularity of pseudo-differential operators with forbidden
symbols on Hα

2 (Rd;L2(M)), which will be useful when studying that on Triebel-Lizorkin spaces.

Proposition 3.4. Let σ ∈ S0
1,1. Then T cσ is bounded on Hα

2 (Rd;L2(M)) for any α > 0.

Proof. Let (ϕj)j≥0 be the resolution of the unit satisfying (1.3). It is straightforward to show that
Hα

2 (Rd;L2(M)) admits an equivalent norm:

(3.7) ‖f‖Hα2 (Rd;L2(M)) ≈
(∑
j≥0

22jα‖ϕj ∗ f‖2L2(N )

) 1
2 = ‖f‖Bα2,2(Rd;L2(M)).

Thus, it suffices to consider the boundedness of T cσ on Bα2,2(Rd;L2(M)). Let σk with k ∈ N0 be
the dyadic decomposition of σ given in (2.9). By the support assumptions of ϕ̂ and ϕ̂0, we have

T cσk(f) = T cσk(fk),

where fk = (ϕk−1 + ϕk + ϕk+1) ∗ f for k ≥ 1, and f0 = (ϕ0 + ϕ1) ∗ f . Applying Lemma 2.7 to Kk

with M = 0, we get∫
|s−t|≤2−k

‖Dγ
sKk(s, s− t)‖Mdt .

∫
|s−t|≤2−k

2k(|γ|1+d)dt ≈ 2k|γ|1 .

If d+ 1 is even, applying Lemma 2.7 again to Kk with 2M = d+ 1, we get∫
|s−t|>2−k

‖Dγ
sKk(s, s− t)‖Mdt .

∫
|s−t|>2−k

2k(|γ|1−1)|s− t|−d−1dt ≈ 2k|γ|1 ;

if d+ 2 is even, letting 2M = d+ 2 in Lemma 2.7, we get the same estimate. Therefore, summing
up the above estimates of

∫
|s−t|≤2−k

and
∫
|s−t|>2−k

, we obtain

(3.8)

∫
Rd
‖Dγ

sKk(s, s− t)‖Mdt . 2k|γ|1 .

Since the estimate of ‖Dγ
sKk(s, s− t)‖M is symmetric in s and t, the same proof also shows that

(3.9)

∫
Rd
‖Dγ

sKk(s, s− t)‖Mds . 2k|γ|1 .

For any f ∈ Hα
2 (Rd;L2(M)) and k ∈ N0, there exists gk ∈ L2(N ) with norm one such that

‖Dγ
sT

c
σk

(f)‖L2(N ) =
∣∣τ ∫Rd Dγ

sT
c
σk

(f)(s)g∗k(s)ds
∣∣. By the Hölder inequality,

‖Dγ
sT

c
σk

(f)‖2L2(N )

=
∣∣∣τ ∫

Rd
Dγ
sT

c
σk

(f)(s)g∗k(s)ds
∣∣∣2

=
∣∣∣τ ∫

Rd

∫
Rd
Dγ
sKk(s, s− t)fk(t) dt g∗k(s) ds

∣∣∣2
=
∣∣∣τ ∫

Rd

∫
Rd
‖Dγ

sKk(s, s− t)‖−
1
2

M Dγ
sKk(s, s− t)fk(t)‖Dγ

sKk(s, s− t)‖
1
2

M g∗k(s) dt ds
∣∣∣2

≤ τ
∫
Rd

∫
Rd
‖Dγ

sKk(s, s− t)‖M|gk(s)|2 dt ds · τ
∫
Rd

∫
Rd
‖Dγ

sKk(s, s− t)‖M|fk(t)|2 ds dt.

Then (3.8) and (3.9) ensure that

(3.10) ‖Dγ
sT

c
σk

(f)‖2L2(N ) . 22k|γ|1 · ‖fk‖2L2(N ).

Taking γ = 0, the above calculation implies that

(3.11) ‖T cσ(f)‖L2(N ) ≤
∑
k≥0

‖T cσk(f)‖L2(N ) .
∑
k≥0

‖fk‖L2(N ) . ‖f‖B0
2,1
,

which implies the boundedness of T cσ from B0
2,1(Rd;L2(M)) to L2(N ).
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On the other hand, if we take

a0 = ϕ0, aj(ξ) = (1− ϕ0(ξ))
ξj
|ξ|2

,

then we get

1 = a0(ξ) +

d∑
j=1

aj(ξ)ξj , ∀ ξ ∈ Rd.

This identity implies

1 = (a0(ξ) +

d∑
j=1

aj(ξ)ξj)
l =

∑
|γ|1≤l

σγ(ξ)ξγ , ∀ l ∈ N0, ∀ ξ ∈ Rd,

where the σγ(ξ)’s are symbols in S
−|γ|1
1,0 ⊂ S

−|γ|1
1,1 . The above identity allows us to decompose the

term ϕj ∗ T cσk(f) in the following way:

(3.12) ϕj ∗ T cσk(f) =
∑
|γ|1≤l

T cσγ (ϕj ∗Dγ
sT

c
σk

(f)) =
∑
|γ|1≤l

T c
σjγ

(Dγ
sT

c
σk

(f)),

where σjγ = σγϕ̂j . Note that the symbol σjγ ∈ S
−|γ|1
1,0 for any j, and if |γ|1 < l, σjγ 6= 0 if and only

if j = 0 and j = 1. If j ≤ k + 1, by the Plancherel formula and (3.10), we have

2jα‖ϕj ∗ T cσk(f)‖L2(N ) . 2jα‖T cσk(f)‖L2(N ) . 2jα‖fk‖L2(N ) . 2kα‖fk‖L2(N ).

If j ≥ k + 2, adapting the proof of (3.10) with σjγ in place of σk, we deduce that

(3.13) ‖T c
σjγ

(Dγ
sT

c
σk

(f))‖L2(N ) ≤ Cγ2−j|γ|1‖Dγ
sT

c
σk

(f)‖L2(N ).

For any |γ|1 < l, by the previous observation, σjγ = 0. Therefore, estimates (3.10), (3.12) and
(3.13) implies that

‖ϕj ∗ T cσk(f)‖L2(N ) = ‖
∑
|γ|1=l

T c
σjγ

(Dγ
sT

c
σk

(f))‖L2(N )

.
∑
|γ|1=l

2−jl‖Dγ
sT

c
σk

(f)‖L2(N )

.
∑
|γ|1=l

2(k−j)l‖fk‖L2(N ).

Thus, if we take l to be the smallest integer larger than α, we have

2jα‖ϕj ∗ T cσk(f)‖L2(N ) . 2(j−k)(α−l)2kα‖fk‖L2(N ) ≤ 2kα‖fk‖L2(N ).

Combining the above estimate for j ≥ k + 2 and that for j ≤ k + 1, we get

sup
j∈N0

2jα‖ϕj ∗ T cσk(f)‖L2(N ) . 2kα‖fk‖L2(N ),

whence,

‖T cσk(f)‖Bα2,∞ . 2kα‖fk‖L2(N ).

Then by the triangle inequality, we have

(3.14) ‖T cσ(f)‖Bα2,∞ ≤
∑
k≥0

‖T cσk(f)‖Bα2,∞ .
∑
k≥0

2kα‖fk‖L2(N ) . ‖f‖Bα2,1 ,

which shows that T cσ is bounded from Bα2,1(Rd;L2(M)) to Bα2,∞(Rd;L2(M)).
Applying (3.11), (3.14) and the real interpolation (3.1) with p = 2, q = 2 and α0 = 0, α1 = α,

we obtain the following boundedness:

‖T cσ(f)‖Bβ2,2 . ‖f‖Bβ2,2 , ∀β > 0.

Finally, (3.7) together with the above inequality yields the desired assertion. �
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3.2. Mapping properties on Besov spaces. Using a similar argument as in the proof of Propo-
sition 3.4, we are able to obtain the regularity of pseudo-differential operators on general operator-
valued Besov spaces Bαp,q(Rd;Lp(M)) with 1 ≤ p, q ≤ ∞. Let us record it specifically below.

Theorem 3.5. Let 1 ≤ p, q ≤ ∞.

i) If σ ∈ S0
1,δ for some 0 ≤ δ ≤ 1, then T cσ is bounded from B0

p,1(Rd;Lp(M)) to Lp(N ), and

bounded on Bαp,q(Rd;Lp(M)) for any α > 0.

ii) If σ ∈ S0
1,δ with 0 ≤ δ < 1, then T cσ is bounded on Bαp,q(Rd;Lp(M)) for any α ∈ R.

iii) The above assertions hold for T rσ as well.

Proof. Firstly we note that the argument in (3.10) still works for all 1 ≤ p ≤ ∞: For any f ∈
Hα
p (Rd;Lp(M)) and k ∈ N0, there exists a norm one element gk ∈ Lq(N ) with 1

p + 1
q = 1 such

that ‖Dγ
sT

c
σk

(f)‖Lp(N ) =
∣∣τ ∫Rd Dγ

sT
c
σk

(f)(s)g∗k(s)ds
∣∣. Applying (3.8) and (3.9) again, we have

‖Dγ
sT

c
σk

(f)‖Lp(N )

=
∣∣∣τ ∫

Rd

∫
Rd
Dγ
sKk(s, s− t)fk(t) dt g∗k(s) ds

∣∣∣
=
∣∣∣τ ∫

Rd

∫
Rd
‖Dγ

sKk(s, s− t)‖
−p+1
p

M Dγ
sKk(s, s− t)fk(t)‖Dγ

sKk(s, s− t)‖
p−1
p

M g∗k(s) dt ds
∣∣∣

≤
(
τ

∫
Rd

∫
Rd
‖Dγ

sKk(s, s− t)‖M|fk(t)|p dt ds
) 1
p ·
(
τ

∫
Rd

∫
Rd
‖Dγ

sKk(s, s− t)‖M|gk(s)|q dt ds
) 1
q

. 2k|γ|1 · ‖fk‖Lp(N ).

Then we get the boundedness of T cσ from B0
p,1(Rd;Lp(M)) to Lp(N ) as in (3.11). Furthermore, we

can deduce the Lp-version of (3.14), i.e. the boundedness from Bαp,1 to Bαp,∞ for α > 0. Thus, for

α > 0, the boundedness of T cσ on Bαp,q(Rd;Lp(M)) is ensured by interpolation (3.1). The conclusion
i) is therefore proved. If δ < 1, by Proposition 2.8 and the lifting property of Besov spaces (see [1,
Theorem 6.1]), i) yields ii) for general α ∈ R. Finally, the assertion for T rσ can be proved using the
same method; we omit the details. �

4. The action of pseudo-differential operators on (sub)atoms

In order to study the boundedness of pseudo-differential operators on the Triebel-Lizorkin spaces,
we will use the atomic decomposition stated in Theorem 1.3. In other words, we will focus on the
images of the atoms under the action of pseudo-differential operators instead of those of general
functions in the Triebel-Lizorkin spaces. Our idea initially comes from Triebel’s book [53, Theorem
6.3.2], where the atomic decomposition is a key tool to treat the operators with symbols of forbidden
type. However, due to the noncommutativity, the (sub)atoms we have obtained in our previous
paper [56] (mentioned in Theorem 1.3) are L2-atoms which do not have the pointwise estimates as
the ones in [53]. Thus, it turns out that we need much subtler estimates regarding the images of
these (sub)atoms in order to realise the required boundedness.

The first lemma in this section concerns the image of an (α,Qµ,l)-subatom under the action of
pseudo-differential operators.

Lemma 4.1. Let α ∈ R, σ ∈ S0
1,δ and T cσ be the corresponding pseudo-differential operator. In

addition, we assume that K > d
2 . Then for any (α,Qµ,l)-subatom aµ,l, we have

(4.1) τ
( ∫

Rd
(1 + 2µ|s− 2−µl|)d+M |DγT cσaµ,l(s)|2ds

) 1
2 . |Qµ,l|

α
d−
|γ|1
d , |γ|1 < K − d

2
,

where M ∈ R such that M < 2L+ 2 and the relevant constant depends on M , K, L, γ and d.

Proof. We split the integral on the left hand side of (4.1) into
∫

4Qµ,l
and

∫
(4Qµ,l)c

. To estimate the

term with
∫

4Qµ,l
, we begin with a technical modification of aµ,l. For every aµ,l, we define

a = |Qµ,l|−
α
d+ 1

2 aµ,l(2
−µ(·+ l)).
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It is easy to see that a is an (α,Q0,0)-subatom. By translation, we may assume that l = 0. Then
by the Cauchy-Schwarz inequality (1.5), for any s ∈ Rd, we have

|T cσaµ,l(s)|2 = 2−2µd|Qµ,l|2(αd−
1
2 )
∣∣∣ ∫

Rd
σ(s, ξ)â(2−µξ)e2πis·ξdξ

∣∣∣2
= |Qµ,l|2(αd−

1
2 )
∣∣∣ ∫

Rd
σ(s, 2µξ)â(ξ)e2πis·2µξdξ

∣∣∣2
≤ |Qµ,l|2(αd−

1
2 )

∫
Rd
‖σ(s, 2µξ)‖2M(1 + |ξ|2)−Kdξ∫

Rd
(1 + |ξ|2)K‖σ(s, 2µξ)‖−2

M â∗(ξ)|σ(s, 2µξ)|2â(ξ)dξ.

Using the standard operator-valued inequality

(4.2) x∗y∗yx ≤ ‖y‖2x∗x,

we deduce from the Plancherel formula (1.6) that

|T cσaµ,l(s)|2 . |Qµ,l|2(αd−
1
2 )

∫
Rd

(1 + |ξ|2)−Kdξ ·
∫
Rd

(1 + |ξ|2)K |â(ξ)|2dξ

. |Qµ,l|2(αd−
1
2 )

∫
Rd
|JKa(t)|2dt,

where JK is the Bessel potential of order K. Combining the second assumption on aµ,l in Definition
1.2 and the above estimate, we obtain

τ
( ∫

4Qµ,l

|T cσaµ,l(s)|2(1 + 2µ|s|)d+Mds
) 1

2 . τ
( ∫

4Qµ,l

|T cσaµ,l(s)|2ds
) 1

2

. |Qµ,l|
α
d τ(

∫
Rd
|JKa(t)|2dt) 1

2

. |Qµ,l|
α
d

∑
|γ|1≤K

τ
( ∫

Rd
|Dγa(t)|2dt

) 1
2 . |Qµ,l|

α
d .

If s ∈ (4Qµ,l)
c, since aµ,l has the moment cancellations of order less than or equal to L, we can

subtract a Taylor polynomial of degree L from the kernel associated to T cσ,

|T cσaµ,l(s)|2 =
∣∣∣ ∫

Rd
K(s, s− t)aµ,l(t)dt

∣∣∣2
=
∣∣∣ ∫

Rd
[K(s, s− t)−K(s, s)]aµ,l(t)dt

∣∣∣2
=
∣∣∣ ∫

Rd
[
∑

|β|1=L+1

L+ 1

β!
tβ
∫ 1

0

(1− θ)LDβK(s, s− θt)dθ]aµ,l(t)dt
∣∣∣2.

Applying the Cauchy-Schwarz inequality (1.5) and then the inequalities (2.7) and (4.2), we get

|T cσaµ,l(s)|2 .
∑

|β|1=L+1

∫
2Qµ,l

∥∥∥∫ 1

0

(1− θ)LDβK(s, s− θt)dθ
∥∥∥2

M
|t|2L+2dt

·
∫
Rd

∥∥∥∫ 1

0

(1− θ)LDβK(s, s− θt)dθ
∥∥∥−2

M

∣∣∣ ∫ 1

0

(1− θ)LDβK(s, s− θt)dθ aµ,l(t)
∣∣∣2dt

≤
∑

|β|1=L+1

∫
2Qµ,l

sup
0≤θ≤1

‖DβK(s, s− θt)‖2M |t|2L+2dt ·
∫
Rd
|aµ,l(t)|2dt

. |s|−2d−2L−2

∫
2Qµ,l

|t|2L+2dt ·
∫
Rd
|aµ,l(t)|2dt

. 2−µ(2L+2+d)|s|−2d−2L−2

∫
Rd
|aµ,l(t)|2dt.

(4.3)
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This estimate implies

τ
( ∫

(4Qµ,l)c
|T cσaµ,l(s)|2(1 + 2µ|s|)d+Mds

) 1
2

. 2−µ(L+1−M2 )
( ∫

(4Qµ,l)c
|s|−d−2L−2+Mds

) 1
2 · τ

( ∫
Rd
|aµ,l(t)|2dt

) 1
2

. 2−µ(L+1−M2 )2µ(L+1−M2 )|Qµ,l|
α
d = |Qµ,l|

α
d .

If we take M = −d in the above inequality, we have T cσaµ,l ∈ L1

(
M;Lc2(Rd)

)
. By approximation,

we can assume that σ(s, ξ) has compact ξ-support, so that

T cσaµ,l(s) =

∫
Rd
σ(s, ξ)âµ,l(ξ)e

2πis·ξdξ

is uniformly convergent. Moreover, one can differentiate the integrand and obtain always uniformly
convergent integrals. Then, for any |γ|1 < K − d

2 , we have

τ
( ∫

4Qµ,l

|DγT cσaµ,l(s)|2(1 + 2µ|s|)d+Mds
) 1

2

. |Qµ,l|
α
d τ(

∫
Rd
|JKa(t)|2dt) 1

2

∫
Rd

(1 + |ξ|)2|γ|1−2Kdξ

. |Qµ,l|
α
d

∑
|γ|1≤K

τ
( ∫

Rd
|Dγa(t)|2dt

) 1
2 . |Qµ,l|

α
d .

(4.4)

By a similar argument to that of (4.3), we have, for any γ ∈ Nd0 and s ∈ (4Qµ,l)
c,

(4.5) |DγT cσaµ,l(s)|2 . 2−µ(2L+2+d)|s|−2d−2L−2−2|γ|1
∫
Rd
|aµ,l(t)|2dt.

Therefore, we deduce that

τ
( ∫

(4Qµ,l)c
|DγT cσaµ,l(s)|2(1 + 2µ|s|)d+Mds

) 1
2

. 2−µ(L+1−M2 )
( ∫

(4Qµ,l)c
|s|−d−2L−2+M−2|γ|1ds

) 1
2 · τ

( ∫
Rd
|aµ,l(t)|2dt

) 1
2

. 2−µ(L+1−M2 )2µ(L+1−M2 +|γ|1)|Qµ,l|
α
d = |Qµ,l|

α
d−
|γ|1
d .

Combining the estimates above, we get (4.1). �

On the other hand, we also have the following lemma concerning the image of (α, 1)-atoms under
the action of pseudo-differential operators.

Lemma 4.2. Let α ∈ R, σ ∈ S0
1,δ. Let K > d

2 and b be an (α, 1)-atom based on the cube Q0,m.
Then for any M ∈ R, we have

(4.6) τ
( ∫

Rd
(1 + |s−m|)d+M |DγT cσb(s)|2ds

) 1
2 . 1, |γ|1 < K − d

2
,

where the relevant constant depends on M , K, γ and d.

Proof. The proof of this lemma is similar to that of the previous one. The only difference is that
for an (α, 1)-atom, we do not necessarily have the moment cancellation; thus, we have to use the
extra decay of the kernel proved in Lemma 2.6 for |t| > 1.

If s ∈ 4Q0,m, we follow the estimate for subatoms in the previous lemma. Applying the size
estimate of b, we get

τ
( ∫

4Q0,m

(1 + |s−m|)d+M |T cσb(s)|2ds
) 1

2 . τ(

∫
Rd
|JKb(t)|2dt) 1

2 . 1.
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If s ∈ (4Q0,m)c and t ∈ 2Q0,m, we have |s− t| ≥ 1. Then (2.8) gives

|T cσb(s)|2 =
∣∣∣ ∫

Rd
K(s, s− t)b(t)dt

∣∣∣2
≤
∫

2Q0,m

‖K(s, s− t)‖2Mdt
∫

2Q0,m

|b(t)|2dt

. |s−m|−2N

∫
2Q0,m

|b(t)|2dt,

where the positive integer N can be arbitrarily large. Thus

τ
( ∫

(4Q0,m)c
(1 + |s−m|)d+M |T cσb(s)|2ds

) 1
2

.
( ∫

(4Q0,m)c
|s−m|d+M−2Nds

) 1
2 τ
( ∫

2Q0,m

|b(t)|2dt
) 1

2 . 1.

Then, the estimates obtained above imply that

τ
( ∫

Rd
(1 + |s−m|)d+M |T cσb(s)|2ds

) 1
2 . 1.

Similarly, we treat DγT cσb(s) as

τ
( ∫

Rd
(1 + |s−m|)d+M |DγT cσb(s)|2ds

) 1
2 . 1, |γ|1 < K − d

2
.

Therefore, (4.6) is proved. �

The following lemma shows that, if the symbol σ satisfies some support condition, we can even
estimate the Fα,c1 -norm of the image of (α,Qµ,l)-subatoms under T cσ. Recall that for any cube
Q ⊂ Rd and any s ∈ Rd, s+Q denotes the cube {t ∈ Rd : t− s ∈ Q}.
Lemma 4.3. Let σ ∈ S0

1,δ and α ∈ R. Assume that K ∈ N satisfy K > d
2 and K > α + d+ 1. If

the s-support of σ is in (2−µl + 4Q0,0)c, then for any (α,Qµ,l)-subatom aµ,l, we have

‖T cσaµ,l‖Fα,c1
. 2−µ( d2 +ι),

where ι is a positive real number.

Proof. Without loss of generality, we still assume l = 0. We need to use the characterization of
Fα,c1 -norm by the following convolution kernels. Let κ be a radial, real and infinitely differentiable
function on Rd supported in Q0,0, and assume that κ̂(0) > 0. We take Φ = | · |N κ̂ with N ∈ N0

such that α+ d
2 < N < K − d

2 , and another test function Φ0 ∈ S with supp Φ0 ⊂ Q0,0. Let Φε be
the inverse Fourier transform of Φ(εξ). To simplify the notation, we denote T cσaµ,l by ηµ,l. Then
Theorem 4.2 in [56] yields

‖ηµ,l‖Fα,c1
≈ ‖Φ0 ∗ ηµ,l‖1 +

∥∥∥( ∫ 1

0

ε−2α|Φε ∗ ηµ,l|2
dε

ε

) 1
2

∥∥∥
1
.

We notice that
∫
Rd Φε(t)t

γdt = 0 for any |γ|1 ≤ N − 1, it follows that

Φε ∗ ηµ,l(s) =

∫
Rd

Φε(t)[ηµ,l(s− t)− ηµ,l(s)]dt

=

∫
Rd

Φε(t)
∑
|γ|1=N

N

γ!
(−t)γ

∫ 1

0

(1− θ)N−1Dγηµ,l(s− θt)dθ dt.
(4.7)

Applying the Cauchy-Schwarz inequality, we have∣∣∣ ∫
Rd

Φε(t)
∑
|γ|1=N

N

γ!
(−t)γ

∫ 1

0

(1− θ)N−1Dγηµ,l(s− θt)dθ dt
∣∣∣2

.
∑
|γ|1=N

∫
Rd

∫ 1

0

(1− θ)2(N−1)|Dγηµ,l(s− θt)|2dθ(1 + |t|)−d−1dt

·
∫
Rd
|Φε(t)|2|t|2N (1 + |t|)d+1dt.

(4.8)
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By (4.5), if s− θt ∈ (4Q0,0)c, we have

|Dγηµ,l(s− θt)|2 . 2−µ(2L+2+d)|s− θt|−2d−2L−2−2|γ|1
∫
Rd
|aµ,l(r)|2dr.

Therefore, using the Cauchy-Schwarz inequality again, we have∥∥∥( ∫ 1

0

ε−2α|Φε ∗ ηµ,l|2
dε

ε

) 1
2

∥∥∥
1

. 2−µ(L+1+ d
2 )
( ∫ 1

0

ε2N−d−2α dε

ε

) 1
2

∫
(2Q0,0)c

|s′|−d−L−N−1ds′
∫
Rd

(1 + |t|)−d−1dt

·
∫
Rd
|Φ(t′)|2|t′|2N (1 + |t′|)d+1dt′ · τ

( ∫
Rd
|aµ,l(r)|2dr

) 1
2

. 2−µ(L+1+ d
2 )τ
( ∫

Rd
|aµ,l(t)|2dt

) 1
2

. 2−µ(L+1+ d
2 +α).

(4.9)

It remains to estimate the L1-norm of Φ0 ∗ ηµ,l, where Φ0 does not have moment cancellation.
Since supp ηµ,l ⊂ (4Q0,0)c and by the support assumption of Φ0, we have supp Φ0 ∗ ηµ,l ⊂ {s ∈
Rd : |s| ≥ 1

2}. By Lemma 4.1 and the fact that |Φ0(s)| . (1 + |s|)−d−R for any R ∈ N, we have

|Φ0 ∗ ηµ,l(s)|2 =
∣∣∣ ∫

Rd
Φ0(s− t)ηµ,l(t)dt

∣∣∣2
≤
∣∣∣ ∫
|t|≥max{ |s|2 ,1}

Φ0(s− t)ηµ,l(t)dt
∣∣∣2 +

∣∣∣ ∫
1≤|t|< |s|2

Φ0(s− t)ηµ,l(t)dt
∣∣∣2

≤
∫
|t|≥max{ |s|2 ,1}

(1 + 2µ|t|)−2d−2R|Φ0(s− t)|2dt ·
∫
Rd

(1 + 2µ|t|)2d+2R|ηµ,l(t)|2dt

+

∫
1≤|t|< |s|2

(1 + 2µ|t|)−2d−2R|Φ0(s− t)|2dt ·
∫
Rd

(1 + 2µ|t|)2d+2R|ηµ,l(t)|2dt

.
∫
Rd
|Φ0(t)|2dt (1 + 2µ|s|)−2d−2R

∫
Rd

(1 + 2µ|t|)2d+2R|ηµ,l(t)|2dt

+

∫
|t|≥1

(1 + 2µ|t|)−2d−2Rdt (1 + |s|)−2d−2R

∫
Rd

(1 + 2µ|t|)2d+2R|ηµ,l(t)|2dt

.
(

(1 + 2µ|s|)−2d−2R + 2−2µ(d+R)(1 + |s|)−2d−2R
)∫

Rd
(1 + 2µ|t|)2d+2R|ηµ,l(t)|2dt.

Then we use (4.1) to get, for any R ∈ N,

‖Φ0 ∗ ηµ,l‖1 .
(∫
|s|≥ 1

2

(1 + 2µ|s|)−d−Rds+ 2−µ(d+R)

∫
|s|≥ 1

2

(1 + |s|)−d−Rds
)

· τ(

∫
Rd

(1 + 2µ|t|)2d+2R|ηµ,l(t)|2dt)
1
2

. 2−µ(d+R+α).

Combining the estimates above, we see that, there exists ι > 0 such that

‖T cσaµ,l‖Fα,c1
= ‖ηµ,l‖Fα,c1

. 2−µ( d2 +ι),

which completes the proof. �

Since every (α,Qk,m)-atom is a linear combination of subatoms, the above lemma helps us to
estimate the image of (α,Qk,m)-atoms under T cσ.

Corollary 4.4. Let σ ∈ S0
1,δ and α ∈ R. Assume that K ∈ N satisfy K > d

2 and K > α + d+ 1.

If the s-support of σ is in (2−km+ 6Q0,0)c, then for any (α,Qk,m)-atom g,we have

‖T cσg‖Fα,c1
. 1.
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Proof. Every (α,Qk,m)-atom g admits the form

g =
∑

(µ,l)≤(k,m)

dµ,laµ,l with
∑

(µ,l)≤(k,m)

|dµ,l|2 ≤ |Qk,m|−1 = 2kd.

By the support assumption of σ, σ(s, ξ) = 0 if s ∈ 2−µl + 4Q0,0 ⊂ 2−km + 6Q0,0. Then, we can
apply the previous lemma to every aµ,l with (µ, l) ≤ (k,m). The result is

‖T cσaµ,l‖Fα,c1
. 2−µ( d2 +ι) with ι > 0.

Applying the Cauchy-Schwarz inequality, we get

‖T cσg‖Fα,c1
≤

∑
(µ,l)≤(k,m)

|dµ,l| · ‖T cσaµ,l‖Fα,c1

≤
∑

(µ,l)≤(k,m)

|dµ,l| · 2−µ( d2 +ι)

. (
∑

(µ,l)≤(k,m)

|dµ,l|2)
1
2 (

∑
(µ,l)≤(k,m)

2−µ(d+2ι))
1
2

≤ (
∑

(µ,l)≤(k,m)

|dµ,l|2)
1
2 (
∑
µ≥k

|2Qk,m|
|Qµ,l|

· 2−µ(d+2ι))
1
2

. |Qk,m|−
1
2 · 2− kd2 = 1.

(4.10)

Thus, the assertion is proved. �

Likewise, we can estimate the image of (α, 1)-atoms under the pseudo-differential operator T cσ.

Lemma 4.5. Let σ ∈ S0
1,δ and α ∈ R. Assume that K ∈ N satisfy K > d

2 and K > α + d + 1.

If the s-support of σ is in (k + 4Q0,0)c for some k ∈ Zd, then for any (α, 1)-atom b such that
supp b ⊂ 2Q0,k, we have

‖T cσb‖Fα,c1
. 1.

Proof. The proof of this lemma is very similar to that of Lemma 4.3; it suffices to apply (the proof
of) Lemma 4.2 instead of Lemma 4.1. �

Corollary 4.6. Let σ ∈ S0
1,δ and α ∈ R. Given K ∈ N such that K > d

2 and K > α+ d+ 1, then

for any (α, 1)-atom b, we have
‖T cσb‖Fα,c1

. 1.

Proof. Let (Xj)j∈Zd be the smooth resolution of the unit in (1.4). We decompose T cσb as

T cσb =
∑
j∈Zd
XjT cσb =

∑
j∈Zd

T cσj b,

where all σj = Xj(s)σ(s, ξ) belong to S0
1,δ uniformly in j. Suppose that b is supported in 2Q0,k

with k ∈ Zd. We split the above summation into two parts:

(4.11) T cσb =
∑

j∈k+6Q0,0

j∈Zd

XjT cσb+
∑

j /∈k+6Q0,0

j∈Zd

XjT cσb.

Applying Lemma 4.2 with M = −d to the symbol Xj(s)σ(s, ξ), we get, for any j ∈ Zd,

τ
( ∫

j+2Q0,0

|Dγ(Xj T cσb(s))|2ds
) 1

2 . 1, ∀ |γ|1 ≤ [α] + 1.

Thus, Xj T cσb is a bounded multiple of an (α, 1)-atom. So the first term on the right hand side
of (4.11) is a finite sum of (α, 1)-atoms, and thus has bounded Fα,c1 -norm. Now we deal with the
second term. Note that the s-support of the symbol

∑
j /∈k+6Q0,0

Xj(s)σ(s, ξ) is in (k + 4Q0,0)c.

Then, it suffices to apply Lemma 4.5 to this symbol, so that∥∥ ∑
j /∈k+6Q0,0

j∈Zd

XjT cσb‖Fα,c1
. 1.
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The proof is complete. �

5. Regular symbols on Triebel-Lizorkin spaces

In this section, we study the continuity of the pseudo-differential operators with regular symbols
in S0

1,δ (0 ≤ δ < 1) on Triebel-Lizorkin spaces. We use the atomic decompositions introduced in
section 1 and the local mapping properties of pseudo-differential operators in section 4 to deduce
the Fα,cp -boundedness. Different from the pseudo-differential operators with the forbidden symbols

in S0
1,1, which will be treated in the next section, our proof stays at the level of atoms; in other

words, we do not need the subtler decomposition that every (α,Q)-atom can be written as a linear
combination of subatoms.

Theorem 5.1. Let 0 ≤ δ < 1, σ ∈ S0
1,δ and α ∈ R. Then T cσ is bounded on Fα,cp (Rd,M) for any

1 ≤ p ≤ ∞.

In order to fully understand the image of an (α,Q)-atom under the action of a pseudo-differential
operator, we need to study its L1(M;Lc2(Rd))-boundedness, which relies on the L2-boundedness
of T cσ given in Corollary 3.3.

Lemma 5.2. Let σ ∈ S0
1,δ with 0 ≤ δ < 1. Then T cσ is bounded on L1

(
M;Lc2(Rd)

)
.

Proof. Since 0 ≤ δ < 1, Proposition 2.9 tells us that the adjoint (T cσ)∗ of T cσ is still in the class
S0

1,δ. Thus, by anti-linear duality (see [23]), it is enough to prove the boundedness of (T cσ)∗ on

L∞
(
M;Lc2(Rd)

)
. Indeed, there exists u ∈ L2(M) with norm one such that∥∥∥( ∫

Rd
|(T cσ)∗(f)(s)|2ds

) 1
2

∥∥∥
M

=
(∫

Rd
〈|(T cσ)∗(f)(s)|2u, u〉L2(M)ds

) 1
2

=
(∫

Rd
‖(T cσ)∗(fu)(s)‖2L2(M)ds

) 1
2

.

Then, applying Corollary 3.3 to (T cσ)∗, we get(∫
Rd
‖(T cσ)∗(fu)(s)‖2L2(M)ds

) 1
2

.
(∫

Rd
‖f(s)u‖2L2(M)ds

) 1
2 ≤

∥∥∥( ∫
Rd
|f(s)|2ds

) 1
2

∥∥∥
M
.

Thus, we conclude the boundedness of T cσ on L1(M;Lc2(Rd)). �

Now we are ready to prove the main theorem in this section.

Proof of Theorem 5.1. Step 1. We begin with the special case p = 1 and α = 0. Since F 0,c
1 (Rd,M) =

hc1(Rd,M) with equivalent norms, the assertion is equivalent to saying that when σ ∈ S0
1,δ with

0 ≤ δ < 1, T cσ is bounded on hc1(Rd,M). By the atomic decomposition stated in Theorem 1.3, it
suffices to prove that, for any atom b based on a cube with side length 1 and any atom g based on
a cube with side length less than 1, we have

‖T cσb‖hc1 . 1 and ‖T cσg‖hc1 . 1.

Corollary 4.6 tells us that

‖T cσb‖hc1 . 1.

Thus, it remains to consider the atom g based on cube Q with |Q| < 1. Without loss of generality,
we may assume that Q is centered at the origin. Let (Xj)j∈Zd be the resolution of the unit defined

in (1.4) and XQj = Xj(l(Q)−1·) for j ∈ Zd. Then, we have suppXQj ⊂ l(Q)j + 2Q. Now, set

h1 =
∑
j∈6Q0,0

XQj and h2 =
∑
j /∈6Q0,0

XQj . By the support assumption of XQj , it is obvious that

supph1 ⊂ 8Q, supph2 ⊂ (4Q)c. Moreover,

h1(s) + h2(s) = 1 ,∀ s ∈ Rd.

Now we decompose σ into two parts:

σ(s, ξ) = h1(s)σ(s, ξ) + h2(s)σ(s, ξ)
def
= σ1(s, ξ) + σ2(s, ξ).

Note that σ1 and σ2 are still in the class S0
1,δ and

T cσg = T cσ1g + T cσ2g.
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Firstly, we deal with the symbol σ1 which has compact s-support. We consider the adjoint operator
(T cσ)∗ of T cσ. Since δ < 1, by Proposition 2.9, there exists σ̃ ∈ S0

1,δ such that

(T cσ)∗ = T cσ̃.

If we take ζj(s) = XQj (s)σ̃(s, 0)∗ for j ∈ 6Q0,0, then ζj is an M-valued infinitely differentiable

function with all derivatives belonging to L∞(N ). Denote by mc
ζj

the pointwise multiplication

g 7→ ζjg. Then, we have

suppmc
ζjg ⊂ l(Q)j + 2Q.

and

(5.1) τ
( ∫

Rd
|mc

ζjg(s)|2ds
) 1

2 . |Q|− 1
2 .

This indicates that, except for the vanishing mean property, each mc
ζj
g coincides with a bounded

multiple of an hc1-atom defined in Definition 1.1. Now let us set σ1
j (s, ξ) = XQj (s)σ(s, ξ) for

j ∈ 6Q0,0 and set T cj = T c
σ1
j
−mc

ζj
. It is clear that suppT cj g ⊂ l(Q)j + 2Q. Since (mc

ζj
)∗ = mc

ζj∗

and (T c
σ1
j
)∗x = σ̃1

j (s, 0)x = ζj
∗x for every x ∈M, we have

τ
( ∫

l(Q)j+2Q

T cj g(s)ds · x
)

= 〈T cj g, x〉 = 〈g, (T cj )∗x〉 = 〈g, (T cσ1
j
−mc

ζj )
∗x〉 = 0.

Hence, T cj g has vanishing mean. Moreover, applying Lemma 5.2 and (5.1), we get

τ
( ∫

l(Q)j+2Q

|T cj g(s)|2ds
) 1

2 ≤ τ
( ∫

l(Q)j+2Q

|T cσ1
j
g(s)|2ds

) 1
2 + τ

( ∫
l(Q)j+2Q

|mc
ζjg(s)|2ds

) 1
2

. τ
( ∫

2Q

|g(s)|2ds
) 1

2 + |Q|− 1
2 . |Q|− 1

2 .

Combining the above estimates, we see that T cj maps hc1-atoms to hc1-atoms. Thus, T cj is bounded

on hc1(Rd,M), and so are T c
σ1
j

and T cσ1 .

Step 2. Now let us consider T cσ2 . By Theorem 1.3, we may assume that g has moment can-

cellations up to order L > d
2 − 1. Note that suppT cσ2g ⊂ (4Q)c. And if s ∈ (4Q)c, following the

argument in (4.3) with g in place of aµ,l, we get

|T cσ2g(s)|2 . l(Q)2L+2+d|s|−2d−2L−2

∫
2Q

|g(t)|2dt.

Then for M < 2L+ 2,

τ
( ∫

(4Q)c
|T cσ2g(s)|2(1 + l(Q)−1|s|)d+Mds

) 1
2

. l(Q)L+1−M2
( ∫

(4Q)c
|s|−d−2L−2+Mds

) 1
2 · τ(

∫
2Q

|g(t)|2dt) 1
2

. l(Q)L+1−M2 l(Q)−L−1+M
2 |Q|− 1

2 = |Q|− 1
2 .

(5.2)

Moreover, we claim that T cσ2g can be decomposed as follows:

T cσ2g =
∑
m∈Zd

νmHm,

where
∑
m |νm| . 1 and the Hm’s are hc1-atoms. Then, by (1.8), we will get ‖T cσ2g‖hc1 . 1. Now

let us prove the claim. Since L > d
2 − 1, we can choose M such that M > d and M < 2L + 2.

Take νm = |Q|− 1
2 (1+ l(Q)−1|m|)− d+M2 and Hm = ν−1

m XmT cσ2g, where (Xm)m∈Zd denotes again the
smooth resolution of the unit (1.4), i.e.

1 =
∑
m∈Zd

Xm(s), ∀ s ∈ Rd.
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Applying (5.2), we have

τ
( ∫

2Q0,m

|Hm(s)|2ds
) 1

2

. ν−1
m (1 + l(Q)−1|m|)−

d+M
2 τ

( ∫
(4Q)c

|T cσ2g(s)|2(1 + l(Q)−1|s|)d+Mds
) 1

2 . 1.

And the normalizing constants νm satisfy∑
m

|νm| = |Q|−
1
2

∑
m

(1 + l(Q)−1|m|)−
d+M

2

≤ |Q|− 1
2

∫
Rd

(1 + l(Q)−1|s|)−
d+M

2 ds . 1.

Combining the estimates of T cσ1
g and T cσ2

g, we conclude that ‖T cσg‖hc1 . 1. Thus, T cσ is bounded

on hc1(Rd,M).
Step 3. For the case where p = 1 and α 6= 0, we use the lifting property of Triebel-Lizorkin

spaces (see [56, Proposition 3.4]. By the property of the composition of pseudo-differential operators
stated in Proposition 2.8, we see that

T cσα = JαT cσJ
−α

is still a pseudo-differential operator with symbol σα in S0
1,δ. Then for any f ∈ Fα,c1 (Rd,M), we

have

‖T cσf‖Fα,c1
= ‖J−αT cσαJαf‖Fα,c1

≈ ‖T cσαJαf‖hc1 . ‖J
αf‖hc1 ≈ ‖f‖Fα,c1

.

Hence, T cσ is bounded on Fα,c1 (Rd,M).
Step 4. Finally, we deal with the case 1 < p ≤ ∞. By the previous steps, (T cσ)∗ = T cσ̃ is

bounded on F−α,c1 (Rd,M) with α ∈ R, then it is clear that T cσ is bounded on Fα,c∞ (Rd,M). Given
1 < p <∞ and α ∈ R, by interpolation(

Fα,c∞ (Rd,M), Fα,c1 (Rd,M)
)

1
p

= Fα,cp (Rd,M),

we get the boundedness of T cσ on Fα,cp (Rd,M). �

Remark 5.3. A special case of Theorem 5.1 is that if the symbol is scalar-valued, then∫
Rd
σ(s, ξ)f̂(ξ)e2πis·ξdξ =

∫
Rd
f̂(ξ)σ(s, ξ)e2πis·ξdξ.

In this case, T cσ is also bounded on hrp(Rd,M) for any 1 ≤ p ≤ ∞. By (1.7), we deduce that T cσ is
bounded on Lp(N ).

Corollary 5.4. Let n, α ∈ R, 0 ≤ δ < 1 and σ ∈ Sn1,δ. Then T cσ is bounded from Fα,cp (Rd,M) to

Fα−n,cp (Rd,M) for any 1 ≤ p ≤ ∞.

Proof. Recall that the Bessel potential of order n maps Fα,cp isomorphically onto Fα−n,cp . If σ ∈
Sn1,δ, by Proposition 2.8, we see that

σ(s, ξ)(1 + |ξ|2)−
n
2 ∈ S0

1,δ,

and its corresponding pseudo-differential operator is T cσJ
−n. Since T cσ = T cσJ

−nJn, the assertion
follows obviously from Theorem 5.1. �

6. Forbidden symbols on Triebel-Lizorkin spaces

The purpose of this section is to extend the boundedness results obtained in the previous one to
the pseudo-differential operators with forbidden symbols, i.e. the symbols in the class Sn1,1. There
are two main differences between these operators and those with symbols in Sn1,δ with 0 ≤ δ < 1.

The first one is that when σ ∈ S0
1,1, T cσ is not necessarily bounded on L2(N ). The second one is

that S0
1,1 is not closed under product or adjoint. Fortunately, if the function spaces have a positive

degree of smoothness, the operators with symbols in S0
1,1 will be bounded on them.

Since for σ ∈ S0
1,1, T cσ is not necessarily bounded on L2(N ), we cannot expect its bounded-

ness on L1

(
M;Lc2(Rd)

)
. However, by Proposition 3.4, we are able to prove its boundedness on



Pseudo-differential operators 29

L1

(
M;Hα

2 (Rd)c
)

when α > 0. Note that the classical Sobolev space Hα
2 (Rd) is a Hilbert space

with the inner product 〈f, g〉 =
∫
Rd J

αf(s)Jαg(s)ds. By the definition of Hilbert-valued Lp-spaces,

we see that f ∈ L1

(
M;Hα

2 (Rd)c
)

if and only if Jαf ∈ L1

(
M;Lc2(Rd)

)
.

Lemma 6.1. Let σ ∈ S0
1,1. Then T cσ is bounded on L1

(
M;Hα

2 (Rd)c
)

for any α > 0.

Proof. Following the argument for Lemma 5.2 by replacing (T cσ)∗ with JαT cσ, we see that T cσ is
bounded on L∞

(
M;Hα

2 (Rd)c
)
. Let f ∈ L1

(
M;Hα

2 (Rd)c
)
. Then f admits the decomposition

f = gh,

where ‖h‖L1(M) = ‖f‖
L1

(
M;Hα2 (Rd)c

) and ‖g‖
L∞

(
M;Hα2 (Rd)c

) = 1. Indeed, ifA = (
∫
Rd |J

αf(s)|2ds) 1
2

is invertible, we could take g = fA−1, h = A; otherwise we can approximate A by invertable el-
ements in L1(M), which does not disturb the argument below. From this decomposition, we
establish the L1

(
M;Hα

2 (Rd)c
)
-norm of T cσ(f) as follows:

‖T cσ(f)‖
L1

(
M;Hα2 (Rd)c

) = ‖T cσ(g)h‖
L1

(
M;Hα2 (Rd)c

)
≤ ‖T cσ(g)‖

L∞

(
M;Hα2 (Rd)c

)‖h‖L1(M)

. ‖g‖
L∞

(
M;Hα2 (Rd)c

)‖h‖L1(M)

= ‖f‖
L1

(
M;Hα2 (Rd)c

),
which implies that T cσ is bounded on L1

(
M;Hα

2 (Rd)c
)
. �

Similar to [53, Theorem 6.3.2], the main theorem in this section also relies on the atomic de-
composition. However, the techniques we use are quite different from that of [53]. Apart from
the difficulties mentioned in the beginning of section 4, the symbol considered here has the global
mapping property, which is more general than the case in [53], i.e. we do not need the assumption
that the symbol σ is compactly supported with respect to the second variable.

Theorem 6.2. Let σ ∈ S0
1,1 and α > 0. Then T cσ is bounded on Fα,c1 (Rd,M).

Proof. Let f ∈ Fα,c1 (Rd,M). We fix K,L to be two integers such that K > α+ d and L > d. By
the atomic decomposition in Theorem 1.3, f can be written as

f =

∞∑
j=1

(µjbj + λjgj),

where the bj ’s are (α, 1)-atoms and the gj ’s are (α,Q)-atoms, µj and λj are complex numbers such
that

∞∑
j=1

(|µj |+ |λj |) ≈ ‖f‖Fα,c1
.

In order to prove the assertion, by the above atomic decomposition, it suffices to prove that

‖T cσb‖Fα,c1
. 1 and ‖T cσg‖Fα,c1

. 1,

for any (α, 1)-atom b and (α,Q)-atom g. We have shown in Corollary 4.6 that

(6.1) ‖T cσb‖Fα,c1
. 1.

Thus it remains to consider T cσg. This is the main part of the proof which will be divided into
several steps for clarity.

Step 1. By translation, we may assume that the supporting cube Q of the atom g is centered
at the origin. We begin with a split of the symbol σ: Let h1, h2 be two nonnegative infinitely
differentiable functions on Rd such that supph1 ⊂ (Q)c, supph2 ⊂ 2Q and

1 = h1(ξ) + h2(ξ), ∀ ξ ∈ Rd.

For any (s, ξ) ∈ Rd × Rd, we write

σ(s, ξ) = h1(ξ)σ(s, ξ) + h2(ξ)σ(s, ξ)
def
= σ1(s, ξ) + σ2(s, ξ).
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It is clear that σ1 and σ2 are still two symbols in S0
1,1, and

(6.2) ‖T cσg‖Fα,c1
≤ ‖T cσ1

g‖Fα,c1
+ ‖T cσ2

g‖Fα,c1
.

First, we consider the case where the cube Q is of side length one, i.e. Q = Q0,0, and deal with
the term ‖T cσ1

g‖Fα,c1
in the above split. Let (Xj)j∈Zd be the resolution of the unit defined in (1.4)

and X̃j = Xj(2·) for j ∈ Zd. We write

T cσ1
g =

∑
j∈8Q0,0

j∈Zd

T c
σj1
g +

∑
j /∈8Q0,0

j∈Zd

T c
σj1
g

def
= G1 +H1,

(6.3)

where σj1(s, ξ) = σ1(s, ξ)X̃j(s).
We claim that for every j ∈ Zd, T c

σj1
g is the bounded multiple of an (α,Q0, j2

)-atom (with the

convention Q0, j2
= j

2 + Q0,0). No loss of generality, we prove the claim just for j = 0. Applying

Lemma 6.1 to the symbol σ0
1 , we get

τ
( ∫

Rd
|JαT cσ0

1
g(s)|2ds

) 1
2 . τ

( ∫
Rd
|Jαg(s)|2ds

) 1
2 . |Q0,0|−

1
2 .

Thus, in order to prove the claim, it remains to show that T c
σ0
1
g can be written as the linear

combination of subatoms and the coefficients satisfy a certain condition. By Definition 1.2, g
admits the following representation:

(6.4) g =
∑

(µ,l)≤(0,0)

dµ,laµ,l,

where the aµ,l’s are (α,Qµ,l)-subatoms and the coefficients dµ,l’s are complex numbers satisfying∑
(µ,l)≤(0,0) |dµ,l|2 ≤ 1. Then we have

T cσ0
1
g =

∑
(µ,l)≤(0,0)

dµ,lT
c
σ0
1
aµ,l.

Given µ ∈ N0, let (Xµ,m)m∈Zd be a sequence of infinitely differentiable functions on Rd such that

(6.5) 1 =
∑
m∈Zd

Xµ,m(s), ∀ s ∈ Rd,

and each Xµ,0 is nonnegative, supported in 2Qµ,0 and Xµ,m(s) = Xµ,0(s − 2−µm). It is the 2−µ-
dilation of the resolution of the unit in (1.4). We decompose T c

σ0
1
g in the following way:

(6.6) T cσ0
1
g =

∞∑
µ=0

∑
m

Xµ,m
∑
l

dµ,lT
c
σ0
1
aµ,l.

Observe that the only m’s that contribute to the above sum
∑
m are those m ∈ Zd such that

2Qµ,m ∩Q0,0 6= ∅, so Qµ,m ⊂ 2Q0,0. Thus, we obtain the decomposition

(6.7) T cσ0
1
g =

∑
(µ,m)≤(0,0)

Dµ,mGµ,m,

where

Dµ,m =
(∑

l

|dµ,l|2(1 + |m− l|)−(d+1)
) 1

2 ,

Gµ,m =
1

Dµ,m
Xµ,m

∑
l

dµ,lT
c
σ0
1
aµ,l.

It is evident that ( ∑
(µ,m)≤(0,0)

|Dµ,m|2
) 1

2 .
( ∑

(µ,l)≤(0,0)

|dµ,l|2
) 1

2 ≤ 1.
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Now we show that the Gµ,m’s are bounded multiple of (α,Qµ,m)-subatoms. Firstly, we have
suppGµ,m ⊂ suppXµ,m ⊂ 2Qµ,m. Secondly, by the Cauchy-Schwarz inequality,

τ
( ∫

2Qµ,m

|
∑
l

dµ,lT
c
σ0
1
aµ,l(s)|2ds

) 1
2

.
(∑

l

|dµ,l|2(1 + |m− l|)−(d+1)
) 1

2

·
∑
l

(1 + |m− l|)
1−M

2 τ
( ∫

2Qµ,m

(1 + 2µ(s− 2−µl))d+M |T cσ0
1
aµ,l(s)|2ds

) 1
2 .

(6.8)

If we take M = 2L+ 1, since L > d, we have 1−M
2 < −d. Applying Lemma 4.1, we get

τ(

∫
Rd
|Gµ,m(s)|2ds) 1

2 .
∑
l

(1 + |m− l|)
1−M

2 |Qµ,l|
α
d . |Qµ,m|

α
d .

Similarly, the derivative estimates in Lemma 4.1 ensure that

τ(

∫
|DγGµ,m(s)|2ds) 1

2 . |Qµ,m|
α
d−
|γ|1
d , ∀ |γ|1 ≤ [α] + 1.

Since α > 0, no moment cancellation for subatoms is required. Thus, we have proved that the
Gµ,m’s are bounded multiple of (α,Qµ,m)-subatoms, then the claim is proved. Therefore, G1 in
(6.3) is the finite sum of (α,Q0,j)-atoms, which yields ‖G1‖Fα,c1

. 1 by Theorem 1.3.

The term H1 in (6.3) is much easier to handle. Observe that H1 corresponds to the symbol

σ(s, ξ)
∑
j /∈8Q0,0

X̃j(s), whose s-support is in (6Q0,0)c. Thus, we apply Corollary 4.4 directly to get

that

‖H1‖Fα,c1
. 1.

Step 2. Let us consider now the case where the supporting cube Q of g has side length less than
one. As above, we may still assume that Q is centered at the origin. Let g be an (α,Qk,0)-atom
with k ∈ N. Then g is given by

g =
∑

(µ,l)≤(k,0)

dµ,laµ,l with
∑
(µ,l)

|dµ,l|2 ≤ |Qk,0|−1 = 2kd.

We normalize g as

h = 2k(α−d)g(2−k·)

=
∑

(µ,l)≤(k,0)

2−
kd
2 dµ,l2

k(α− d2 )aµ,l(2
−k·)

=
∑

(µ,l)≤(k,0)

d̃µ,lãµ,l,

where ãµ,l = 2k(α− d2 )aµ,l(2
−k·) and d̃µ,l = 2−

kd
2 dµ,l. Then it is easy to see that each ãµ,l is an

(α,Qµ−k,l)-subatom and thus h is an (α,Q0,0)-atom. Define σ1,k(s, ξ) = σ1(2−ks, 2kξ), then we
have

T cσ1
g(s) =

∫
Rd
σ1(s, ξ)ĝ(ξ)e2πis·ξdξ

= 2−kα
∫
Rd
σ1(s, ξ)ĥ(2−kξ)e2πis·ξdξ

= 2k(d−α)

∫
Rd
σ1,k(2ks, ξ)ĥ(ξ)e2πi 2ks·ξdξ

= 2k(d−α)T cσ1,k
h(2ks).

(6.9)

Since the ξ-support of σ1 is away from the origin, we have

‖Dγ
sD

β
ξ σ1,k(s, ξ)‖M ≤ Cγ,β |ξ||γ|1−|β|1 ≈ Cγ,β(1 + |ξ|)|γ|1−|β|1 , ∀ k ∈ N.

Thus, σ1,k is still a symbol in the class S0
1,1. Then, applying the result for (α,Q0,0)-atoms obtained

in Step 1 to the symbol σ1,k, we get ‖T cσ1,k
h‖Fα,c1

. 1. In order to return back to the Fα,c1 -norm
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of T cσ1
g, by (6.9), we need a dilation argument. Since α > 0, we can invoke the characterization of

Fα,c1 -norm in [56, Corollary 3.10]:

‖f‖Fα,c1
≈ ‖f‖1 +

∥∥∥(

∫ ∞
0

ε−2α|ϕε ∗ f |2
dε

ε
)

1
2

∥∥∥
1
,

where ϕε = F−1(ϕ(ε·)). For λ > 0, we have ‖f(λ·)‖1 = λ−d‖f‖1, and∥∥∥(

∫ ∞
0

ε−2α|ϕε ∗ f(λ·)|2 dε
ε

)
1
2

∥∥∥
1

= λα−d
∥∥∥(

∫ ∞
0

ε−2α|ϕε ∗ f |2
dε

ε
)

1
2

∥∥∥
1

since (ϕε ∗ f(λ·))(s) = ϕλε ∗ f(λs). Taking λ = 2k, we deduce

‖T cσ1
g‖Fα,c1

≈ ‖T cσ1
g‖1 +

∥∥∥(

∫ ∞
0

ε−2α|ϕε ∗ T cσ1
g|2 dε

ε
)

1
2

∥∥∥
1

= 2k(d−α)
(
‖T cσ1,k

h(2k·)‖1 +
∥∥∥(

∫ ∞
0

ε−2α|ϕε ∗ T cσ1,k
h(2k·)|2 dε

ε
)

1
2

∥∥∥
1

)
= 2k(d−α)

(
2−kd‖T cσ1,k

h‖1 + 2k(α−d)
∥∥∥(

∫ ∞
0

ε−2α|ϕε ∗ T cσ1,k
h|2 dε

ε
)

1
2

∥∥∥
1

)
. ‖T cσ1,k

h‖Fα,c1
.

This ensures

‖T cσ1
g‖Fα,c1

. ‖T cσ1,k
h‖Fα,c1

. 1.

Step 3. It remains to deal with the term with symbol σ2 in (6.2). Note that σ2 = h2(ξ)σ(s, ξ)
with σ ∈ S0

1,1 and supph2 ∈ 2Q. Then for δ < 1, say δ = 9
10 , we have σ2 ∈ S0

1,δ. Indeed, by
definition, we have, for every s ∈ R,

‖Dγ
sD

β
ξ σ2(s, ξ)‖M .

∑
β1+β2=β

‖Dγ
sD

β1

ξ σ(s, ξ) ·Dβ2h2(ξ)‖M

≤
∑

β1+β2=β

Cγ,β1
(1 + |ξ|)|γ|1−|β1|1 · |Dβ2h2(ξ)|.

But since h2 is an infinitely differentiable function with support 2Q, it is clear that for ξ ∈ 2Q,

(1 + |ξ|)|γ|1−|β1|1 ≤ Cγ(1 + |ξ|) 9
10 |γ|1−|β1|1 , and |Dβ2h2(ξ)| ≤ Cβ2

(1 + |ξ|)−|β2|1 .

Putting these two inequalities into the estimate of ‖Dγ
sD

β
ξ σ2(s, ξ)‖M, we obtain

‖Dγ
sD

β
ξ σ2(s, ξ)‖M ≤ Cγ,β(1 + |ξ|) 9

10 |γ|1−|β|1 ,

which yields σ2 ∈ S0
1, 9

10

. Therefore, it follows from Theorem 5.1 that ‖T cσ2
g‖Fα,c1

. ‖g‖Fα,c1
for

g ∈ Fα,c1 (Rd,M). Combining this with the estimates in the first two steps, we complete the proof
of the theorem. �

If σ ∈ S0
1,1, it is not true in general that (T cσ)∗ corresponds to a symbol in the class S0

1,1.
However, if we assume additionally this last condition, duality and interpolation will give the
following boundedness of T cσ:

Theorem 6.3. Let 1 < p < ∞ and σ ∈ S0
1,1, α ∈ R. If (T cσ)∗ admits a symbol in the class S0

1,1,

then T cσ is bounded on Fα,cp (Rd,M).

A similar argument as in the proof of Corollary 5.4 gives the following results concerning the
symbols in Sn1,1 with n ∈ R.

Corollary 6.4. Let n ∈ R, σ ∈ Sn1,1 and α > 0. If α > n, then T cσ is bounded from Fα,c1 (Rd,M)

to Fα−n,c1 (Rd,M).

Corollary 6.5. Let n, α and σ be the same as above, and 1 < p < ∞. If (T cσ)∗ admits a symbol
in the class Sn1,1, then T cσ is bounded from Fα,cp (Rd,M) to Fα−n,cp (Rd,M).
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7. Applications

The main target of this section is to apply the results obtained previously to pseudo-differential
operators over quantum tori. Our strategy is to transfer this problem by the transference method
introduced in [37] to the operator-valued pseudo-differential operators on the usual torus Td. Let
us begin with the latter case by a periodization argument.

7.1. Applications to tori. In this subsection, M still denotes a von Neumann algebra with a
normal semifinite faithful trace τ , but N = L∞(Td)⊗M.

We identify Td with the unit cube Id = [0, 1)d via (e2πis1 , · · · , e2πisd) ↔ (s1, · · · , sd). Under
this identification, multiplication in Td corresponds to the usual coordinatewise addition modulo 1
in Id, i.e. when z = (e2πis1 , · · · , e2πisd) ↔ (s1, · · · , sd) and ω = (e2πit1 , · · · , e2πitd) ↔ (t1, · · · , td),
zω−1 ∈ Td is identified with s− t ∈ Id modulo 1. An interval of Id is either a subinterval of I or a
union [b, 1]∪ [0, a] with 0 < a < b < 1, the latter union being the interval [b− 1, a] of I (modulo 1).
So the cubes of Id are exactly those of Td. Accordingly, functions on Td and Id are identified too.

Recall that ϕ is a Schwartz function satisfying (1.1). Then for every m ∈ Zd \ {0},∑
j∈Z

ϕ(2−jm) =
∑
j≥0

ϕ(2−jm) = 1.

This tells us that in the torus case {ϕ(2−j ·)}j≥0 gives a resolvent of the unit. According to this,
we make a slight change of the notation that we used before:

ϕ(j) = ϕ(2−j ·), ∀ j ≥ 0.

Let ϕj = F−1(ϕ(j)) for any j ≥ 0. Now we periodize ϕj as

ϕ̃j(z) =
∑
m∈Zd

ϕj(s+m) with z = (e2πis1 , . . . , e2πisd), s = (s1, · · · , sd).

Then, we can easily see that ϕ̃j admits the following Fourier series:

(7.1) ϕ̃j(z) =
∑
m∈Zd

ϕ(2−jm)zm.

Thus, for any f ∈ S ′(Td;L1(M) +M), whenever it exists,

ϕ̃j ∗ f(z) =

∫
Td
ϕ̃j(zw

−1)f(w)dw =
∑
m∈Zd

ϕ(2−jm)f̂(m)zm z ∈ Td.

The following definition was given in [59, Section 4.5].

Definition 7.1. Let 1 ≤ p < ∞ and α ∈ Rd. The column operator-valued Triebel-Lizorkin space
Fα,cp (Td,M) is defined to be

Fα,cp (Td,M) = {f ∈ S ′(Td;L1(M) +M) : ‖f‖Fα,cp
<∞},

where

‖f‖Fα,cp
= ‖f̂(0)‖Lp(M) +

∥∥(
∑
j≥0

22jα|ϕ̃j ∗ f |2)
1
2

∥∥
Lp(N )

.

The row and mixture spaces Fα,rp (Td,M) and Fαp (Td,M), and the corresponding spaces for
p =∞ are defined similarly to the Euclidean case.

By the discussion before (7.1), if we identify a function f on Td as a 1-periodic function fpe

on Rd, then the convolution ϕ̃j ∗ f on Td coincides with the convolution ϕj ∗ fpe on Rd. More
precisely:

ϕ̃j ∗ f(z) = ϕj ∗ fpe(s) with z = (e2πis1 , · · · , e2πisd).

By the almost orthogonality of the Littlewood-Paley decomposition given in (1.3), we get the
following easy equivalent norm of Fα,cp (Id,M):

‖fpe‖Fα,cp (Id,M) ≈ ‖φ0 ∗ fpe‖p +
∥∥(
∑
j≥0

22jα|ϕj ∗ fpe(z)|2)
1
2

∥∥
p
,
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where φ̂0(ξ) = 1 −
∑
j≥0 ϕ(2−jξ). Since φ̂0 is supported in {ξ : |ξ| ≤ 1} and φ̂0(ξ) = 1 if |ξ| ≤ 1

2 ,
it then follows that

‖φ0 ∗ fpe‖p = ‖f̂(0)‖p .
Hence, combining the estimates above, we have

(7.2) ‖f‖Fα,cp (Td,M) ≈ ‖fpe‖Fα,cp (Id,M).

Thus Fα,cp (Td,M) embeds into Fα,cp (Rd,M) isomorphically. The equivalence (7.2) allows us to

reduce the treatment of Td to that of Rd; and by periodicity, all the functions considered now are
restricted on Id. We are not going to state the properties of Fα,cp (Td,M) specifically, and refer the
reader to [59, Section 4.5] for similar results on quantum torus.

We also briefly introduce operator-valued Sobolev and Besov spaces on Td. Let 1 ≤ p, q < ∞
and α ∈ Rd. The potential Sobolev space Hα

p (Td;Lp(M)) is defined as

Hα
p (Td;Lp(M)) = {f ∈ S ′(Td;L1(M) +M) : ‖f‖Hαp := ‖Jαf‖p <∞},

where Jα denotes the α-order Bessel potential on Td. The Besov space Bαp,q(Td;Lp(M)) is defined
as

Bαp,q(Td;Lp(M)) = {f ∈ S ′(Td;L1(M) +M) : ‖f‖Bαp,q <∞},
where

‖f‖Bαp,q = ‖f̂(0)‖Lp(M) +
(∑
j≥0

2qjα‖ϕ̃j ∗ f‖qp
) 1
q

.

For a fixed 1 ≤ p ≤ ∞, these spaces are the Banach-valued Sobolev and Besov spaces studied in
[2], the Banach space being Lp(M). In analogy to (7.2), we have

(7.3) ‖f‖Hαp (Td;Lp(M)) ≈ ‖fpe‖Hαp (Id;Lp(M))

and

(7.4) ‖f‖Bαp,q(Td;Lp(M)) ≈ ‖fpe‖Bαp,q(Id;Lp(M)).

Let us turn to the study of toroidal symbols. In the discrete case, the derivatives degenerate
into discrete difference operators. Let σ : Zd → M. For 1 ≤ j ≤ d, let ej be the j-th canonical

basis of Rd. We define the forward and backward partial difference operators ∆mj and ∆mj :

∆mjσ(m) := σ(m+ ej)− σ(m), ∆mjσ(m) := σ(m)− σ(m− ej),

and for any β ∈ Nd0,

∆β
m := ∆β1

m1
· · ·∆βd

md
, ∆

β

m := ∆
β1

m1
· · ·∆βd

md
.

Definition 7.2. Let 0 ≤ δ, ρ ≤ 1 and γ, β ∈ Nd0. Then the toroidal symbol class Snρ,δ(Td × Zd)
consists of those M-valued functions σ(s,m) which are smooth in s for all m ∈ Zd, and satisfy

‖Dγ
s∆β

mσ(s,m)‖M ≤ Cγ,β,m(1 + |m|)n−ρ|β|1+δ|γ|1 for all γ, β ∈ Nd0.

Definition 7.3. Let σ ∈ Snρ,δ(Td × Zd). For any f ∈ S ′(Td;L1(M)), we define the corresponding
toroidal pseudo-differential operator as follows:

T cσf(s) =
∑
m∈Zd

σ(s,m)f̂(m)e2πis·m.

When studying the toroidal pseudo-differential operators T cσ on Td, especially its action on
operator-valued Triebel-Lizorkin spaces on Td, a very useful tool is to extend the toroidal symbol
to a symbol defined on Td×Rd, which reduces the torus case to the Euclidean one. This allows us
to apply the results in the last sections. The extension of scalar-valued toroidal symbol has been
well studied in [45]. With some minor modifications, the arguments used in [45] can be adjusted
to our operator-valued setting.

The following lemma is taken from [45]. Denote by δ0(ξ) the Kronecker delta function at 0, i.e.,
δ0(0) = 1 and δ0(ξ) = 0 if ξ 6= 0.
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Lemma 7.4. For each β ∈ Nd0, there exists a function φβ ∈ S(Rd) and a function ζ ∈ S(Rd) such
that ∑

k∈Zd
ζ(s+ k) ≡ 1,

ζ̂ |Zd (ξ) = δ0(ξ) and Dβ
ξ (ζ̂)(ξ) = ∆

β

ξφβ(ξ),

for any ξ ∈ Rd.

Now let us give the operator-valued analogue of Theorem 4.5.3 in [45].

Lemma 7.5. Let 0 ≤ ρ, δ ≤ 1 and n ∈ R. A symbol σ ∈ Snρ,δ(Td × Zd) is a toroidal symbol if and

only if there exists an Euclidean symbol σ̃ ∈ Snρ,δ(Td × Rd) such that σ = σ̃ |Td×Zd .

Proof. We first prove the “if” part. Let σ̃ ∈ Snρ,δ(Td × Rd). If |β|1 = 1, then by the mean value
theorem for vector-valued functions, we have

‖∆β
mD

γ
sσ(s,m)‖M ≤ sup

0≤θ≤1

∥∥∂βξDγ
s σ̃(s,m+ θβ)

∥∥
M.

For a general multi-index β ∈ Nd0, we use induction. Writing β = β′ + δj and using the induction
hypothesis, we get

‖∆β
mD

γ
sσ(s,m)‖M = ‖∆δj

m(∆β′

mD
γ
s σ̃(s,m))‖

≤ sup
0≤θ≤1

‖∂j(∆β′

mD
γ
s σ̃(s,m+ θδj))‖M

= sup
0≤θ≤1

‖∆β′

m(∂jD
γ
s σ̃(s,m+ θδj))‖M

≤ sup
0≤θ′≤1

‖Dβ′

ξ ∂jD
γ
s σ̃(s,m+ θ′β)‖M

= sup
0≤θ′≤1

‖Dβ
ξD

γ
s σ̃(s,m+ θ′β)‖M.

Thus we deduce that

‖∆β
mD

γ
sσ(s,m)‖M ≤ sup

0≤θ′≤1
‖Dβ

ξD
γ
s σ̃(s,m+ θ′β)‖M

≤ C ′α,β,m(1 + |m|)n−ρ|β|1+δ|γ|1 .

Now let us show the “only if” part. In the proof of Theorem 4.5.3 in [45], the desired Euclidean
symbol is constructed with the help of the functions in Lemma 7.4. We can transfer directly the
arguments in [45] to our setting. But we still include a proof for completeness. Let ζ ∈ S(Rd) be
as in Lemma 7.4. Define a function σ̃ : Td × Rd →M by

σ̃(s, ξ) =
∑
m∈Zd

ζ̂(ξ −m)σ(s,m).

Thus, σ = σ̃ |Td×Zd . Moreover, using summation by parts, we have

‖Dγ
sD

β
ξ σ̃(s, ξ)‖M =

∥∥ ∑
m∈Zd

Dβ
ξ ζ̂(ξ −m)Dβ

s σ(s,m)
∥∥
M

=
∥∥ ∑
m∈Zd

∆
β

ξφβ(ξ −m)Dγ
sσ(s,m)

∥∥
M

= ‖(−1)|β|1
∑
m∈Zd

φβ(ξ −m)∆β
mD

γ
sσ(s,m)‖M

.
∑
m∈Zd

|φβ(ξ −m)|(1 + |m|)n−ρ|β|1+δ|β|1

.
∑
m∈Zd

|φβ(ξ −m)|(1 + |ξ −m|)n−ρ|β|1+δ|γ|1(1 + |ξ|)n−ρ|β|1+δ|γ|1

. (1 + |ξ|)n−ρ|β|1+δ|γ|1 ,

whence, σ̃ ∈ Snρ,δ(Td × Rd). �
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Theorem 7.6. Let σ ∈ S0
1,δ(Td × Zd).

i) If 0 ≤ δ < 1 and α ∈ R, then T cσ is bounded on Hα
2 (Td;L2(M)), and bounded on

Bαp,q(Td;Lp(M)) for 1 ≤ p, q ≤ ∞.

ii) If δ = 1 and α > 0, then T cσ is bounded on Hα
2 (Td;L2(M)), and bounded on Bαp,q(Td;Lp(M))

for 1 ≤ p, q ≤ ∞.

Proof. By Lemma 7.5, there exists σ̃ in Snρ,δ(Td×Rd) such that σ = σ̃ |Td×Zd . Let f ∈ S ′(Td, L1(M)).

By the identification Td ≈ Id, for any z ∈ Td, there exists s ∈ Id such that

T cσf(z) =
∑
m∈Zd

σ(s,m)f̂(m)e2πis·m

=

∫
Rd
σ̃(s, ξ)f̂pe(ξ)e2πis·ξdξ = T cσ̃fpe(s).

Now we apply Corollary 3.3, Proposition 3.4 and Theorem 3.5 to the symbol σ̃ and fpe. Then by
(7.3) and (7.4), we get the desired conclusions. �

Theorem 7.7. Let σ ∈ S0
1,δ(Td × Zd) and α ∈ R.

i) If 0 ≤ δ < 1, then T cσ is bounded on Fα,cp (Td,M) for every 1 ≤ p ≤ ∞.

ii) If δ = 1 and α > 0, then T cσ is bounded on Fα,c1 (Td,M).
iii) If δ = 1 and (T cσ)∗ admits a symbol in the class S0

1,1(Td × Zd), then T cσ is bounded on

Fα,cp (Td,M) for any 1 < p <∞.

Proof. The proof of this theorem is similar to that of the last one. This time we appeal to Theorems
5.1, 6.2 and 6.3 and the equivalence (7.2). �

7.2. Applications to quantum tori. We now apply the above results to the quantum case.
To this end, we briefly recall the relevant definitions, and refer the reader to [11] and [59] for
more details. Let d ≥ 2 and θ = (θkj) be a real skew symmetric d × d-matrix. The associated d-
dimensional noncommutative torus Aθ is the universal C∗-algebra generated by d unitary operators
U1, . . . , Ud satisfying the following commutation relation

UkUj = e2πiθkjUjUk, j, k = 1, . . . , d.

We will use standard notation from multiple Fourier series. Let U = (U1, · · · , Ud). For m =
(m1, · · · ,md) ∈ Zd, define

Um = Um1
1 · · ·Umdd .

A polynomial in U is a finite sum

x =
∑
m∈Zd

αmU
m with αm ∈ C.

The involution algebra Pθ of all such polynomials is dense in Aθ. For any polynomial x as above,
we define

τ(x) = α0.

Then τ extends to a faithful tracial state τ on Aθ. Let Tdθ be the w∗-closure of Aθ in the GNS
representation of τ . This is our d-dimensional quantum torus. The state τ extends to a normal
faithful tracial state on Tdθ that will be denoted again by τ . Note that if θ = 0, then Tdθ = L∞(Td)
and τ coincides with the integral on Td against normalized Haar measure dz.

Any x ∈ L1(Tdθ) admits a formal Fourier series:

x ∼
∑
m∈Zd

x̂(m)Um with x̂(m) = τ((Um)∗x).

In [37], a transference method has been introduced to overcome the full noncommutativity of
quantum tori and to use methods of operator-valued harmonic analysis. Let Nθ = L∞(Td)⊗Tdθ ,
equipped with the tensor trace ν =

∫
dz⊗τ . For each z ∈ Td, define πz to be the isomorphism of

Tdθ determined by

(7.5) πz(U
m) = zmUm = zm1

1 · · · zmdd Um1
1 · · ·Umdd .
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This isomorphism preserves the trace τ . Thus for every 1 ≤ p <∞,

‖πz(x)‖p = ‖x‖p, ∀x ∈ Lp(Tdθ).

The main points of the transference method are contained in the following lemma from [11].

Lemma 7.8. i) Let 1 ≤ p ≤ ∞. For any x ∈ Lp(Tdθ), the function x̃ : z 7→ πz(x) is continuous
from Td to Lp(Tdθ) (with respect to the w*-topology for p =∞).

ii) If x ∈ Lp(Tdθ), then x̃ ∈ Lp(Nθ) and ‖x̃‖p = ‖x‖p, that is, x 7→ x̃ is an isometric embedding
from Lp(Tdθ) into Lp(Nθ).

iii) Let T̃dθ = {x̃ : x ∈ Tdθ}. Then T̃dθ is a von Neumann subalgebra of Nθ and the associated
conditional expectation is given by

E(f)(z) = πz

(∫
Td
πw
[
f(w)

]
dw
)
, z ∈ Td, f ∈ Nθ.

Moreover, E extends to a contractive projection from Lp(Nθ) onto Lp

(
T̃dθ
)

for 1 ≤ p ≤ ∞.

To avoid complicated notation, we will use the same notation for the derivation for the quantum
tori Tdθ as for functions on Td. For every 1 ≤ j ≤ d, define the derivation to be the operator ∂j
satisfying:

∂j(Uj) = 2πiUj and ∂j(Uk) = 0 for k 6= j.

Given m ∈ Nd0, the associated partial derivation Dm is ∂m1
1 · · · ∂mdd . We keep using the resolvent

of unit given by functions in (7.1). The Fourier multiplier on Tdθ with symbol ϕ(2−j ·) is then

ϕ̃j ∗ x =
∑
m∈Zd

ϕ(2−jm) x̂(m)Um.

The analogue of Schwartz class on the quantum torus is given by

S(Tdθ) = {
∑
m∈Zd

amU
m : {am}m∈Zd rapidly decreasing}.

This is a w∗-dense ∗-subalgebra of Tdθ and contains all polynomials. It is equipped with a structure
of Fréchet ∗-algebra, and has a locally convex topology induced by a family of semi-norms. We
denote the tempered distribution on Tdθ by S ′(Tdθ) which is the space of all continuous linear
functional on S(Tdθ). Then by duality, both partial derivations and the Fourier transform extend
to S ′(Tdθ). Sobolev, Besov, and Triebel-Lizorkin spaces on the quantum torus are defined and well
studied in [59]. Let us recall the definition.

Definition 7.9. Let 1 ≤ p <∞ and α ∈ Rd. The potential Sobolev spaces are defined to be

Hα
p (Tdθ) =

{
x ∈ S ′(Tdθ) : Jαx ∈ Lp(Tdθ)

}
,

equipped with the norm ‖x‖Hαp = ‖Jαx‖p . Let also 1 ≤ q ≤ ∞. The Besov spaces are defined by

Bαp,q(Tdθ) =
{
x ∈ S ′(Tdθ) : ‖x‖Bαp,q <∞

}
,

where

‖x‖Bαp,q =
(
|x̂(0)|q +

∑
k≥0

2qkα‖ϕ̃k ∗ x‖qp
) 1
q

.

The column Triebel-Lizorkin spaces Fα,cp (Tdθ) are defined by

Fα,cp (Tdθ) = {x ∈ S ′(Tdθ) : ‖x‖Fα,cp
<∞},

where

‖x‖Fα,cp
= |x̂(0)|+

∥∥(
∑
j≥0

22jα|ϕ̃j ∗ x|2)
1
2

∥∥
p
.

The row space Fα,rp (Tdθ) and mixture space Fαp (Tdθ), and the case p = ∞ are defined similar to
those on the usual d-torus.

The transference method in Lemma 7.8 allows us to connect the spaces defined above with their
operator-valued counterparts. The result is
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Lemma 7.10. Let 1 ≤ p, q ≤ ∞, and α ∈ R. The map x 7→ x̃ is an isometric embedding
from Hα

p (Tdθ), Bαp,q(Tdθ) and Fα,cp (Tdθ) into Hα
p (Td;Lp(Tdθ)), Bαp,q(Td;Lp(Tdθ)) and Fα,cp (Td,Tdθ)

respectively. Moreover, the ranges of these embeddings are 1-complemented in their respective
spaces.

Let us introduce toroidal symbol classes and pseudo-differential operators on Tdθ . The following
definitions were also given in [30].

Definition 7.11. Let 0 ≤ δ, ρ ≤ 1, n ∈ R and γ, β ∈ Nd0 be multi-indices. Then the toroidal symbol
class SnTdθ ,ρ,δ

(Zd) consists of those functions σ : Zd → Tdθ which satisfy

‖Dβ(∆γ
mσ(m))‖ ≤ Cβ,γ(1 + |m|)n−ρ|γ|1+δ|β|1 , ∀m ∈ Zd and ∀ γ, β ∈ Nd0.

Definition 7.12. Let σ ∈ SnTdθ ,ρ,δ
(Zd). For any x ∈ Tdθ, we define the corresponding toroidal

pseudo-differential operator on Tdθ as follows:

T cσx =
∑
m∈Zd

σ(m)x̂(m)Um.

Now we are ready to prove the mapping property of pseudo-differential operators on quantum
torus.

Theorem 7.13. Let σ ∈ S0
Tdθ ,1,δ

(Zd).

i) If 0 ≤ δ < 1 and α ∈ R, then T cσ is bounded on Hα
2 (Tdθ), Bαp,q(Tdθ) and Fα,cp (Tdθ) for

1 ≤ p, q ≤ ∞.
ii) If δ = 1 and α > 0, then T cσ is bounded on Hα

2 (Tdθ) and Bαp,q(Tdθ) for 1 ≤ p, q ≤ ∞, and

bounded on Fα,c1 (Tdθ).
iii) If δ = 1, α ∈ R and (T cσ)∗ admits a symbol in the class S0

Tdθ ,1,1
(Zd), then T cσ is bounded on

Fα,cp (Tdθ) for any 1 < p <∞.

Proof. Recall that πz denotes the isomorphism of Tdθ determined by (7.5). We claim that, given
m ∈ Zd, the function z 7→ πz(σ(m)) from Td to Tdθ satisfies

(7.6) ‖Dγ
z∆β

mπz(σ(m))‖ ≤ Cγ,β(1 + |m|)n+δ|γ|1−ρ|β|1 .

Since πz commutes with the derivations on Tdθ , we have Dγ∆βπzσ(m) = πz(D
γ∆βσ(m)). There-

fore,

‖Dγ∆βπzσ(m)‖ = ‖πz(Dγ∆βσ(m))‖ ≤ ‖Dγ∆βσ(m)‖ ≤ Cγ,β(1 + |m|)n+δ|γ|1−ρ|β|1 .

Denote σ̃(z,m) = πz(σ(m)) for (z,m) ∈ Td ×Zd and consider the pseudo-differential operator T cσ̃.

Combining (7.6) and Theorem 7.7, we obtain the boundedness of T cσ̃ on Fα,cp (Td,Tdθ). Moreover,

for any polynomial x on Tdθ and f(z) = πz(x), we have

T cσ̃f(z) =
∑
m∈Zd

σ̃(z,m)f̂(m)zm

=
∑
m∈Zd

πz(σ(m))x̂(m)Umzm

=
∑
m∈Zd

πz(σ(m)x̂(m)Um) = πz(T
c
σ(x)).

Finally, by Lemma 7.10 and Theorem 7.7, we have

‖T cσ(x)‖Fα,cp (Tdθ) = ‖π·(T cσ(x))‖Fα,cp (Td,Tdθ) = ‖T cσ̃f‖Fα,cp (Td,Tdθ)

. ‖f‖Fα,cp (Td,Tdθ) = ‖x‖Fα,cp (Tdθ).

The assertions on Sobolev and Besov spaces are proved similarly. �

Finally, let 0 ≤ ρ ≤ 1, n ∈ R and γ ∈ Nd0. Define Snρ (Zd) as the scalar-valued toroidal symbol

class, consisting of those functions σ : Zd → C which satisfy

|∆γ
mσ(m)| ≤ Cγ(1 + |m|)n−ρ|γ|1 , ∀m ∈ Zd and ∀ γ ∈ Nd0.
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In this setting, it is evident that T cσ and T rσ degenerate into the same Fourier multiplier on Tdθ ,
simply denoted by Tσ. The following result is a Mikhlin-type Fourier multiplier theorem on Tdθ .

Corollary 7.14. Let σ ∈ S0
1(Zd) and α ∈ R. Then Tσ is bounded on Fα,cp (Tdθ), Fα,rp (Tdθ) and

Fαp (Tdθ) for every 1 ≤ p ≤ ∞.
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de France, Paris, 1978. i+185 pp.
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[42] P. Portal and Ž. Štrkalj. Pseudodifferential operators on Bochner spaces and an application. Math. Z., 253
(2006), 805-819.
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