A NOTE ON WEAK TYPE (1,1) ESTIMATE FOR THE HIGHER ORDER
COMMUTATOR OF CHRIST-JOURNE TYPE

XUDONG LAI AND YONG DING

ABSTRACT. In this paper, a weak type (1,1) estimate is established for the higher order com-
mutator introduced by Christ and Journé which is defined by

Tlai, - ,a —pv/ K(z—vy Hmzyaz y)dy,

where K is the standard Calderén-Zygmund convolution kernel on R*(d > 2) and my ya; =
fol ai(sz 4+ (1 — s)y)ds.

1. INTRODUCTION

Suppose that K is the standard Calderén-Zygmund convolution kernel on R\ {0} (d > 2),

which means that K satisfies the following conditions:

(1.1) |K (z)] < Clz|™, / K (x)dx = 0 holds for all R > 0,
R<|z|<2R

(1.2) |K (xz —y) — K(x)| < Cly|°|z|~%° for some 0 < § < 1if |z| > 2Jyl.

In 1987, Christ and Journé [5] introduced a higher dimensional commutator associated with
K and a; € L*(R%) (i =1,---,1) by

Tlar, - a)f(z) = p.v. K@y Hmwya, [y, feSRY,

where S(RY) denotes the Schwartz class and

1 1
Mgy Qi = / a;((1 —t)x + ty)dt = / a;(tx + (1 — t)y)dt.
0 0

Note that T[a1,--- ,a]f(z) can be seen as a higher dimensional generalization of the following

! (2) — A,
p‘v‘/RH (Az( ;_;4 (M);”(_@/Ldy’

commutator
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which is the famous Calderén commutator discussed in [3] and is related to the study of the
Cauchy integral, boundary value problem of elliptic equation on non-smooth domain (see e.g.
4], [10], [15)).

Observe that the kernel K (z — y) is smooth but m, ya; has no smoothness about variable
r and y if a; € L>°(R%). Therefore the standard Calderén-Zygmund theory cannot be applied
directly. Christ and Journé [5] proved that T[as,--- ,a] is bounded on LP(R%)(1 < p < o0)
when a; € L®(R%)(i = 1,--- ,1). In 1995, Hofmann [14] gave the weighted LP(R?) (1 < p < 00)
boundedness of T[a1,--- ,a;] when the kernel K (z) = Q(z/|z|)|z|~%. Recently, there are renew
interests on this singular integral of Christ-Journé type since it has some direct applications in
the mixing flows problem (see e.g [2],[13]). In 2015, A. Seeger, C. Smart and B. Street [18] further
studied the commutator of Christ-Journé type and established some multilinear estimates. For
the endpoint case p = 1, the weak type (1,1) estimate seems to be difficulty and the previous
result is only known for the first order commutator. In 2012, Grafakos and Honzik [12] proved
that the commutator T'[a] is of weak type (1,1) for d = 2. Later, Seeger [17] showed that T[a]
is also of weak type (1,1) for all d > 2. In [6], the authors established weighted LP boundedness
of T'[a] for A, weight with d > 2 and weighted weak type (1,1) boundedness for power weight
|z]%(—2 < a < 0) with d = 2 (later we extended this result to general A; weight for all d > 2
in [8]). However, the weak type (1,1) estimate for the higher order commutator seems to be
unexplored and may be very difficult since the kernel involves with more than two rough factors
Hézl my ,a; under the condition that all a; € L%®°(R%)(i = 1,---,1). In this paper, we try to
give a weak type (1,1) estimate for T'[aq, - - , q;] with some restricted condition of a;. Our main

result is as follows.

Theorem 1.1. Suppose K satisfies (1.1) and (1.2) for d > 2. Let a; € L¥(RY). Assume
ai,@; € LY(RY),i=2,--- 1. Then there exists a constant C > 0 such that

l
m({z € R?: [Tlay, -~ a]f(2)] > A}) < CA Moo [ T @il 1)1/
1=2

for all A\ >0 and f € L'(RY).

Remark 1.2. By using Fourier inversive formula, it is easy to see that the condition a,a € L'(R?)

implies a € L>°(R?). To remove this kind of restricted condition, some new ideas may be needed.

When the dimension d = 2, Grafakos and Honzik [12] used the 77 method to show that
the first order commutator T'[a] is of weak type (1,1). In [17], Seeger used the microlocal
decomposition of the kernel and the Littlewood-Paley decomposition of a. However it seems to
be difficult to use these ideas from [12] and [17] to deal with the higher order commutator which
involves more than two rough factors. In the present paper, we add some restricted condition
a; € Ll(]Rd) for i = 2,--- ,I. So we can make a modified Calderén-Zygmund decomposition
of a function with some parameters come from ao,--- ,a;, but those bounds in the Calderén-

Zygmund decomposition are independent of these parameters(see Lemma 2.1). Applying this
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kind of Calderén-Zygmund decomposition, the kernel essentially has only one rough under the
restricted condition a; € L'(R?) for i = 2,--- ,1. Then using some idea from [17], [16], [9], [7],
we may get the weak type (1,1) bound for the higher order commutator.

This paper is organized as follows. In Section 2, we complete the proof of Theorem 1.1
based on some lemmas, their proofs will be given in Section 3 and Section 4. Throughout this
paper, the letter C stands for a positive constant which is independent of the essential variables
and not necessarily the same one in each occurrence. A < B means A < C'B for some constant
C. A~ B means that A < B and B < A. For a set E C RY, we denote Lebesgue measure of E
by |E| or m(FE). Denote by Ff and f the Fourier transform of f, which is defined by

Fi(6) = [ e a)i.

Z4 denote the set of all nonnegative integers and Zi =Zy X -+ X Zy. [x] denotes the integer

part of x.

2. PROOF OF THEOREM 1.1: SET UP

In this section we give the proof of Theorem 1.1 based on some lemmas, their proofs will be
given in Section 3 and Section 4, respectively.
Using the inversive Fourier formula under the condition that a;, a; € L*(R%),i = 2,--- 1,

we write each term

My @i = i /0 /Rd @ (m;) s M) HI=s)Womi) g s,

Therefore by Fubini’s theorem, we have

1
7(27T)(171)dp’v‘ »

l
(2.1) < (// H&/\i(ni)eisi<I:77i>€i(1*3i)<y:77i>dg’dﬁ)dy
[0,1)F = x (R -1 525

N / /E u™¥(@)(T[ar]WT5f) () difd3

where B! = [0,1]'71 x (R w¥(z) = (2m) DI, @i(m)et™ @), dif = dn -+ dny,
WS(y) = Hi:z (=5 {Ym) and ds = dsy - - - ds,,.
In the following, we try to make a Calderén-Zygmund decomposition of W75 f with the

T[a’lv T ’al]f(x) = K(fL‘ - y)ml‘,yal : f(y)

underlying cubes independent of 7, §.

Lemma 2.1. Let f € LY(R?) and A\ > 0. Set Q) = {x € R?: M(f)(z) > \} where M is the
Hardy-Littlewood maximal operator. Then we have the following conclusions:

(i) Q. =UQ, Q’s are disjoint dyadic cubes. Let Q be the collection of all these cubes.

(i1) m(2) S LIl

(iii) fWS = gns 4 p7s,
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(iv) V77 = S0, suppb” € Q, [ 857 = 0, 1851 S N, 1671 S 111

) llg™5115 S Al flh-
All the explicit constants that appear in (i)-(v) above are independent of 7, 5.

Proof. We first make a Whitney decomposition of the set €2). Then there exists a family of
dyadic closed cubes {Q;}; (e.g. see [11]) such that
(a) 2\ =JQ; and Q;’s have disjoint interior.
(b) Vd - 1(Q;) < dist(Qj,95) < 4Vd-1(Q;), where [(Q;) denotes the side’s length of Q;.
By the weak type (1,1) of M, we have

(2.2) m() S ~ £l

So, bg; is supported in @ and [ bgg = 0. Let tQ) denote the cube with ¢ times the side length

of () and the same center. We now claim that
1

(2.3) / |f(x)|dx < A
Ql Jg

In fact, by the Whitney decomposition’s property (b) we have 9v/dQ N Q5 # (0. Thus by the
definition of Q, there exists zy € 9v/dQ such that M f(zo) < A. Using the property of the
maximal function, we have K)TldQ\ o vig |f(@)]dz < A. Hence we conclude that

1 1
— d — de < \.
|Q|/Q|f<ac>| o< /MQ!f(w)l v <

For bgg and b7, by (2.2) and (2.3) we have

155711 < 2 /Q |F@)ldz S NQI 1P < 1l + dm(2) S 111
Note that |f(x)| < A almost everywhere in Q. Using this fact, (2.2) and (2.3), we have
1B < A+ Am(@) < Al
O

Now we set up the proof of Theorem 1.1 with a series of lemmas. We only focus on dimension
d > 2. By using scaling arguments, we may assume ||a1||c = ||@Gil[1 =1, i =2,--- .

By (2.1) and the property (iii) in Lemma 2.1, we obtain
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o [Tlar, - alf@)] > A} <m({o | // W) Tlar]g™(2) dids| > A/2})

’//El W ()T [ar|b™ (z) dijds| > A/g}),

Hence, using Chebyshev’s inequality, the fact T[a1] is bounded on L?(R?) with bound C|/a1 ]|«

(see [5]) and the property (iv) in Lemma 2.1, we get

Hx cR?: //El W (2)Ta1)g™ (a) dijd3] > )\/2}’

oL oL 2
32| [ i) rtany™ (o) dias]
El

(] (T Il i)
=2

33 ( [ (Tt oo™ i)’
1=2

S ATl

Define E* = UQEQ 22000). Then we have

)//El W (2)T[a1)b7% (z) dijds >)\/2}>
(E*)+m< € (E)° ‘/[Eluﬁv Tl |07 ( )dﬁd§” >)\/2}>.

By the property (ii) in Lemma 2.1, the set E* satisfies

m(E") S m() S AIf Il

Thus, to finish the proof of Theorem 1.1, it suffices to show

(2.4) m({ae @y ‘// W) Tar]87¥(z) dids] > 32} 5 IIfIh
El
Denote Q) = {Q € Q: 1(Q) = 2*} and let ‘BZ’S = > bgg. Then 7% can be rewritten as
QEQs
Vs =3 %;7; Let v be a radial C* function such that ¢(¢) = 1 for || < 1, ¢(§) = 0 for || > 2
JEZ

and 0 < (£) <1 for all £ € RY. Define ¢(z) = ¢(x) — 1)(2x). Then supp ¢ C {z: 5 < |z < 2}
and ) ¢j(z) = 1forallz € RN {0}, where ¢;(z) = ¢(277z). Now we define the operator T}[a]
as

(25) Tl f(e) = [ 6@ = 0)K(e = pmayr f)dy

Then Ta1] =Y Tj[a1]. For simplicity, we set K;(z) = ¢;(x)K(z). We write

J
a1 bn’ ZZT a1 an’

neL jEZL
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Note that Tj[al]%?fn(x) =0 for x € (E*)¢ and n < 100. Therefore we only consider n > 100.
Here we should point out that the number 100 is not very important. In fact, it is sufficient to

consider large n once we choose the set E* as large as we want. Write
m({a: € (E"): ‘// u () Taq b7 () dijds| > )\/2}>
El
- B ‘ s T diid
m({xe( ) //Elu ZZ [a1]B7° (x) dijds

n>100 j€Z

> /\/2})

Hence, to finish the proof of of Theorem 1.1, it suffices to verify the following estimate:

eo)  m(frert| [ w0 ¥ S e 0 1) < Wl

n>100 j

2.1. Some key estimates.

Some important estimates play a key role in the proof of (2.6). We present them by some
lemmas, which will be proved in Section 3 and Section 4. The first estimate tells us that the
operator Tj[a1] can be approximated by an operator T7'[a1] in measure, which is defined below.

Let I-(n) = 76 'n+ 2, where 7 > 1 > 0 and 0 < 767! < 1 will be chosen later. As we
mention before, we only need to consider sufficient larger n, so the constant 7 could be chosen as
small as want and it will be chosen at the end of this paper. Let 1 be a nonnegative, radial C'™°
function which is supported in {|z| < 1} and satisfies [pq n(z)dz = 1. Set n;(z) = 27"n(2 7 x).
Define the operator P, by P,f(x) = n * f(x). Set

K3 (x) = Pj_i,(n)K;(x).

Since Kj(z) is supported in {2771 < |z| < 27t'} and 7;_y () (2) is supported in {|z| <
27=1= (M1 we see that K7(z) is supported in {2772 < |z| < 27%2}. Therefore

(2.7) K7 (2)| S 277 ai-2<|o|<2i+2)
and similarly for multi-indices «,
(2.8) 0K ()| S 27T =Dloly ooy y<ariay.

Let p,, be a smooth, nonnegative function such that p,(s) =1 on [277",1—2"""], supp p, C
(277"=1 1 —27™=1) "and the derivatives of p, satisfy the natural estimates

k

‘dSkpn(S) <2k forall ke Z.

Let
1
My a1 = / pn(s)ai(sx + (1 — s)y)ds.
0

Define the operator T}'[a1] by

Tj'[aa] f(x) = » Kj(z —y)my a1 - f(y)dy.
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Lemma 2.2. With those definitions above, we have

n({eems] [ 0 3 5 (B - mlng, )i > ) < L

n>100 j€Z

By Lemma 2.2, the proof of (2.6) now is reduced to verify the following estimate:

({eert:| [[ w0 & S ol ) g Ll

n>100 jEZ
Below we separate T7'(a1] as Pj_nxT}'[a1] + (I — Pj—ns)Tj[a1], where k satisfies 0 < k < 1

which will be chosen later. For Pj_ 17} [a1], we have the following lemma.
Lemma 2.3. With those definitions above, for n > 100, we have
HPj_n,ﬂ’f[m]%"’ Hl < n(2 (1-k)n +9- (1—76— 1)n)||% H

Applying Chebyshev’s inequality, Minkowski’s inequality and Lemma 2.3 and the property

> >\/4})

(iv) in Lemma 2.1, one may get

m({xERd: ‘//Eluﬁg Z ZPJ T 1] %77’ () difds)

n>100 jEZ

<A™ // > Z\Ha 00)||1Pj—nn T [a1) BT, |1 difds

n>100 j 1=2

- —1+K)n —14+76")n -
SATE ST @I oy < AT 7
n>100

Now the problem is reduced to prove the estimate below

29) m({zer?: \//El W) Do D P T an)B], (2) difds| > A/4}) < HfAh‘

n>100 j€Z

In the following, we need to make a microlocal decomposition of the kernel. To do this, we
need to give a partition of unity on the unit surface S¢~!. Choose n > 100. Let ©,, = {e"}, be
a collection of unit vectors on S~! which satisfies the following two conditions:

(a) lep — en > 274, i 0 £ 0

(b) If @ € S?~1, there exists an e such that |e? — 0] < 27"7~4,

The constant v in (a) and (b) satisfying 0 < 76~! < v < k < 1 which will be chosen later.
In fact, we may simply take a maximal collection {e'}, for which (a) holds. Notice that there
are C2"(4=1) ¢lements in the collection {e™},. For every § € S, there only exists finite e”
such that e — 0] < 27"7~%. Now we can construct an associated partition of unity on the unit
surface S*"1. Let ¢ be a smooth, nonnegative, radial function with ((u) = 1 for |u| < } and
C(u) =0 for |u| > 1. Define

W) = (275 —en). i) = w3 o)

|§‘ ened,
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Then it is easy to see that I'} is homogeneous of degree 0 with Y I'7(£) = 1 holds for all £ # 0

and all n. In addition, we have the following estimate for multi—izildices a and € # 0,
(2.10) 0T (€)] < 2ljg 1o,

Now we define operator T,""[a1] by
(211) Tl (o) = [ K= m o S,

where K;*"(z) = K}'(z)I'}(z). Therefore, we have
Tj ] =Y T [a).

In the sequel, we need to sperate the phase of the frequent space into different direction.

Hence we define a multiplier operator by

Groh(§) = (27 (e}, £/[E)R(E),
where h is a Schwartz function and ® is a smooth, nonnegative, radial function such that
0<P(z) <1land ®(z) =1on |z| <2, &(xz) =0on |z| > 4. Now let Gy, + (I — G ) act on

T;""[a1]. Then we can split 7}""[a1] into two parts:

T;‘Lv[al] = Gn,vTjﬂ’v [a1] + (1 — Gnm)Tjn’v [a1].

The following lemmas give the L? estimate involving the term G, ,, which will be proved

in next section.

Lemma 2.4. With those definitions above, for n > 100,
7,5 - 2
’ — . n,v 7,8 — 7| _
H //El u” S(CU) ]ZE;ZU:GWU(I P]_n,{)Tj [al]‘Bj_n(x) dndSHQ 5 ) n'y)\Hle

The estimates of the terms involving (I — Gy)(I — Pj—ns)T;""[a1] are more complicated.

In Section 4, we shall prove the following lemma.

Lemma 2.5. We have

H / /El W) D0 DD = Gu) I = Py T[] B, () difds

n>100 j€Z v

S Il
1

2.2. Proof of Theorem 1.1.
We now complete the proof of (2.9). By Chebyshev’s inequality, we have

m({z e @) | / /E W) 3 S P T B, () difds

n>100 jEZ

s A_QH / /El u(2) 3NN Gl = Pion) T [an| BT, (2) dijds

n>100 jEZ v

T )‘_IH //El u'™¥ () Z ZZ(I = Gno)(I — Pj—nﬂ)@n’v[al]%fn(z) dﬁd§’H1.

n>100 jeZ v

> A/4})

2
2
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Using Lemma 2.5, we can get the desired estimate of the second term above. By Minkowski’s

inequality and Lemma 2.4, the first term above is bounded by

3] @ Y Gl = Py T a8 (o) aiias])

n>100 JEZ v

<32 @mAlrnd) £ A

n>100

We hence complete the proof of Theorem 1.1 once Lemmas 2.2-2.5 hold.

3. PROOFS OF LEMMAS 2.2 - 2.4
3.1. Proof of Lemma 2.2.
By the definitions of T}j[a1] and T}'[a1], we have

mlals = Tleilfls = [ | [ (K@ = gmeyan = K3 = o) F)is]do

<I+1I

where

=[] ] (5t =) = K7 = )y - fa)yda,

II = / Ki(z —y) (m%yal — mgyal)f(y)dy‘dx.
Re | JRd

Consider I firstly. By the definition of K7}'(z), we have

Ko=) = Ko=) = [ -1 —9) ~ Ko~y = 2))de
Notice that
K5 — ) — Ky —y — 2)] < |65 — p) (K (@ — y) — K(w —y — 2)
165z —9) — d5(@ —y — DK@ —y — )|
=: A+ B.
Consider the first term A. Note that |z| < 2777 and 2771 < |z — y| < 27F1 then we have
2|z| < |z — y|. By the regularity condition (1.2), we have
|[°

—Tno—jd
S =y X @ eyl S 272 X i <oy <2ty

For the second therm B, by the fact |2| < 297%™ and the support of ¢;, we have |z — y| ~
|z — 2z —y| and 2772 < |z — y| < 27F2. By (1.1), we get
2772

—rno—jd
=2 = g sleyl<2?y S 272 N i<y <242y

B<
|z —

~

As for I1, we have

1
air = | = | [ (1= pu(sDartse + (1 = 9))ds| £ 2o
0
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Combining the above three estimates and applying Minkowski’s inequality, we have

1T5[a1]f = Tj'[a1] flla
™ Jd
(3.1) o Hal”oo/Rd /2J 2<|z— y|<21+22 /IR ity (2)2) ) dydz

<27y o2 / / . | )ldydr £ 27 laxllsol f 1
RY J2i-2<|g—y|<20+2

By Chebyshev’s inequality, Minkowski’s inequality, the estimates above and the property (iv) in
Lemma 2.1, we get the bound

xeRd ‘//El A Z(T a1]B7 )—zgn[al]%jfn(x))dﬁdg‘ >)\/2})
n>100 jE€Z
S AT 1 Z // )Ha,m

n>100

I

ZHT a1]B qg —T”[al]%”’

S /\_1Ha1\|oo(H laill) Y 27 Al S AT
1=2

n>100

which is the required estimate. 0

3.2. Proof of Lemma 2.3.
Since SB?f = 2 1(Q)=2i—n C;’g, we only need to consider a fixed b"’ with [(Q) = 2/~™. By

applying Fubini’s theorem, one may write

- = 1 - =
Pj_ni T} aa]bdy () = /0 pn(8) /Rd b’ (y) /Rd Nj—ne(T — W) K (0 — y)ai(sw + (1 — s)y)dwdyds.

Making a change of variables z = w + 1—;Sy, one get

1—s

n Y\,75
YK (2 — g)bg (y)dydzds.

. 1
P}l @) = [ pu) [ ar(s) [ mponnlo =2+
0 R4 R4
By using the cancellation of bgg(see the property of (iv) in Lemma 2.1), one may write

BTl @ = | [ o) [ arts2) [ 5w
R4

1-s 1-s
(ol =+ E IR ) (o2

. Yo) K (2 — ))dydzds‘
<I+11,

where g is the center of ) and

=/ e L) [ 05w

1—s

1-s n Y
X |1j—nw(x — 2 + Y) — Nj—nx(r — 2+ vo)| K7 (2 — J)ldydzds
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and

1
II:‘/p(s/]alsz|/ b5 (
0 " Q
Y

% o) || K7 (= — ) - K (= - %)}dydzds.

1-—
X |nj,nn(x —z+
Since 1(Q) = 297", we have |y — yo| < 277" Using the mean value formula , one may have

I<Ha1uoo/pn // b5 )
0

$2t 1+”““‘Ilal\loo/o pn(s)s ’1d8||K}LII1Hb85Hl < 2R 65

Gz = g) |dydzds
s

Similarly, by the mean value formula and (2.8), one get

*; n ty+ (11—t
II<Ha1”oo/0 pn(s // b ()]s~ y — yoy/ VK (2 y<8)y0)\dtdydzds

_ 7,5 176~ Vyn 17,E
S 2 ”HalHoo/O pu(s)s™ ds | VET [ 6g [l < n2 7007 1057

Combining the estimates of I and I and summing over all Q with [(Q) = 2/=", we finish the
proof of Lemma 2.3. U

3.3. Proof of Lemma 2.4.

The proof of this lemma is quite similar to that of Proposition 2.4 in [17]. As usually, we
adopt the TT* method in the L? estimate. We also use some orthogonality argument based on
the following observation of the support of F(Gn,o(I — Pj—ns)T;"[a1]): For a fixed n > 100, we
have

(3.2) supz |B2(2" (e, &/1€]))] S 2772,
€40

In fact, by the homogeneity of ®2(277(e?, £/|£])), it suffices to take the supremum over the surface
S?1. For |¢] = 1 and ¢ € supp ®(2™7(e, £/|€])), denote by ¢ the hyperplane perpendicular to
&. Then

(3.3) dist(e?, £1) <27,

Since the mutual distance of €™’s is bounded by 277, there are at most 277(d=2) yectors satisfy
(3.3). We hence get (3.2).
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By applying Plancherel’s theorem and Cauchy-Schwarz inequality, we have

St e ]

JEZ v
(/[ |Haz | w107 (S0 Py ) s
2”vd 2) // \I_IaZ U \HZ‘]—'( [ Pj_ nn) [ }%n, )2 5 ﬁ)2

<2md2) // |1_[aZ )| ZHZI Pj_pnk) nv[ ]%ns )édnd8>.

(3.4)

Once it is showed that for a fixed e}, 7, s,

(3.5) HZI Py )T [a1]B7°, 52’2””(”[*1“!#\\1,

then by card(©,) < 241 and apply (3.4) and (3.5) we get

| [ @) 32 3 Gl = o) Ty B, (o) ]

JEZ v

S 27

which is just the desired bound of Lemma 2.4. Thus, to finish the proof of Lemma 2.4, it is
enough to prove (3.5). By applying (2.7), the support of I') and 0 < 7 < k < 1, we have

(7 = Pin) T [a1)B]5, ()] S Y 5 BT, (2),
where H"(z) := 279% pno(z) and ypgro () is a characteristic function of the set
J E; ]
B = {x e RY: |(z,ep)| < 272 o — (z,ep)ey| < 277277}

For a fixed e, we write

L2 N
| [aﬂ%?;nHZsZ [ B @) 1B, ) o
J

+ Z Z H;L’” « H™ % |B7° |(x) - |iijn(x)|da:

j i=—00

Observe that |H;""||; < 27“m(E") < 27@=1) therefore for any i < j,

H;-l’v * H,Zl’v(l’) S 2_n7(d_1)2_jdXE;L,v,
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where E}w = E;-w + E;w Hence for a fixed 7], 8, j, n, e and x, we have

j—1
HY? s HPY B0 (@) + Y H Y BT ()
1=—00

5 2—n7(d_1)2_jd2/ E”” |%?i(y)|dy
T+

1<

(3.7) Samilgdy oy /IZ;S )|dy

i<j Qe n
Qﬁ{r+E Y10

< 9—ny(d—1)9—jd Z Z AQ|

ZS] QeQ;_p
Qn{z+E7"}#0

< )\2—2n7(d—1)’

where in third inequality above, we use [ ]bgg(yﬂdy < MA@ (see the property (iv) in Lemma
2.1) and in the fourth inequality we use fact that the cubes in Q are disjoint (see the property
(i) in Lemma 2.1). By (3.6), (3.7) and the property (iv) in Lemma 2.1, we obtain

HZI Py TP laa B | < 024§ o | < a2 .

J

Hence, we complete the proof of Lemma 2.4. O

4. PROOF OF LEMMA 2.5

To prove Lemma 2.5, we have to deal with some oscillatory integrals which come from
(I — Gnm)T;L’” [a1].

Before stating the proof of Lemma 2.5, let us give some notations. We first introduce the
Littlewood-Paley decomposition. Let ¢ be a radial C* function such that (&) =1 for |{] < 1,
P(€) =0 for [£] > 2 and 0 < (&) < 1 for all £ € RE. Define Bi(€) = ¥(28¢) — 4(28F1¢), then
By, is supported in {€: 2751 < [¢] <271} and 37, B(€) = 1 for € € R?\ {0}. Choose § be a
radial C* function such that 5(¢) = 1 for $<E <2, A is supported in {€ : 1 <€l <4} and
0< B(&) <1forall € € RE Set Bi(€) = B(2F€), then it is easy to see B = BifSk. Define the

convolution operators Ay and A, with Fourier multipliers S8 and Bk, respectively. That is,

AR () = Br(©)F(€), Af(€) = Br(©)F(©).

Then by the construction of 8, and B, we have

Ap = ApAg, I = ZAk.
kEZ
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where [ is the identity. Write (I —G»)T}"" [a1] = >2(I — Gnp) Ak T} "[a1]. By using Minkowski’s
k
inequality,

)
H//Elunz Z ZZ I—Pj_n.)I —Gpy)T ﬁv[al]%ﬂa ' («)dijds 1

n>100 v

<xyyy 5 ), L6010 o = G T, ]

n>100 v j =2j—n

\diid3

Lemma 4.1. For a fized bgg with 1(Q) = 20", there exists N > 0, such that

(42) (I = Pop)(I — G AT [an]B

< 26*1rnfm(df1)+(fj+k)+m(1+2N)”bggul_

Proof. First write
I = P T = G AT a6 = 0 = i) Al = G AT [on] 6
< = Pyon)Arll sz (I = o) AT ]

It is easy to see that ||[(I — Pj_ns)Apllpi < 1 uniformly with j,k,nk. Denote hy p.,(€) =
(1 —®(2™ (e, &/IE)))Br(§). Applying Fubini’s theorem, we may write
(4.3) (I = Gro) AT [aa]0f () = | Di(a, )05 (y)dy,

R4

where
1 i e
Dy(z,y) = @n)? /Rd €T g (€) /]Rd e % “’K;L’”(w —y)my, ,a1dwdg.

Next we make a change variable to polar coordinate w — y = rf. By Fubini’s theorem, Dy (z,y)

can be written as

@) g [ IO [ (R 000 o) ),

By the support of K7'(z) in (2.7), we have 2772 <y < 202, Since 6 € supp I'?, then |0 — €| <
27™ . Using the support of ®, we see |{e?, £/[£])] > 217", Thus,

(4.5) €0, €/1ENT = ey, €/1ED] = ey — 0, €/1E[)] = 277,

Integrating by parts with r, Dy(x,y) can be rewritten as

(271T)d/gd 1 {/Rd/ ie—y—r0,€) hk(gvéf)a [Kf(re)rd_lm%,ﬂ@ym]drdg}da(e),

After integrating by parts with r, integrating by parts with £, the integral Dg(z,y) can be

rewritten as

1 n i(x—y—rb, o n d—1 . n
W /Sd—l by (9) /Rd © o ¢ /0 Or (Kj (7’9)7‘ my-l—'r@,yal)

_9—2k N
X (1 + ;I—Qki _ yAi>,m92)N (hk,n,v(g)(i<07 £>)_1)d7‘d£d0(9)

(4.6)
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In the following, we give an explicit estimate of the term in (4.6). By the definition of

K7(z), we have

[ 7 (] —(j=lr(n))|a
09K ()] = 2 (j=tr(n))lal

@)1, - ;)

< 27O i o 9l 5 27Ut I,

(4.7)

where the third inequality follows from (2.7). Observe

1 (" 1

0.(5 [ ouCrary+ s)ds)| 127 oo
™ Jo T

By using product rule, (4.7), (4.8) and 2772 <r < 2/+2

Or (K 0y (i g,401) ) | S 27007 o

(4.8) |01 (1m0 4,y 01)| =

(4.9)

By (4.5), we have
(=0, )" - e (O] S 10,67 S 2777,

Now using product rule,

106, M0 (€)] = | = e, [@(27 (e, £/1EI)] - Br(€) + e, Bu(€) - (1 — (2" ey, €/I€N)))| < 277F-.

Therefore by induction, we have [Og hgnv(§)] < 2+l for any multi-indices a € Z7. By

using product rule again and (4.5), we have

|02 (0,€)) ™ hren,w(€))] = [(0,€) 7% - 207 - b — 2(0,€) ™%+ 0:0¢, b, () + (0, €)™ 0 hgo o0 (€) |
< 23(nytk)

This implies the follow inequality

27 A[((6,) " e (9] S 207,
Proceeding by induction, we have
(4.10) (T — 272 A)N[(0,€) gy o (€)]| S 2RI H209N,

Now we choose N = [%] + 1. By (4.3) and Minkowski’s inequality,

I = G AT} a1 < [ D4l ),

So we need to get the L! estimate of (4.4), by the support of Ay .,

—-N
/ / (1—|—2_2k|x—y—r0|2) dzdé < C.
supp(hg,n,v)

Integrating with =, we get a bound 2/. Then integrating with 6, we get a bound 2™
Combining (4.9), (4.10) and the above estimates,

d—1)

IDg (-, )|l < 28 Ty (@=D+(=i+k)+ny(142N)

Hence we complete the proof of Lemma 4.1 with N =[] + 1. O
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Lemma 4.2. For a fized bgg with 1(Q) = 277", then

(I = Pj) (I — Gono) AR TS [ ] 11

g 2—n’y(d—1)+j—n/i—k Hb’gjs H L

Proof. We write
(T = P (I = G )ART] [ar )05 I = (I = Pjg) k(I = G AR T aa]05 o
<||(I = Pj—ne) Al g1 (1 — Gn,v)Ak||L1—>L1”Tf’v[aﬂbgg!h
By using Minkowski’s inequality, one can easily get
(4.11) 175 Tl 5 27 0.
Now we claim that

(4.12) I = Pjmn) Akll i S 277775,

(4-13) H(I - Gn,v)AkHL1—>L1 rg L.

Combining (4.11), (4.12) and (4.13), one get the asserted bound. So to finish the proof, it suffice
to show (4.12) and (4.13). Write

(I - Pj—nf{)Akf( ) /Bk * f — Nj—nk * ﬁkf( )
— [, [ Gela =) = Bula =y = 2)ny-an2)dz - Fw)iy
Rd JRd

By using the mean value formula, one get

— — 1 —
Belx—y) —Br(x —y—2) = / (2, VBr(x —y — sz))ds.
0
Utilize the Fubini’s theorem, one may get
(I = Pjn) Aiflln S 27"V BIlInlla )L £l S 277 F )1 f )

Thus we prove (4.12). To prove (4.13), it is enough to show that the function Ay () =
(1— 2™ (e, £/1€])))Be(€) is a L' Fourier multiplier. Let A}"" be an invertible transform with
Alveny = 27m7kent and Ay = 27Fy if (y,e™?) = 0. For all a € Z4, it is straightforward to
check that

10 (Ao (AR ) 12 S 1

uniformly with k,n,v. By the Berenstein multiplier theorem(e.g. see Lemma 6.1.5 in [1]),

DN o=

l n,v
(I = G Akl S 1knw (AT IE D 10% (hkmo (A7) 13 S 1,

|a|=n

which completes the proof of (4.13). O
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Proof of Lemma 2.5 : Let g¢ satisfy 0 < g9 < 1 and will be chosen later. By (4.1), Lemma

4.1, Lemma 4.2 card®,, < 2"~ the property (iv) in Lemma 2.1 and the fact [neg] < neg <

[neo] + 1, one obtain

H//El W@y S ZZ (I = P (I = G T} [ar] B, (@) dnds |

n>100 v

20355 S YD YIRS S5 5 SED VDS

n>100 v j k<j—[neoll(Q)=20—" n>100 v j k>j—[neo] I(Q)=2i""

//E | H Gi(mi)] - 11 = Pjni)(I = Go) AR T [a1]63°

=2

l
S X e [Tl 30187, s
i=2 j

n>100

l1dnds

< S @i,

n>100

where

d
5] + 1)’)’+5_17', S9o = —K + €p.

Now we choose 7 > % and 0 < 0717 < 7 < g9 < Kk < 1 such that

1= —e0+7+2(

max{sy, s2} < 0.

Therefore the above sum is convergent and we finish the proof of Lemma 2.5. U

—_
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