MAPPING PROPERTIES OF OPERATOR-VALUED PSEUDO-DIFFERENTIAL

OPERATORS

RUNLIAN XIA AND XIAO XIONG

ABSTRACT. In this paper, we investigate the mapping properties of pseudo-differential operators
with operator-valued symbols. We prove the boundedness of regular symbols on Sobolev spaces
HS (R Ly(M)) and Besov spaces Bg"q(Rd;Lp(M)) for o € R and 1 < p,q¢ < o0, as well as
the boundedness of forbidden symbols on Hg (R%; La(M)) and B, (R?; Ly (M)) for o > 0 and
1 < p,q < co. Thanks to the smooth atomic decomposition of the operator-valued Triebel-
Lizorkin spaces Flo"c(le7 M) obtained in our previous paper, we establish the Ff“c—regularity of
regular symbols for every a € R, and the Fla’c-regularity of forbidden symbols for v > 0. As
applications, we obtain the same results on the usual and quantum tori.
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Pseudo-differential operators were first explicitly defined by Kohn-Nirenberg [29] and Hérmander
[21] to connect singular integrals and differential operators. They can be viewed as generalizations
of Fourier multipliers, i.e., those operators acting on functions of variable s € R?, formally deter-

mined by
T(eQ‘n'isf) _ J(f)e2ﬂis~§7 Vé— c Rd.

In this sense, o(&) is called the symbol of the operator T. If T is one of those more general
operators, it is characterized by the symbol (s, &), which is now a function of s as well as &, i.e.,

T<62ﬂ'is-£) _ 0’(8, f)e%ris-f.

Using the inverse Fourier transform, this characterization looks like

-~
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To emphasize the role of the symbol o, we often write T" as T,,. And we call this T, a pseudo-
differential operator.

Here are some examples of pseudo-differential operators. If o is independent of the variable s,
then we go back to the Fourier multiplier mentioned above. On the other hand, if ¢ is independent
of the variable &, then by (0.1), we get T'f(s) = o(s) - f(s), the pointwise multiplication. To give
an example of pseudo-differential operator whose symbol is a function of both s and &, we consider
the partial differential operator L =3, <1 am(s)Dy", where m € N¢ and |m|; = mq + -+ +mg.
This time, by (0.1) again, we know that the symbol of L is

a(5,8) = Y am(s)(2mi&)™

Im|1<k

For a general symbol o, T, may be thought as a limit of linear combinations of operators composed
by pointwise multiplications and Fourier multipliers.

The study of pseudo-differential operators connects the partial differential operators with har-
monic analysis. More precisely, the regularity of the solutions of a PDE corresponds to the bound-
edness of the related pseudo-differential operator on some function spaces. This amounts to one
of the most important problems in pseudo-differential operator theory: the mapping properties of
these operators on various function spaces. Given n € R and 0 < 4,p < 1, denote by S} 5 the
Hoérmander class of symbols, consisting of all infinitely differentiable functions o : R? x R? — C
such that

(0.2) ‘DgD?a(s,fﬂ < C,p(1+ |§Dn+5\“/\1*1)|5|1

for all 5,& € R One may ask which kind of symbol classes give pseudo-differential operators
that are bounded on L,-spaces, Sobolev, Besov, Hardy or Triebel-Lizorkin spaces. In general,
it is known that pseudo-differential operators are not necessarily bounded on the classical Hardy
space ”Hl(Rd), or homogeneous Besov and Triebel-Lizorkin spaces. As a result, when studying
the mapping properties of pseudo-differential operators, one usually focuses on inhomogeneous
function spaces, such as the local Hardy spaces h,(R?) defined by Goldberg [17] which provides the
inhomogeneous version of [16], or inhomogeneous Besov and Triebel-Lizorkin spaces (see Triebel
[52] and [53] for the definitions). For details on these results in the classical setting, we refer to
7,9, 12, 44, 46, 49, 53].

In the noncommutative setting, this line of research started with Connes and Baaj’s work [13, 4]
on pseudo-differential calculus for C*-dynamical systems, which intended to extend the Atiyah-
Singer index theorem [3] for Lie group actions on C*-algebras. At that time, due to the fact that
very little had been done about the analytic aspect, the work of Connes and his collaborators did
not include L,-estimates for parametrices or error terms. Recently, inspired by the development
of noncommutative harmonic analysis, a lot of progress has been made on Fourier multiplier the-
ory and Calderén-Zygmund theory on noncommutative L, spaces, thanks to the efforts of many
researchers [10, 11, 19, 20, 24, 26, 28, 34, 37, 38, 43, 57, 58, 59]. But so far, the mapping properties
of pseudo-differential operators are rarely studied which seems to be a good candidate to connect
the noncommutative harmonic analysis with the noncommutative differential geometry [14].

As we know, pseudo-differential operators have substantial impact on linear and non-linear PDEs
[47, 48]. In the noncommutative setting, an important motivation for us to investigate the pseudo-
differential operators is their potential applications on noncommutative PDEs. Studying their
mapping properties on the most fundamental noncommutative manifold quantum tori is surely a
good starting point for us. Our strategy is using the transference method [11, 37] to transfer the
analysis on fully noncommutative algebras to the case of semicommutative algebras, specifically,
from quantum tori to spaces of bounded functions defined on R? or T¢ with values in some von
Neumann algebras.

In this paper, we consider the boundedness of noncommutative pseudo-differential operators
on operator-valued function spaces and then apply the corresponding results to quantum tori.
Our definition of symbol classes is modelled on the classical definition by Hormander; the idea
is to consider those operator-valued functions o : R? x R? — M satisfying (0.2) with operator
norms in place of absolute values of the derivatives of 0. Here M is a von Neumann algebra. If
f:R? — Li(M)+M is a good enough function, we can consider the action of a pseudo-differential



Pseudo-differential operators 3

operator with symbol ¢ on this f. Because of the noncommutativity, we have two different actions:

(03) zw@=4gm@

and
/ f 271'19 £d£

We will mainly work on the column operators 75 and establish their mapping properties on (po-
tential) Sobolev spaces Hg (R?; L,(M)) and Besov spaces Bg',(R%; L, (M)), as well as local Hardy
spaces h;;(]Rd,./\/l) and inhomogeneous Triebel-Lizorkin spaces F;vc(Rd,M). The Sobolev and
Besov spaces are defined in a similar way as their Banach-valued counterparts (see section 3 for
concrete definitions in the operator-valued setting), while the local Hardy spaces and Triebel-
Lizorkin spaces are introduced and studied in our recent papers [55] and [56].

Now we state the main results of this paper, and briefly describe the ingredients of the proofs.
We concentrate on the pseudo-differential operators with operator-valued symbols in S{i s» the class

of infinitely differentiable functions o : R¢ x R? — M such that
IDYDEo(s,6)l s < Cop(1+ [N s € € R

~

(&)e?m<dg

The first part of the results is about the Sobolev and Besov spaces. Let o € SR 5

i) If 0 < § < 1, T¢ is bounded on the Sobolev space H§(R?; Ly(M)) for any a € R.
ii) If § = 1, T¢ is bounded on H(R?; Ly(M)) for any a > 0.
iii) If 0 <6 < 1, T¢ is bounded on the Besov space Baq(Rd; L,(M)) for any 1 < p,q < oo and
aeR.

iv) If § = 1, T¢ is bounded on BY ,(R%; L,(M)) for any 1 < p,q < oo and a > 0.
The proof of the Lo regularity in i) is similar to the corresponding classical result, relying heavily
on the Cotlar-Stein Orthogonality Lemma. But if o € S?)l, we no longer have this Lo regularity;
we prove the boundedness of T'¢ on the Sobolev spaces HS(RY; Ly(M)) for a > 0 instead. To
demonstrate this boundedness on Sobolev spaces, we will have to treat the kernels of the dyadic
pieces of symbols, and use the relation between Sobolev and Besov spaces. The same trick will
lead to the boundedness of T%Y on Besov spaces.

The regularities of pseudo-differential operators on local Hardy spaces and Triebel-Lizorkin
spaces are much more complicated. The main part of the proof concerns the case p = 1 for
both kinds of spaces. Compared to the standard proof of the boundedness on Hardy spaces of
a usual Calderén-Zygmund operator with a commutative or noncommutative convolution kernel,
the present proof is much subtler and more technical. We need a careful analysis of the pseudo-
differential operator acting on smooth (sub)atoms given in [56]. Our results are the following.

i) If0<d<landoeS 5 Iy is bounded on F;‘vc(Rd,M) for any 1 <p < oo and a € R.
ii) If 0 € S, T¢ is bounded on Fy"“(R%, M) for every a > 0.

For 0 < § < 1, we first prove T, : F{"“(R%, M) — F/"°(R?, M) is bounded. Since the adjoint of
oesy 5 still belongs to 59 5 when 5 < 1, we will deduce the boundedness on Fg" ¢(R%, M) from
duahty and interpolation. And for o € S7' s, we can use the Bessel potential of order n to connect
TS with T¢, for o' € 89, i.e. T¢ =T¢ 0J", s0 as to get the boundedness of T from F¢(R%, M)
to F;‘_"’C(Rd,/\/l). For the case 6 = 1, in order to to get the boundedness on F;"C(]Rd,./\/l) for
p > 1, we need more assumptions on the symbol.

We then apply the outcome to the usual and quantum tori, and obtain parallel results in both
cases.

Our regularity results on Sobolev and Besov spaces can be viewed as a particular case of more
general Banach-valued inequalities for pseudo-differential operators. Based on the work of Weis
[54], Portal and Strkalj [42] proved that the pseudo-differential operators with operator-valued
symbols o (s, &) : R x R? — B(X) are bounded on the Bochner integrable spaces L,(R%; X), under
the essential assumptions (1) o is R-bounded (defined in [54]), (2) the Banach space X is a UMD
space (see [8]). Since the noncommutative L, spaces are UMD spaces when 1 < p < oo, Portal
and Strkalj’s results apply to L, (Lo (RY)&M) = L,(R?; L,(M)) immediately. However, because
of the R-boundedness assumption, their results do not cover the symbol classes in this paper.
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The situation for Banach-valued Besov spaces is more satisfactory, where neither R-boundedness
nor UMD condition are needed, see [1] for results on Fourier multipliers. More recently, in [5]
the authors proved the mapping properties for operator-valued pseudo-differential operators on
toroidal Besov spaces By q(’]I‘d;X ) for 1 < p,q < oo and an arbitrary Banach space X, which
covers the corresponding results in section 7. The regularity results on Sobolev and Besov spaces
obtained in our paper should be known to experts, but have not been studied systematically in the
literature. For the sake of completeness and for our use in the proofs of the regularity results on
Triebel-Lizorkin spaces, we include those results, and give proper proofs of them.

Contrary to the Sobolev or Besov case, our regularity results on Triebel-Lizorkin spaces do not
follow from any pseudo-differential operator theory in the Banach-valued setting. Let us illustrate
this at the level of Hardy spaces. For an M-valued function f on R, given a Littlewood-Paley
decomposition (¢;);j>0 on R?, the Hardy space norm used in our paper is given by

f:ifglfrh{H(ijo lspj * gl*)? Hp + H(ijo |05 * h*|2)%Hp} if 1<p<2

max {[|(Sys0 les /2 H] 0 [[(Cyso les « S} i 2<p< oo

By the noncommutative Khintchine inequalities [31, 32], this norm is equivalent to || >, q7j-¢; *
fllz, @xra:L, (M), where {7;};>0 is a Rademacher sequence on some probability space (2, P). It
seems that this later norm has not been studied so far in the literature.

[£lln, =

Let us mention that independently and at the same time, Gonzalez-Pérez, Junge and Parcet
developed in [18] the pseudo-differential theory in quantum Euclidean spaces that are the non
compact analogues of quantum tori. Although the two papers overlap in some ways, they are
very different in nature in regard to both arguments and results. The arguments of [18] are
based on a careful analysis of the Ly and semigroup BMO cases (the latter is defined in [27]),
while our proof in the case p = 1 (the main case) relies entirely on the atomic decomposition
of F{"“(R% M) obtained in [56]. Interestingly, as far as the results are concerned, our results
deal with the asymmetric situation of boundedness of T¢ (T7) on column (row) Triebel-Lizorkin
spaces F& (R, M) (Fm(R*, M)) with 1 < p < oo. However, our methods do not yield the
Fprr-regularity of T, nor the Fph“-regularity of T7, thus in particular we are not able to get the
Ly-regularity of Ty since Fj' (R%, M) coincides with Ly (Lo (RT)@M) when v = 0 and 1 < p < oo.
In [18], in the quantum Euclidean setting, the authors define the class of symbols 227 s Which
eliminates this asymmetry, and obtain the boundedness of the corresponding pseudo-differential
operators on Ly-spaces with 1 < p < co. Coming back to the commutative case, 227 s reduces to
the case of classical Hormander symbols, while in the fully noncommutative setting, Eg’ s is strictly
smaller than 527 s5- Thus the L,-regularity of T (or 7)) is still unsolved for the whole class 527 5

The paper is organized as follows. In section 1, we introduce some elementary notation and
knowledge on noncommutative Ly-spaces, and the definitions of local Hardy spaces in [55] and
inhomogeneous Triebel-Lizorkin spaces in [56]. Then we present the smooth atomic decompositions
of these spaces obtained in [56]. In section 2, we give the concrete definitions and some easily
deduced useful facts on operator-valued pseudo-differential operators. In section 3 we prove the
mapping properties of pseudo-differential operators on Sobolev and Besov spaces. Section 4 is
devoted to the study of the local mapping properties of pseudo-differential operators, i.e. their
action on atoms. In sections 5 and 6, we prove the mapping properties of pseudo-differential
operators with regular and forbidden symbols respectively. The last section presents applications
to the usual and quantum tori.

We close this introduction section by the following convention. Throughout, we will use the
notation A < B, which is an inequality up to a constant: A < ¢B for some constant ¢ > 0. The
relevant constants in all such inequalities may depend on the dimension d, the test functions ¢
or &, or p, etc., but never on the function f in consideration. The equivalence A ~ B will mean
A < B and B < A simultaneously.

1. PRELIMINARIES ON NONCOMMUTATIVE ANALYSIS

We begin with an introduction of notation and basic knowledge on vector-valued Fourier analysis,
i.e., Fourier analysis on functions with values in a Banach spaces X. Let & (Rd;X ) be the space
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of X-valued rapidly decreasing and infinitely differentiable functions on R¢ with the standard
Fréchet topology. In particular, S(R?;C) is simply denoted as S(RY). Let S&'(R% X) be the
space of continuous linear maps from S(R?) to X; the elements of S’(R%; X) are the so-called
X-valued tempered distributions. All operations on S(R?) such as derivation, convolution and
Fourier transform transfer to S’'(R%; X) in the usual way. On the other hand, L,(R%; X) naturally
embeds into S’'(R%; X) for 1 < p < oo, where L, (R%; X) stands for the space of strongly p-integrable
functions from R to X. By this definition, Fourier transform and Fourier multipliers on R? extend
to vector-valued tempered distributions in a natural way.

We give some typical Fourier multipliers that will be frequently used in the sequel. For a
real number «, the Bessel potential is the operator J* = (1 — (27r)"2A)% defined on S'(R%; X),
where A denotes the Laplacian on R?. If a = 1, we will abbreviate J' as J. We denote also
Jo (&) = (1 4+ ]¢))% on R%. Tt is the symbol of the Fourier multiplier J¢. Recall also the symbols
of Littlewood-Paley decomposition on R? which are used to define Besov and Triebel-Lizorkin
spaces. Fix a Schwartz function ¢ on R? satisfying:

suppp C {€: 5 < [¢] <2}
(1.1) e >0o0n{¢: 1< ¢ <2},
ZkeZ @(2_]%) =1,VE{#£0.
Given k € N, let ¢, be the function whose Fourier transform is equal to ¢(27%-) and ¢y be the

function whose Fourier transform is equal to 1 -3, ¢(27%). Then {¢}}r>0 gives a Littlewood-
Paley decomposition on R¢ such that

(1.2) supp P C {€ e RT: 2871 < |¢| < 2"} Wk eN, supp@o C {€ e RY: ¢ <2}
and that
(1.3) > Gr(© =1, VEeR™

k=0

Other than the above Littlewood-Paley decomposition, we will need another kind of resolution
of the unit on R? (see [46, Section VIL.2.4]). Let X, be a nonnegative infinitely differentiable
function on R? such that supp Xy C 2Qo 0, and > neze Xo(s — k) =1 for every s € R<. Here Qoo
is the unit cube centered at the origin, and 2@y is the cube with the same center, but twice the
side length; see the end of this section for notation of general cubes. Set Xy = Xy(- — k). Then
each &}, is supported in the cube 2Qq ; = k 4+ 2Qo,0, and all &}’s form a smooth resolution of the
unit:

(1.4) 1= X(s), VseR:
keZa

This smooth resolution of the unit will often be used to divide functions or distributions into small
pieces, which have the same smoothness as before, but have compact supports additionally.

1.1. Noncommutative L,-spaces. Let us turn to the setting of operator-valued analysis, where
the above involved Banach spaces X are required to have some operator space structure now. In
this paper, all function spaces in consideration are based on the noncommutative L,-spaces as-
sociated to (M, ), where M is a von Neumann algebra 7 is a normal semifinite faithful trace,
and 1 < p < co. The norm of L,(M) will be often denoted simply by || - ||,. But if different
L,-spaces appear in a same context, we will sometimes precise the respective L,-norms in or-
der to avoid possible ambiguity. The reader is referred to [41, 60, 25] for more information on
noncommutative Ly-spaces. These noncommutative L,-spaces are equipped with their natural
operator space structure introduced by Pisier [39, 40]. The structure on L; (M) is defined as the
one induced by the opposite of dual space (M’')°P. For 1 < p < oo, the natural operator space
structure on L,(M) is given by the family of norms determined by the complex interpolation
My, (Ly(M)) = (M (M), My, (L1 (M))) 1, where the norm of M, (M) C M, (B(H)) is induced by
P

the one on M,,(B(H)) = B(¢3(H)).
We will also need Hilbert space-valued noncommutative L,-spaces (see [23] for more details).
Let H be a Hilbert space and v € H with |jv|]| = 1. Let p, be the orthogonal projection onto the
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one-dimensional subspace generated by v. Define
L,(M;H") = (po @ Lpg) Lp(B(H)®M) and L,(M; H®) = Lp,(B(H)QOM)(py @ Lpg).
These are the row and column noncommutative L,-spaces, which are 1-complemented subspaces
of L,(B(H)@M).
In most part of this paper, we are interested in operator-valued functions. The involved von

Neumann algebra is the semi-commutative algebra L., (R?)®@M with tensor trace, denoted by N
in the sequel. We will frequently use the following Cauchy-Schwarz type inequality,

(1) [ owr@ast < [ lo)as [ 1,

where ¢ : R? — C and f : R? — L;(M) + M are functions such that all integrations of the above
inequality make sense. Here for an operator z, |z|? denotes z*z. (1.5) is an easy consequence of the
convexity of the operator-valued function: z + |x|?, and “<” is understood as the partial order in
the positive cone of M. We will also require the operator-valued version of the Plancherel formula.
For sufficiently nice functions f : RY — L;(M) + M, for example, for f € La(R?) ® Ly(M), we
have

(16) | repas= [ 1fepe.

1.2. Inhomogeneous Triebel-Lizorkin spaces. We follow the presentation in [56], to give the
definition of inhomogeneous Triebel-Lizorkin spaces. Let 1 < p < co and a € R, and ¢ be the
Schwartz function determined by (1.1). The column Triebel-Lizorkin space F¢(R%, M) is defined
by

FeREM) = {f € SR Li(M) + M)« || fllgge < o0},
where

I fllpeee = H Z22Ja“:03*f| HL

j>0
The row space F;"T(Rd, M) consists of all f such that f* € F;"C(Rd, M), equipped with the norm
| fllper = [If*[| pg-c. The mixture space F2(R%, M) is defined to be

Fooc(Re Feor (R4 if 1<p<2
R O My L

Ee(RE,M)NET(RE M) if 2 <p < oo,
equipped with

inf {[lgllpge + [[Pllppr} if 1<p<2
Ifllrg = /=9t" _
max{|| |l pge; [ fllpgr} i 2 <p < oo

If p = oo, define F¢(R?, M) as the space of all f € S’(R% M) such that

Il = oo Sl + e [ / > 2 (o) <
—logy (1(Q))
where @ denotes any cube in R?, |Q] its volume, and [(Q) its side length. Let 1 < p < oo, a € R
and ¢ be the conjugate index of p. Then the dual space of Fﬁ"c(Rd, M) coincides isomorphically
with F7*¢(R%, M).
The Triebel-Lizorkin spaces form an interpolation scale with respect to the complex interpolation
method [6]: For ap, a1 € R and 1 < p < 0o, we have

«1,C a,C 1 @
(PRt (R M), (R M)y = FRe(RE M), a= (1= )ao + ;1

See [56] for the proof of this interpolation.

When o = 0 and 1 < p < oo, it is proved in [56] that F:*(R%, M) = h(R?, M) with equivalent
norms, where h¢ (R, M) (see [55] for the definition) are the local analogues of the operator-valued
Hardy spaces defined in [33]. The lifting property of Triebel-Lizorkin spaces states that, for any
B € R, J? is an isomorphism between F¢(R%, M) and Fo~¢(R% M). In particular, J* is an
isomorphism between F;’C(Rd,M) and hg(Rd,M). In this sense, these Triebel-Lizorkin spaces
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can be viewed as an extension of local Hardy spaces. Moreover, when 1 < p < oo, we have, with
equivalent norms,

(17) LP(N) = hP(RdaM) = F}?(Rd?M)a

where N' = Lo (RY)@M. In the classical Euclidean setting, when 1 < p < oo, the local Hardy
space h,(R?) is equivalent to the usual Hardy space H,(R?) as well as L,(R?), while when p = 1
one has the strict inclusions H(R%) C hy(RY) C L;(R?); see [17] for more details.

1.3. Atomic decompositions. We begin with the case a = 0, i.e., the atomic decomposition of
local Hardy space h$(R%, M). Much as in the classical case, the atomic decomposition of h§(R%, M)
can be deduced from the h;-bmo duality. The following definition of atoms is given in [55].

Definition 1.1. Let Q be a cube in R? with |Q| < 1. If |Q| = 1, an h$-atom associated with Q is
a function a € Li(M; L§(RY)) such that
e suppa C Q;
1
o 7(Jyla(s)Pds)® < Q|72
If 1Q| < 1, we assume additionally:
. fQ a(s)ds = 0.

Let hiat(Rd, M) be the space of all f admitting a representation of the form

[= Z Ajag,
j=1

where the a;’s are h{-atoms and A; € C such that > 72, |\;| < oo. The above series converges in
the sense of distribution. We equip h‘iat(Rd, M) with the following norm:

1fllng ., = inf{z A : f = Z)\jaj; a;’s are h{ -atoms, A\; € C}.

j=1 j=1
It is proved in [55] that
(1.8) hf o (RY, M) = hi(R?, M)

with equivalent norms. It is also evident in the proof of (1.8) given in [55] that, in Definition 1.1,
we can replace the support @ of atoms by any bounded multiple of Q.

Before proceeding further, we point out that throughout the paper, we will use the following
notations for cubes in R%: For any cube @ C R? and any positive integer A, AQ is the cube with
the same center as @ but side length scaled by a factor X; for s € R¢, s + @ denotes the cube
obtained by shifting @ by the vector s = (s1,-- -, 54).

Let us introduce the smooth atomic decomposition of F;"“(R¢, M), which will be a key ingredient
to obtain the boundedness of pseudo-differential operators on F}"“(R%, M). This decomposition
is an extension as well as an improvement of the atomic decomposition of h$(R% M) in (1.8).
Compared to (1.8), the smoothness of atoms is improved and subatoms enter in the game.

For every | = (I, ,lq) € Z%, u € Ny, we define @,,; in R? to be the cubes centered at 27+,
and with side length 27#. For instance, Qoo = [—%, %)d is the unit cube centered at the origin.
Let Dy be the collection of all the cubes @, ; defined above. We write (x,1) < (¢/,0') if

w2 /~L, and Q/J,l C 2@/1’,[“
For a € R, let a; = max{a,0} and [a] the largest integer less than or equal to a. Denote
I¥h =71 + -+ g and DY = 87" --- ) for v € NI, and 5% = s .. 55 for s € RY, B € N¢.
Recall that J is the Bessel potential of order a.
Definition 1.2. Let a € R, and let K and L be two integers such that
K> ([a]+1)+ and L >max{[—a],—1}.
i) A function b € Li(M; L§(R?)) is called an (a, 1)-atom if
e suppb C 2Qo i, k € Z%;
o 7(Jpa |D7B(s)]?ds)% <1, Vy NG, 1)1 < K.
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ii) Let Q = Q1 € Dy, a function a € Li(M; L§(R?)) is called an (a, Q)-subatom if
e suppa C 2Q);
o 7([e |D7a(s)Pds)t <|QITTE, Wy €N, b < K
o [pasPa(s)ds=0, VBeNZ, |81 <L.

iii) A function g € L1(M; L§(R?)) is called an (v, Qr.m)-atom if

(1.9 ([ 1) < QunlF and 9= 3 durans
¥ (1)< (k)

for some k € Ny and m € Z%, where the a,’s are (o, Qu1)-subatoms and the d,, ;’s are complex
numbers such that ) )
(> ldul)? <1Qeml*.

(1) <(k,m)

We have obtained in [56, Theorem 5.7] the following smooth atomic decomposition:

Theorem 1.3. Let a € R and K, L be two integers fixed as in Definition 1.2. Then any f €
F}(RY, M) can be represented as

(1.10) F= (b +X95),
j=1
where the b;’s are (o, 1)-atoms, the g;’s are (o, Q)-atoms, and p;, \; are complex numbers with
o0
(1.11) D (sl + 1)) < o0
j=1
Moreover, the infimum of (1.11) with respect to all admissible representations yields an equivalent
norm in Fy{"“(R%, M).

It is worthwhile to point out that the above K and L can be arbitrarily large, depending on the
resolution of the unit used in the proof of Theorem 1.3 given in [56]. In other words, the orders of
the smoothness and moment cancellation of the atoms are at our disposal, so that we can require
good enough conditions on the atoms. This will be a very important technique in the proofs of our
main results.

2. PSEUDO-DIFFERENTIAL OPERATORS: DEFINITIONS AND BASIC PROPERTIES

We introduce the definitions and some basic properties of pseudo-differential operators in this
section. The symbols of pseudo-differential operators considered here are B(X)-valued, where X
is a Banach space and B(X) denotes the space of all bounded linear operators on X. However, in
the later sections, we will only consider those symbols with values in M.

The content of this section is a straightforward generalization to the vector-valued case of the
classical theory of pseudo-differential operators, see for instance [46, 47, 48, 45]. Such a generaliza-
tion already appears in some recent papers, see [42, 5]. So we claim no originality here. Nonetheless,
for the sake of completeness, we prefer to include the definitions specifically, and provide complete
proofs of the basic properties that will be used in the next sections.

Let n € Rand 0 < §,p < 1. Then S/?, s denotes the collection of all infinitely differentiable
functions o defined on R? x R? and with values in B(X), such that for each pair of multi-indices
of nonnegative integers ~y, g, the inequality

IDYDL o (s5,)llp(x) < Crp(L+ [¢)mHolh=rlsh

holds for some constant C., 5 depending on v, 3 and o. Here again v = (y1,--+ ,74) € N, |y]1 =
Y1 + -+ Yd a,nd D’Y = aa:“/ll e ;:de .
d

Definition 2.1. Let o € S ;. For function f € S(RY; X), the pseudo-differential operator T, is a
mapping [ — T, f given by

(2.1) T5 f(s) =/ o (s,€) f(§)e* ™ dg.
Rd
We call o the symbol of T, .
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Proposition 2.2. Let 0 < d,p <1 and n € R. For any o € S"5, T, is continuous on S(R%; X).

p,07

Proof. By integration by parts, for any s € R? and v € NZ, we have

-~

|(2ris) T, flx = ||(2mis)” / (s, (€)™ e |

- | [ ot oftenye ]
-I L. Dg[a(sa5)f(€)]62”is'5d§HX <o

Thus, T, f is rapidly decreasing. A similar argument works for the partial derivatives of T, f, then
we easily check that T, f maps S(R%; X) continuously to itself. O

Another way to write (2.1) is as a double integral:

(2.2) / / Ye2mis=t €t e
Rd JRd

However, the above ¢-integral does not necessarily converge absolutely, even for f € S(R%; X). To
overcome this difficulty, we will approximate o by symbols with compact support. To this end, let
us fix a compactly supported infinitely differentiable function 7 defined on R? x R? such that n = 1
near the origin. Set

(2.3) ai(s,6) = o(s,&n(277s,277¢), jeN.
Note that o; converges pointwise to o and o; € S 5 uniformly in j. Thus, for any f € S (R%; X),

Ty, f converges to T, f in S(R% X) as j — oo. Since the o;’s have compact supports, formula (2.2)
works for Ty, f(s). Then we can define the integral (2.2) as follows:

(2.4) = lim / / 0j(5,&) f(t)e* =D S qrde.
R4 JRd

j*)OO

Proposition 2.3. Let 0 <6 < 1,0 < p <1 andn € R. For any o € S;(;, the adjoint of T, is
continuous on S(R%; X*).

Proof. For any f € S(R%; X) and g € S(R%; X*), by the duality relation
(Tof,9) = {f,(T5)"g),

we check that

(2.5) (T,)*g(s) = lim / / *(t,€)g(t)e2™ =D qrde.
j—oo Jrd JRrd
By integration by parts, it is clear that (T},)* is continuous on S(R%; X*). O

Since S'(R%; X**) = (S(RY; X*))* (see [51, Section 51] for more details on this duality), in the
usual way, we extend T, to an operator on S’(R%; X**).

Definition 2.4. Let f € S'(R%; X**). We define T, f by
<To'f7 >:<f7 (Ta)*g>, VgéS(RdX*)

By Proposition 2.3, (T,)*g € S(R%; X*) whenever g € S(R?; X*). So the bracket on the right
hand side of the above definition is well defined. Therefore, T, f is well defined, and takes value in
S'(R%; X**) as well.

Proposition 2.5. Let 0 < § < 1,0< p <1 andn € R. For any o € Sps: To is continuous on
S/(Rd,X**).

Proof. For any f € S'(R% X**), we take a sequence (f;) such that f; — f in &’(R% X**). Then
we have

(Tsf5,9) = (£5,(T5)*g) — (f,(T,)"g) = (T, f,9) VgeSR:X).
Thus, T, f; converges to Ty, f in &’(R%; X**). So T, is continuous on S'(R%; X**). O
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The pseudo-differential operator defined above has a parallel description in terms of a distribu-
tion kernel:

T1) = [ Kls.s =50y

where K is the inverse Fourier transform of o with respect to the variable &, i.e.

(2.6) K(s,t) = /]Rd o(s, &)e?™E e,

In the sequel, we will focus on the symbols in the class S7'5 with 0 <6 < 1 and n € R. Similarly
to the classical case (see [12], [22], [46] and [50]), we prove that for any operator-valued symbol
o € 574, the corresponding kernel K satisfies the following estimates:

Lemma 2.6. Let o € S5 and 0 < < 1. Then the kernel K(s,t) in (2.6) satisfies

(2.7) IDYDIK (s, )l p(x) < Crpplt]” = Ph=d=n v e R\ {0},

(2.8) IDYDIK (5,0l px) < Copnltl ™Y, YN >0 if | > 1.

Proof. This lemma can be deduced easily from the corresponding scalar-valued results, which can
be found in many classical works on pseudo-differential operators, for instance, [49, Lemma 5.1.6].
Given z € X and z* € X* with norms equal to one, it is clear that (x*, o(s,t)z) is a scalar-valued
symbol in ST 5, with distribution kernel (z*, K(s,t)r). Thus, we have

(", D} D} K (s, t)x) = DI D (2", K (s, t)x)] < Cy gt M= 1Fl=a=n v g e R\ {0}
and
(z*, DYDY K (s, t)x) = DIDP[(a*, K (s,t)x)] < Cyanlt|™, VN >O0if |t > 1.
Then, taking the supremum over x and x* in the above two inequalities, we get the desired

assertion. 0

In the classical case, the proof the above lemma makes use of the decomposition of the symbol
o into dyadic pieces. Let (Pk)r>0 be the resolution of the unit satisfying (1.3). Set

(2.9) oi(5,6) = 0(5,)Pr(€), V(s,6) €RT X R™
By a similar argument as in the above proof, we also have the following estimates of the corre-

sponding kernels of these pieces oj’s.

Lemma 2.7. Let 0 € ST and oy, be as in (2.9) and

Ki(s,1) = /R on(s, )T

Then
1D D} Ky (s,) || px) < [t 72 2RIBhFhhtd=2M4m) -y ar € N,

Now we study the composition of pseudo-differential operators. The following proposition gives
a rule of the composition of two pseudo-differential operators. Different from the proof of Lemma
2.6, we can not reduce that of the following proposition to the scalar-valued case. So we need to
perform an argument which is similar to the classical case. We refer the reader to [45, Theorem
2.5.1] or [46, p. 237], where the case § = 0 is dealt with in the classical setting. However, for
the case 0 < § < 1, the remainder of the Taylor expansion of oy is much harder to handle, which
requires a subtler expansion of oy.

Proposition 2.8. Let 0 < 6 < 1 and o1, o2 be two symbols in S7' and S35 respectively. There
exists a symbol o3 in S7'ST™* such that

Ty, =15, T,,.

Moreover,

2ri) 17l e — (1—
(2.10) 03— Y. (”g'DgangaQ e syt Um0y NG > 0.
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Proof. Firstly, we assume that oq and o9 have compact supports, so we can use (2.2) as an alternate
definition of T},, and T,,. In this way, T,, T, can be written as follows:

Ty, (Ty, f)(s / / o3(s, &) f(r)e* = Edrdg,
R4 JR4

where

3(375)2/ / Ul(s,17)02(157f)e%i(s—t)'(n—&)dtdn
(211) Rd JRA

= [ o1l g midatn ey

with g the Fourier transform of o9 with respect to the first variable. We expand o1(s,& +n) by
the Taylor formula:

1 1
ai(s,é+n) = Y, =Dins,On+ Y,  —Dloi(s,On" + Ru(s, &),
[v]1<No v No<|y[i<N gl

with the remainder

Z /Dals£+0n)(1— 0)Nndo.

[v]1=

Now we replace o1(s,€ 4+ n) in (2.11) by the above Taylor polynomial and remainder. Notice that

1 N Coris. 27i)
pl /Rd Dioi(s,§)n"52(n, &)e Zmisn dgn = (;Dgal(s,f)D;’gg(‘g,@_

Thus,

i)~ Ih
o5 =( 3 + 3 ) E T (5.6 Dloa(s, )

(2.12) [v1<No  No<|yl1<N v
+ /]Rd RN(Su57”)82(n7€)6_2ﬂis.ndn-

”1+ﬂ2 (1=8)|vh

For every ~, the term Dwal (5,§)DJo2(s,€) is a symbol in S} . Indeed, it is clear that

||D701( ,E) DYoo, f)”B(X) <@+|Ehm [7]1 (1+|£|)n2+5\7\1 _ (1+‘€|)n1+n2 (1=8)|vl

Moreover, for any f;,32 € N&, we have Doy € 5?}+6|61|1»D§2‘72 € S??_&mlll and Dgﬁlgl €
S;{I&‘I,D?az € SIL’?‘BQ‘I. Thus, we get
IDI (D¢ (5,6)DYoa(5: ) gy S D [P DEoa(s,€) D Dloa(5,6)|

B1+B2=p
<1+ |£|)n1+nzf(175)|7\1+6|ﬁ|1’

and

||DB D 0'1( f)D 0'2 HB(X S Z ||D§+B1 (3 g)DFyDB2O'2 S f HB(X)
B1+B2=p
< (1 +|g)ymtnz=(=lvh=I18h,

By the above estimates, we see that when Ny < |y]; < N, D5 o1(s,€)DYo3(s,€) € Snﬁ"2 (1=8)N
Now we have to treat the last term in (2.12). For the remainder Ry (s,&,7n), we easily check
that for any |y|; = N and 0 < 6 <1,

(2.13) ID{a1(s, &+ 0n)llpx) < Cn(1+[€)™ N, if [¢] > 2|n],
and

(2.14) [D{o1(s,&+0n)llpx) < C, V0,6 € R%.
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For G, by integration by parts, we see that for any 8 € N¢ such that |3|; = ]\Nf7 we have
(—2min)?G2(n, €) = / (—2min)’e > Moy (t,€)dt
Rd
= | Dl (e7*™"M)aa(t, €)dt
Rd
- (_1)5/ e 2t DB gy (¢, €)dt.
Rd
Denote the compact t-support of o2(t,&) by Q. Then the above calculation immediately implies
that
(2.15) [G2(n, )l Bxy S 1A+ [nl) =N (1 + [¢])"= 0.

We keep the constant || in this inequality for the moment, and will see in the next step that our

final result does not depend on the volume of this support. Take N large enough so that
(1=6)Nyg d—mn1+(1—=96)Ng

=5 5-s = 1-m

and take N = 0N with 0 < § < 6 < 1. Continuing the estimate of the last term in (2.12),

inequalities (2.13) and (2.15) give

1
¥ _ N, v~ —27is-n
H /| | Dam(s. e+ om0 = 0 st e o

N>max{

S [l )V (1 gy

< [0 ) Ty (1 g 6D

g (1 + |§|)n1+n2+(6—g)ﬁ.

)No

Moreover, since N > %, we have

(1+ \§|)”1+”2+(575)N <(1+ |£|)n1+n27(176)N0.
According to (2.14) and (2.15), we get

1
Y _ NN, 7~ —27ism
H/wlgfo Doy (s. € +0m)(1 = )5, e o[

/S/ |77|N(1_|_|7]D*Nd77,(1_|_|£Dn2+6N
In|> &l
< (1 + |£|)n2+N+d*(175)N < (1 + |£Dn1+n27(1,5)N0'

Therefore, Ry (s,&,n) € S?}+n27(176)N“. Combining the estimates above, we see that, if we set

RNO(Sv 57 77) = ZN0§\7|1<N %DZUI (3’ 5)777 + RN(57€a 77)7 then RNo (87 fa 77) € Siti+n2_(1_6)N0' This
proves the assertion (2.10) when o5 has compact support with respect to the first variable.

Noticing that the above proof depends on the constant || in (2.15), we now make use of the
resolution of the unit in (1.4) to deal with general symbol o with arbitrary s-support. For each
k € Z4, denote o9 1(s,&) = Xy (s)o2(s, &) and

manls€) = [ [ orlsmaan(t e 0 Oatay.
Rd JRA
It has already been established that

(216) 03,k — Z MDgUlDngk S Sﬁg+n27(176)N0, VINg >0,k € Zd,

[v11<No 7
with relevant constants uniform in k. Observe that if two symbols by, by in some Sf s have disjoint
s-supports, with

”DzD?bi(sag)”B(X) < Ciq’Y-ﬂ(l + |£|)n+6|7|17|ﬂ|1’ 1=1,2,
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then by 4+ by € S{"(s with

1D DE (b1 (5,€) + ba(s, ) px) < max{Ch,q5, Cays}(1+ [€]) oI 10,

For our use, we construct a partition of Z¢ with subsets Uy, Uy, - - - ,Usa such that for any ki, ko
in each Uj, the supports supp X%, and supp &}, are disjoint. More precisely, let m: Z — Z/2Z be
the canonical projection sending even integer to 0 and odd integer to 1. Let n%: Z¢ — (Z/27)?
be the d-fold product of 7. Then (Uj);e(z/2zy¢ = ((Wd)*l(j)) e (2/22)a gives the desired partition

of Z4. Summing over (2.16) in each U;, we get a symbol still in Sn1+n2 - S)NU, that is,

ZJSk_Z Z 2771

keU; keUj |v|1<No

—lvh D’yGlD’YUQk c SnlJrnz (1—5)1\/0.

Taking the finite sum over {U;};<;<24, we get the asymptotic formula (2.10) in this case.
Finally, let us get rid of the additional assumption that o1 and o have compact supports. We
define o7 as follows:

Ty =TuT,,.
1 2

where o7 (s, &) = o1(s, §n(2” Js 279¢) and o3 (s,€) = oa(s,E)n(2775,279¢) with 5 given in (2.3).
Notice that the J{’s and the ¢3’s are in the class S7'} 5 and ST3 5 respectively with symbolic constants
uniform in j. Therefore, the above arguments ensure that o belongs to S;'s""* and satisfies (2.10)
uniformly in j. Passing to the limit, we get that o3 € Sﬁg"’m and satisfies (2.10). Furthermore, by
(2.4), we get

Toy =T, To,.

The proof is complete. O

By a similar argument as the above proof, we also get the asymptotic formula for the adjoint of
a pseudo-differential operator with symbol in the class S7'5 when 0 <4 < 1.

Proposition 2.9. Let 0 <4J <1, n € R and o be a symbol in ST 5. There exists a symbol 5 € ST 5
such that Ty = (T5)*. Moreover,

_ 27i) Ik .
G- > %DVDWU A (A=9No v Ny > 0.

|
\’Y\1<NO v

Proof. By (2.5), we get the formal expression of & that

560 = [ [ o tmete o Oanay
Rd JRd
:/ 7" (0, & +m)e” ™ dy,
Rd

where o* is the Fourier transform of o* with respect to the first variable. By the same argument
used in the proof of the previous proposition, we may focus on the symbol with compact t-support.
Taking the Taylor expression of o* (77,5 + 1), we get

Pt = Y DO+ 3 DI + R

[v]1<No N0§|’Y|1<N

As before, we can show that

1 )
- ¥k v 2mis-n _
o /RdDga (n,E)n7e ™ dn =
On the other hand, we can also show that
| [, Batesme=i=nl| g, < 14l

by splitting the integral over n into two parts. Moreover, repeating the above procedure to its
derivatives, we have [y, Ry (&,1)e*™*"dn € ST'5 (1=8)No

(27T1) I DVD’YA*(S 5) c S (1- 5)|’Y|1

. Thus, the proposition is proved. O



14 R. Xia and X. Xiong

Remark 2.10. The above two propositions show that the symbol class S? 5 is closed under the
product and adjoint of pseudo-differential operators. This is one of the reasons why we call symbols
in 5975 with 0 < § < 1 reqular symbols; respectively, we call symbols in Sy 11 forbidden symbols.
In the next section, we will see the different behaviours of regular and forbidden symbols on Lo
spaces, that also distinguish these two kinds of symbols.

3. MAPPING PROPERTIES ON SOBOLEV AND BESOV SPACES

In the sequel, we will mainly consider pseudo-differential operators whose symbols take values
in some von Neumann algebra M. If we take X = Li(M) + M, then M admits an isometric
embedding into B(X) by left multiplication. In this way, these M-valued symbols can be seen as
a special case of the B(X)-valued symbols defined in the previous section. On the other hand, if
we embed M into B(X) by right multiplication, we get another kind of M-valued symbol actions.
Accordingly, we define

TS f(s) = / o(s,€) F(€)Pmoede

9= [ Feats. e

All the conclusions proved in the previous section still hold for both T¢ and 7 in parallel. In the
following sections, we mainly focus on the operators T%.

and

This section is devoted to the study of the continuity of operator-valued pseudo-differential
operators on Sobolev and Besov spaces. Let us now give some background on these function
spaces.

For a € R,1 < p < oo and a Banach space X, the potential Sobolev space Hy (R%; X) is the
space of all distributions in S’(R%; X) which have finite Sobolev norm [l = 1T fllL, @a:x)- It
is well known that the potential Sobolev spaces are closely related to Besov spaces. We still use
the resolution of the unit (¢ )r>o introduced in (1.3) to define Besov spaces. Given o € R? and
1 < p,q < oo, the Besov space Bg,q(Rd; X) is defined to be the subspace of S’(R?; X) consisting of
all f such that

1
1£lmg, = (32 2% on  FIE, parxy) < o0
k>0

The above vector-valued Besov spaces Bg,q(Rd; X) have been studied by many authors, see for
instance [1].

Instead of the Banach-valued spaces defined above, we prefer to study the operator-valued spaces
H?(R%; Ly(M)) and Bg, (R% L, (M)). Obviously, the main difference is that the Banach space X
varies for different p. The following inclusions are easy to check for every 1 < p < oo,

By (R Ly(M)) € Hy (R% Ly(M)) € By oo (R Lyp(M)).

Besov spaces are stable under real interpolation. More precisely, if ag, a1 € R, ag # a7 and
0 <6 <1, then

(3-1) (Bpsyo (RY Ly(M)), Byl (RY Ly(M)))

y2h p,q1

0,q = Bg,q(Rd; LP(M))a

for a = (1 — 0)ag + 01, p,q,q0,q1 € [1,00]. This result is a particular case of Amann’s Banach-
valued counterpart in [1] with X = L,(M), which can be deduced from [6, Theorem 5.6.1] by
considering the pairing between £5°(L,(R% X)) and (51 (L,(R%; X)).

3.1. Mapping properties on L,-Sobolev spaces. We start by presenting an Lo-theorem. It is
a noncommutative analogue of the corresponding classical theorem, which can be found in many
works, for instance, [46, 47, 45]. We will work on the exotic class Sgé with 0 < § < 1, since we
have the inclusion S(l{(; C 52,5. Our argument adapts [46, Proposition VII.2.4, Theorem VII.2.5] to
the operator-valued case. The Cotlar-Stein Almost Orthogonality Lemma [15, 46] plays a crucial
role in our proof. Namely, given a family of operators (7;); C B(H) with H a Hilbert space, and
a positive sequence (c(j))j such that 2 ¢(j) = C' < oo, if the T}’s satisfy:

| TeT5l By < le(k — §)[?
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and
I T} |y < le(k — )P,
then we have

130y < ©
J

Lemma 3.1. Assume o € S . Then T is bounded on Ly(N').

Proof. By the Plancherel formula, it is enough to prove the Lo(N')-boundedness of the following
operator:

S:6) = [ ol @)

Let us make use of the resolution of the unit (Xj)peze introduced in (1.4) to decompose S¢ into
almost orthogonal pieces. Denote k = (k, k') € Z¢ x Z%, and set

Jk(87 5) = Xk(S)U(& g)Xk’(§)7
Then, the series ), ;4,74 Sg, converges in the strong operator topology and
Se= > S
kezZd x 74

We claim that (S5, )k satisfies the almost-orthogonality estimates, i.e., for any N € N,

1055,)* S, | Bz < On(1+ [k —j)727,
and

155, (S5, | B(Lay) < On(L+ [k —j)~2Y,
where the constant C is independent of k = (k, k) and j = (j,j'). Armed with this claim, we

can then apply the Cotlar-Stein Almost Orthogonality Lemma stated previously to the operators
(8¢ )k with ¢(j) = (14 |j))~", N > 2d. Then, we will have

1SS 5oy =11 Y. SellBEaov) < C.
keZd x 74

Now we prove the claim. Note that for any f € La(N),

(85,0755, (1O = [ ows(&mstndn,
Rd
where
(32) Tsf&n) = [ oils.ols, e ds,
Rd,

By the definition of oy, we see that if k — j ¢ 2Q ¢ (recalling that Qg is the unit cube centered
at the origin), oy and oj have disjoint s-support, so

opoj = 0.
When k — j € 2Qo,0, using the identity
(1— AS)Ne%ris-(nf&) =(1+ 47r2|77 _ 5‘2)1\76%18-(”75)’
we integrate (3.2) by parts, which gives
[l (& m)lae < Cn X () Xy () (1 + [€ — ) 72
Whence,

63)  max{ [ ot mlluds, [ o€ nladn} < C(1+ k=),

For any f € Ly(N), there exists g € Lo(N') with norm one such that

1655785, Fllacary = |7 / ) / o (&) () dng”(€) d).
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Applying the Holder inequality and (3.3), we get

T/Rd /Rd oxi(&n)f(n) dng*(§) df‘
/ / |Uk,J Emllamlf(n) |2d77d§ % / / |(7kJ En)limlg€ )‘ngdn)%

<O+ k=DMl aov

Thus, [[(S5,)"Ss, By < Cn(1+ |k - j|)’2N, On the other hand, a similar argument also
shows that

155, (S5 1B(Loay) < Cn(1+ [k =)~
which proves the claim. O

A weak form of Cotlar-Stein’s almost orthogonality lemma also plays a crucial role. As before,
we suppose that Zj ¢(j) = C < co. This time we assume that the T}’s satisfy:

(34) sup || Tjl| gy < C
J

and the following conditions hold for j # k:
(3-5) 1T T sy =0 and T Tl 5oy < c(5)e(k).

Then we have

H ZTj||B(H) < Ve
J

Proposition 3.2. Let o € Sgé with 0 < § < 1. Then TS is bounded on La(N).

Proof. To prove this lemma, we apply Cotlar’s lemma as stated above. Let () >0 be the resolution
of the unit defined in (1.3). We can decompose T¢ as follows:

Tj:iT;j = > T4+ D> TS
7=0 j even 7 odd

where 0;(s,§) = ¢;(§)o(s,§). Note that the symbols in either odd or even summand have disjoint
&-supports. We will only treat the odd part, since the other part can be dealt with in a similar
way. It is clear that Ty (Ty, )" = 0 if j # k, since Ty (77, )" = ToMg, Mz (T5)* and @;, P have
disjoint supports. Now let us estimate the second inequality in (3.5), i.e. the norm of (77, )Ty .

Since
@) D) = [ [ oo,

Do = [ [ otmsment i,

and

Then we have

(15,0715, (f)(s) = y K (s,r)f(r)dr,
with
Kl = / / / ok (t,§)a;(t, m)e” =Dl atdnde.
Rd JRd JRd
Writing
N
27r1(77 &)t (1 -A ) e27ri(777§)-t’
~ (T an’le )N
e?‘/ri(t—r)w _ (1 — A”])N 6271'1(15—7')‘77
(1142t — 1PN 7
and
. 1— AN .
e271'1(sft)-£ _ ( f) e27r1(sft)-£

(1 +4nr2]s —t]2)N ’
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we use the integration by parts with respect to the variables ¢, £ and 7. By standard calculation
(see [46, Theorem 2, p. 286] for more details), we get

I (5 lla 5 479N [ Qs Qe
where Q(t) = (14 [t|)72V, if k # j. Denote Ko(s,r) = [ Q(s — t)Q(t — r)dt, then

(3.6) Ko(s,r)ds = Ko(s,r)dr = (/ 1+ ‘t|),2th)2 < .
R4 Rd Rd

For any f € Ly(N), there exists g € Lo(N') with norm one such that

1T T e = |7 [ [ K s pryats)aras]

Applying the Holder inequality and (3.6), we get

‘T /]Rd R K(s, r)f(r)g(é’)drds‘
< (T/Rd /Rd ||K(5,7“)||M\f(7“)|2dsd7“)%(T/Rd /Rd HK(S’T)HM‘Q(S)Pder)%

< Amax(e) ((G=ONHd) | gy

which implies that
H(T;k)*T;]_ HB(Lz(/\/)) 5 c(j)c(k), J 7& k,
with ¢(j) = 27(O=DN+d) If we take N > 1%, the sequence (c(j))j is summable.
In order to apply Cotlar-Stein’s lemma, it remains to show that 77 ’s satisfy (3.4). To this end,
we do some technical modifications. Set

5j = O'j(2_j6-, 2j6-).
We can easily check that the ¢;’s belong to 5870, uniformly in j. Then, by Lemma 3.1, the ng’s
are bounded on Lo(N) uniformly in j. If A; denotes the dilation operator given by

Aj(f) = f(27°),
then, we can easily verify that

TC

9j

c —1
ATE A
Thus,
175,11y < 1T, [ B(La () < 00

Therefore, (TS );>0 satisfy the assumptions of Cotlar’s lemma. So we get

HT§||B(L2(N)) = | ZT§j||B(L2(N)) < 0.
§=0

Thus, T¢ is bounded on Lo(N). O
By Proposition 2.8 and the fact that 5975 C Sg(; for 0 < 4 < 1, we have

Corollary 3.3. Let 0 € SY; with 0 < § < 1. Then TS is bounded on Hg'(R%; Ly(M)) for any
acR.

Proof. If a = 0, by Proposition 3.2 and the inclusion S?,é C Sg(s, we see the boundedness of TS on
Ly (R4 Ly(M)). For general o # 0, we use the lifting property of HS'(R%; Ly(M)), which follows
easily from the definition. By Proposition 2.8,

TS, =JT ¢
is still a pseudo-differential operator with symbol ¢ in S(1),5~ Then for any f € H$(R%; Ly(M)),
15 fllag = 1T T5a T flag = 1T5a T fll2 S N fll2 = 1]l g -
Therefore, T¢ is bounded on € HS (R%; Ly(M)). O
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It is well known [46] that there exist symbols in S?’l such that the associated pseudo-differential
operators are not bounded on Lo(R%). Alternatively, the regularity of operators with forbidden
symbols on Sobolev spaces H,' (R%), Besov spaces By q(Rd) and Triebel-Lizorkin spaces Fy, (R9)
with a > 0 has been widely investigated, see [35, 36, 7, 44, 49].

The following proposition states the regularity of pseudo-differential operators with forbidden
symbols on HS (R%; Ly(M)), which will be useful when studying that on Triebel-Lizorkin spaces.

Proposition 3.4. Let 0 € S7,. Then T¢ is bounded on H§(R%; Ly(M)) for any o > 0.

Proof. Let (p;);>0 be the resolution of the unit satisfying (1.3). It is straightforward to show that
HS (R4 Ly(M)) admits an equivalent norm:

. 1
(3.7) £l mg sz & (D27 ; % fl,00) % = 111 Bg (R Lo (M)
j=0

Thus, it suffices to consider the boundedness of T on B§‘72(Rd; La(M)). Let o with k € Ny be
the dyadic decomposition of o given in (2.9). By the support assumptions of @ and @y, we have

15.(f) = 15, (fr);

where fr = (pp—1+ @i + @r11) * f for k> 1, and fo = (¢o + ¢1) * f. Applying Lemma 2.7 to K},
with M = 0, we get

/I - |DYK(s,s —t)|| smdt 5/ ok(I71+d) gy ~ okl
s—t

|s—t|<2-*

If d + 1 is even, applying Lemma 2.7 again to K} with 2M =d + 1, we get

/ IDY K (s, 5 — 8[| smdt < / M=V 5 — g =41t m 24N
[s—t|>2—Fk

|s—t|>2—F

if d+ 2 is even, letting 2M = d + 2 in Lemma 2.7, we get the same estimate. Therefore, summing

up the above estimates of f|sft|§2*k and ﬁ87t|>2,k, we obtain

(3.8) / DY K(s, s — t)| padt < 281711

Rd
Since the estimate of ||DY Ky (s, s — t)|| o is symmetric in s and ¢, the same proof also shows that
(3.9 [ 1D (s = ) 240

Rd

For any f € HE(R?; Ly(M)) and k € Ny, there exists gp € Lo(N) with norm one such that
IDYTE ()l Lavy = |7 Ja DTS, (f)(5)gi(s)ds|. By the Holder inequality,

I1DYTs, (DT,

2
/ DITE, (f)()g7(s)ds
2
| [ [ prmtss = a0 degits) s
Rd JRd

1 1 2
= |r / / IDYK (5,5 — )0 DI Ki(s, 5 — ) fu(®) DY K (55 — 0)]1 2, g5 (s) dt ds
Rd JRA

<7 / / DK (55 — )l atlgu ()P de ds - 7 / / IDYK (5.5 — )|l fi(6)? ds .
R4 JRd R4 JRA
Then (3.8) and (3.9) ensure that

(3.10) IDIT5, (N7 S 2200 il -

Taking v = 0, the above calculation implies that

(3.11) 1T oy < DT (Do) S D Mkl S 1f1lBg,»
k>0 k>0

which implies the boundedness of T from BY | (R%; Ly(M)) to Lz (N).
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On the other hand, if we take

a0 = po, a;(€) = (1- wo<£>>|§—fg,
then we get

d
O+ a;j(6)g, VEER™
=1
This identity implies
+Zaj ) = 0, (6, VieNy, VEERY,
[ <t

where the o, (¢)’s are symbols in S pll C Sy |17|1. The above identity allows us to decompose the
term o; * Ty (f) in the following way:

(3.12) pi*T5, ()= Y Ts (9 + DIT5, (f)) = T2, (DIT5,(f));

S T Ok
[y <1 [y <t

where 07 = 0,;. Note that the symbol 0 € S| M for any j, and if |y[; <1, 07 # 0 if and only
if j=0 and j=11f j <k+1, by the Plancherel formula and (3.10), we have

2% s * TE (Ol aovy S 2ZNTE (Ollaovy S 27N fellnaovy S 25 frll o) -

If j > k + 2, adapting the proof of (3.10) with UZ/ in place of o, we deduce that
(3.13) 1T, (DIT5, () zany < C2 DT, (F)llzaa-

For any |y]; < I, by the previous observation, o = 0. Therefore, estimates (3.10), (3.12) and
(3.13) implies that

g = Tg, (Dllary =11 D T2 (D315, ()l oy

[v[1=l

SO 27N DITE ()l
[v]1=l

SO0 25 fll o
[vl=l

Thus, if we take [ to be the smallest integer larger than «, we have

2% 0; % TS (F)l vy S 20ROk £l < 25 fill o o

Combining the above estimate for j > k + 2 and that for j < k + 1, we get

sup 270 * Ty, (Nzavy S 21 fall ooy
Jj€No

whence,
IT5, (Dllsg . < 251 fell Lor)-
Then by the triangle inequality, we have
(3.14) ITs(Hlisg. <D IT5 (Dllsg . S D 25 W fallean S Ifllsg,

k>0 k>0

which shows that T is bounded from Bg';(R%; Ly(M)) to BS o, (R%; Ly(M)).
Applying (3.11), (3.14) and the real interpolation (3.1) with p =2, ¢ =2 and a9 =0, a3 = @,
we obtain the following boundedness:

175 g, < Ulsg, VB >0.

Finally, (3.7) together with the above inequality yields the desired assertion. O
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3.2. Mapping properties on Besov spaces. Using a similar argument as in the proof of Propo-
sition 3.4, we are able to obtain the regularity of pseudo-differential operators on general operator-
valued Besov spaces By q(Rd; L,(M)) with 1 < p,q < co. Let us record it specifically below.
Theorem 3.5. Let 1 < p,q < 0.

i) If 0 € S%a for some 0 < § < 1, then TS is bounded from Bg’l(Rd;LP(M)) to L,(N), and

bounded on B ,(R%; Ly(M)) for any a > 0.
ii) If o € 31075 with 0 <6 < 1, then TY is bounded on Bg"q(Rd;Lp(M)) for any a € R.
ili) The above assertions hold for T as well.

Proof. Firstly we note that the argument in (3.10) still works for all 1 < p < co: For any f €
Hg(R% L,(M)) and k € Ny, there exists a norm one element g € Lg(N) with % + % = 1 such

that [|[DITE (F)llL, ) = |7 Jga DITE, (f)(s)g;;(s)ds|. Applying (3.8) and (3.9) again, we have
IDIT5, (P, )
r [ ] D - 00 de i) s
Rd Rd
—1

—ptl p—1
| [ ] IDr R s = DI DY, s~ 00D (s DI gils) deds
R JR

<(r [ [ 10K s = OlalfuoP deas)” - ([ ] D7 (s = Olalon(o)]7 de ds)
Rd JR4 R4 JR4
S 2 el v -

Then we get the boundedness of T from BY | (R%; L,(M)) to L,(N) as in (3.11). Furthermore, we
can deduce the Ly-version of (3.14), i.e. the boundedness from By to By, for a > 0. Thus, for
a > 0, the boundedness of T on BY ,(R%; L, (M)) is ensured by interpolation (3.1). The conclusion
i) is therefore proved. If § < 1, by Proposition 2.8 and the lifting property of Besov spaces (see [1,
Theorem 6.1]), i) yields ii) for general oo € R. Finally, the assertion for T can be proved using the
same method; we omit the details. O

4. THE ACTION OF PSEUDO-DIFFERENTIAL OPERATORS ON (SUB)ATOMS

In order to study the boundedness of pseudo-differential operators on the Triebel-Lizorkin spaces,
we will use the atomic decomposition stated in Theorem 1.3. In other words, we will focus on the
images of the atoms under the action of pseudo-differential operators instead of those of general
functions in the Triebel-Lizorkin spaces. Our idea initially comes from Triebel’s book [53, Theorem
6.3.2], where the atomic decomposition is a key tool to treat the operators with symbols of forbidden
type. However, due to the noncommutativity, the (sub)atoms we have obtained in our previous
paper [56] (mentioned in Theorem 1.3) are Lo-atoms which do not have the pointwise estimates as
the ones in [53]. Thus, it turns out that we need much subtler estimates regarding the images of
these (sub)atoms in order to realise the required boundedness.

The first lemma in this section concerns the image of an (o, Q,;)-subatom under the action of
pseudo-differential operators.

Lemma 4.1. Let a € R, 0 € S?,a and TS be the corresponding pseudo-differential operator. In
addition, we assume that K > g. Then for any (a, Q,,1)-subatom a,;, we have

1 o v d
(4.1) T(/d(l + 245 — 27 )M DYTCq, 1 (5)2ds) 2 S 1Quul i a,  |yh < K — 3
R

where M € R such that M < 2L + 2 and the relevant constant depends on M, K, L, v and d.

Proof. We split the integral on the left hand side of (4.1) into [,,  and f(4Q )~ To estimate the
“, w,

term with [ 1Q, 0 We begin with a technical modification of a, ;. For every a, ;, we define
s

@ =|Qual "1 2, (27" +1)).
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It is easy to see that a is an («, Qo o)-subatom. By translation, we may assume that [ = 0. Then
by the Cauchy-Schwarz inequality (1.5), for any s € R?, we have

_ a_ 1
‘T;a,u,l(s)|2 =2 2Md|Qu,l|2(3 2

(s, a2 He)>m e
R4

/ (s, 2€)a(e) > |

R4

,,l
|Q,U. l|2 (‘; 2

<1QuiPE [ (s, 29301 + )t
| a1 ot 29l Ol (s, 2 Pate)de.

Using the standard operator-valued inequality

(4.2) a*ytyr < |lyl[Pa*e
we deduce from the Plancherel formula (1.6) that

1

T a0 (3)? < |Quual 232 / (14 J¢2)Kde - / (1+ |€[2) K a(e) [2de
d R4
S1QuPEH [ 7% ar

where JX is the Bessel potential of order K. Combining the second assumption on a,,,; in Definition
1.2 and the above estimate, we obtain

1 1
. / T (32 (1 + 2¢]s) "M ds) * < r( / (Ta, () 2ds)
4Qu 1 4Qu 1
S 1Quiltr([ 17t Par?
o 1 a
<SIQuilt Y /W )2dt)? < [Qual .
71 <K

If s € (4Q,,1)°, since a,; has the moment cancellations of order less than or equal to L, we can
subtract a Taylor polynomial of degree L from the kernel associated to T2,

Teau(s) = |
Rd

_ ’/R (K (5,5 —1) — K(s,s)}au,l(t)dtr

_ (/ L+ 1tﬂ/ (1—0)“DPK (s, s —Ht)dﬂ}au,l(t)dtr.
R¢ | B! 0

2
K(s,s — t)a#,l(t)dt‘

Applying the Cauchy-Schwarz inequality (1.5) and then the inequalities (2.7) and (4.2), we get
Tl S >
—L+172Qu1

43 = [ s DK 00 et [ o
R,

Bli=L 417 2Qu. 00<1

S |S‘72d72L72 AQ ‘t|2L+2dt . /Rd |aﬂyl(t)|2dt
w,l

5 27#(2L+2+d) |S|72d72L72 / |au7l(t)|2dt.
R4

1 2
) / (1- 0 DPK(s,s — 9t)d0HM|t\2L+2dt

1 —92 1 2
/0 (1- Q)LD'BK(S, 5 — Qt)dGHM \ /0 (1— 0L DPK (s, s — 0t)dO a,(t)| dt
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This estimate implies
T(/ TSa,0(s) (L + 2%[s]) M ds)
(4Qu,l)C

SQ*M(LJrlf% (/

N 1
‘S‘,d72L72+Md5)2 7—(/ |au,l(t)|2dt)2
(4Qu.)° .

S 2R 01Q, | = Q.

If we take M = —d in the above inequality, we have TSa,; € L, (M; L§ (]Rd)). By approximation,

we can assume that o (s, £) has compact -support, so that

Toani(s) = [ ol a0

is uniformly convergent. Moreover, one can differentiate the integrand and obtain always uniformly

convergent integrals. Then, for any |v|; < K — g, we have

1
f[ 1D T 2!
4Q 1

(4.4) S 1Qu %T(/Rd |5 a(t)|2dt)? /Rd(l e 2K g

P Y o[ 107aPa)* <1Qult.

[ <K

S |QMJ

By a similar argument to that of (4.3), we have, for any v € N¢ and s € (4Q,,)°,

(45) DTS aa(s) P 2 Mg 222200 [ g, (6) P
R

Therefore, we deduce that

1
T(/MQ AP T+ 2] ds)
)€

< 2*#(L+17%)(/ |S|7d72L72+M72|7|1d8)% T(/ \aul(t)|2dt)%
(4Qu )¢ R4
S oI gD = Q)3

Combining the estimates above, we get (4.1).

O

On the other hand, we also have the following lemma concerning the image of («, 1)-atoms under

the action of pseudo-differential operators.

Lemma 4.2. Let a € R, 0 € S?’é. Let K > % and b be an (o, 1)-atom based on the cube Qo m.

Then for any M € R, we have
1 d
(46) ([ ks =m0 T Pas) S <K -,
RA

where the relevant constant depends on M, K, v and d.

Proof. The proof of this lemma is similar to that of the previous one. The only difference is that
for an («,1)-atom, we do not necessarily have the moment cancellation; thus, we have to use the

extra decay of the kernel proved in Lemma 2.6 for [¢| > 1.

If s € 4Qo,m, we follow the estimate for subatoms in the previous lemma. Applying the size

estimate of b, we get

T(/ (1+ \sfm\)d+M|T§b(s)|2ds)% < T(/ |TKb(8)2dt) < 1.
4Q0,m R4
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If s € (4Qo,m)° and t € 2Qq 1, we have |s —t| > 1. Then (2.8) gives

IT<b(s) K(s,s — t)b(t)dtr

2=
Rd

<[ MG = 0B [ o
QQO‘WL

0,m
Shsom Y [ b
2Q0,”m
where the positive integer N can be arbitrarily large. Thus

T(/ (14 |s — ml)* M |T2b(s)[2ds) *
(4Q0,M)C

< (/ \s—m|d+M—2Nds)%T(/ b(t)de)* < 1.
(4Q0,m)c 2Q0‘m

Then, the estimates obtained above imply that
1
T(/ (1+[s —m|)™™M|Tch(s)?ds)* < 1.
Rd
Similarly, we treat DYTSb(s) as

T(/ (1+|s— m|)d+M|D"T§b(S)|2ds)% d
Rd

<1 |7‘1<K_§'

Therefore, (4.6) is proved. O

The following lemma shows that, if the symbol o satisfies some support condition, we can even
estimate the F{"“norm of the image of («, @, )-subatoms under T?. Recall that for any cube
Q C R? and any s € R?%, s+ Q denotes the cube {t € R? : t — s € Q}.

Lemma 4.3. Let o € S?,(s and o € R. Assume that K € N satisfy K > % and K >a+d+1. If
the s-support of o is in (27"1 4 4Qo,0)¢, then for any (o, Qp1)-subatom a1, we have

da
c —n(§+e
||:Zjaa’l»t-,lHF{)"C 5 2 2 )a
where ¢ is a positive real number.

Proof. Without loss of generality, we still assume [ = 0. We need to use the characterization of
F{"“norm by the following convolution kernels. Let x be a radial, real and infinitely differentiable
function on R? supported in Qg, and assume that %#(0) > 0. We take ® = |- |V& with N € N
such that a + g <N<K- g, and another test function ®y € S with supp ®¢ C Q0. Let &, be
the inverse Fourier transform of ®(¢£). To simplify the notation, we denote TZa,; by 1,;. Then
Theorem 4.2 in [56] yields

1
_ de 1
|Flcx,c ~ ||‘b0 * ’I]u,[H] + H(/ £ 20z|q)6 * nH,l|2?) 2
0
We notice that [, ®-(t)t7dt = 0 for any |y|; < N — 1, it follows that

Bx () = [ Ouals = 1) = ()

Hnu,l !

(4.7) 1
= /Rd EOEY N(—t)”/o (1 —0)N"1DYn, (s — 0t)do dt.

1
=~
Applying the Cauchy-Schwarz inequality, we have

[a0 X N [a- 0 pmats - o

=N " 0

1
(4.8) <y /R/ (1= 02N =D | Dy (s — 08)2d0(1 + [¢]) " dt
0

[vh=N

P
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By (4.5), if s — 0t € (4Q0,0)¢, we have

|D777#)l(8 o 915)‘2 5 2*#(2L+2+d)|5 _ 0t|72d72L7272|'y|1 /

|y (r)|?dr.
Rd

Therefore, using the Cauchy-Schwarz inequality again, we have

v a de, L
) e mat D)2,

1
527M(L+1+%)(/ €2N7d7204@)%/ |S/‘fd7L7N71dS// (1+|t|)7d71dt
(2Qo,0)° R4

0 E
/ |<I>(t’)|2|t’\2N(1+|t’|)d+1dt’.7—(/ o (r)Pdr) ?
Rd Rd

SQﬂL(LHJrg)T(/ |aml(t)|2dt)%
Rd

< 9—n(L+1+§+a)

(4.9)

It remains to estimate the L;-norm of ®q * 1, ;, where ®; does not have moment cancellation.
Since supp ., C (4Qo,0)° and by the support assumption of ®g, we have supp ®g * 1, C {s €
R?: |s| > 1}. By Lemma 4.1 and the fact that [®o(s)| < (1 + [s|)~@F for any R € N, we have

2
B0 4 = | [ @ls = i)
2 2
</ Bos — O] +| [ @ols — e
[¢|>max{ 15! 1} 1<t < sl
</ (1 24e]) 22 s — Ot [ (142244 () P
|¢|>max{ 5,1} Rd
[ ) R (s~ )Pdr [ (L4 2R ()P
1<]t< ! Rd
S [ Bt (14 2052 (L 2 1) P
Rd R4

[ 2y 1 (s R (L 2R ()P
It/>1 R

S (14 2]y 2020 4 2R g o) 202R) [ (L R, 1)
R

d

Then we use (4.1) to get, for any R € N,
[P0 * nually S (/ (14 2¢]s|) =% Fds + 2—M(d+R)/
[s|>

[s|>
1
(LA 2022 g, 0 (1) Pt 2

R4
< 27u(d+R+a) )

(1+ |s|)—d—Rds)

1 1
2 2

Combining the estimates above, we see that, there exists ¢ > 0 such that

(e
1T5au,illpee = il pee S 2 g+

which completes the proof. O

Since every («, Qk,m)-atom is a linear combination of subatoms, the above lemma helps us to
estimate the image of (o, Qg m)-atoms under T¢.

Corollary 4.4. Let o € S(l),é and o € R. Assume that K € N satisfy K > % and K > a+d+ 1.
If the s-support of o is in (27%m +6Qo,0)¢, then for any (o, Qr.m)-atom g,we have

1159/l ppoe S 1.
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Proof. Every (o, Qg m)-atom g admits the form
g= > duiagy with D |dul? < [Qrm| Tt =25
(D)< (k,m) (D)< (k,m)

By the support assumption of o, o(s,£) = 0if s € 27#1 +4Qo0 C 27 Fm + 6Qo,0. Then, we can
apply the previous lemma to every a,; with (4,1) < (k,m). The result is

TSl poe S 2743 with o> 0,
Applying the Cauchy-Schwarz inequality, we get
| Tsglree < > ldutl - IT5 @] peoe

() <(k,m)
< Z |, C9—n(g+)
(1, <(k,m)
(410) < ( Z |du,l|2)%( Z 2—;L(d+2L))%
(1,1) < (kym) (1)< (k,m)
1 12Qk,m| o —par20\2
< ( Z |du,l| )7 ( Z L9 +2L))2
(1) < (km) iz 1Quil
<|Qrm| 72275 =1
Thus, the assertion is proved. O

Likewise, we can estimate the image of («, 1)-atoms under the pseudo-differential operator T¢.

Lemma 4.5. Let o € 5?75 and o € R. Assume that K € N satisfy K > % and K > a+d+ 1.

If the s-support of o is in (k + 4Qo )¢ for some k € Z%, then for any (a,1)-atom b such that
supp b C 2Qo.x, we have
ITSbl e S 1.

Proof. The proof of this lemma is very similar to that of Lemma 4.3; it suffices to apply (the proof
of) Lemma 4.2 instead of Lemma 4.1. g

Corollary 4.6. Let o € S(l{[; and o € R. Given K € N such that K > % and K > a+d+1, then
for any (a, 1)-atom b, we have
ITb] e S 1.

Proof. Let (X});cze be the smooth resolution of the unit in (1.4). We decompose T5b as
Tsb= Y XTsb= Y T5b,
jezd Jjezd
where all 0; = X;(s)o(s,§) belong to S?}é uniformly in j. Suppose that b is supported in 2Qg
with k € Z9. We split the above summation into two parts:

(4.11) Tsh= Y AT+ Y AT
jEkﬁ’GQo’o jik-}—GQo‘o
jezd jez?

Applying Lemma 4.2 with M = —d to the symbol X;(s)o(s,£), we get, for any j € Z<,
o[ DT S Yk < o] 1
i+2Qo0,0

Thus, X; T¢Sb is a bounded multiple of an (o, 1)-atom. So the first term on the right hand side
of (4.11) is a finite sum of (a, 1)-atoms, and thus has bounded Fy"“-norm. Now we deal with the
second term. Note that the s-support of the symbol Zj¢k+6Qo,o X;(s)o(s,€) is in (k + 4Q0,0)°.
Then, it suffices to apply Lemma 4.5 to this symbol, so that

Y ATl S 1.
j¢k+6Qo,0
jez?
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The proof is complete. O

5. REGULAR SYMBOLS ON TRIEBEL-LIZORKIN SPACES

In this section, we study the continuity of the pseudo-differential operators with regular symbols
in S5 (0 <4 < 1) on Triebel-Lizorkin spaces. We use the atomic decompositions introduced in
section 1 and the local mapping properties of pseudo-differential operators in section 4 to deduce
the F°-boundedness. Different from the pseudo-differential operators with the forbidden symbols
in S%l, which will be treated in the next section, our proof stays at the level of atoms; in other
words, we do not need the subtler decomposition that every («, Q)-atom can be written as a linear
combination of subatoms.

Theorem 5.1. Let0 < <1, 0 € 5?76 and o € R. Then T is bounded on FZ‘,)"C(Rd,M) for any
1<p< oo

In order to fully understand the image of an (a, @)-atom under the action of a pseudo-differential
operator, we need to study its L;(M; L§(R?))-boundedness, which relies on the Ly-boundedness
of T given in Corollary 3.3.

Lemma 5.2. Let o € 5?75 with 0 < § < 1. Then T is bounded on Ly (M; L§(RY)).

Proof. Since 0 < ¢ < 1, Proposition 2.9 tells us that the adjoint (72)* of T¢ is still in the class
S? 5. Thus, by anti-linear duality (see [23]), it is enough to prove the boundedness of (T5)* on

Loo (M; L5(R?)). Indeed, there exists u € Ly(M) with norm one such that

([ omra],, = ([ 0@ mekwnas)

1
2

M
1

= (1T o), i)

Then, applying Corollary 3.3 to (T%)*, we get

([ 1 Goolmnds)” < ([ 156k, mds)” <[ 1#6)Fd)
Rd Rd Rd
Thus, we conclude the boundedness of T¢ on L;(M; L§(R%)). O

1
2

Now we are ready to prove the main theorem in this section.

Proof of Theorem 5.1. Step 1. We begin with the special case p = 1 and a = 0. Since F{)’C(Rd, M) =
h$(R?, M) with equivalent norms, the assertion is equivalent to saying that when o € S?, s with

0 <4 < 1, T¢ is bounded on h§(R? M). By the atomic decomposition stated in Theorem 1.3, it
suffices to prove that, for any atom b based on a cube with side length 1 and any atom g based on
a cube with side length less than 1, we have

[T50lns S 1 and  [[T5g]lng S 1.

¢
Corollary 4.6 tells us that

1T5b]ng < 1.
Thus, it remains to consider the atom g based on cube @ with |Q| < 1. Without loss of generality,
we may assume that @ is centered at the origin. Let (&});cza be the resolution of the unit defined

in (1.4) and XjQ = X;(I(Q)71) for j € Z%. Then, we have suprjQ C Q)] + 2Q. Now, set
hy = ZjGGQo.o XJ-Q and ho = ngZGQo . X]-Q. By the support assumption of XJ-Q, it is obvious that
supp h1 C 8Q, supp he C (4Q)°. Moreover,

hi(s)+ha(s) =1 ,¥seR%
Now we decompose ¢ into two parts:
def
0(s,€) = hi(s)o(s, &) + ha(s)o(s,€) = o' (s,€) + 0%(s,€).
Note that o' and ¢ are still in the class S? ; and

T;g = Tglg + ngg.
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Firstly, we deal with the symbol ¢! which has compact s-support. We consider the adjoint operator
(T$)* of Tg. Since 6 < 1, by Proposition 2.9, there exists ¢ € S 5 such that

(15)" =15

If we take ;(s) = XJ-Q(S)E(S,O)* for j € 6Qo, then (; is an M-valued infinitely differentiable
function with all derivatives belonging to L., (N). Denote by mgj the pointwise multiplication
g — (;9. Then, we have

suppm¢, g C U(Q)j +2Q.

and
(5.1) w( [ It g(s)Pas)* S I
]Rd

This indicates that, except for the vanishing mean property, each mzj g coincides with a bounded

multiple of an hf-atom defined in Definition 1.1. Now let us set o}(s,&) = Xf(s)a(s,{) for
Jj € 6Qo,0 and set T = T, —mg . It is clear that suppTyg C 1(@Q)j + 2Q. Since (mg)* = mg .
j J J J

and (T, )*x = ;}(s, 0)x = ;" for every z € M, we have
J

T(/ - Tig(s)ds -x) = (Tjg,x) = {g,(I}) ) = (g, (T51 —m¢ ) z) = 0.
U(Q)j+2Q ’

Hence, T¥ g has vanishing mean. Moreover, applying Lemma 5.2 and (5.1), we get

1 1 1
7’(/ |chg(s)|2ds)2 < T(/ IT¢ g(s)|*ds) +T(/ |17”L2jg(s)|2ds)2
(Q)j+2Q 1(Q)j+2Q ’ (Q)j+2Q
< T(/Q 9(s)ds)* +1Q 7% < 1@t
2

Combining the above estimates, we see that T'7 maps h{-atoms to hf-atoms. Thus, T is bounded
on h§(R?, M), and so are T¢, and T, .
J
Step 2. Now let us consider T%,. By Theorem 1.3, we may assume that g has moment can-

cellations up to order L > % — 1. Note that suppTS.g C (4Q)°. And if s € (4Q)¢, following the
argument in (4.3) with g in place of a, ;, we get

‘T;2g(3)|2 S Z(Q)2L+2+d|8|_2d_2L_2/ |g(t)|2dt.
2Q
Then for M < 2L + 2,
1
([ TP+ 1Q) ) s
(4Q)°

(5.2 su@ir¥( [ sttt o [ jgan?

SUQMHUQ T EIQI: = Q1=

Moreover, we claim that T, g can be decomposed as follows:

TSg = Z VinHop,
mez?
where Y |vm| <1 and the Hy,’s are h-atoms. Then, by (1.8), we will get [|[T5.g(lne < 1. Now
let us prove the claim. Since L > % — 1, we can choose M such that M > d and M < 2L + 2.
Take v, = |Q|_%(1+Z(Q)_1|m|)_d+2M and H,, = v, X,, TS, g, where (X,,),,ez¢ denotes again the
smooth resolution of the unit (1.4), i.e.

1= Z Xn(s), VseR%

meZd
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Applying (5.2), we have
T(/ |Ho(s)ds)
2Qo0,m

a+

< v ML+ 1UQ) Y m|)~ zMT(/MQ)C T g()[2(1 + 1(Q)~Y]s|)™Mds) * < 1.

And the normalizing constants v, satisfy

Sl = 1Q17F > (1 4+ UQ) T m|)
<lQI* /Rdh FUQ) M) ds S 1.

Combining the estimates of Ty g and Ty, g, we conclude that || T5glln: < 1. Thus, Ty is bounded
on h§ (R4, M).

Step 3. For the case where p = 1 and a # 0, we use the lifting property of Triebel-Lizorkin
spaces (see [56, Proposition 3.4]. By the property of the composition of pseudo-differential operators
stated in Proposition 2.8, we see that

TS, =JoT
is still a pseudo-differential operator with symbol o in 5?76. Then for any f € F;"°(RY, M), we
have
TG | pee = 1750 T fllppe = TG0 T fllng S 11T fllng = [[f]lppe-
Hence, T¢ is bounded on F["¢(R4, M).
Step 4. Finally, we deal with the case 1 < p < co. By the previous steps, (Tg5)* = T% is

bounded on F, ‘(R4 M) with a € R, then it is clear that 7 is bounded on F¢(R%, M). Given
1 < p < ooand a €R, by interpolation

(FL(RY, M), F{ (R, M), = FR(RM),

1
P

we get the boundedness of T¢ on F¢(R?, M). O

Remark 5.3. A special case of Theorem 5.1 is that if the symbol is scalar-valued, then

/ a(s,g)f(f)e%is-idgz/ F(©)o(s, €)em=€de.
Rd -

In this case, T¢ is also bounded on h (R%, M) for any 1 < p < oc. By (1.7), we deduce that Ty is
bounded on L, (N).

Corollary 5.4. Let n,a € R, 0 <0 <1 and o € ST ;. Then T is bounded from F;’C(Rd,/\/l) to
F;*”’C(Rd,/\/l) for any 1 < p < 0.

Proof. Recall that the Bessel potential of order n maps Fj*¢ isomorphically onto Fg~™¢. If o €
ST 5. by Proposition 2.8, we see that

a(s,&)(L+[¢*)7% € 875,

and its corresponding pseudo-differential operator is T.¢.J~™. Since T = T2J~"J™, the assertion
follows obviously from Theorem 5.1. O

6. FORBIDDEN SYMBOLS ON TRIEBEL-LIZORKIN SPACES

The purpose of this section is to extend the boundedness results obtained in the previous one to
the pseudo-differential operators with forbidden symbols, i.e. the symbols in the class ST';. There
are two main differences between these operators and those with symbols in S7'; with 0 < 0 < 1.
The first one is that when o € S}, T¢ is not necessarily bounded on Ly(N'). The second one is
that S%l is not closed under product or adjoint. Fortunately, if the function spaces have a positive
degree of smoothness, the operators with symbols in 7 ; will be bounded on them.

Since for o € S, TS is not necessarily bounded on Ly(N'), we cannot expect its bounded-
ness on L (M;Lg(Rd)). However, by Proposition 3.4, we are able to prove its boundedness on
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Li(M; H§(R?)¢) when o > 0. Note that the classical Sobolev space Hg'(R?) is a Hilbert space
with the inner product (f,g) = [pa J*f(s)J%g(s)ds. By the definition of Hilbert-valued L,-spaces,
we see that f € Ly (M; HS (Rd) ) if and only if J*f € Ly (M; L§(R?)).

Lemma 6.1. Let o € S . Then T is bounded on L, (M; HS(RY)C) for any o > 0.

Proof. Following the argument for Lemma 5.2 by replacing (7.2)* with J*T¢, we see that TS is
bounded on Lo (M; HS'(RY)¢). Let f € Ly (M; HS(R%)¢). Then f admits the decomposition

f=gh,
where |||z, (m) = HfHLl(M;Hg(Rd)c) and HgHLOO (Mot (reye) = 1. Indeed, if A = (fpa [Jf(s)|?ds)2

is invertible, we could take g = fA~!', h = A; otherwise we can approximate A by invertable el-
ements in L;(M), which does not disturb the argument below. From this decomposition, we
establish the Ly (M; HS (R?))-norm of TS(f) as follows:

TS, (g ) = TSR (i )

< HT;@)an(M;Hg(Rd)C) Il o

which implies that T¢ is bounded on Ly (M; H§ (R? )C) O

Similar to [53, Theorem 6.3.2], the main theorem in this section also relies on the atomic de-
composition. However, the techniques we use are quite different from that of [53]. Apart from
the difficulties mentioned in the beginning of section 4, the symbol considered here has the global

mapping property, which is more general than the case in [53], i.e. we do not need the assumption
that the symbol ¢ is compactly supported with respect to the second variable.

Theorem 6.2. Let o0 € S{ | and o > 0. Then T¢ is bounded on Fy"“(R%, M).

Proof. Let f € F{"°(R%, M). We fix K, L to be two integers such that K > a +d and L > d. By
the atomic decomposition in Theorem 1.3, f can be written as

f= Z 1ib; + \jgj),
Jj=1

where the b;’s are (o, 1)-atoms and the g;’s are (o, Q)-atoms, p; and \; are complex numbers such
that

o0

D gl + D) 2 [1f e

j=1
In order to prove the assertion, by the above atomic decomposition, it suffices to prove that

1750l pee S 1 and || T5gllpee S 1,
for any (a,1)-atom b and (a, @)-atom g. We have shown in Corollary 4.6 that
(6.1) [T50] ppoe S 1.
Thus it remains to consider 77g. This is the main part of the proof which will be divided into
several steps for clarity.
Step 1. By translation, we may assume that the supporting cube @ of the atom ¢ is centered

at the origin. We begin with a split of the symbol o: Let hy, ho be two nonnegative infinitely
differentiable functions on R¢ such that supp hy C (Q)¢, supp he C 2Q and

1=hi(&) +ha(§), VEER?

For any (s,¢) € R? x R, we write

o(5,6) = h1(€)a(s,€) + ha(€)o(5,€) < 01 (s, €) + oo (5, 6).
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It is clear that o7 and o9 are still two symbols in S?’h and
(6.2) 1759l e < T3, 9llrpoe + 175,90 g

First, we consider the case where the cube () is of side length one, i.e. Q) = Q,0, and deal with
the term || T, g|| pe- in the above split. Let (X});cza be the resolution of the unit defined in (1.4)

and )?j = X;(2') for j € Z%. We write

Tig= Y Tag+ Y Tog

J€8Qo.0 J¢8Qo,0
(6.3) jezd jezd
e+ Hy,

where U{ (s,€) =01 (375))?]-(5).
We claim that for every j € Z%, T¢,g is the bounded multiple of an (a, Q, ;)-atom (with the
0'1 12
convention @ i = 2 4+ Qo,0). No loss of generality, we prove the claim just for j = 0. Applying
Lemma 6.1 to the symbol ¥, we get

w([ 1 TggPas)t s ([ 179 £ 1Qul .
R4 R4

Thus, in order to prove the claim, it remains to show that T%g can be written as the linear
1

combination of subatoms and the coeflicients satisfy a certain condition. By Definition 1.2, g
admits the following representation:

(64) g= Z du,lau,ly
(1,1)<(0,0)

where the a,;’s are (a, Q,;)-subatoms and the coefficients d,, ;’s are complex numbers satisfying
> ()< (0,0) |duil? < 1. Then we have

Tﬁgg = Z du,szi?aml-
(1,1)<(0,0)
Given p € Ny, let (X}, m)meze be a sequence of infinitely differentiable functions on R¢ such that
(6.5) 1= Y Xum(s), VseR%
mez?

and each X, ¢ is nonnegative, supported in 2Q, o and X, n,(s) = X, 0(s —27#m). It is the 27#-
dilation of the resolution of the unit in (1.4). We decompose T, g in the following way:
1

(6.6) Tog=> Y Xum Y duiToa,,.

pn=0 m l

Observe that the only m’s that contribute to the above sum Y = are those m € Z¢ such that
2Qu,m N Qo0 # 0, s0 Qum C 2Qo,0. Thus, we obtain the decomposition

(67) T(f?g = Z Du,mGunn,
(1,m)<(0,0)

where

-D,u,m _ (Z |d,u,l 2(1 + |m _ l|)*(d+1))%’

l

1
Gum = 75—Xum Z duiTyoap,-
Dym 7 !

It is evident that
1
)2 <1

(S D3 ldul

(1,m)<(0,0) (1,1)<(0,0)
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Now we show that the G, ,,’s are bounded multiple of (o, @, m)-subatoms. Firstly, we have
supp Gu,m C supp X, ;m C 2Q,,m- Secondly, by the Cauchy-Schwarz inequality,

7( /2Q \ Z dng?au,l(s)\zds)%
wom

l
63 5 (X ldualP(1 - 1))
l

(1t m 1)) IBMT(/2 (1+2¢(s — 2’“1))d+M\Tﬁ?aw(s)ﬁds)%.

; Qum

If we take M = 2L + 1, since L > d, we have % < —d. Applying Lemma 4.1, we get

1 1-M a a
([ 1Gum(s) Pt € S50+ = 1) F @il 5 (@
R 1
Similarly, the derivative estimates in Lemma 4.1 ensure that
i

o / DG (3)2d8)t < [Quoml T, VI < [a] + 1.

Since a > 0, no moment cancellation for subatoms is required. Thus, we have proved that the
G,m’s are bounded multiple of (o, @,,,m)-subatoms, then the claim is proved. Therefore, G in
(6.3) is the finite sum of («, Qo,;)-atoms, which yields [|G1 e« <1 by Theorem 1.3.

The term H; in (6.3) is much easier to handle. Observe that H; corresponds to the symbol
o(s,§) ngsQo,O X;(s), whose s-support is in (6Qg,0)°. Thus, we apply Corollary 4.4 directly to get
that

M e S 1.

Step 2. Let us consider now the case where the supporting cube @ of g has side length less than
one. As above, we may still assume that @) is centered at the origin. Let g be an (c, Qg 0)-atom
with k£ € N. Then g is given by

g= Z dyga,,;  with Z |di]? < |Qrol ™ = 27
(1,1)<(k,0) (k1)

We normalize g as

h — 2k((x—d)g(2—k.)

(1) <(k,0)

= § , PRI

(1) <(k,0)

where @,,; = 2’“(‘1_%)@%[(2_’“-) and Ju,l = 2_%%7;. Then it is easy to see that each @, is an
(@0, Qu—k,1)-subatom and thus h is an (o, Qo o)-atom. Define oy x(s,€&) = 01(27%s,2"¢), then we
have

Toals) = [ orls. a0 e
2 [ (s R e
Rd

=20 [ 2 (e g
Rd
k(d—a) e k
= 2kld=iTe  h(2ks).
Since the £-support of 07 is away from the origin, we have
1D D{1,1(5,€)llat < CoplélM 711 & O s (14 1€Y1 IPR - k€ N.

Thus, o1 1, is still a symbol in the class 5(1)71. Then, applying the result for (o, Qo o)-atoms obtained

in Step 1 to the symbol oy x, we get |75, hl[pee S 1. In order to return back to the Fi"“-norm
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of Ty g, by (6.9), we need a dilation argument. Since a > 0, we can invoke the characterization of
F“norm in [56, Corollary 3.10]:

de . 1
277y3
%)
where . = F~1(¢(e+)). For A > 0, we have ||f(A-)|l1 = A~ f|l1, and

> —2a 1 a— ° _2a de . 1
[ etoes D] = net (el D)
0 1 0 €

since (¢ * f(A))(s) = @re * f(\s). Taking A = 2%, we deduce

)

[e'S)
0 1

e~ I+ ([ el 1

2%

9 1
oo
0

. _ dE 1
175, gl ~ 1250l + ([ 2o T 9P D)

1
iz

1
)2
01,k 01,k €

_ 2k(d—a)(||Tc h(2k')||1 + H(/O 5_2a|90s £ TC h(2k')|

y

o d
_ ok(d—a) (27deTglth1 +2k(a7d)H(/ e x TS p? E)%
’ 0

01,k

)

e

S TG, Pllppe-

This ensures
175, gl pee ST

o1,k

hl|pee S 1.

Step 3. It remains to deal with the term with symbol o9 in (6.2). Note that oo = ha(€)o(s, &)
with o € 5(1)71 and supp he € 2Q. Then for § < 1, say § = 19—0, we have oy € 5(1),& Indeed, by
definition, we have, for every s € R,

IDYD{os(s5,)m S DY IIDID o (5,€) - D™ ha(8)]|m
Bi1+B2=p

< > Cua (LY TIBR DRy ().
B1+B2=p8

But since hs is an infinitely differentiable function with support 2Q), it is clear that for £ € 2Q,
(1+ |£|)|7|1—|51|1 < Cy(1+ |£|)%\"/\1—\51|17 and |D’62h2(§)| < Cp(1+ |§D—\52|1.

Putting these two inequalities into the estimate of HD;VDgag (s,8)|lm, we obtain

1DI DL o (s5,6)lam < Coy (1 + [€]) T8I =150,

which yields o3 € S} o - Therefore, it follows from Theorem 5.1 that IT5,9llpee S llgllpee for

g € F{"“(R%, M). Combining this with the estimates in the first two steps, we complete the proof
of the theorem. O

If o € 57, it is not true in general that (7)* corresponds to a symbol in the class S ;.
However, if we assume additionally this last condition, duality and interpolation will give the
following boundedness of T<:

Theorem 6.3. Let 1 < p < oo and o0 € S7,, a € R. If (T¢)* admits a symbol in the class S7 ,,
then T is bounded on F5¢(R*, M).

A similar argument as in the proof of Corollary 5.4 gives the following results concerning the
symbols in ST'; with n € R.

Corollary 6.4. Let n € R, 0 € S7' and oo > 0. If a > n, then T¢ is bounded from Fy"°(R%, M)
to F'™™(RY, M).

Corollary 6.5. Let n,a and o be the same as above, and 1 < p < oo. If (TS)* admits a symbol
in the class STy, then T is bounded from F5¢(R%, M) to Fy=™¢(R%4, M).
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7. APPLICATIONS

The main target of this section is to apply the results obtained previously to pseudo-differential
operators over quantum tori. Our strategy is to transfer this problem by the transference method
introduced in [37] to the operator-valued pseudo-differential operators on the usual torus T¢. Let
us begin with the latter case by a periodization argument.

7.1. Applications to tori. In this subsection, M still denotes a von Neumann algebra with a
normal semifinite faithful trace 7, but N = Lo (T?)@M.

We identify T¢ with the unit cube 1% = [0,1)¢ via (e27i%1 ... €2™%d) 5 (s9,---,s4). Under
this identification, multiplication in T? corresponds to the usual coordinatewise addition modulo 1
in I, i.e. when z = (e2™i51 ... 2™i%a) &3 (51,---,54) and w = (™1 ... 2™a) & (tq,--- ,tg),

2wt € T is identified with s — ¢t € I modulo 1. An interval of I? is either a subinterval of I or a

union [b, 1]U [0, a] with 0 < a < b < 1, the latter union being the interval [b —1,a] of I (modulo 1).

So the cubes of 1% are exactly those of T¢. Accordingly, functions on T¢ and I? are identified too.
Recall that ¢ is a Schwartz function satisfying (1.1). Then for every m € Z% \ {0},

d_e@7Im) =) p(2m)=1.
JEL Jj20

This tells us that in the torus case {¢(277+)};>0 gives a resolvent of the unit. According to this,
we make a slight change of the notation that we used before:

V) = p(277.), Vj > 0.
Let ¢; = F~ (W) for any j > 0. Now we periodize ©; as
%(2) = Z (Pj(s + m) with 2z = (627Ti81’ B .’6271'18(1)7 s = (81, . ;Sd)-
meZd
Then, we can easily see that ¢; admits the following Fourier series:
(7.1) @i(z) = Z ©(279m)z™.
mezd

Thus, for any f € S'(T¢; Ly(M) + M), whenever it exists,

7 1) = [ i o = 3 e im)fm)e 2 e T

mez

The following definition was given in [59, Section 4.5].

Definition 7.1. Let 1 < p < 0o and o € R%. The column operator-valued Triebel-Lizorkin space
F2¢(T?, M) is defined to be

Fpoe(Th M) = {f € 8'(T% Ly(M) + M) ¢ || fllpge < o0},

where

1 lmge = 1F Oz, + [ 227185 % F2 1, ey

Jj=0

The row and mixture spaces FZ?’T(Td,M) and F;(Td,/\/l), and the corresponding spaces for
p = oo are defined similarly to the Euclidean case.

By the discussion before (7.1), if we identify a function f on T¢ as a l-periodic function fpe
on RY, then the convolution @; x f on T? coincides with the convolution ¢; * fpe on R%. More
precisely:

;% f(2) = @; * fpe(s) with z= (62”1317~-~ ,€
By the almost orthogonality of the Littlewood-Paley decomposition given in (1.3), we get the
following easy equivalent norm of F;“‘:(]Id7 M):

j 1
I fvell e o nny = 160 * Foellp + | 2271 0; % foe(2)I)2|

Jj=0

27risd).

)

P
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where ¢o(§) = 1 — 3,50 %(279). Since ¢y is supported in {€ : [¢| < 1} and ¢o(€) = 1 if [¢| < 1,
it then follows that

o~

160 * foellp = 17 (O)[, -

Hence, combining the estimates above, we have

(7.2) £l pge(ra,my = Nl foell pee e, amy -

Thus F2¢(T% M) embeds into F¢(R% M) isomorphically. The equivalence (7.2) allows us to
reduce the treatment of T¢ to that of R?; and by periodicity, all the functions considered now are
restricted on I¢. We are not going to state the properties of F;"C(T‘i, M) specifically, and refer the
reader to [59, Section 4.5] for similar results on quantum torus.

We also briefly introduce operator-valued Sobolev and Besov spaces on T%. Let 1 < p,q < 0o
and a € R?. The potential Sobolev space HS (T Ly,(M)) is defined as

Hy (T Ly(M)) = {f € S (T4 Li(M) + M) || fllag := 7 fllp < oo},

where J® denotes the a-order Bessel potential on T¢. The Besov space ng(’]l‘d; L,(M)) is defined
as

By (T Ly(M)) = {f € S"(T% Ly(M) + M) : || fll g, < oo},
where
1
1lmg, = 1Oz 00 + (32290165 = £112)
Jj=0
For a fixed 1 < p < oo, these spaces are the Banach-valued Sobolev and Besov spaces studied in
[2], the Banach space being L,(M). In analogy to (7.2), we have

(7.3) [ e (va;n,m0) = I el g ;1,0
and
(7.4) 1flBg , ra;r, (M) = W fpellBs, @4;1, (Mm))-

Let us turn to the study of toroidal symbols. In the discrete case, the derivatives degenerate
into discrete difference operators. Let o : Z¢ — M. For 1 < j < d, let e; be the j-th canonical
basis of R¢. We define the forward and backward partial difference operators Ay, and ij:

Ap,o(m) :=c(m+e;) —o(m), Ay,o(m):=oc(m)—o(m—ej),

and for any 3 € N¢,
Al =R L A

mgq*

AP = AB AP

mq?

Definition 7.2. Let 0 < 6,p < 1 and v,3 € Nd. Then the toroidal symbol class S[’},é('ﬂ‘d x Z4)
consists of those M-valued functions o(s,m) which are smooth in s for all m € Z¢, and satisfy

IDI AR (s,m) v < Cy (L + [m])"=F1PhHOPN for all 4, 5 € Np.

Definition 7.3. Let o € S’g’é(']l‘d x Z%). For any f € 8'(T%; L1(M)), we define the corresponding
toroidal pseudo-differential operator as follows:

Tef(s) = > o(s,m)f(m)e™m.

meZd

When studying the toroidal pseudo-differential operators 7 on T, especially its action on
operator-valued Triebel-Lizorkin spaces on T¢, a very useful tool is to extend the toroidal symbol
to a symbol defined on T? x R?, which reduces the torus case to the Euclidean one. This allows us
to apply the results in the last sections. The extension of scalar-valued toroidal symbol has been
well studied in [45]. With some minor modifications, the arguments used in [45] can be adjusted
to our operator-valued setting.

The following lemma is taken from [45]. Denote by d§y(§) the Kronecker delta function at 0, i.e.,
(50(0) =1 and 50(5) =0 lff 75 0.
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Lemma 7.4. For each 3 € Nd, there exists a function ¢5 € S(R?) and a function ¢ € S(R?) such

that
> stk =1,

kezd
Clze (€)= d0(¢) and DI(Q)(E) = Be (),
for any € € RY.
Now let us give the operator-valued analogue of Theorem 4.5.3 in [45].
Lemma 7.5. Let 0 < p,0 <1 andn € R. A symbol o € S;é('ﬂ‘d x 74 is a toroidal symbol if and

only if there exists an Fuclidean symbol o € S;(;(']I‘d x R?) such that 0 = G |payza.

Proof. We first prove the “if” part. Let o € S,’j,é(']l‘d x RY). If |3]; = 1, then by the mean value
theorem for vector-valued functions, we have

1AL DY o(s,m)|p < sup [|07DIG(s,m + 08)| -
0<6<1

For a general multi-index 3 € N¢, we use induction. Writing 8 = 8/ + §; and using the induction
hypothesis, we get

|A2, DYo(s,m)||am = | A% (AL DYE(s,m))]|

< sup [|9;(A2 DY5(s,m + 05;))]| am
0<0<1

= sup [|AZ(9;D)5(s,m + 06;))|
0<6<1

< sup |DZ'9;D15(s,m +0'B)||
0<6’<1

= sup [|[D{DIG(s,m +0'B)||la.
0<6’'<1

Thus we deduce that
85 D20 (s, m)lae < sup | DZDZF(s,m +0'6) L

< am(1+ |m|)nfplﬁ|1+5\vh'

Now let us show the “only if” part. In the proof of Theorem 4.5.3 in [45], the desired Euclidean
symbol is constructed with the help of the functions in Lemma 7.4. We can transfer directly the
arguments in [45] to our setting. But we still include a proof for completeness. Let ¢ € S(R?) be
as in Lemma 7.4. Define a function & : T¢ x R? — M by

&)=Y C(€—m)a(s,m).

mezZ?

Thus, 0 = G |payze. Moreover, using summation by parts, we have

IDYD{5(s,6)m = || D DEC(E —m)DEo(s,m)|,,

mezd
_HZAﬁ(bﬁE m)Do‘smHM
mezd
= (=) 3" bs(& — m)A}, DYo(s,m)| m
meZd
S Z |ps (& —m)|(1 + |m|)n—p|6|1+5|,3|1
meZd
S 3 195(6 = m)|(L 4] —ml) IS (1 4 gyl
mezd
< (14 |¢))rlBlitolvh,
whence, o € 5;)175( x RY). )
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Theorem 7.6. Let o € S%(S(T‘i x 7).
i) If0 < 6 <1 and a € R, then TS is bounded on HS(T% Ly(M)), and bounded on
ng(Td;Lp(M)) for1 < p,q<oo.
i) If6 =1 and a > 0, then TS is bounded on H§'(T%; Ly(M)), and bounded on By ,(T%; L,(M))
for 1 <p,q<oo.

Proof. By Lemma 7.5, there exists ¢ in S7 (T xR?) such that ¢ = & |gayza. Let f € S'(T¢, Ly(M)).
By the identification T¢ ~ I¢, for any z € T, there exists s € I¢ such that

Tef(z) =Y o(s,m)f(m)e=m

mezd
= [ 7O R = T fe(s).

Now we apply Corollary 3.3, Proposition 3.4 and Theorem 3.5 to the symbol ¢ and fpe. Then by
(7.3) and (7.4), we get the desired conclusions. O

Theorem 7.7. Let o € S‘ié(']l‘d x Z4) and o € R.

i) If 0 <6 < 1, then TS is bounded on F;"C(Td,./\/l) for every 1 < p < oo.
ii) If 5 =1 and o > 0, then TS is bounded on F{°(T¢, M).
iii) If 6 = 1 and (T5)* admits a symbol in the class S{ (T x Z%), then T¢ is bounded on
E¢(T% M) for any 1 < p < oo.

Proof. The proof of this theorem is similar to that of the last one. This time we appeal to Theorems
5.1, 6.2 and 6.3 and the equivalence (7.2). O

7.2. Applications to quantum tori. We now apply the above results to the quantum case.
To this end, we briefly recall the relevant definitions, and refer the reader to [11] and [59] for
more details. Let d > 2 and 6 = (6y;) be a real skew symmetric d x d-matrix. The associated d-
dimensional noncommutative torus Ay is the universal C*-algebra generated by d unitary operators
Ui, ..., Uy satisfying the following commutation relation

UU; = U0y, §k=1,...,d.
We will use standard notation from multiple Fourier series. Let U = (Uy,---,Uy). For m =
(my,---,mg) € Z%, define
umn=u"---U.

A polynomial in U is a finite sum

T = Z a, U™ with  «,, € C.
meZd
The involution algebra Py of all such polynomials is dense in Ag. For any polynomial z as above,
we define
7(z) = .
Then 7 extends to a faithful tracial state 7 on Ag. Let ’]l'g be the w*-closure of Ay in the GNS
representation of 7. This is our d-dimensional quantum torus. The state 7 extends to a normal
faithful tracial state on T¢ that will be denoted again by 7. Note that if § = 0, then T4 = L (T¢)
and 7 coincides with the integral on T¢ against normalized Haar measure dz.
Any z € L1(T¢) admits a formal Fourier series:

z~ Y Bm)U™ with Z(m) = 7((U™)*x).
mezd

In [37], a transference method has been introduced to overcome the full noncommutativity of
quantum tori and to use methods of operator-valued harmonic analysis. Let Ny = L (']I‘%@Tg,
equipped with the tensor trace v = [ dz®7. For each z € T9, define 7, to be the isomorphism of
T¢ determined by

(7.5) T (U™) = 2MU™ = 2P MU U,
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This isomorphism preserves the trace 7. Thus for every 1 < p < oo,
d
7= (2)llp = [[#]lp, Vo € Lyp(Th).
The main points of the transference method are contained in the following lemma from [11].
Lemma 7.8. i) Let 1 <p <oo. For any x € L,(T%), the function T : z — m.(z) is continuous
from T? to L,(T%) (with respect to the w*-topology for p = o).
ii) If v € L,(TY), then T € Ly(Ny) and ||Z||, = ||z|lp, that is, x — T is an isometric embedding
from L,(T%) into L,(Ny).
iii) Let T¢ = {Z : « € T¢}. Then T¢ is a von Neumann subalgebra of Ny and the associated
conditional expectation is given by

E(f)(2) =7rz</w wm[f(w)]dw), ze T feN.

Moreover, E extends to a contractive projection from L,(Np) onto L, (ﬁ‘g) for 1 <p < oo.

To avoid complicated notation, we will use the same notation for the derivation for the quantum
tori ']I‘g as for functions on T?. For every 1 < j < d, define the derivation to be the operator 0
satisfying:

0;(U;) =2miU; and 0;(Ug) =0 for k # j.
Given m € Ng, the associated partial derivation D™ is 9] -+~ 05" We keep using the resolvent
of unit given by functions in (7.1). The Fourier multiplier on T¢ with symbol ¢(277-) is then

Pixx = Z 0277 m) Z(m)U™.
mezZd
The analogue of Schwartz class on the quantum torus is given by
S(Té) = { Z am U™ : {am }mezae rapidly decreasing}.
meZd

This is a w*-dense *-subalgebra of 'H‘g and contains all polynomials. It is equipped with a structure
of Fréchet x-algebra, and has a locally convex topology induced by a family of semi-norms. We
denote the tempered distribution on T¢ by S’(T%) which is the space of all continuous linear
functional on S(T%). Then by duality, both partial derivations and the Fourier transform extend
to S'(T¢). Sobolev, Besov, and Triebel-Lizorkin spaces on the quantum torus are defined and well
studied in [59]. Let us recall the definition.

Definition 7.9. Let 1 < p < oo and o € R?. The potential Sobolev spaces are defined to be
HS(T8) = (o € S/(Td)  Jow € LT},
equipped with the norm |[z| mg = [|J%x||, . Let also 1 < q < co. The Besov spaces are defined by
ng(’ﬂ‘g) = {.’I} € S/(Tg) : ||.’L’||Bg,q < OO},
where )
lollsg, = (O + > 2%+ 2)g)
k>0
The column Triebel-Lizorkin spaces F;’C(Tg) are defined by
Fpre(T§) = {z € §'(T§) : ||z e < 00},

where
PN 2jor) = 21
2] pge = [2(0)] + | Y 22915 )2 |
Jj=0
The Tow space F;”(Tg) and mizture space F;‘(Tg), and the case p = oo are defined similar to
those on the usual d-torus.

The transference method in Lemma 7.8 allows us to connect the spaces defined above with their
operator-valued counterparts. The result is
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Lemma 7.10. Let 1 < p,qg < o0, and o € R. The map © — T is an isometric embedding
Jrom H(T3), BS,(T§) and Fe(Tq) into HS (T Ly(Tq)), By (T% Ly(T§)) and Fc(T, T§)
respectively. Moreover, the ranges of these embeddings are 1-complemented in their respective
spaces.

Let us introduce toroidal symbol classes and pseudo-differential operators on T¢. The following
definitions were also given in [30].

Definition 7.11. Let 0 < §,p <1, n € R and vy, 3 € N¢ be multi-indices. Then the toroidal symbol
class S3, ) 6(Zd) consists of those functions o : Z¢ — ’]I“g which satisfy
9P
IDP(A7,0(m))|| < Cpyp (14 [m])* =PI i € 24 and v, B € NG

Definition 7.12. Let o € S,
.,

pseudo-differential operator on Tg as follows:

Tix = Z o(m)Z(m)U™.

meZd

74). For any x € ’]I‘g, we define the corresponding toroidal

Now we are ready to prove the mapping property of pseudo-differential operators on quantum
torus.

Theorem 7.13. Let o € S%g7176(Zd).

i) If0 <6 <1 and o € R, then TS is bounded on H§(T§), Bg,(T§) and F<(T§) for
L <p,q<oo.
ii) If § = 1 and a > 0, then TS is bounded on HS(T%) and Bg)q(Tg) for 1 < p,q < oo, and
bounded on Fy"°(T4%).
i) If 6 =1, a € R and (T£)* admits a symbol in the class S

E2c(Tg) for any 1 < p < oo.

(Z%), then TS is bounded on

9.1,1

Proof. Recall that 7, denotes the isomorphism of ']I‘g determined by (7.5). We claim that, given
m € Z%, the function z — 7,(c(m)) from T? to T¢ satisfies

(7.6) IDIAG T (o) < Cop(1+ ]y o1l

Since 7, commutes with the derivations on T¢, we have DYAPr,o(m) = 7,(DYAPo(m)). There-
fore,

IDY AP m.o(m)|| = |72 (DY A o (m)|| < | DYA o (m)|| < Oy p(1+ [m[) ol =elPl,

Denote 7 (z,m) = 7,(c(m)) for (z,m) € T% x Z¢ and consider the pseudo-differential operator T%.
Combining (7.6) and Theorem 7.7, we obtain the boundedness of T< on F&¢(T%, T4). Moreover,
for any polynomial x on T¢ and f(z) = 7, (), we have

TEf(2) = Y G(z,m)f(m)z"

meZa

> wo(m)E(m) U™ 2"

meZd

= Y m(oe(m)E(m)U™) = m.(T¢(x)).

meZd

Finally, by Lemma 7.10 and Theorem 7.7, we have
||T§(x)||F;,”C(’EZ) = H7T~(T§(9C))||F5‘C(Td,1rg) = ”TngF;’“(’]I‘d,’]Tg)
S Hf”F;"’C(Td,’]l‘g) = ”'THF;*’C(’]Tg)'
The assertions on Sobolev and Besov spaces are proved similarly. O
Finally, let 0 < p < 1,n € R and v € N&. Define Sg(Zd) as the scalar-valued toroidal symbol
class, consisting of those functions o : Z¢ — C which satisfy

|AY o(m)| < C,(1+|m))" PP ¥m ez and Vv € N2
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In this setting, it is evident that 75 and 7, degenerate into the same Fourier multiplier on ’]I‘g,
simply denoted by T,,. The following result is a Mikhlin-type Fourier multiplier theorem on ’]I‘g.

Corollary 7.14. Let 0 € S{(Z%) and o € R. Then T, is bounded on F<(T§), F"(Tq) and
F;‘(’]I‘g) for every 1 < p < co.
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