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Abstract

In this paper, we study superconvergence properties of the local discontinuous Galerkin
(LDG) methods for solving nonlinear convection-diffusion equations in one space dimen-
sion. The main technicality is an elaborate estimate to terms involving projection errors.
By introducing a new projection and constructing some correction functions, we prove the
(2k + 1)th order superconvergence for the cell averages and the numerical flux in the discrete
L? norm with polynomials of degree k > 1, no matter whether the flow direction f’(u)
changes or not. Superconvergence of order k 4+ 2 (k + 1) is obtained for the LDG error
(its derivative) at interior right (left) Radau points, and the convergence order for the error
derivative at Radau points can be improved to k 4+ 2 when the direction of the flow doesn’t
change. Finally, a supercloseness result of order k + 2 towards a special Gauss—Radau pro-
jection of the exact solution is shown. The superconvergence analysis can be extended to the
generalized numerical fluxes and the mixed boundary conditions. All theoretical findings are
confirmed by numerical experiments.
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1 Introduction

In this paper, we investigate superconvergence of the local discontinuous Galerkin (LDG)
method for one-dimensional nonlinear convection-diffusion equations

ur + f(u)y —buyy =gx,t), (x,t)€l0,27] x (0, T], (1.1a)
u(x,0) =up(x), x € [0, 27], (1.1b)

where b > 0 is a constant, u( is smooth, and g is a smooth function. We assume that the
nonlinear flux function f(u) is sufficiently smooth with respect to the variable u, and the
exact solution is assumed to be smooth on [0, 2] x [0, T'] for a fixed 7. The main task
in deriving superconvergence is a delicate treatment for terms involving projection errors.
By defining a new projection and constructing some correction functions, superconvergence
properties for Radau points, cell averages and supercloseness are shown. Both the periodic
boundary condition and mixed boundary conditions are considered.

As a class of efficient methods for solving partial differential equations (PDEs) involving
high order spatial derivatives, the LDG method was proposed by [17] for convection-diffusion
equations. Typically, an auxiliary variable will be introduced so that the standard discontin-
uous Galerkin (DG) methods can be applied to the resulting first-order system. Due to its
numerical stability and local solvability of auxiliary variables, the LDG method has been
widely used for solving a series of high order equations; see, e.g., [9,15].

In addition to optimal error estimates of LDG methods, the research of superconvergence
has been a hot topic in recent years. Superconvergence results for Radau points have been
obtained by using the Fourier approach [18] and the finite element technique [8,10,14] for
different types of PDEs. Suboptimal supercloseness results of order k + 3/2 (with k being the
polynomial degree) is proved for linear convection-diffusion equations in [12], which was
latter improved to be sharp of order k 42 in [23]. There is another kind of superconvergence,
which is measured in the > norm for post-processed errors. For linear hyperbolic equations,
[16] proved that the post-processed solution through a convolution with some kernel functions
is of order 2k + 1 superconvergent to the exact solution. Based on the duality argument and
divided different estimates, the post-processing technique is extended to linear convection-
diffusion equations in [19] and nonlinear symmetric systems of hyperbolic conservation laws
in [20].

Recently, a systematic way via constructing special interpolation functions was success-
fully applied to the DG and LDG methods for linear hyperbolic and parabolic equations in
[5,6]. Moreover, for nonlinear scalar conservation laws, by suitably choosing a local projec-
tion and analyzing correction functions, [4] proved that the order between the DG solution
and the particular projection can achieves (k + 2)th order when the direction of the flow
doesn’t change, and the order is less than k + 2 when f’(u) changes its sign. Also, the DG
flux function f (uj) is proved to be superconvergent to a particular flux function of the exact
solution.

In current paper, we aim at analyzing the superconvergence properties of LDG methods
for nonlinear convection-diffusion equations. Different from using a weighed projection and
a special operator for constructing correction function when f’(u) is fixed or introducing a
special projection consisting of four local projections when f’(u) does change its sign in [4],
we propose a new approach based on the balance of leading errors between the nonlinear
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convection term and the diffusion term. To this end, we construct a new combined projection
H(u,q) = (P, u, IP;qu) depending on the “reference” numerical flux f . To be more specific,
the standard local Gauss—Radau projection P, u is used to eliminate the boundary term and
integral term resulting from the prime variable u for the diffusion term, while ]P’;{ plays
the role in dealing with difficulties coming from the auxiliary variable ¢ and the nonlinear
convection term f(u). When the direction of the flow doesn’t change, the projection IP’h+ is
(k 4+ 2)th order superclose to the local Gauss—Radau projection P;' . Further, some special
interpolation functions consisting of the difference between the newly designed projections
and correction functions are constructed. The interpolation function is thus superclose to
the LDG solution, and superconvergence results can be obtained, which provides a solid
foundation for illustrating the inherent interactive mechanism of the leading errors between
the nonlinear convection term and the diffusion term.

An overview of this paper is as follows. In Sect 2, we present the semi-discrete LDG
method for nonlinear convection-diffusion problems. In Sect. 3, we introduce a new projection
and construct special correction functions, and the corresponding properties are analyzed.
Section 4 is devoted to the superconvergence analysis, in which we show superconvergence for
cell averages, Radau points as well as supercloseness. Extensions of the results to generalized
alternating fluxes, mixed boundary conditions and the auxiliary variable are given in Sect. 5. In
Sect. 6, numerical experiments are displayed that demonstrate the sharpness of our theoretical
results. We end in Sect. 7 with concluding remarks and some possible future work.

2 The LDG Scheme

The usual notations of the LDG method are adopted here. For any positive integer r, we
denote Z, = {0, 1,...,r} and Z:r = Z,\{0}. The computational domain 2 = [0, 27] is
divided into N elements with 0 = x 1 <X 3 <<y 1= 27, The cell center and cell

length are denoted by x; = %(xj;% + xH%) and h; = Xjpl — X1 respectively. The
following polynomial space is chosen as the finite element space

Vi ={ve LX) vl € PXU)), jeZi}

with P(1 ;) the set of polynomials of degree up to k defined on /;. Since functions in V]f
may be discontinuous across element boundaries, we use

vl 1 =l vt 4T wl..i =vT , —v”
J+z T2 \ Ui+l j+ )’ its j+3 jt+y
to denote the mean and jump of the function v at each element boundary point x s where

vt andv” , are the traces from the right and left cells.

J+3 Jjt+3
Throughout this paper, we use W%”(D) to denote the standard Sobolev space on D
equipped with the norm || - [lyeppy = I * lle,p.p With £ > 0, p = 2 and p = oo. For
P =21 llwe2py = Il - lle.p, and the subscript D will be omitted when D = £2 with an
unmarked norm || - || denoting the standard L? norm on £2. For v € H'(£2), the L? norm at
cell boundaries is defined as follows:

N

1
ol = (1er 7+ e, %)

Jj=1
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As usual, by introducing an auxiliary variable ¢ = v/bu,, the problem (1.1) can be written
as a first order system

ur + f)x —bgy = g(x, 1), q—~buy =0.

Then the semi-discrete LDG scheme is formulated as follows: find uj,, g, € V,f such that for
Yv, @ € V;{‘

A o A ot
/1,- p)rvdx + flup)v™lj 0 — flupvl; 1 — [1,- S (up)vydx
_\/Z<éhv*|j+% —éhUJrlj_% - /; (Ihvxdx) = /I g(x, Hvdx, (2.1a)
J J

/ qhgodx—«/Z(ﬁhw_|j+% —ang™l; s _/1 uhgoxdx) =0, (2.1b)
i J

I/
where f(uh) is the Godunov flux, i.e.,

~ o min, — + f(w), ifu, <u
A — u, <w<u ’ h h>
flup) 2 fQuy,, uf) = { h =0y

oo — +
maxuszfu; flw), ifu, >uy,

and iy, gy, are a pair of alternating fluxes. For example, one can use the following alternating
fluxes

p=u,, qn= q;, (2.2a)
or
iy = M;Tv dn = q - (2.2b)

Motivated by [4], to deal with the nonlinear term, a “reference” numerical flux is intro-
duced, which plays an important role in the design of new projections in Sect. 3.1 below.
That is,

: {f(u,:), if /()44 20, 0

T =1 pad, if f'G0l5, ) <0,

where uj and u are the numerical solution and the exact solution of (1.1), respectively.
The LDG scheme (2.1) will be simplified if one adopts the DG spatial discretization
operator given by

N
H(w, v;d) =Y Hj(w, v bd)
j=1

with
Hj(w, vih) = —(w, ve)j +dv7 | —zbvﬂj_%, (24)

where (-, -); denotes the L? inner product on I . By Galerkin orthogonality, one has the
following cell error equation

((eu)l’ U)J + (eq7 q))j + Hj(f(u) - f(u]’l)7 U3 f(M) - f(uh))
— VbH(eq, v; &4) — NbH(eu, 93 éu) = 0, 2.5)
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which holds for Vv, ¢ € V}f‘ and j € Z;. Here ey, = u—uy, e; = g —qp. In what follows, let
us recall the local Gauss—Radau projections of a function ¢ € H!(£2) into the finite element
space V,{‘, denoted by P, or Ph+ , which are defined as the unique function in V;{‘ such that

(Pyg.vp)j = (@, vn)j. Yon € PN, Pro(xs )=o), (2.6a)
J+3 J+3
(P bvn)j = @ vn)j. Yone PN PRoG ) = g0 ) (2.6b)
J=3 J72
To facilitate analysis, we use the following Legendre expansion in each element /;, j €
Z}. Thatis, for ¢ € H'(I;)

2m + 1

PO = Y $imOLjm(x),  Gjm(t) ="

m=0 J

(P Ljm)j

where L ,; denotes the rescaled Legendre polynomial of degree m on /;, namely L ,, (x) =

Lm(z(xhifjxj)). By the definition of P, PhJr in combination with the orthogonality property

of Legendre polynomials, one has

@~ Prd)e.0) = braLix+ . bjmLjm. (2.7a)
m=k+1

@~ Pro)Y.0) = bjaLik+ Y bjmLjm, (2.7b)
m=k+1

in which <_Z5)j, k> (aj,k can be determined by the boundary collocation conditions in (2.6). It
reads,

k k
Giu= 2 0 =G ). k= 2D~ DG @)
m=0

m=0

After a simple application of the Bramble—Hilbert lemma [1, Lemma 2.2.2] and scaling
arguments, we obtain

— <~
k1 k+1
1@kl < CH Mpllkt100, 1)kl < CH D Nlkt1,00,

where C is a constant independent of ¢ and the mesh size .

For the correction function construction procedure, the following integral operator D!
is essential, which aims at eliminating the leading term of the error equation via integration
by parts, and thus superconvergence results can be obtained; see, e.g., [6]. That is,

D;1¢(x)=_i/)c p(r)dr, Tel;
i),

where /i j = hj/2. Obviously,

¢(x) =h;(D;'p(x)) .. (2.8)
Moreover, by the properties of Legendre polynomials, for m € Zj with L; 1 = 0, we have
1
-1
Dx Lj,m(x) = m([q’,mﬂ - Lj,m—l)(x)~ (2.9)
@ Springer
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Finally, we list some inverse properties of the element space V}i‘ that will be used in our
analysis. For any vy, € V;{‘, there exists a positive constant C independent of v, and & such
that

ONdcvnll < ChMwpll; @llvalln, < Ch™V2Nvglls Gidllvnlloo < CR™Y2 vyl

3 A New Projection and Correction Functions

To derive superconvergence results, interpolation functions consisting of special projections
and correction functions need to be carefully designed, which are mainly used to obtain a
superconvergent bound for the contribution of projection errors; see Sect. 3.3 below. Since
the Gauss—Radau projections P, or P}f are not sufficient to deal with the nonlinear term that
changes its flow direction, we shall first introduce a new projection, which is a modification
of P,j. In what follows, we mainly concentrate on the fluxes (2.2a), and the case with (2.2b)
will be discussed in Remark 3.2.

3.1 A New Projection
Motivated by [11, Sect. 4.2], we define the following modified projection
M(u.q) = (P, u.Pyq),

where P, u € V}{‘ has been given in (2.6a), and ]P’;{q € V}{‘ depends on both u and g such
that

/ (g — ]Ph q)vpdx — —/ f ) (u — Py u)vpdx =0, VY, € Pk 1(I) (3.1a)

f

where W has been defined in (2.3). It is easy to see that IP’}Tq = P:q when f’(u) = 0, and
(g — P,fq);f , = 0 when f/(u) > 0. Thus, P; can be viewed as an extension of the local
-2

BraG p)=qG; )= —=f ' pu=Pruw; . Vjely, (3.1b)

Gauss—Radau projection Ph+ . Moreover, for v € V}f and j € ZF, (u, q) = (P, u, P;q)
satisfies the following identity

—_~

M (f @) = Py, i f' @)= Prw) = VbHi(q = Prg.vi (¢ — Pf)*) =0.3.2)
The properties of the projection PZ in the following lemma are essential to the proof of

superconvergence; see Lemma 3.3 below.

Lemma 3.1 Suppose |3* f'(u)| < C, then the projection IP’Z' in (3.1) is well defined. Moreover,
ifg — ]P’,J{q has the following expression in each element I

51|1 ZQJm jom T+ Z qjmLjm, (3.3)

m=k+1

then there holds the following results:
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187 (1) The coefficients q;  satisfies

1@jm < CH* 1 ulls2,00, m € Z. (3.4)
ug 189 (2) The cell average of the projection error q — IF’;{q in each element I ; is superconvergent
5: 1o with an order of 2k + 1, i.e.,

5 1
=l \— / (@ =P ) dx| < CR* flullis,00.
= hi I;
= JJj
<< g
192 Especially, when f'(u) > 0, namely (u — Ph_u)j,l =(u-— Ph_u); . = 0, we have the
2 D

193 following supercloseness results.

194 (3) Ph+q is superclose to the Gauss—Radau projection Ph+ q, ie.,

IPirg = P alloc < CH**?lullira,co- (3.5)

19 (4) The function value approximation of P;q is superconvergent at left Radau points

19 Ljm,m € Z,j (zeros of left Radau polynomial Lj ;1 + L ), and the derivative value
198 approximation is superconvergent at the interior right Radau points r; ;,, m € ZZ‘ (zeros of
oo right Radau polynomial L 1 — L j », except the point x = XH_l), namely

2

(g =P @) (jm)| < CH*2gllk42,00. (3.6a)
9:(q — P ) (rj.m)| < CHF g lk42.00- (3.6b)

202 The constant C is independent of h.

25 Proof (1) Since P} g € V[, we express in each element /;

k
204 IP);‘”I,' = ij,ij,m» 3.7

m=0

205 where bj ,, are coefficients to be determined later. Using the orthogonality of Legendre
206 polynomials, (3.1a), and (2.6a), we obtain, for Vim € Zi_1

_ 2m +1
207 qjm= . / (g —IP;{q)Lj,mdx
J I;
2L - P pd
208 = — u)yu — u i, X
Jon, n Wb jm
_ 2m + 1

209

- x/Eih/] (F'@) = Ierom [/ ) (@ = Py )L j .
J J

20 Here and below, 1,,w € P™(/}) represents an interpolation of w. By the Bramble-Hilbert
o lemma,

1L @) = Tmtm f D) low,1; < CHE 57 F/ )lloo < CHE,
213 which yields

1Gjm| < CR* u — Py ulloo,r; < CR* ™ ullitt 00, m € Zi—1. (3.8)
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Next, let us consider the estimate to g; x. On the one hand, by (3.7), using the definition
of IP’;IL in (3.1b) and the fact that (—1)2" = 1 (Vm € Z¢_1), we get

k—1
= (—Dfg(xT ) — Db — @
bjx=(DaG] ) Z_%( ) b — @,

where
1 —_—
@ = (=D —= - P w),
7" Py

On the other hand, it follows from g; x = — (=D (=kH! g,k and the expression for (q_j,k
in (2.7¢) that

k—1

Gk =djx—bjk =g+ DT q0] )+Z<—1)k "bjm+ P
m=0

k k—1
= DM (g0 ) = YD g+ D ) 4+ 9
m=0 m=0

k—1
= Qjk+ Y (DG + @, (3.9)
m=0

where we have also used the relation b; ,, = qjm — qj,m, m € Zy_1. Moreover,

k1
< CR Ml 1, 00-

|P] < llu— Py ulloo

Consequently,
k—1
Gkl < 1Gkl+ Y NGjml +121 = CH ullir2,c0-
m=0

This completes the proof of (3.4).
(2) Using (3.3) and (3.4) in combination with the orthogonality property of Legendre
polynomials, we have

i / (@~ Pfaas| = 1] / 3j00x| < 1301 < CH* s .
(3) When f/(u) > 0, namely (u/\}_’h/u) 1= = 0, then @ = 0, and we can express Ph q
in terms of the orthogonal basis L ,, (m € Zk) as
k
Pla=7 " djmLjm— qjxLix
m=0

with <q_,k defined in (2.7¢). This, together with (3.7) and (3.9), leads to

Pq—Priq= Z(Qj.m —bjm)Ljm+ (Gjk — Tjk)Ljk:

k—1 k—1
_ = k—m-+1 =
= GjmLjm+ Y (=1 @jmLijk
m=0 m=0
@ Springer
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where we have used the fact that g; ,, — bj » = qj,m, m € Zg. Then, by (3.4)

k—1
1P g =Pl glloos; <Y 1Gjml < CH* P |lullisa.00. Vi € Zn.

m=0

This finishes the proof of (3.5).
(4) The inverse inequality [|0x (P, g — P} @)llco.1; < Ch* 1 |Jullx 42,00 together with the
superconvergence results for Ph+ in [7], namely

(g — P ) (€jm)| < CH* 2 gllks2.00.  [8x(q — P @) (rjm)| < CH* Y gllk2,00

gives us the desired results (3.6). This completes the proof of Lemma 3.1. O

3.2 Correction Functions

In order to construct the interpolation functions (u‘;, qf), let us begin by defining a series of
functions wy,;, wy,; € Vé‘, i € Z,J(r as follows

(Wbw,; —hjD; 'wgi—1,v); =0, (i) 1 =0, (3.10a)
o 1 -
(Vowgi = f'wui = hiDg dwuio10); = 0. (wi);_ 1 = w0y

(3.10b)
where v € Pk_l(lj), and
wy,0=u— P, u, wq’ozq—]P’]':q.

Further, for any positive integer £ € Z,:r, we define in each element /; the correction
functions

[ ¢
We=> wei W= wgi, 3.11)
i=1 i=1
and the special interpolation functions are
up=Pru=W., qf=Pfq— W/ (3.12)
The components w, ;, wy,; in correction functions have the following property.

Lemma 3.2 The functions wy;, Wg,i,i € Z]J(r defined in (3.10) are uniquely determined.
Moreover, suppose that f'(u) is a sufficiently smooth function satisfying

o wl=c, gt Fwl = ¢,
and the functions wy ; and wy ; in each element I; are expressed by

k k
wu,illj = Z,Bi,ij,ma wq,i|1j = Z Vi,ij,m~
m=0 =0

Then, the coefficients B; m and y;  satisfy

|97 Bi | < CRMEATHL 2k T=mly ) o0, n =0, 1, (3.13a)
|07 Yi | < CRMXIFTHL 2K L=m) gy i oo, n =0, 1. (3.13b)
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Asa consequence,

k+i+1
1 wuillos + wg.illoe < CH T ullktis3, 00,

¢ ¢ k+2
IWylloo + W, lloo < CH*F[lutllite43,00-

(3.14a)
(3.14b)

Proof We prove this lemma by induction, consisting of the following two steps. Since the
case with n = 1 is quite similar to that with n = 0, we mainly consider the case with n = 0.

Step 1: When i = 1, taking v = L ;,, m € Zy_1 in (3.10a) and using the orthogonality
property of Legendre polynomials, we get

Kk k
(Wbwy1 —h;Di w0, v); = (\/EZﬂl,ij,m — hj Zéj,mD

=
s’
=
3
<
S~—
-

m=0 m=0

where g, are the coefficients defined in (3.3). Using the relation (2.9) and the orthogonality
property of Legendre polynomials again, we arrive at

Q)

Vbpro = —

_ qjm-1 ;> qjm+1 > i
VoBim = 5 =hy = Sk, m e .

ArS
hj,

Using (3.8), we have

Using the fact that (wu_ 1 )j

- 2%+1
1Brol < h1gj1l < Ch*Flullxs1,00,

- - 2+1—
1BLml < B3 jm—1] +1@j.ma)) < CH*H " ullgs1,00, m € Z ).

+1 = (0, we obtain

k—1 k—1
k+2
Bral =1 Biml = Y 1Brml < CH 2 |lullir2.00.

m=0 m=0

Analogously, taking v = L ;y, m € Zg_1 in (3.10b) and using (2.7a) as well as (2.9), we

get
2m + 1
‘/l;yl,m = . (f/(M)UJu,la Lj’m)j’ m e Zk—2’
J
2%k — 1 hjd/ 0 &
«/Z o ’ Liiq). — Tyt Rk
Ylk—1 7 (f'@w,1, Ljx-1); 2%k +1
@ Springer

[ SPI

Journal: 10915 Article No.: 1446 [_JTYPESET [_]DISK [_]LE [_]CP Disp.:2021/3/8 Pages: 30 Layout: Small




G
]
]
S
(=W}
-
o
=
+—
=
<

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

306

307

308

309

310

31

312

313

Journal of Scientific Computing _##########H###

Page 110f30  _####_

Specifically, when m € Zj_», we have

k
2m 4+ 1 2m +1
Vorim| = |=2= 3 (F@BwLse Lim); + = (/' @B L. Lym)|
J v=0,v#m /
k
2m +
=[P Y (7@ = w1 S @)L Lim )
J v=0,v#m /
2m +1
@B L L)
J
2+l
<[22 Y (7@ = Toomt @)L L) |+ Clbinl
J v=0,v#m !
k
< 2 CHMM[Bru]+ ClBiml.
v=0,v#m

where in the second step we have used the orthogonality property of Legendre polynomials,
in the third step we have employed Holder’s inequality and in the last step we have used the
following interpolation error estimate

I @) = Loemi—1 @)oo < CRV ™3 ) [loo < CRIV™.

It is easy to see that no matter v > m or v < m, the following formula is valid

h2k+lfm

lyim| <C lullk+2.00, m € Zg—2.

By the same arguments, we can obtain

k

ikl < D0 CRPTEEONB 4 ClBrktl + 7|0 W | < CR2 [l 3,000

since ||?_t“||k+l,oo
use (wq’l)jf% =

v=0,v#k—1

ﬁ(f’(u)ﬁm)ji% in (3.10b) to obtain
k—1 k

ikl Y [viml+ Y ClBiml < CH 2y c0-
m=0 m=0

Therefore, (3.13) is valid fori = 1.
Step 2: Suppose that (3.13) holds fori, 1 <i < k — 1, and we need to prove that it is also
valid fori + 1.
We choose v = L ;,, m € Zy_; in (3.10a) to obtain

h.
VbBis10 = _?]Vi,ly

RjYim—1  hj¥imti
VbBigy y = L LT me .

2m — 1 2m+3

It is easy to deduce that

2U+1
1Bi+1.0l < Alyitl < CA* ullktit2,00s

|Bit1,m| < h(|)/i,n1—1| + |yi,m+1|

) < Chmax{k+2+i,2k+l —m} |

| f/ (u)ou — 8/%14”/(_‘_1,0o < C|lullk+3,00- It remains to bound y; ;. We

|t llksit2,000 M € Z 4.
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sis Using the fact that (wu_,i+l)j+% =0, we get
k—1 k—1
- Bivikl =1 Bisviml < Y Bivtml < CH 2 ulliyign oo
o m=0 m=0
<
oy 316 Analogously, taking v = L ;,, m € Zy_1 in (3.10b), we have
E’ 1 h;
= 317 Vbyis10 = h*(f/(u)wu,iﬂ, Lj,O)j - ?Jazﬂi,l,
< J
2m + BideBim—1  hjdBimt n
318 */ZVH»I,m = h; (f/(u)wu,iJrl, Lj,m)j + om—1_ om T3 m e Zy_,.

310 In particular, when m € Zi_1, we have

2m + 1
320 ’ (f/(u)wu,i_,_], Lj,m) ’
hj J
k
2m + 2m + 1
o =T Y (@B L L)+ (@Bt Ly Lin) |
J v=0,v#m J
k
2m + 1
- =T ((F/60 = i1 £/@)Brs10 L Ljn ) |+ ClBisiml
J v=0,v#m J
k
< Y ChM M Biiu] + ClBiriml
v=0,v#m

oa < Chmax{k+2+i,2k+lfm}||u||k+i+2’oo.
s Consequently,

2k+1 2k+1
326 [Vi+1.0l < Ch™ 7 ullktit2,00 + 210 Bi 1] < Ch77 {[ullk4i43,005
Vit,ml < CRMFZHZET gy o oo 4+ 1(10:Bim—11 + 10t Bimet11)
38 < Chmax{k+2+i,2k+l—m}”u”k+i+3,oo’ me Z]j_l-
39 In addition, it follows from (3.10b) that

k—1 k
ivrk| < D0 irim| + Y ClBiviml < CR 2 lulliyigs oo

m=0 m=0
;31 Therefore (3.13) holds for i + 1 and this finishes the proof of Lemma 3.2. ]

sz 3.3 The Superconvergent Bound for the Projection Errors

;3 To clearly see how to cancel terms involving projection errors with the goal of obtaining
;4 superconvergence, we split the error ey, e, into two parts:

3 e =u—up=u—ul+ul —uy &, +E,
26 eq=q—qn=q—q; +4q; —qn =g +£&.

337 Here u‘; and qf are the two special interpolation functions of # and ¢ given in (3.12).
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Lemma 3.3 Suppose that u € Wktt+3.00 ¢ ¢ Z,‘: is the exact solution of (1.1), and uﬁ, qf
are the interpolation functions defined by (3.12), then for Vv, ¢ € V;f‘, we have

[(nes ) + M (f @, v; /@) = VBH,j (ng, vinf )| < CEYH ulliers sollvlh g
|(ng. 9)j = NbHj(nu. 3 1) | < CHF M ully eq2.00 @l -

Proof Since n, =u — P, u+ Wt and Ng=¢q— IP’;[q + W, using the identity (3.2), we get

S & (e v)j +Hi (f' @nu, vi £/ @) — VbH; (ng. vi )
= () v); + Hi (FL@OWE, s f/ @ WE) — VoH (W v (WHT),

which, by the definition of the DG spatial operator in (2.4) and the boundary collocation for
correction functions in (3.10b), is

S = ((Wu,0 + W, v)j + VbW = f )Wy vy);.

Let us now work on (d;wy ;, v); fori € Z_y, which consists of the first term in S except
(drwy, ¢, v)j. It follows from (2.8) and integration by parts that

@wu,is v); = (hj(Dy dwi,)x, v),

= —(h; D rwu i, ve)j + b D w0 V@)

J+3
—h; D7 w7 Dot ). (3.15)
J=3 J=3

ulx
2

Consequently, substituting the relation (3.10b) regarding the integral terms and the following
boundary values implied by the definition of the integral operator D;‘ into (3.15)

k
]/_ljD;latth,i(x;+%) = /I Z atﬂi,ijqmdx = hjatlgi,()s

J m=0

E,-D;‘a,wu,,-(x;f_l) =0,
2

we obtain

£—1

b 4 k4641
S = Gwue v)j + ) hidiBiov(e; ) < CHT F ulleres collvlhgg,
2
i=0

where Bo,0 = 0 due to (2.7a), and we have also used [|3;wy ¢llcc < CH N ulliir43.00

in (3.14a), the inverse property [[v|loo,; < Ch;lllvlll,lj and the fact that |9;8; 0] <

Ch?* | ulljre43,00 fori € Z; | in (3.13a).
Analogously, there holds

—1
[(ng, ©); — VbH, (M, @ my )l = Zh_/yf,ogv(x;l) + (g0, 9)j
i=0 T

k+L0+1
< CH s 2,000l 1,

where Y00 = gjo0 < Ch*+1 |y lk+2.00 owing to (3.4). This completes the proof of
Lemma 3.3. O
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Remark 3.1 In contrast to the linear parabolic equations [6], w,, ; and wy ; (i € Zy_) defined
for nonlinear convection-diffusion equations in this paper are no longer orthogonal to L j o (x).
Thus, the boundary terms containing B; o or y;,0 will be generated. Fortunately, as shown
in the proof of Lemma 3.3, these boundary terms are of high order and will not affect our
superconvergence results.

Remark 3.2 1f we choose the numerical fluxes (2.2b), we can define the following modified
projection

M, q) = (Pu, P q),

in which P,fu € V}f has been given in (2.6b), and ff”,;q € V}f depends on both © and ¢ such
that

o 1 _
/1 (g — P} q)vpdx — E/I @ — Puyvydx =0, Y, € P11,
J Jj

B - v + ie 7t
]P’hq(ijr%):q(X. .)—7f(u)(u—P;1 Wit Vj€Ly.

j+3 b

We can see that I, is a generalized version of the local Gauss-Radau projection P,". For
this case, the correction functions wy ;, wy,; are

(x/Zw,“ —f_ljD;lwq’,‘_l,v)j =0, (w+ ) =0,

u,i ]_7
1

(\/qu,i — flwy,; — ﬁij_larwu,i—la v); =0, (w;,-)#% = 7(f/(”)wu,i)j+%»

N

where v € P"_l(lj), and

o

weo=u—Plu, wi0=q-Pq.

By similar arguments as those used for fluxes (2.2a), we conclude that the results in
Lemma 3.1-Lemma 3.3 are still valid for the fluxes (2.2b).

4 Superconvergence

In this section, we will prove the superconvergence properties for the LDG solution regarding
cell averages and Radau points. To this end, let us first show a supercloseness result for
ety — wnll-

4.1 Supercloseness

To deal with the nonlinearity of the flux function f («), we should make an a priori assumption
that for small enough % there holds

1Py u —upll < h*. 4.1)

Note that this a priori assumption doesn’t make sense when k = 0. Therefore, all the following
theorems only hold for k > 1.
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Theorem 4.1 Letu € WhHtt3.20 ¢ ¢ Z,‘: (k > 1) be the exact solution of the problem (1.1),
and uyp, qn are the numerical solutions of LDG scheme (2.1) satisfying (4.1). For periodic
boundary conditions, if the initial discretization is chosen such that uj (-, 0) = uf (-, 0), then

1

t
=l + ([ af - anlPar) < ek, @2)
0
where C depends on t and ||| k+¢43,00-

Proof Choosing v = &,, ¢ = &, in the cell error equation (2.5), and summing up them over
all cells, we obtain

1d -
mnsunz +1E 12 = (= e &) — (1g, Eg) — H(f @) — f(un)s s £(u) — Flun))

N
+ 0 (Fun) = )& 1 +VoH(ng. s ny)

j=1
+ \/EH(%, & 'I,,_)
+ VOH(E 0 ) + VOH (B £ £, (4.3)
where, for the nonlinear boundary terms, we have added and subtracted the “reference”

function f (up) defined by (2.3)in f(u) — f (up). By using the second order Taylor expansion
with respect to the variable u, we write out the nonlinear terms as follows

1 -
F) = fn) = f' @+ f @ =5 fil G+ M), (4.4a)

- - 1 = -~
F@) = fn) = '@k + f1@iu— 5 £l G+ )2, (4.4b)

where £ and fu” are the mean values, which can be given in the integral form of the remainder.
Substituting (4.4) into (4.3), and using Lemma 3.3 in combination with the following skew-
symmetry property

H(Eq. € E) + H(Eu £ ) =0,
we get
1d
ﬁnsunZ + 113 < CH N (lg,  + g D + A+ 6 + v, 4.5)

where

A = —H(f" W&, &0 f'WE,),

O = —H(f"wes, & fw)eEr),

> NI =

w=) (Fn) = fm)l&l;,

j=1

will be estimated separately.
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A simple integration by parts gives us the estimate for A; it reads,

1 & , Noo
A= ;/} e Wt 23 (W&~ lEIED)

N

1
< Cl&l® = 5 ) (1 @IET)

j=1
< Clé&l* (4.62)

To deal with the high order term @, let us first show a “rough” bound of order k£ + 1 for
II€ |oo- It is easy to show that

101 < Chewlloollewl 1€l + Cllewlloo (1€l 1, + Il 1, ) IEall

< Ch¥leyllooll&all + Ch™ eulloo &l (4.6b)
< (Ch ™ Meulloo + Ch > lew I Z) 1€ 1> + CHPF3, (4.6¢)
where in the last step we have rewritten hk||eu||oo||§u I = h*% llelloollu ||hk+% followed

by the application of Young’s inequality. For ¥, using the Taylor expansion of f, the
Cauchy-Schwarz inequality and the inverse inequality, we have the following estimate; see
[4, Theorem 4.3]

W] < Ch 3 leal 2 ImullZ + CA+ 7 lewlloo) 154 1% (4.6d)
By the a priori error assumption (4.1), we have
_ _ 3
lewlloo < llu — P ulloo + | Pyt — uplloo < Ch2. (4.6e)

Inserting the estimates (4.6a), (4.6¢c)—(4.6e) into (4.5), using Young’s inequality and the
Gronwall inequality, one has

I&all < CRFF3

Remark that the above estimate for ||§, | is sufficient to verify the a priori error assumption
(4.1) with k > 1; see, e.g., [22,24]. Then, we arrive at the following error estimate of order
k + 1 for [|€,]loc and thus [l [|oo-

_1
leulloo < Mllos + A2 &N < CR*H. .7

We are now ready to prove the supercloseness result in (4.2). Substituting (4.7) into (4.6b),
(4.6d) and (4.5), and taking into account (4.6a), we obtain, after using Young’s inequality

1d
5 q 6 12+ 1& 17 < CH TN + 115, 1D + 18117 + CR¥* T2,

Choosing u (-, 0) = uf (-, 0) and using Gronwall inequality, we have

1

et +( [ ey 1ar)” < e,

This finishes the proof of Theorem 4.1. O
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4.2 Superconvergence

To derive superconvergence properties for the derivative approximation at Radau points, the
following Lemma is needed.

Lemma 4.1 [2] Let g, uy € V,f satisfy
(Gn, @)j = Hj(un, 93 in), Vo € VL.
Then there holds for iy = u;,
Oxunjm) =qn€jm), (j,m)€ Ly X Z,
and for iy, = uh+
Oxup(rjm) = qn(rjm), (j,m) € Zy X Z.

Due to the supercloseness result between uf and uy, in Theorem 4.1, taking ¢ < k in the
correction functions, we have the following superconvergence results for the LDG solution
up.

Theorem 4.2 Assume that u € W2k+3:2°(Q2), k > 1 is the solution of (1.1), and uy,, gy are
the numerical solutions of the LDG scheme (1.1) when the alternating fluxes (2.2a) are used
with the initial solution uy (-, 0) = u]; (-, 0). Then for periodic boundary conditions, we have
the following superconvergence results

(1) Superconvergence of the numerical fluxes

1

N
1 . 2\2
lewnll = (5 2 | =iy )T = cr?t,
j=1

(2) Superconvergence for the cell averages

1

N
1 1 2\2 2k+1
leulle = fZ}*f (= up)x, 0 dx[*)* < CH¥H,
(szl hj I

(3) When £ > 2, the function value approximation of the LDG solution is (k + 2)th
order superconvergent at right Radau points r; ,,, and the derivative value approximation is
(k + 1)th order superconvergence at interior left Radau points (except the point x = x i1 ),
ie.,

lewr | = max |(u — up)(rjm)| < CH2,
JELN
lewell = max |9 (u — up)(€jm)] < CHH.
JELN

It is worth pointing out that, when the direction of the flow doesn’t change, the order of || e, ||
can also be k + 2.

(4) The numerical solution uy, is superconvergent with order k + 2 towards the Gauss—
Radau projection P, u of the exact solution, namely,

lup, — Py ull < CH*F2.

The constant C is independent of h.
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Proof (1) It follows from the exact collocation of P,” in (2.6a) as well as (w,;i)j+% =0in

(3.10a), the inverse inequality and the supercloseness result in Theorem 4.1 that

N 1
1 T 2\ 2
k
||€un||=(N .§]|(u,—uh)(xj+%,t)| )
j:

j !
_ 2

= (5 2o Chy =l )
j=1

< Cllub —up) < Ch?*H1, (4.8)

(2) By the orthogonality property of P, in (2.6a) and the definition of u’;, we obtain

(eu, )j = Wk —up, )+ (WE 1.

Then, by a direct calculation and taking into account (3.13a) with m = 0 due to the orthog-
onality property of Legendre polynomials, we get

k 2%+1 2%kt 1
lewlle <y — unll + CR*Hullopg 3,00 < CH*H

(3) If we take £ > 2 in Theorem 4.1, and use the inverse inequality, we obtain

5
I€ulloo < CH*T2.

By the triangle inequality,

[ — un)(rj )| < [ — Py u)(jm)| + lEulloo + W lloo
< Cl’lk+2,

where we have also used [(u — P, u)(rj,m)| < C h*t2 due to the standard approximation
theory. The result of the other equation for the derivative approximations can be obtained by
the same arguments.

Moreover, if the direction of the flow doesn’t change, combining Lemma 3.1, Lemma 3.2
and Lemma 4.1 we have

18— up) ()] = 1(q = qn) (&) m)| < CHF2,

(4) Using the triangle inequality,

lup — Py ull < 1Py u— WE —uyll + |WE|| < CR¥T2.

This finishes the proof of Theorem 4.2. O

Remark 4.1 From the construction of the special projection in (3.1), we can see that the
conclusion is only valid for b = O(1). For convection dominated problems with small
diffusion coefficient b < 1, the exact solution often exists a boundary layer near the outflow
boundary. When the direction of the flow doesn’t change, we can observe superconvergence
property similar to the nonlinear hyperbolic equations [4] out of the local subdomain with
pollution width of O(hInN).

Remark 4.2 For the strongly anisotropic problems when b is very large, the theoretical results

are still valid, since @ = (—1)*

1

7 [ ) (u — P, u)j_ 1 has an additional order ﬁ. However,

this case requires a smaller time step when explicit time discretization methods are used.
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Remark 4.3 For high dimensions, we need to introduce more auxiliary variables, such as
p = uy,q = uy for the two-dimensional case. Unfortunately, it is difficult to construct an
interpolation function to deal with p = u, and ¢ = u, simultaneously. The main technical
difficulty is that the conditions they need to satisfy are interactive restricted in the process of
constructing interpolation functions.

4.3 The Initial Discretization

In this section, we consider how to discretize the initial datum. Initial value discretization
is very important for the study of superconvergence, which can be obtained using the same
technique as that in [2]. Specifically, for periodic boundary conditions,

1. according to the definition of projection P, ", IP’;, calculate the wy,0, wq,0;
2. calculate wy ;, wg,; by the equations (3.10);

¢
3. calculate W) = Y wy;, ub = P u— W,
i=1

4. letup(-,0) = u'(-,0).

5 Extensions

5.1 Generalized Alternating Numerical Fluxes

In this section, we extend the superconvergence results to generalized alternating numerical
fluxes. To be more specific, the numerical fluxes can be in the following form

a O - i 51
j+%—vj+%—9vj+%+9vj+%, 0=1-6.

When the numerical fluxes (u;le),q}(le) ) are used, we introduce a modified projection

ﬁ(”a q) = (Pou, Pzq) satisfying

/1 (Pou —wopdx =0, Y, € P*1(1p),

J

® () . +
(Pgu)j+%—uj+%, YjeZf,

and Pzq € V}{‘ depends on both u and g such that

1
/ (¢ - Pyq)updx — —f P — Paundx =0, Yoy € PEI)),
I Vb I

g (] 1 —— .
@), = qj.j% — = f gy ) — Pou) 1 vj ez

it+3 Jb

Similar to (3.2), the boundary terms of the projection errors for both convection and diffusion
parts can be eliminated. For more properties of global projections; see, e.g., [11,21].
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Analogously, we define a series of functions wy, ;, wy ;,i € Z,f as follows

(«/Ewu,,' — ]’_lij_lwq,iflv vp)j =0, (w(e?

i1 =0, (5.1a)

2

. 5 1 /.
(Vbwy i —wy; —hiDy wyi—1,v0); =0, (wt(f;)ﬁ% = ﬁf/(uj+%)(wu,i)j+%,

(5.1b)
where v, € P¥=1(1;), and
wy,0 =u— Pou, wg,0 =q — Psq.

Following the same argument as that in Sect. 3, we can obtain superconvergence results
similar to Lemmas 3.1-3.3. The main difference is that we need to solve linear coupled
systems involving the coefficients g; x, B; x, and y; x for j € Z;.

Next, let us present some preliminary results related to the superconvergence results based
on generalized alternating numerical fluxes. The generalized Radau polynomials are defined
as in [3]

Riy = .
(20 — )Lg41 — Ly, when k is odd.

) [LH, — (20 — 1)Ly, when k is even,
For any positive 6 # %,j € 77, if the following local projection Pju € V,f in [3] is
introduced,

f (Ppu —u)vdx =0, VYve Pkil(lj),
j

OPu(x )+ (=) Puu(xt ) =0ulxT )+ 1 —0ux’ ).
J+3 J=3 Jt+3 J=2
Then the following superconvergence results hold.

Lemma 5.1 [3] Suppose u € WK+2.2(Q2) and Pyu is the local projection of u defined above
with 0 # %, then

| = Ph)(Rjm)| < CH**2,
|05 (u — Pyu) (R )| < CRATY,

| Py — Pyullso < CHET2.

Here R m, R, are the roots of R?,m—s-l and 0y R? and C is independent of h.

*

j.m ,m+1’
Following the same argument as what we did in Sect. 4, we obtain the superconvergence

results based on generalized alternating numerical fluxes, whose detailed proofs are omitted

to save space.

Theorem 5.1 Assume that u € W2k+3’°°([2), k > 1 is the solution of (1.1), and uyp, g are

the numerical solutions of LDG scheme (1.1) when the numerical fluxes (uilo), q}(la) ) are used

with the initial solution uy (-, 0) = u]; (-, 0). Then for periodic boundary conditions, we have
the following superconvergence results
1. Superconvergence of the numerical flux

N 1

1 2\ 2
lewnll = (5 2| =un) @y ) = cr?.
j=1
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2. Superconvergence for the cell averages

N 1

1 1 3
feate = (5 XI5 [ w—woce.nas’)” < e,
j=1 j

3. When £ > 2, the function value approximation of the LDG solution is (k + 2)th
order superconvergent at interior generalized Radau points R j ,,, and the derivative value
approximation is (k + 1)th order superconvergence at interior generalized derivative Radau
points ’R’/‘.’m, ie.,

llew |l = max |(u — up)(R;m)| < ChF2,
JEZN

lle, Il = max |0, (u — up) (R} )| < CREF!,
JELN ’

4. The numerical solution uy, is superconvergent with order k + 2 towards the global
projection Pyu of the exact solution, namely,

lup — Ppull < ChFT2.

The constant C is independent of h.

5.2 Mixed Boundary Conditions

Consider the following mixed boundary conditions

u0,1) = g1(1),  ux(2m,1) = g2(1).

For simplicity, we choose the numerical fluxes as

(f @), ans an)

(f(g0). g1, q;) j=0,

ilo
2

2

(f(u;)v u};7 gZ)N+%’ j:N

The projection IP’; defined in (3.1) is modified to I@Z determined by

(5.2)

i = { (Godunov flux, u;’, q;)H%’ j=1...,N=1, (5.3)

/Ij (g — P vpdx — % ’ @@ — Puyvde =0, Yu, € PEN(I),
. 1, — .
Bla(d_p=aG )~ Zaf (= P,y Vi e Zy\1},

P,Tq(x;) = q(xp,

where w has been defined in (2.3). Then we construct the following correction functions

o -
(Wi —hjD wgi-1,2)j =0, (w,1)

(wq,i -

Jjtz
Wi — b Dy 8w iz, 2); =0, (w;,-)j% = 7
(w;“.,-) 1 =0

2

)

1 =0, VjGZ;,

1 / ~ . +
F @i, 1. VjeZi\1},

forVz € Pk=1(1 ;) . The superconvergence results can thus be obtained if we follow the same
arguments as those in Sects. 3 and 4.
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Remark 5.1 The novelty in designing a new projection is that the diffusion term is used to
balance the convection term. Therefore, when constructing I7 (1, ¢) in Sect. 3.1, the projection
P, dealing with convection term should be designed first, and then the projection IP’;:. For
the case of Dirichlet boundary conditions

u(0,1) =g3(t),  um, 1) = g4(1),

it is difficult to modify the projection IP’h+ to eliminate the boundary term introduced by the
auxiliary variable g. However, the superconvergence phenomenon can still be observed when
we follow [13] and define the numerical fluxes as follows

(f(22): &3, 4/) 1 ji=0
(fun), i, Gn) ;1 = (Godunov flux, u;, q;)ﬂ_%, j=1,....,N—1,54)

(£ ) —re(@a = 1), 84 @)y d = Ny

[N}

where k = O(h~ ') isa positive constant. See Table 8 for numerical results.

5.3 Superconvergence for the Auxiliary Variable

For the numerical flux in (2.2a), the superconvergence properties still hold for the auxiliary
variable ¢, if the direction of the flow doesn’t change.

Theorem 5.2 Assume that u € W2k+3’°°(.(2), k > 1 is the solution of (1.1), and up, gy are
the numerical solutions of LDG scheme (1.1) when the alternating fluxes (2.2a) are used with
the initial solution uy (-, 0) = u]; (-, 0). Then for periodic boundary conditions, we have the
Jollowing superconvergence results for the auxiliary variable qp,.

1. Superconvergence of the numerical flux

t 1
(/ ||eqn||2dr)2 < Ch2KH!,
0

2. Superconvergence for the cell averages

t 1
(f lleg ||3c1r)2 < CR2H,
0

3. When £ > 2, the function value approximation of the LDG solution is (k + 2)th order
superconvergent at left Radau points £ j ,, and the derivative value approximation is (k+1)th
order superconvergence at the interior right Radau points, except the point x = x b ie.,

t 1 t 1
(/ leqel?dr)* < €ht2, (/ legrl2dz) < ChFH.
0 0

4. The numerical solution qy, is superconvergent with order k+2 towards the Gauss—Radau
projection P,j' q of the exact solution, namely,

t 1
([ 1= prarar)” < ek,
0

The norms aforementioned can be defined as the same way as in Theorem 4.2 and C is
independent of h.
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Table 1 CFL constants for different numerical examples

Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9

CFLy 0.02 0.02 0.02 0.02 0.005 0.0005 0.02 0.1
CFLy 0.01 0.005 0.01 0.005 0.003 0.0001 0.01 0.1
CFLj3 0.002 0.002 0.005 0.002 0.001 - - -

Remark 5.2 In the superconvergence analysis, the correction functions (W,f, Wtf) we
designed should satisfy the following properties

Wiy =0 (W)j_y=0. jeZn,

which are needed to derive superconvergence of the numerical flux in (4.8). Therefore, it is
easy to see that superconvergence of the auxiliary variable g, is no longer valid when the
flow direction changes in (3.10b), or the generalized alternating numerical fluxes (5.1b) are
used. The superconvergence can be observed numerically in the L*° ([0, T']; L2(£2)) norm.

6 Numerical Experiments

In this section, we provide numerical examples to verify our theoretical results. For time
discretization, we use the third order explicit total variation diminishing Runge—Kutta method
and take At = CF Ly * h? for P¥ (1 < k < 3) polynomials. In all examples, uniform meshes
are considered and the parameters C F L are listed in Table 1.

Example 6.1 We first consider the following problem with the direction of the flow not change

ut+(eu)x_buxx:g(xvt)a (x,t)e[O,zn]x(O, T],
u(x,0) =sin(5x), x €[0,2m]

with the periodic boundary condition. g(x, #) is suitably chosen such that the exact solution
is

u(x, 1) =e P sin(5x +1).

Table 2 lists results for u and ¢ when b = 1.2, T = 1, from which we observe (2k + 1)th
order superconvergence for the numerical trace as well as cell averages. In addition, for the
prime variable u,, superconvergence of the function value approximation and the derivative
approximation at Radau points both achieve (k + 2)th order. In Table 3, we present the
L? errors of &,, &, Ph+ q — g and P, u — uy, which demonstrates that the LDG solution
uj, (qn) is superconvergent with order k+2 towards the Gauss—Radau projection P, u (PhJr q).
Moreover, by correcting the local projection, the order of L error between numerical solution
and interpolation function can reach 2k + 1.

Example 6.2 In this example, we consider the following problem with the direction of the
flow changes

MI‘ + (u2/2)x - b“xx - g(-xv t)s (-xv t) € [Os 27[] X (07 T]a
u(x,0) =sin(3x), x €[0,27]
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Table 2 Errors and rates for Example 6.1 withb = 1.2, T =1

N lewn |l Rate  leulle Rate  [leurl Rate  [le,ell Rate

P! 40 2.54E-04 - 1.36E-03 - 1.62E-03 - 5.06E-03 -
80 3.17E-05 3.00 1.73E-04 2.97 2.17E-04 2.90 6.32E-04 3.00
160 3.97E-06 2.99 2.18E-05 2.99 2.78E-05 2.96 8.09E-05 2.97
320 4.97E-07 3.00 2.73E-06 3.00 3.51E-06 2.98 1.02E-05 2.99

P2 20 1.28E-04 - 1.47E-04 - 8.28E-04 - 3.57E-03 -
40 3.95E-06 5.01 4.51E-06 5.02 4.60E-05 4.17 2.20E-04 4.02
80 1.20E-07 5.03 1.38E-07 5.03 2.84E-06 4.02 1.49E-05 3.88
160 3.66E-09 5.04 4.24E-09 5.03 1.72E-07 4.04 9.50E-07 3.97

p3 30 1.04E-07 - 1.15E-07 - 4.37E-06 - 3.25E-05 -
40 1.32E-08 7.15 1.47E-08 7.15 1.01E-06 5.10 8.58E-06 4.62
50 2.74E-09 7.05 3.04E-09 7.05 3.46E-07 4.78 2.81E-06 4.99
60 7.56E-10 7.06 8.37E-10 7.06 1.40E-07 4.98 1.10E-06 5.13

N llegn i Rate  leglle Rate  [legr|l Rate legell Rate

p! 40 2.67E-04 - 1.38E-03 - 1.36E-01 - 5.54E-03 -
80 3.35E-05 2.99 1.77E-04 2.96 3.52E-02 1.96 6.92E-04 3.00
160 4.20E-06 2.99 2.23E-05 2.98 8.82E-03 1.99 8.86E-05 2.96
320 5.26E-07 3.00 2.80E-06 2.99 2.20E-03 2.00 1.11E-05 2.99

P2 20 1.26E-05 - 9.42E-05 - 1.02E-01 - 3.91E-03 -
40 4.70E-07 4.75 3.30E-06 4.83 1.25E-02 3.03 2.41E-04 4.02
80 1.48E-08 4.98 1.04E-07 4.98 1.65E-03 2.92 1.63E-05 3.88
160 4.63E-10 5.00 3.26E-09 5.00 2.07E-04 2.99 1.04E-06 3.97

p3 30 1.67E-08 - 6.61E-08 - 2.18E-03 - 3.56E-05 -
40 2.07E-09 7.25 9.94E-09 6.58 6.86E-04 4.03 9.40E-06 4.63
50 4.26E-10 7.09 2.10E-09 6.97 2.97E-04 3.75 3.08E-06 4.99
60 1.16E-10 7.13 5.86E-10 6.99 1.43E-04 4.02 1.21E-06 5.13

with the periodic boundary condition. The source term g(x, ¢) is specially chosen such that
the exact solution is

u(x,t)=e " sinBx +1).

We list various errors and corresponding convergence rates when b = 1.0,7 = 1 in
Table 4. Superconvergence of order 2k + 1 for the numerical trace as well as cell averages,
and (k + 2)th order of the function value approximation at Radau points confirm the sharp-
ness of Theorem 4.2 when the flow direction does change its sign. Moreover, the derivative
approximation at Radau points achieves (k+ 1)th order as expected. In addition, superconver-
gence results for §, and P, u —uyp, in the L? norm are shown in Table 5, forb = 0.1, b = 2.0.
For this problem, results of the generalized alternating fluxes with different weights 6 with
b = 2.0 are shown in Table 6, demonstrating that superconvergence results are still valid for
the generalized numerical fluxes in Sect. 5.1.
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Table 3 Errors and rates for Example 6.1 withb =2.0, T =1

Nl Rate [P u—upl|  Rate  [I&]l Rate [P g —qnll  Rate
[ P! 40  1.64E-04 - 1.79E-03 - 1.18E-03 - 1.27E-03 -
§ 80  2.06E-05 299  2.29E-04 2.97 1.54E-04 293 1.64E-04 2.96
= 160  2.60E-06 298  2.88E-05 2.99 1.97E-05 297  2.07E-05 2.98
S 320 3.27E-07 299  3.61E-06 299  248E-06 298  2.61E-06 2.99
'g‘ P2 20  1.81E-04 - 8.63E-04 - 3.21E-05 - 5.72E-04 -
< 40  597E-06 492  5.49E-05 3.97 1.06E-06 492  3.56E-05 4.00
80  1.87E-07 5.00  3.45E-06 399  3.16E-08 506  2.24E-06 3.99
160  5.77E-09  5.02  2.16E-07 399 9.68E-10 5.03 1.41E-07 3.99
p3 30 1.46E-07 - 7.35E-06 - 1.51E-08 - 4.96E-06 -
40  1.95E-08  6.98 1.76E-06 4.97 1.82E-09  7.34 1.18E-06 4.98
50  4.12E-09 697  5.79E-07 498  3.65E-10 7.19  3.90E-07 4.98
60  1.I15E-09 7.00  2.33E-07 499  9.84E-11  17.19 1.57E-07 4.99

Table 4 Errors and rates for Example 6.2 with b = 1.0, T =1

N llewn |l Rate  leylle Rate  [leur|l Rate  [le,ell Rate

P! 40 2.00E-04 - 4.56E-04 - 7.32E-04 - 2.38E-03 -
80 2.61E-05 2.94 5.79E-05 2.98 9.28E-05 2.98 5.07E-04 2.23
160 3.30E-06 2.98 7.26E-06 2.99 1.16E-05 3.00 1.16E-04 2.13
320 4.13E-07 3.00 9.09E-07 3.00 1.45E-06 3.00 2.75E-05 2.07

P2 20 1.24E-05 - 1.37E-05 - 1.38E-04 - 6.27E-04 -
40 4.51E-07 4.79 4.98E-07 4.79 8.12E-06 4.08 6.18E-05 3.34
80 1.49E-08 4.92 1.64E-08 492 4.89E-07 4.05 6.59E-06 3.23
160 4.77E-10 4.97 5.26E-10 4.97 2.99E-08 4.03 7.57E-07 3.12

p3 30 3.70E-09 - 4.98E-09 - 4.52E-07 - 9.72E-06 -
40 5.07E-10 6.91 6.77E-10 6.93 1.07E-07 5.02 3.23E-06 3.84
50 1.06E-10 6.99 1.42E-10 6.99 3.48E-08 5.01 1.31E-06 4.04
60 2.97E-11 7.01 3.96E-11 7.01 1.39E-08 5.02 6.15E-07 4.15

o6 Example 6.3 Toillustrate the case with different boundary conditions and long time behaviors,
677 consider the following problem

o78 U+ W?)2)y — buyy = g(x, 1), (x,1) €[0,1] x (0, T1,
e=D/b

679 u(x,0) =cos(m(x —1)/2) — T

x €10,1]
60 with mixed boundary conditions

cos(mt)

681 M(O, [) = COS(ﬂt), Mx(l, [) = m
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Table 5 Errors and rates for Example 6.2 with b = 0.1, =2.0, T =1

N b=0.1 b=2.0
&l Rate 1P u—upll Rate 1€l Rate 1Py u—upll Rate
P! 40  7.68E-03 - 1.16E-02 - 2.84E-04 - 4.98E-04 -
80  9.69E-04  2.99 1.52E-03 293  3.68E-05 295  6.32E-05 2.98
160  1.21E-04  3.01 1.93E-04 297  4.64E-06 299  7.92E-06 2.99
320  1.50E-05  3.01 2.43E-05 299  5.82E-07 3.00 9.91E-07 3.00
p? 20 1.53E-03 - 1.98E-03 - 1.82E-05 - 1.17E-04 -
40  3.03E-05  5.66 1.18E-04 407  632E-07 4.85 @ 7.26E-06 4.01
80  7.50E-07 533  7.23E-06 403  2.04E-08 495 = 4.52E-07 4.01
160  2.13E-08  5.13  4.47E-07 402 648E-10 498  2.82E-08 4.00
p3 30 233E-06 - 1.35E-05 - 495E-09 - 5.83E-07 -
40  3.07E-07 7.04  3.30E-06 491 6.83E-10  6.89 1.39E-07 4.99
50 6.42E-08 7.02 1.10E-06 4.92 1.45E-10 ~ 6.96  4.55E-08 5.00
60 1.78E-08  7.02  4.47E-07 494  4.04E-11  6.99 1.83E-08 5.00
Table 6 Errors and rates for Example 6.2 with generalized fluxes for b =2.0,7 = 1
N lleunll Rate  leyllc Rate [lewr|| Rate  |lej, I Rate
40  6.22E-05 - 1.01E-04 - 290E-04 - 3.00E-03 -
P! 80  7.52E-06  3.05 1.19E-05 3.08 3.45E-05 3.07 7.15E-04 2.07

6=15 160 9.32E-07 3.01 1.47E-06 3.02 4.25E-06 3.02 1.77E-04 2.02
320 1.16E-07 3.00 1.82E-07 3.01 5.29E-07 3.01 4.41E-05 2.00

20 6.80E-06  — 6.95E-06 - 1.40E-04 - 2.28E-03 -
P2 40 1.71E-07 533 1.72E-07 5.34 8.42E-06 4.06 2.70E-04 3.07
6 =0.8 80 5.03E-09 5.08 5.06E-09 5.08 5.18E-07 4.02 3.32E-05 3.02
160 1.56E-10 5.01 1.57E-10 5.01 3.22E-08 4.01 4.13E-06 3.00

30 2.28E-09 - 2.34E-09 - 9.38E-07 - 3.85E-05 -
P3 40 2.94E-10 7.13 3.01E-10 7.13 2.31E-07 4.86 1.26E-05 3.86
0=12 50 6.05E-11 7.07 6.22E-11 7.07 7.56E-08 5.01 5.16E-06 4.02
60 1.67E-11 7.04 1.72E-11 7.04 3.04E-08 4.99 2.49E-06 4.00

The source term g(x, t) is specially chosen such that the exact solution is

oa—D/b _ |
u(x, 1) = [cos(n(x —1)/2) - 1_67_1/,)] cos(rt). 6.1)

When b = 100, T = 3, the errors and their orders are presented in Table 7, from which
we observe (2k + 1)th order superconvergence for the cell averages and the numerical fluxes
in the discrete L? norm. Superconvergence of order k + 2 (k + 1) can be seen for the
function (derivative) value approximations and interior right (left) Radau points. This example
indicates that the superconvergence results are also sharp when mixed boundary conditions
are adopted.
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Table 7 Errors and rates for Example 6.3 with mixed boundary conditions, » = 100, T = 3

N llewnll Rate llewlle Rate llewr |l Rate lleell Rate

P! 25 1.89E-08 - 2.46E-06 - 3.06E-06 - 4.76E-06 -
30 1.09E-08 3.01 1.42E-06 3.00 1.77E-06 3.00 3.03E-06 2.47
35 6.85E-09 3.01 8.94E-07 3.00 1.12E-06 3.00 2.08E-06 2.43
40 4.58E-09 3.01 5.99E-07 3.00 7.48E-07 3.00 1.51E-06 2.39
P2 10 3.02E-11 - 4.73E-11 - 2.27E-07 - 5.08E-07 -
15 3.89E-12 5.05 6.27E-12 4.98 4.51E-08 3.99 1.25E-07 3.45
20 8.05E-13 5.48 1.58E-12 4.80 1.43E-08 3.99 4.77E-08 3.36
25 2.28E-13 5.65 5.46E-13 4.75 5.86E-09 4.00 2.28E-08 3.31

Table 8 Errors and rates for Example 6.3 with Dirichlet boundary conditions, » = 1.5, T = 100

N llewn |l Rate leulle Rate llewr I Rate llewell Rate

P! 25 4.58E-07 - 3.12E-06 - 3.35E-06 - 1.74E-04 -
30 2.65E-07 3.00 1.81E-06 3.00 1.94E-06 2.99 1.17E-04 2.18
35 1.67E-07 3.00 1.14E-06 3.00 1.23E-06 2.99 8.38E-05 2.16
40 1.12E-07 3.00 7.63E-07 3.00 8.22E-07 2.99 6.29E-05 2.14

P2 10 1.74E-09 - 5.32E-09 - 3.89E-06 - 1.61E-04 -
15 2.67E-10 4.62 6.93E-10 5.03 7.79E-07 3.96 4.84E-05 2.96
20 7.48E-11 4.42 1.59E-10 5.11 2.48E-07 3.98 2.06E-05 2.97
25 2.50E-11 4.92 5.77E-11 4.55 1.02E-07 3.98 1.06E-05 2.98

To verify superconvergence results for Dirichlet boundary conditions with long time sim-
ulations, we consider Example 6.3 with the following Dirichlet boundary conditions

u(0,t) = cos(rt), u(l,t) = cos(mt).

When b = 1.5, T = 100, the results with « = 3.5/h in numerical fluxes (5.4) are shown in
Table 8, demonstrating that the conclusions still hold for Dirichlet boundary conditions and
long time simulations.

Example 6.4 To illustrate the time-dependent singularly perturbed problems with a stationary
outflow boundary layer, we would like to consider a nonlinear problem

up + (€")x — buxy = g(x, 1), (x,1) € [0,1] x (0, T],

with Dirichlet boundary conditions and the same exact solution as (6.1). The initial solution
and the source term g(x, t) is determined by this exact solution. Note that when we take
b = 107, the solution (6.1) varies quickly with a large gradient and forms an outflow
boundary layer near the outflow boundary point x = 1. When the Gauss—Radau projection
P, uisused as the initial condition, we observe errors and the corresponding superconvergent
rates in the local region [13]

0, xc) = (0,1 = [InN1h),
where [InN7] denotes the minimal integer no less than In/N. The results with k = 2/h

in numerical fluxes (5.4) are shown in Table 9, from which we can see superconvergence
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Table 9 Local errors and rates for Example 6.4 with Dirichlet boundary conditions, b = 10_5, T=2

N lewn |l Rate  leulle Rate  [leurl Rate  [le,ell Rate

P! 20 5.75E-07 - 1.96E-06 - 6.32E-06 - 3.51E-04 -
40 7.20E-08 3.00 2.45E-07 3.00 7.90E-07 3.00 8.75E-05 2.00
80 9.24E-09 2.96 3.06E-08 3.00 9.86E-08 3.00 2.18E-05 2.00
160 1.18E-09 2.96 3.82E-09 3.00 1.23E-08 3.00 5.45E-06 2.00

P2 20 1.76E-09 - 2.71E-10 - 5.52E-08 - 4.45E-06 -
40 1.74E-11 6.66 7.63E-12 5.15 3.53E-09 3.97 5.75E-07 2.95
60 2.34E-12 4.94 1.35E-12 4.27 7.00E-10 3.99 1.72E-07 2.97
80 3.29E-13 6.82 2.78E-13 5.48 2.22E-10 3.99 7.31E-08 2.98

property similar to the nonlinear hyperbolic equations [4] in the local region (0, x.). This is,
both the cell averages error and numerical flux in the discrete > norm converge at a rate of
2k + 1, and the LDG error (its derivative) is superconvergent at interior right (left) Radau
points with an order of k + 2 (k + 1).

7 Concluding Remarks

In this paper, we investigate superconvergence of the LDG method for one-dimensional
nonlinear convection-diffusion equations. The main techniques are the construction of new
projections and correction functions, allowing us to derive a supercloseness result between
the LDG solution and an interpolation function. We have established (2k + 1)th order super-
convergence for the numerical flux and cell averages, as well as superconvergence at Radau
points, even when the flow direction changes. The results are extended to generalized alternat-
ing fluxes and mixed boundary conditions. The sharpness of the theoretical results is verified
by numerical experiments.

In further work, we will consider the degenerate nonlinear diffusion problems and multi-
dimensional diffusion equations.
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