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SOBOLEV, BESOV AND TRIEBEL-LIZORKIN SPACES ON QUANTUM TORI

XIAO XIONG, QUANHUA XU, AND ZHI YIN

Abstract. This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces
on a noncommutative d-torus Td

θ
(with θ a skew symmetric real d × d-matrix). These spaces

share many properties with their classical counterparts. We prove, among other basic properties,

the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces. We
also show that the Sobolev space W k

∞
(Td

θ
) coincides with the Lipschitz space of order k, already

studied by Weaver in the case k = 1. We establish the embedding inequalities of all these
spaces, including the Besov and Sobolev embedding theorems. We obtain Littlewood-Paley type
characterizations for Besov and Triebel-Lizorkin spaces in a general way, as well as the concrete
ones in terms of the Poisson, heat semigroups and differences. Some of them are new even in the
commutative case, for instance, our Poisson semigroup characterizations improve the classical
ones. As a consequence of the characterization of the Besov spaces by differences, we extend to the
quantum setting the recent results of Bourgain-Brézis -Mironescu and Maz’ya-Shaposhnikova on
the limits of Besov norms. The same characterization implies that the Besov space Bα

∞,∞(Td
θ
)

for α > 0 is the quantum analogue of the usual Zygmund class of order α. We investigate
the interpolation of all these spaces, in particular, determine explicitly the K-functional of the
couple (Lp(Td

θ
), W k

p (T
d
θ
)), which is the quantum analogue of a classical result due to Johnen and

Scherer. Finally, we show that the completely bounded Fourier multipliers on all these spaces
do not depend on the matrix θ, so coincide with those on the corresponding spaces on the usual
d-torus. We also give a quite simple description of (completely) bounded Fourier multipliers
on the Besov spaces in terms of their behavior on the Lp-components in the Littlewood-Paley
decomposition.

2000 Mathematics Subject Classification: Primary: 46L52, 46L51, 46L87. Secondary: 47L25, 47L65, 43A99.
Key words: Quantum tori, noncommutative Lp-spaces, Bessel and Riesz potentials, (potential) Sobolev spaces,

Besov spaces, Triebel-Lizorkin spaces, Hardy spaces, characterizations, Poisson and heat semigroups, embedding
inequalities, interpolation, (completely) bounded Fourier multipliers.

1

http://arxiv.org/abs/1507.01789v2


2 X. Xiong, Q. Xu, and Z. Yin

Contents

Chapter 0. Introduction 3

Chapter 1. Preliminaries 7
1.1. Noncommutative Lp-spaces 7
1.2. Quantum tori 9
1.3. Fourier multipliers 10
1.4. Hardy spaces 12

Chapter 2. Sobolev spaces 14
2.1. Distributions on quantum tori 14
2.2. Definitions and basic properties 15
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Chapter 0. Introduction

This paper is the second part of our project about analysis on quantum tori. The previous one
[17] studies several subjects of harmonic analysis on these objects, including maximal inequalities,
mean and pointwise convergences of Fourier series, completely bounded Fourier multipliers on Lp-
spaces and the theory of Hardy spaces. It was directly inspired by the current line of investigation
on noncommutative harmonic analysis. As pointed out there, very little had been done about the
analytic aspect of quantum tori before [17]; this situation is in strong contrast with their geometry
on which there exists a considerably long list of publications. Presumably, this deficiency is due to
numerous difficulties one may encounter when dealing with noncommutative Lp-spaces, since these
spaces come up unavoidably if one wishes to do analysis. [17] was made possible by the recent
developments on noncommutative martingale/ergodic inequalities and the Littlewood-Paley-Stein
theory for quantum Markovian semigroups, which had been achieved thanks to the efforts of many
researchers; see, for instance, [56, 31, 36, 37, 61, 62, 52], and [32, 44, 45, 33, 34].

This second part intends to study Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori.
In the classical setting, these spaces are fundamental for many branches of mathematics such as
harmonic analysis, PDE, functional analysis and approximation theory. Our references for the
classical theory are [1, 42, 49, 53, 73, 74]. However, they have never been investigated so far
in the quantum setting, except two special cases to our best knowledge. Firstly, Sobolev spaces
with the L2-norm were studied by Spera [65] in view of applications to the Yang-Mills theory for
quantum tori [66] (see also [26, 39, 58, 64] for related works). On the other hand, inspired by
Connes’ noncommutative geometry [18], or more precisely, the part on noncommutative metric
spaces, Weaver [78, 79] developed the Lipschitz classes of order α for 0 < α ≤ 1 on quantum
tori. The fact that only these two cases have been studied so far illustrates once more the above
mentioned difficulties related to noncommutativity.

Among these difficulties, a specific one is to be emphasized: it is notably relevant to this paper,
and is the lack of a noncommutative analogue of the usual pointwise maximal function. However,
maximal function techniques play a paramount role in the classical theory of Besov and Triebel-
Lizorkin spaces (as well as in the theory of Hardy spaces). They are no longer available in the
quantum setting, which forces us to invent new tools, like in the previously quoted works on
noncommutative martingale inequalities and the quantum Littlewood-Paley-Stein theory where
the same difficulty already appeared.

One powerful tool used in [17] is the transference method. It consists in transferring problems on
quantum tori to the corresponding ones in the case of operator-valued functions on the usual tori, in
order to use existing results in the latter case or adapt classical arguments. This method is efficient
for several problems studied in [17], including the maximal inequalities and Hardy spaces. It is still
useful for some parts of the present work; for instance, Besov spaces can be investigated through
the classical vector-valued Besov spaces by means of transference, the relevant Banach spaces being
the noncommutative Lp-spaces on a quantum torus. However, it becomes inefficient for others. For
example, the Sobolev or Besov embedding inequalities cannot be proved by transference. On the
other hand, if one wishes to study Triebel-Lizorkin spaces on quantum tori via transference, one
should first develop the theory of operator-valued Triebel-Lizorkin spaces on the classical tori. The
latter is as hard as the former. Contrary to [17] , the transference method will play a very limited
role in the present paper. Instead, we will use Fourier multipliers in a crucial way, this approach
is of interest in its own right. We thus develop an intrinsic differential analysis on quantum tori,
without frequently referring to the usual tori via transference as in [17]. This is a major advantage
of the present methods over those of [17]. We hope that the study carried out here would open
new perspectives of applications and motivate more future research works on quantum tori or in
similar circumstances. In fact, one of our main objectives of developing analysis on quantum tori
is to gain more insights on the geometrical structures of these objects, so ultimately to return back
to their differential geometry.

To describe the content of the paper, we need some definitions and notation (see the respective
sections below for more details). Let d ≥ 2 and θ = (θkj) be a real skew-symmetric d× d-matrix.
The d-dimensional noncommutative torus Aθ is the universal C*-algebra generated by d unitary
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operators U1, . . . , Ud satisfying the following commutation relation

UkUj = e2πiθkjUjUk, 1 ≤ j, k ≤ d.

Let U = (U1, · · · , Ud). For m = (m1, · · · ,md) ∈ Zd, set

Um = Um1
1 · · ·Umdd .

A polynomial in U is a finite sum:

x =
∑

m∈Zd

αmU
m , αm ∈ C.

For such a polynomial x, we define τ(x) = α0. Then τ extends to a faithful tracial state on
Aθ. Let Tdθ be the w*-closure of Aθ in the GNS representation of τ . This is our d-dimensional
quantum torus. It is to be viewed as a deformation of the usual d-torus Td, or more precisely, of the
commutative algebra L∞(Td). The noncommutative Lp-spaces associated to (Tdθ , τ) are denoted
by Lp(T

d
θ). The Fourier transform of an element x ∈ L1(T

d
θ) is defined by

x̂(m) = τ
(
(Um)∗x

)
, m ∈ Zd.

The formal Fourier series of x is

x ∼
∑

m∈Zd

x̂(m)Um .

The differential structure of Tdθ is modeled on that of Td. Let

S(Tdθ) =
{ ∑

m∈Zd

amU
m : {am}m∈Zd rapidly decreasing

}
.

This is the deformation of the space of infinitely differentiable functions on Td; it is the Schwartz
class of Tdθ . Like in the commutative case, S(Tdθ) carries a natural locally convex topology. Its
topological dual S ′(Tdθ) is the space of distributions on Tdθ . The partial derivations on S(Tdθ) are
determined by

∂j(Uj) = 2πiUj and ∂j(Uk) = 0, k 6= j, 1 ≤ j, k ≤ d.

Given m = (m1, . . . ,md) ∈ Nd0 (N0 denoting the set of nonnegative integers), the associated partial
derivation Dm is defined to be ∂m1

1 · · · ∂mdd . The order of Dm is |m|1 = m1 + · · · + md. Let
∆ = ∂21 + · · ·+ ∂2d be the Laplacian. By duality, the derivations and Fourier transform transfer to
S ′(Tdθ) too.

Fix a Schwartz function ϕ on Rd satisfying the usual Littlewood-Paley decomposition property
expressed in (3.1). For each k ≥ 0 let ϕk be the function whose Fourier transform is equal to
ϕ(2−k·). For a distribution x on Tdθ , define

ϕ̃k ∗ x =
∑

m∈Zd

ϕ(2−km)x̂(m)Um .

So x 7→ ϕ̃k ∗ x is the Fourier multiplier with symbol ϕ(2−k·).
We can now define the four families of function spaces on Tdθ to be studied . Let 1 ≤ p, q ≤ ∞

and k ∈ N, α ∈ R, and let Jα be the Bessel potential of order α: Jα = (1− (2π)−2∆)
α
2 .

• Sobolev spaces:

W k
p (T

d
θ) =

{
x ∈ S ′(Tdθ) : D

mx ∈ Lp(T
d
θ) for each m ∈ Nd0 with |m|1 ≤ k

}
.

• Potential or fractoinal Sobolev spaces:

Hα
p (T

d
θ) =

{
x ∈ S ′(Tdθ) : J

αx ∈ Lp(T
d
θ)
}
.

• Besov spaces:

Bαp,q(T
d
θ) =

{
x ∈ S ′(Tdθ) :

(
|x̂(0)|q +

∑

k≥0

2qkα‖ϕ̃k ∗ x‖qp
) 1
q <∞

}
.

• Triebel-Lizorkin spaces for p <∞ :

Fα,cp (Tdθ) =
{
x ∈ S ′(Tdθ) :

∥∥(|x̂(0)|2 +
∑

k≥0

22kα|ϕ̃k ∗ x|2
) 1

2
∥∥
p
<∞

}
.
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Equipped with their natural norms, all these spaces become Banach spaces.

Now we can describe the main results proved in this paper by classifying them into five families.

Basic properties. A common basic property of potential Sobolev, Besov and Triebel-Lizorkin
spaces is a reduction theorem by the Bessel potential. For example, Jβ is an isomorphism from
Bαp,q(T

d
θ) onto B

α−β
p,q (Tdθ) for all 1 ≤ p, q ≤ ∞ and α, β ∈ R; this is the so-called lifting or reduction

theorem. Specifically to Triebel-Lizorkin spaces, Jα establishes an isomorphism between Fα,cp (Tdθ)

and the Hardy space Hc
p(T

d
θ) for any 1 ≤ p <∞. As a consequence, we deduce that the potential

Sobolev space Hα
p (T

d
θ) admits a Littlewood-Paley type characterization for 1 < p <∞.

Another type of reduction for Besov and Triebel-Lizorkin spaces is that for any positive integer
k, x ∈ Fα,cp (Tdθ) (resp. B

α
p,q(T

d
θ)) iff all its partial derivatives of order k belong to Fα−k,cp (Tdθ) (resp.

Bα−kp,q (Tdθ)).

Concerning Sobolev spaces, we obtain a Poincaré type inequality: For any x ∈ W 1
p (T

d
θ) with

1 ≤ p ≤ ∞, we have

‖x− x̂(0)‖p . ‖∇x‖p .
Our proof of this inequality greatly differs with standard arguments for such results in the com-
mutative case.

We also show that W k
∞(Tdθ) is the analogue for T

d
θ of the classical Lipschitz class of order k. For

u ∈ Rd, define ∆ux = πz(x) − x, where z = (e2πiu1 , · · · , e2πiud) and πz is the automorphism of Tdθ
determined by Uj 7→ zjUj for 1 ≤ j ≤ d. Then for a positive integer k, ∆k

u is the kth difference
operator on Tdθ associated to u. Note that ∆k

u is also the Fourier multiplier with symbol eku, where
eu(ξ) = e2πiu·ξ − 1. The kth order modulus of Lp-smoothness of an x ∈ Lp(T

d
θ) is defined to be

ωkp (x, ε) = sup
0<|u|≤ε

∥∥∆k
ux

∥∥
p
.

We then prove that for any 1 ≤ p ≤ ∞ and k ∈ N,

sup
ε>0

ωkp(x, ε)

εk
≈

∑

m∈Nd0, |m|1=k
‖Dmx‖p .

In particular, we recover Weaver’s results [78, 79] on the Lipschitz class on Tdθ when p = ∞ and
k = 1.

Embedding. The second family of results concern the embedding of the preceding spaces. A
typical one is the analogue of the classical Sobolev embedding inequality for W k

p (T
d
θ): If 1 < p <

q <∞ such that 1
q = 1

p − k
d , then

W k
p (T

d
θ) ⊂ Lq(T

d
θ) continuously.

Similar embedding inequalities hold for the other spaces too. Combined with real interpolation, the
embedding inequality of Bαp,q(T

d
θ) yields the above Sobolev embedding. Our proofs of these embed-

ding inequalities are based on Varopolous’ celebrated semigroup approach [76] to the Littlewood-
Sobolev theory, which has also been developed by Junge and Mei [34] in the noncommutative
setting for the study of BMO spaces on quantum Markovian semigroups. Thus the characteriza-
tion of Besov spaces by Poisson or heat semigroup described below is essential for the proof of our
embedding inequalities.

We also establish compact embedding theorems. For instance, the previously mentioned Sobolev
embedding becomes a compact one W k

p (T
d
θ) →֒ Lq∗(T

d
θ) for any q

∗ with 1 ≤ q∗ < q.

Characterizations. The third family of results are various characterizations of Besov and Triebel-
Lizorkin spaces. This is the most difficult and technical part of the paper. In the classical case,
all existing proofs of these characterizations that we know use maximal function techniques in
a crucial way. As pointed out earlier, these techniques are no longer available. Instead, we use
frequently Fourier multipliers. We would like to emphasize that our results are better than those
in literature even in the commutative case. Let us illustrate this by stating the characterization of
Besov spaces in terms of the circular Poisson semigroup.
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Given a distribution x on Tdθ and k ∈ Z, let

Pr(x) =
∑

m∈Zd

x̂(m)r|m|Um

and

J k
r Pr(x) =

∑

m∈Zd

Cm,kx̂(m)r|m|−kUm, 0 ≤ r < 1 ,

where | · | denotes the Euclidean norm of Rd and

Cm,k = |m| · · · (|m| − k + 1) if k ≥ 0 and Cm,k =
1

(|m|+ 1) · · · (|m| − k)
if k < 0.

Note that J k
r is the kth derivation operator relative to r if k ≥ 0, and the (−k)th integration

operator if k < 0. Then our characterization asserts that for 1 ≤ p, q ≤ ∞ and α ∈ R, k ∈ Z with
k > α,

‖x‖Bαp,q ≈
(
max
|m|<k

|x̂(m)|q +
∫ 1

0

(1 − r)(k−α)q
∥∥J k

r Pr(xk)
∥∥q
p

dr

1− r

) 1
q

,

where xk = x−
∑

|m|<k
x̂(m)Um.

The use of the integration operator (corresponding to negative k) in the above statement is
completely new even in the case θ = 0 (the commutative case). This is very natural, and consistent
with the fact that the smaller α is, the lower smoothness the elements of Bαp,q(T

d
θ) have. This is

also consistent with the previously mentioned lifting theorem. A similar result holds for Triebel-
Lizorkin spaces too. But its proof is much subtler. For the latter spaces, another improvement of
our characterization over the classical one lies on the assumption on k: in the classical case, k is
required to be greater than d+max(α, 0), while we only need to assume k > α.

The classical characterization of Besov spaces by differences is also extended to the quantum
setting. This result resembles the previous one in terms of the derivations of the Poisson semigroup.
For 1 ≤ p, q ≤ ∞ and α ∈ R, k ∈ N with 0 < α < k, let

‖x‖Bα,ωp,q
=

( ∫ 1

0

ε−αqωkp (x, ε)
q dε

ε

) 1
q

.

Then x ∈ Bαp,q(T
d
θ) iff ‖x‖Bα,ωp,q

<∞.

The difference characterization of Besov spaces shows that Bα∞,∞(Tdθ) is the quantum analogue

of the classical Zygmund class. In particular, for 0 < α < 1, Bα∞,∞(Tdθ) is the Hölder class of order
α, already studied by Weaver [79].

In the commutative case, the limit behavior of the quantity ‖x‖Bα,ωp,q
as α → k or α → 0 are

object of a recent series of publications. This line of research was initiated by Bourgain, Brézis
and Mironescu [13, 14] who considered the case α → 1 (k = 1). Their work was later simplified
and extended by Maz’ya and Shaposhnikova [41]. Here, we obtain the following analogue for Tdθ of
their results: For 1 ≤ p ≤ ∞, 1 ≤ q <∞ and 0 < α < k with k ∈ N,

lim
α→k

(k − α)
1
q ‖x‖Bα,ωp,q

≈ q−
1
q

∑

m∈Nd0 , |m|1=k
‖Dmx‖p ,

lim
α→0

α
1
q ‖x‖Bα,ωp,q

≈ q−
1
q ‖x‖p

with relevant constants depending only on d and k.

Interpolation. Our fourth family of results deal with interpolation. Like in the usual case, the
interpolation of Besov spaces is quite simple, and that of Triebel-Lizorkin spaces can be easily
reduced to the corresponding problem of Hardy spaces. Thus the really hard task here concerns
the interpolation of Sobolev spaces for which we have obtained only partial results. The most
interesting couple is

(
W k

1 (T
d
θ), W

k
∞(Tdθ)

)
. Recall that the complex interpolation problem of this

couple remains always unsolved even in the commutative case (a well-known longstanding open
problem which is explicitly posed by P. Jones in [27, p. 173]), while its real interpolation spaces
were completely determined by DeVore and Scherer [21]. We do not know, unfortunately, how to
prove the quantum analogue of DeVore and Scherer’s theorem.
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However, we are able to extend to the quantum tori the K-functional formula of the couple(
Lp(R

d), W k
p (R

d)
)
obtained by Johnen and Scherer [30]. This result reads as follows:

K(x, εk; Lp(T
d
θ),W

k
p (T

d
θ)) ≈ εk|x̂(0)|+ ωkp(x, ε), 0 < ε ≤ 1.

As a consequence, we determine the real interpolation spaces of
(
Lp(T

d
θ), W

k
p (T

d
θ)
)
, which are

Besov spaces.
The real interpolation of

(
Lp(T

d
θ), W

k
p (T

d
θ)
)
is closely related to the limit behavior of Besov

norms described previously. We show that it implies the optimal order (relative to α) of the best
constant in the embedding of Bαp,p(T

d
θ) into Lq(T

d
θ) for 1

q = 1
p − α

d and 0 < α < 1, which is the

quantum analogue of a result of Bourgain, Brézis and Mironescu. On the other hand, the latter
result is equivalent to the Sobolev embedding W 1

p (T
d
θ) ⊂ Lq(T

d
θ) for

1
q = 1

p − 1
d .

Multipliers. The last family of results of the paper describe Fourier multipliers on the preceding
spaces. Like in the Lp case treated in [17], we are mainly concerned with completely bounded
Fourier multipliers. All spaces in consideration carry a natural operator space structure in Pisier’s
sense. We show that the completely bounded Fourier multipliers on W k

p (T
d
θ) are independent of θ,

so they coincide with those on the usual Sobolev spaceW k
p (T

d). This is the Sobolev analogue of the
corresponding result for Lp proved in [17]. The main tool is Neuwirth-Ricard’s transference between
Fourier multipliers and Schur multipliers in [48]. A similar result holds for the Triebel-Lizorkin
spaces too.

The situation for Besov spaces is very satisfactory since it is well known that Fourier multipliers
behave much better on Besov spaces than on Lp-spaces (in the commutative case). We prove that
a function φ on Zd is a (completely) bounded Fourier multiplier on Bαp,q(T

d
θ) iff the φϕ(2−k·)’s are

(completely) bounded Fourier multipliers on Lp(T
d
θ) uniformly in k ≥ 0. Consequently, the Fourier

multipliers on Bαp,q(T
d
θ) are completely determined by the Fourier multipliers on Lp(T

d
θ) associated

to their components in the Littlewood-Paley decomposition. So the completely bounded multipliers
on Bαp,q(T

d
θ) depend solely on p. In the case of p = 1, a multiplier is bounded on Bα1,q(T

d
θ) iff it

is completely bounded iff it is the Fourier transform of an element of B0
1,∞(Td). Using a classical

example of Stein-Zygmund [70], we show that there exists a φ which is a completely bounded
Fourier multiplier on Bαp,q(T

d
θ) for all p but bounded on Lp(T

d
θ) for no p 6= 2.

We will frequently use the notation A . B, which is an inequality up to a constant: A ≤ cB for
some constant c > 0. The relevant constants in all such inequalities may depend on the dimension
d, the test function ϕ or ψ, etc. but never on the functions f or distributions x in consideration.
The main results of this paper have been announced in [82].

Chapter 1. Preliminaries

This chapter collects the necessary preliminaries for the whole paper. The first two sections
present the definitions and some basic facts about noncommutative Lp-spaces and quantum tori
which are the central objects of the paper. The third one contains some results on Fourier mul-
tipliers that will play a paramount role in the whole paper. The last section gives the definitions
and some fundamental results on operator-valued Hardy spaces on the usual and quantum tori.
This section will be needed only starting from chapter 4 on Triebel-Lizorkin spaces.

1.1. Noncommutative Lp-spaces

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace τ and S+
M

be the set of all positive elements x in M with τ(s(x)) <∞, where s(x) denotes the support of x,
i.e., the smallest projection e such that exe = x. Let SM be the linear span of S+

M. Then every
x ∈ SM has finite trace, and SM is a w*-dense ∗-subalgebra of M.

Let 0 < p <∞. For any x ∈ SM, the operator |x|p belongs to S+
M (recalling |x| = (x∗x)

1
2 ). We

define

‖x‖p =
(
τ(|x|p)

) 1
p .

One can check that ‖ · ‖p is a norm or p-norm on SM according to p ≥ 1 or p < 1. The completion
of (SM, ‖ · ‖p) is denoted by Lp(M), which is the usual noncommutative Lp-space associated to
(M, τ). For convenience, we set L∞(M) = M equipped with the operator norm ‖ · ‖M. The
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norm of Lp(M) will be often denoted simply by ‖ · ‖p. But if different Lp-spaces appear in a same
context, we will sometimes precise their norms in order to avoid possible ambiguity. The reader is
referred to [57] and [83] for more information on noncommutative Lp-spaces.

The elements of Lp(M) can be described as closed densely defined operators on H (H being the
Hilbert space on which M acts). A closed densely defined operator x on H is said to be affiliated
with M if ux = xu for any unitary u in the commutant M′ of M. An operator x affiliated with
M is said to be measurable with respect to (M, τ) (or simply measurable) if for any δ > 0 there
exists a projection e ∈ B(H) such that

e(H) ⊂ Dom(x) and τ(e⊥) ≤ δ,

where Dom(x) defines the domain of x. We denote by L0(M, τ), or simply L0(M) the family of
all measurable operators. For such an operator x, we define

λs(x) = τ(e⊥s (|x|)), s > 0

where e⊥s (x) = 1(s,∞)(x) is the spectrum projection of x corresponding to the interval (s,∞), and

µt(x) = inf{s > 0 : λs(x) < t}, t > 0.

The function s 7→ λs(x) is called the distribution function of x and the µt(x) the generalized singular
numbers of x. Similarly to the classical case, for 0 < p < ∞, 0 < q ≤ ∞, the noncommutative
Lorentz space Lp,q(M) is defined to be the collection of all measurable operators x such that

‖x‖p,q =
( ∫ ∞

0

(t
1
pµt(x))

q dt

t

) 1
q <∞.

Clearly, Lp,p(M) = Lp(M). The space Lp,∞(M) is usually called a weak Lp-space, 0 < p < ∞,

and

‖x‖p,∞ = sup
s>0

sλs(x)
1
p .

Like the classical Lp-spaces, noncommutative Lp-spaces behave well with respect to interpola-
tion. Our reference for interpolation theory is [8]. Let 1 ≤ p0 < p1 ≤ ∞, 1 ≤ q ≤ ∞ and 0 < η < 1.
Then

(1.1)
(
Lp0(M), Lp1(M)

)
η
= Lp(M) and

(
Lp0(M), Lp1(M)

)
η,q

= Lp,q(M),

where 1
p = 1−η

p0
+ η

p1
.

Now we introduce noncommutative Hilbert space-valued Lp-spaces Lp(M;Hc) and Lp(M;Hr),
which are studied at length in [32]. Let H be a Hilbert space and v a norm one element of H . Let
pv be the orthogonal projection onto the one-dimensional subspace generated by v. Then define
the following row and column noncommutative Lp-spaces:

Lp(M;Hr) = (pv ⊗ 1M)Lp(B(H)⊗M),

Lp(M;Hc) = Lp(B(H)⊗M)(pv ⊗ 1M),

where the tensor product B(H)⊗M is equipped with the tensor trace while B(H) is equipped with
the usual trace. For f ∈ Lp(M;Hc),

‖f‖Lp(M;Hc) = ‖(f∗f)
1
2 ‖Lp(M).

A similar formula holds for the row space by passing to adjoints: f ∈ Lp(M;Hr) iff f∗ ∈
Lp(M;Hc), and ‖f‖Lp(M;Hr) = ‖f∗‖Lp(M;Hc). It is clear that Lp(M;Hc) and Lp(M;Hr) are

1-complemented subspaces of Lp(B(H)⊗M) for any p. Thus they also form interpolation scales
with respect to both complex and real interpolation methods: Let 1 ≤ p0, p1 ≤ ∞ and 0 < η < 1.
Then

(
Lp0(M;Hc), Lp1(M;Hc)

)
η
= Lp(M;Hc),

(
Lp0(M;Hc), Lp1(M;Hc)

)
η,p

= Lp(M;Hc),
(1.2)

where 1
p = 1−η

p0
+ η

p1
. The same formulas hold for row spaces too.
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1.2. Quantum tori

Let d ≥ 2 and θ = (θkj) be a real skew symmetric d× d-matrix. The associated d-dimensional
noncommutative torus Aθ is the universal C∗-algebra generated by d unitary operators U1, . . . , Ud
satisfying the following commutation relation

(1.3) UkUj = e2πiθkjUjUk, j, k = 1, . . . , d.

We will use standard notation from multiple Fourier series. Let U = (U1, · · · , Ud). For m =
(m1, · · · ,md) ∈ Zd we define

Um = Um1
1 · · ·Umdd .

A polynomial in U is a finite sum

x =
∑

m∈Zd

αmU
m with αm ∈ C,

that is, αm = 0 for all but finite indices m ∈ Zd. The involution algebra Pθ of all such polynomials
is dense in Aθ. For any polynomial x as above we define

τ(x) = α0,

where 0 = (0, · · · , 0). Then, τ extends to a faithful tracial state on Aθ. Let Tdθ be the w∗-closure
of Aθ in the GNS representation of τ . This is our d-dimensional quantum torus. The state τ
extends to a normal faithful tracial state on Tdθ that will be denoted again by τ . Recall that the
von Neumann algebra Tdθ is hyperfinite.

Any x ∈ L1(T
d
θ) admits a formal Fourier series:

x ∼
∑

m∈Zd

x̂(m)Um,

where

x̂(m) = τ((Um)∗x), m ∈ Zd

are the Fourier coefficients of x. The operator x is, of course, uniquely determined by its Fourier
series.

We introduced in [17] a transference method to overcome the full noncommutativity of quantum
tori and use methods of operator-valued harmonic analysis. Let Td be the usual d-torus equipped
with normalized Haar measure dz. Let Nθ = L∞(Td)⊗Tdθ , equipped with the tensor trace ν =∫
dz ⊗ τ . It is well known that for every 0 < p <∞,

Lp(Nθ, ν) ∼= Lp(T
d;Lp(T

d
θ)).

The space on the right-hand side is the space of Bochner p-integrable functions from Td to Lp(T
d
θ).

In general, for any Banach space X and any measure space (Ω, µ), we use Lp(Ω;X) to denote
the space of Bochner p-integrable functions from Ω to X . For each z ∈ Td, define πz to be the
isomorphism of Tdθ determined by

(1.4) πz(U
m) = zmUm = zm1

1 · · · zmdd Um1
1 · · ·Umdd .

Since τ(πz(x)) = τ(x) for any x ∈ Tdθ , πz preserves the trace τ. Thus for every 0 < p <∞,

(1.5) ‖πz(x)‖p = ‖x‖p, ∀x ∈ Lp(T
d
θ).

Now we state the transference method as follows (see [17]).

Lemma 1.1. For any x ∈ Lp(T
d
θ), the function x̃ : z 7→ πz(x) is continuous from Td to Lp(T

d
θ)

(with respect to the w*-topology for p = ∞). If x ∈ Aθ, it is continuous from Td to Aθ.

Corollary 1.2. (i) Let 0 < p ≤ ∞. If x ∈ Lp(T
d
θ), then x̃ ∈ Lp(Nθ) and ‖x̃‖p = ‖x‖p, that is,

x 7→ x̃ is an isometric embedding from Lp(T
d
θ) into Lp(Nθ). Moreover, this map is also an

isomorphism from Aθ into C(Td;Aθ).
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(ii) Let T̃dθ = {x̃ : x ∈ Tdθ}. Then T̃dθ is a von Neumann subalgebra of Nθ and the associated

conditional expectation is given by

E(f)(z) = πz

(∫

Td

πw
[
f(w)

]
dw

)
, z ∈ Td, f ∈ Nθ.

Moreover, E extends to a contractive projection from Lp(Nθ) onto Lp(T̃dθ) for 1 ≤ p ≤ ∞.

(iii) Lp(T
d
θ) is isometric to Lp(T̃dθ) for every 0 < p ≤ ∞.

1.3. Fourier multipliers

Fourier multipliers will be the most important tool for the whole work. Now we present some
known results on them for later use. Given a function φ : Zd → C, let Mφ denote the associated

Fourier multiplier on Td, namely, M̂φf(m) = φ(m)f̂(m) for any trigonometric polynomial f on
Td. We call φ a multiplier on Lp(T

d) if Mφ extends to a bounded map on Lp(T
d). Fourier

multipliers on Tdθ are defined exactly in the same way, we still use the same symbol Mφ to denote
the corresponding multiplier on Tdθ . Note that the isomorphism πz defined in (1.4) is the Fourier
multiplier associated to the function φ given by φ(m) = zm.

It is natural to ask if the boundedness of Mφ on Lp(T
d) is equivalent to that on Lp(T

d
θ). This

is open until a negative answer given by Ricard [63] recently. However, it is proved in [17] that
the answer is affirmative if “boundedness” is replaced by “complete boundedness”, a notion from
operator space theory for which we refer to [23] and [55]. All noncommutative Lp-spaces are
equipped with their natural operator space structure introduced by Pisier [54, 55].

We will use the following fundamental property of completely bounded (c.b. for short) maps
due to Pisier [54]. Let E and F be operator spaces. Then a linear map T : E → F is c.b. iff
IdSp ⊗ T : Sp[E] → Sp[F ] is bounded for some 1 ≤ p ≤ ∞. In this case,

‖T ‖cb =
∥∥IdSp ⊗ T : Sp[E] → Sp[F ]

∥∥.
Here Sp[E] denotes the E-valued Schatten p-class. In particular, if E = C, Sp[C] = Sp is the
noncommutative Lp-space associated to B(ℓ2), equipped with the usual trace. Applying this cri-
terion to the special case where E = F = Lp(M), we see that a map T on Lp(M) is c.b. iff
IdSp ⊗ T : Lp(B(ℓ2)⊗M) → Lp(B(ℓ2)⊗M) is bounded. The readers unfamiliar with operator
space theory can take this property as the definition of c.b. maps between Lp-spaces.

Thus φ is a c.b. multiplier on Lp(T
d
θ) if Mφ is c.b. on Lp(T

d
θ), or equivalently, if IdSp ⊗Mφ

is bounded on Lp(B(ℓ2)⊗Tdθ). Let M(Lp(T
d
θ)) (resp. Mcb(Lp(T

d
θ))) denote the space of Fourier

multipliers (resp. c.b. Fourier multipliers) on Lp(T
d
θ), equipped with the natural norm. When

θ = 0, we recover the (c.b.) Fourier multipliers on the usual d-torus Td. The corresponding
multiplier spaces are denoted by M(Lp(T

d)) and Mcb(Lp(T
d)). Note that in the latter case (θ = 0),

Lp(B(ℓ2)⊗Td) = Lp(T
d;Sp), thus φ is a c.b. multiplier on Lp(T

d) iff Mφ extends to a bounded
map on Lp(T

d;Sp).
The following result is taken from [17].

Lemma 1.3. Let 1 ≤ p ≤ ∞. Then Mcb(Lp(T
d
θ)) = Mcb(Lp(T

d)) with equal norms.

Remark 1.4. Note that Mcb(L1(T
d)) = Mcb(L∞(Td)) coincides with the space of the Fourier

transforms of bounded measures on Td, and Mcb(L2(T
d)) with the space of bounded functions on

Zd.

The most efficient criterion for Fourier multipliers on Lp(T
d) for 1 < p < ∞ is Mikhlin’s

condition. Although it can be formulated in the periodic case, it is more convenient to state this
condition in the case of Rd. On the other hand, the Fourier multipliers on Td used later will be the
restrictions to Zd of continuous Fourier multipliers on Rd. As usual, for m = (m1, · · · ,md) ∈ Nd0
(recalling that N0 denotes the set of nonnegative integers), we set

Dm = ∂m1
1 · · · ∂mdd ,

where ∂k denotes the kth partial derivation on Rd. Also put |m|1 = m1 + · · ·+md. The Euclidean

norm of Rd is denoted by | · |: |ξ| =
√
ξ21 + · · ·+ ξ2d.
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Definition 1.5. A function φ : Rd → C is called a Mikhlin multiplier if it is d-times differentiable
on Rd \ {0} and satisfies the following condition

‖φ‖M = sup
{
|ξ||m|1 |Dmφ(ξ)| : ξ ∈ Rd \ {0}, m ∈ Nd0, |m|1 ≤ d

}
<∞.

Note that the usual Mikhlin condition requires only partial derivatives up to order [d2 ] + 1 (see,
for instance, [25, section II.6] or [67, Theorem 4.3.2]). Our requirement above up to order d is
imposed by the boundedness of these multipliers on UMD spaces. We refer to section 4.1 for the
usual Mikhlin condition and more multiplier results on Tdθ .

It is a classical result that every Mikhlin multiplier is a Fourier multiplier on Lp(R
d) for 1 <

p < ∞ (cf. [25, section II.6] or [67, Theorem 4.3.2]), so its restriction φ
∣∣
Zd

is a Fourier multiplier

on Lp(T
d) too. It is, however, less classical that such a multiplier is also c.b. on Lp(R

d) or Lp(T
d).

This follows from a general result on UMD spaces. Recall that a Banach space X is called a UMD
space if the X-valued martingale differences are unconditional in Lp(Ω;X) for any 1 < p <∞ and
any probability space (Ω, P ). This is equivalent to the requirement that the Hilbert transform be
bounded on Lp(R

d;X) for 1 < p <∞. Any noncommutative Lp-space with 1 < p <∞ is a UMD
space. We refer to [10, 15, 16] for more information.

Before proceeding further, we make a convention used throughout the paper:

Convention. To simplify the notational system, we will use the same derivation symbols for Rd

and Td. Thus for a multi-index m ∈ Nd0, D
m = ∂m1

1 · · ·∂mdd , introduced previously, will also denote

the partial derivation of order m on Td. Similarly, ∆ = ∂21 + · · · + ∂2d will denote the Laplacian
on both Rd and Td. In the same spirit, for a function φ on Rd, we will call φ rather than φ

∣∣
Zd

a

Fourier multiplier on Lp(T
d) or Lp(T

d
θ). This should not cause any ambiguity in concrete contexts.

Considered as a map on Lp(T
d) or Lp(T

d
θ), Mφ will be often denoted by f 7→ φ̃ ∗ f or x 7→ φ̃ ∗ x.

Note that the notation φ̃∗f coincides with the usual convolution when φ is good enough. Indeed,

let φ̃ be the 1-periodization of the inverse Fourier transform of φ whenever it exists in a reasonable
sense:

φ̃(s) =
∑

m∈Zd

F−1(φ)(s +m), s ∈ Rd .

Viewed as a function on Td, φ̃ admits the following Fourier series:

φ̃(z) =
∑

m∈Zd

φ(m)zm.

Thus for any trigonometric polynomial f ,

φ̃ ∗ f(z) =
∫

Td

φ̃(zw−1)f(w)dw, z ∈ Td .

The following lemma is proved in [43, 85] (see also [12] for the one-dimensional case).

Lemma 1.6. Let X be a UMD space and 1 < p < ∞. Let φ be a Mikhlin multiplier. Then φ

is a Fourier multiplier on Lp(T
d;X). Moreover, its norm is controlled by ‖φ‖M, p and the UMD

constant of X.

The following lemma will play a key role in the whole paper.

Lemma 1.7. Let φ be a function on Rd.

(i) If F−1(φ) is integrable on Rd, then φ is a c.b. Fourier multiplier on Lp(T
d
θ) for 1 ≤ p ≤ ∞.

Moreover, its c.b. norm is not greater than
∥∥F−1(φ)

∥∥
1
.

(ii) If φ is a Mikhlin multiplier, then φ is a c.b. Fourier multiplier on Lp(T
d
θ) for 1 < p < ∞.

Moreover, its c.b. norm is controlled by ‖φ‖M and p.

Proof. (i) Since F−1(φ) is integrable, φ is a c.b. Fourier multiplier on L1(T
d), so on Lp(T

d) for
1 ≤ p ≤ ∞ (see Remark 1.4). Consequently, by Lemma 1.3, φ is a c.b. Fourier multiplier on
Lp(T

d
θ) for 1 ≤ p ≤ ∞.

(ii) It is well known that Sp is a UMD space for 1 < p <∞. Thus, by Lemma 1.6, φ is a Fourier
multiplier on Lp(T

d;Sp); in other words, it is a c.b. Fourier multiplier on Lp(T
d
θ). �
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1.4. Hardy spaces

We now present some preliminaries on operator-valued Hardy spaces on Td and Hardy spaces
on Tdθ . Motivated by the developments of noncommutative martingale inequalities in [56, 36] and
quantum Markovian semigroups in [32], Mei [44] developed the theory of operator-valued Hardy
spaces on Rd. More recently, Mei’s work was extended to the torus case in [17] with the objective of
developing the Hardy space theory in the quantum torus setting. We now recall the definitions and
results that will be needed later. Throughout this section, M will denote a von Neumann algebra
equipped with a normal faithful tracial state τ and N = L∞(Td)⊗M with the tensor trace. In our
future applications, M will be Tdθ .

A cube of Td is a product Q = I1 × · · · × Id, where each Ij is an interval (= arc) of T. As in
the Euclidean case, we use |Q| to denote the normalized volume (= measure) of Q. The whole Td

is now a cube too (of volume 1).
We will often identify Td with the unit cube Id = [0, 1)d via (e2πis1 , · · · , e2πisd) ↔ (s1, · · · , sd).

Under this identification, the addition in Id is the usual addition modulo 1 coordinatewise; an
interval of I is either a subinterval of I or a union [b, 1)∪ [0, a] with 0 < a < b < 1, the latter union
being the interval [b−1, a] of I (modulo 1). So the cubes of Id are exactly those of Td. Accordingly,
functions on Td and Id are identified too; they are considered as 1-periodic functions on Rd. Thus
N = L∞(Td)⊗M = L∞(Id)⊗M.

We define BMOc(Td,M) to be the space of all f ∈ L2(N ) such that

‖f‖BMOc = max
{∥∥fTd

∥∥
M, sup

Q⊂Tdcube

∥∥∥ 1

|Q|

∫

Q

∣∣f(z)− 1

|Q|

∫

Q

f(w)dw
∣∣2dz

∥∥∥
1
2

M

}
<∞.

The row BMOr(Td,M) consists of all f such that f∗ ∈ BMOc(Td,M), equipped with ‖f‖BMOr =
‖f∗‖BMOc . Finally, we define mixture space BMO(Td,M) as the intersection of the column and
row BMO spaces:

BMO(Td,M) = BMOc(Td,M) ∩ BMOr(Td,M),

equipped with ‖f‖BMO = max(‖f‖BMOc , ‖f‖BMOr).
As in the Euclidean case, these spaces can be characterized by the circular Poisson semigroup.

Let Pr denote the circular Poisson kernel of Td:

(1.6) Pr(z) =
∑

m∈Zd

r|m|zm, z ∈ Td, 0 ≤ r < 1.

The Poisson integral of f ∈ L1(N ) is

Pr(f)(z) =

∫

Td

Pr(zw
−1)f(w)dw =

∑

m∈Zd

f̂(m)r|m|zm.

Here f̂ denotes, of course, the Fourier transform of f :

f̂(m) =

∫

Td

f(z) z−mdz.

It is proved in [17] that

(1.7) sup
Q⊂Tdcube

∥∥∥ 1

|Q|

∫

Q

∣∣f(z)− 1

|Q|

∫

Q

f(w)dw
∣∣2dz

∥∥∥
M

≈ sup
0≤r<1

∥∥Pr(|f − Pr(f)|2)
∥∥
N

with relevant constants depending only on d. Thus

‖f‖BMOc ≈ max
{
‖f̂(0)‖M, sup

0≤r<1

∥∥Pr(|f − Pr(f)|2)
∥∥ 1

2

N
}
.

Now we turn to the operator-valued Hardy spaces on Td which are defined by the Littlewood-
Paley functions associated to the circular Poisson kernel. For f ∈ L1(N ) define

sc(f)(z) =
(∫ 1

0

∣∣∂rPr(f)(z)
∣∣2(1 − r)dr

) 1
2

, z ∈ Td.

For 1 ≤ p <∞, let

Hc
p(T

d,M) = {f ∈ L1(N ) : ‖f‖Hc
p
<∞},



Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori 13

where

‖f‖Hc
p
= ‖f̂(0)‖Lp(M) + ‖sc(f)‖Lp(N ).

The row Hardy space Hr
p(T

d,M) is defined to be the space of all f such that f∗ ∈ Hc
p(T

d,M),
equipped with the natural norm. Then we define

Hp(T
d,M) =

{
Hc
p(T

d,M) +Hr
p(T

d,M) if 1 ≤ p < 2,

Hc
p(T

d,M) ∩Hr
p(T

d,M) if 2 ≤ p <∞,

equipped with the sum and intersection norms, respectively:

‖f‖Hp
=

{
inf

{
‖g‖Hc

p
+ ‖h‖Hr

p
: f = g + h

}
if 1 ≤ p < 2,

max
(
‖f‖Hc

p
, ‖f‖Hr

p

)
if 2 ≤ p <∞.

The following is the main results of [17, Section 8]

Lemma 1.8. (i) Let 1 < p <∞. Then Hp(T
d,M) = Lp(N ) with equivalent norms.

(ii) The dual space of Hc
1(T

d,M) coincides isomorphically with BMOc(Td,M).
(iii) Let 1 < p <∞. Then

(BMOc(Td,M), Hc
1(T

d,M)) 1
p
= Hc

p(T
d,M)

(BMOc(Td,M), Hc
1(T

d,M)) 1
p
,p = Hc

p(T
d,M).

Similar statements hold for the row and mixture spaces too.

By transference, the previous results can be transferred to the quantum torus case. The Poisson
integral of an element x in L1(T

d
θ) is defined by

Pr(x) =
∑

m∈Zd

x̂(m)r|m|Um, 0 ≤ r < 1.

Its associated Littlewood-Paley g-function is

sc(x) =
(∫ 1

0

∣∣∂rPr(x)
∣∣2(1 − r)dr

) 1
2

.

For 1 ≤ p <∞ let

‖x‖Hc
p
= |x̂(0)|+ ‖sc(x)‖Lp(Tdθ).

The column Hardy space Hc
p(T

d
θ) is then defined to be

Hc
p(T

d
θ) =

{
x ∈ L1(T

d
θ) : ‖x‖Hc

p
<∞

}
.

On the other hand, inspired by (1.7), we define

BMOc(Tdθ) =
{
x ∈ L2(T

d
θ) : sup

0≤r<1

∥∥Pr
(
|x− Pr(x)|2

)∥∥
Td
θ

<∞
}
,

equipped with the norm

‖x‖BMOc = max
{
|x̂(0)|, sup

0≤r<1

∥∥Pr
(
|x− Pr(x)|2

)∥∥ 1
2

Td
θ

}
.

The corresponding row and mixture spaces are defined similarly to the preceding torus setting.

Lemma 1.8 admits the following quantum analogue:

Lemma 1.9. (i) Let 1 < p <∞. Then Hp(T
d
θ) = Lp(T

d
θ) with equivalent norms.

(ii) The dual space of Hc
1(T

d
θ) coincides isomorphically with BMOc(Tdθ).

(iii) Let 1 < p <∞. Then

(BMOc(Tdθ), Hc
1(T

d
θ)) 1

p
= Hc

p(T
d
θ) = (BMOc(Tdθ), Hc

1(T
d
θ)) 1

p
,p .

Similar statements hold for the row and mixture spaces too.
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In the above definition of Hc
p(T

d
θ), the Poisson kernel can be replaced by any reasonable smooth

function. Let ψ be a Schwartz function on Rd and ψj be the function whose Fourier transform is

ψ(2−j·). The map x 7→ ψ̃j ∗ x is the Fourier multiplier on Tdθ associated to ψj . Now we define the
square function associated to ψ of an element x ∈ L1(T

d
θ) by

scψ(x) =
(∑

j≥0

∣∣ψ̃j ∗ x
∣∣2
) 1

2

.

The following lemma is the main result of [81]. We will need it essentially in the case of p = 1.

Lemma 1.10. Let 1 ≤ p < ∞, and let ψ be a Schwartz function that does not vanish in {ξ : 1 ≤
|ξ| < 2}. Then x ∈ Hc

p(T
d
θ) iff scψ(x) ∈ Lp(T

d
θ). In this case, we have

‖x‖Hc
p
≈ |x̂(0)|+ ‖scψ(x)‖Lp(Tdθ) ,

where the equivalence constants depend only on d, p and ψ.

Chapter 2. Sobolev spaces

This chapter starts with a brief introduction to distributions on quantum tori. We then pass
to the definitions of Sobolev spaces on Tdθ and give some fundamental properties of them. Two
families of Sobolev spaces are studied: W k

p (T
d
θ) and the fractional Sobolev spaces Hα

p (T
d
θ). We

prove a Poincaré type inequality for W k
p (T

d
θ) for any 1 ≤ p ≤ ∞. Our approach to this inequality

seems very different from existing proofs for such an inequality in the classical case. We show that
W k

∞(Tdθ) coincides with the Lipschitz class of order k, studied by Weaver [78, 79]. We conclude
the chapter with a section on the link between the quantum Sobolev spaces and the vector-valued
Sobolev spaces on the usual d-torus Td.

2.1. Distributions on quantum tori

In this section we give an outline of the distribution theory on quantum tori. Let

S(Tdθ) =
{ ∑

m∈Zd

amU
m : {am}m∈Zd rapidly decreasing

}
.

This is a w*-dense ∗-subalgebra of Tdθ and contains all polynomials. We simply write S(Td0) =
S(Td), the algebras of infinitely differentiable functions on Td. Thus for a general θ, S(Tdθ) should
be viewed as a noncommutative deformation of S(Td). We will need the differential structure on
S(Tdθ), which is similar to that on S(Td).

According to our convention made in section 1.3 and in order to lighten the notational system,
we will use the same derivation notation on Tdθ as on Td. For every 1 ≤ j ≤ d, define the following
derivations, which are operators on S(Tdθ):

∂j(Uj) = 2πiUj and ∂j(Uk) = 0 for k 6= j.

These operators ∂j commute with the adjoint operation ∗, and play the role of the partial deriva-
tions in the classical analysis on the usual d-torus. Given m = (m1, . . . ,md) ∈ Nd0, the associated
partial derivation Dm is ∂m1

1 · · ·∂mdd . We also use ∆ to denote the Laplacian: ∆ = ∂21 + · · ·+ ∂2d .
The elementary fact expressed in the following remark will be frequently used later on.

Restricted to L2(T
d
θ), the partial derivation ∂j is a densely defined closed (unbounded) operator

whose adjoint is equal to −∂j . This is an immediate consequence of the following obvious fact (cf.
[64]):

Lemma 2.1. If x, y ∈ S(Tdθ), then τ(∂j(x)y) = −τ(x∂j(y)) for j = 1, · · · , d.

Thus ∆ = −(∂∗1∂1 + · · · + ∂∗d∂d), so −∆ is a positive operator on L2(T
d
θ) with spectrum equal

to {4π2|m|2 : m ∈ Zd}.
Remark 2.2. Given u ∈ Rd let eu be the function on Rd defined by eu(ξ) = e2πiu·ξ, where u · ξ
denotes the inner product of Rd. The Fourier multiplier on Tdθ associated to eu coincides with πz
in (1.4) with z = (e2πiu1 , · · · e2πiud). This Fourier multiplier will play an important role in the
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sequel. By analogy with the classical case, we will call it the translation by u and denote it by Tu:
Tu(x) = πz(x) for any x ∈ S(Tdθ). Then it is clear that

(2.1)
∂

∂uj
Tu(x) = Tu(∂jx) , so

∂

∂uj
Tu(x)

∣∣∣
u=0

= ∂jx.

Following the classical setting as in [22], we now endow S(Tdθ) with an appropriate topology.
For each k ∈ N0 define a norm pk on S(Tdθ) by

pk(x) = sup
0≤|m|1≤k

‖Dmx‖∞.

The sequence {pk}k≥0 induces a locally convex topology on S(Tdθ). This topology is metrizable by
the following distance:

d(x, y) =

∞∑

k=0

2−kpk(x − y)

1 + pk(x− y)

with respect to which S(Tdθ) is complete, an easily checked fact. The following simple proposition
describes the convergence in S(Tdθ).
Proposition 2.3. A sequence {xn} ⊂ S(Tdθ) converges to x ∈ S(Tdθ) if and only if for every

m ∈ Nd0, D
mxn → Dmx in Tdθ .

Proof. Without loss of generality, we assume x = 0. Suppose that xn → 0 in S(Tdθ). Then for
m ∈ Nd0 and ε > 0, there exists an integer N such that for every n ≥ N,

d(xn, 0) =
∞∑

k=0

2−kpk(xn)
1 + pk(xn)

≤ 2−|m|1 ε

1 + ε
.

Thus, p|m|1(xn) ≤ ε, so ‖Dmxj‖∞ ≤ ε, which means Dmxn → 0 in Tdθ .

Conversely, assume that for every m ∈ Nd0, D
mxn → 0 in Tdθ . For ε > 0 let N0 be an integer

such that
∑

k>N0
2−k < ε

2 . Since D
mxn → 0 for |m|1 ≤ N0, there exists N ∈ N such that for

n > N,
N0∑

k=0

2−kpk(xn)
1 + pk(xn)

<
ε

2
.

Consequently, d(xn, 0) < ε. �

Definition 2.4. A distribution on Tdθ is a continuous linear functional on S(Tdθ). S ′(Tdθ) denotes
the space of distributions.

As a dual space, S ′(Tdθ) is endowed with the w*-topology. We will use the bracket 〈 , 〉 to denote
the duality between S(Tdθ) and S ′(Tdθ): 〈F, x〉 = F (x) for x ∈ S(Tdθ) and F ∈ S ′(Tdθ). We list some
elementary properties of distributions:

(1) For 1 ≤ p ≤ ∞, the space Lp(T
d
θ) naturally embeds into S ′(Tdθ): an element y ∈ Lp(T

d
θ) induces

a continuous functional on S(Tdθ) by x 7→ τ(yx).
(2) S(Tdθ) acts as a bimodule on S ′(Tdθ): for a, b ∈ S(Tdθ) and F ∈ S ′(Tdθ), aFb is the distribution

defined by x 7→ 〈F, bxa〉.
(3) The partial derivations ∂j extend to S ′(Tdθ) by duality: 〈∂jF, x〉 = −〈F, ∂jx〉. For m ∈ Nd0, we

use again Dm to denote the associated partial derivation on S ′(Tdθ).
(4) The Fourier transform extends to S ′(Tdθ): for F ∈ S ′(Tdθ) and m ∈ Zd, F̂ (m) = 〈F, (Um)∗〉.

The Fourier series of F converges to F according to any (reasonable) summation method:

F =
∑

m∈Zd

F̂ (m)Um .

2.2. Definitions and basic properties

We begin this section with a simple observation on Fourier multipliers on S(Tdθ) and S ′(Tdθ).
Let φ : Zd → C be a function of polynomial growth. Then its associated Fourier multiplier Mφ is
a continuous map on both S(Tdθ) and S ′(Tdθ). Here and in the sequel, a generic element of S ′(Tdθ)
is also denoted by x. Two specific Fourier multipliers will play a key role later: they are the Bessel
and Riesz potentials.
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Definition 2.5. Let α ∈ R. Define Jα on Rd and Iα on Rd \ {0} by

Jα(ξ) = (1 + |ξ|2)α2 and Iα(ξ) = |ξ|α .
Their associated Fourier multipliers are the Bessel and Riesz potentials of order α, denoted by Ja

and Iα, respectively.

By the above observation, Jα is a Fourier multiplier on S ′(Tdθ), and I
α is also a Fourier multiplier

on the subspace of S ′(Tdθ) of all x such that x̂(0) = 0. Note that

Jα = (1− (2π)−2∆)
α
2 and Iα = (−(2π)−2∆)

α
2 .

Definition 2.6. Let 1 ≤ p ≤ ∞, k ∈ N and α ∈ R.

(i) The Sobolev space of order k on Tdθ is defined to be

W k
p (T

d
θ) =

{
x ∈ S ′(Tdθ) : D

mx ∈ Lp(T
d
θ) for each m ∈ Nd0 with |m|1 ≤ k

}
,

equipped with the norm

‖x‖Wk
p
=

( ∑

0≤|m|1≤k
‖Dmx‖pp

) 1
p

.

(ii) The potential (or fractional) Sobolev space of order α is defined to be

Hα
p (T

d
θ) =

{
x ∈ S ′(Tdθ) : J

αx ∈ Lp(T
d
θ)
}
,

equipped with the norm

‖x‖Hαp = ‖Jαx‖p .

In the above definition of ‖x‖Wk
p
, we have followed the usual convention for p = ∞ that the

right-hand side is replaced by the corresponding supremum. This convention will be always made
in the sequel. We collect some basic properties of these spaces in the following:

Proposition 2.7. Let 1 ≤ p ≤ ∞, k ∈ N and α ∈ R.

(i) W k
p (T

d
θ) and H

α
p (T

d
θ) are Banach spaces.

(ii) The polynomial subalgebra Pθ of Tdθ is dense in W k
p (T

d
θ) and H

α
p (T

d
θ) for 1 ≤ p <∞. Conse-

quently, S(Tdθ) is dense in W k
p (T

d
θ) and H

α
p (T

d
θ).

(iii) For any β ∈ R, Jβ is an isometry from Hα
p (T

d
θ) onto Hα−β

p (Tdθ). In particular, Jα is an

isometry from Hα
p (T

d
θ) onto Lp(T

d
θ).

(iv) Hα
p (T

d
θ) ⊂ Hβ

p (T
d
θ) continuously whenever β < α.

Proof. (iii) is obvious. It implies (i) for Hα
p (T

d
θ).

(i) It suffices to show that W k
p (T

d
θ) is complete. Assume that {xn}n ⊂ W k

p (T
d
θ) is a Cauchy

sequence. Then for every |m|1 ≤ k, {Dmxn}n is a Cauchy sequence in Lp(T
d
θ), so D

mxn → ym in
Lp(T

d
θ). Particularly, {Dmxn}n converges to ym in S ′(Tdθ). On the other hand, since xn → y0 in

Lp(T
d
θ), for every x ∈ S(Tdθ) we have τ(xnDmx) → τ(y0D

mx). Thus {Dmxn}n converges to Dmy0
in S ′(Tdθ). Consequently, D

my0 = ym for |m|1 ≤ k. Hence, y0 ∈ W k
p (T

d
θ) and xn → y0 in W k

p (T
d
θ).

(ii) Consider the square Fejér mean

FN (x) =
∑

m∈Zd,maxj |mj|≤N

(
1− |m1|

N + 1

)
· · ·

(
1− |md|

N + 1

)
x̂(m)Um.

By [17, Proposition 3.1], limN→∞ FN (x) = x in Lp(T
d
θ). On the other hand, FN commutes with

Dm: FN (Dmx) = DmFN (x). We then deduce that limN→∞ FN (x) = x in W k
p (T

d
θ) for every

x ∈ W k
p (T

d
θ). Thus Pθ is dense in W k

p (T
d
θ). On the other hand, FN and Jα commute; so by (iii),

the density of Pθ in Lp(T
d
θ) implies its density in Hα

p (T
d
θ).

(iv) It is well known that if γ < 0, the inverse Fourier transform of Jγ is an integrable function
on Rd (see [67, Proposition V.3]). Thus, Lemma 1.7 implies that Jβ−α is a bounded map on Lp(T

d
θ)

with norm majorized by
∥∥F−1(Jβ−α)

∥∥
L1(Rd)

. This is the desired assertion. �

The following shows that the potential Sobolev spaces can be also characterized by the Riesz
potential.
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Theorem 2.8. Let 1 ≤ p ≤ ∞. Then

‖x‖Hαp ≈
(
|x̂(0)|p + ‖Iα(x − x̂(0))‖pp

) 1
p

,

where the equivalence constants depend only on α and d.

Proof. By changing α to −α, we can assume α > 0. It suffices to show ‖Iαx‖p ≈ ‖Jαx‖p for

x̂(0) = 0. By [67, Lemma V.3.2], IαJα is the Fourier transform of a bounded measure on Rd, which,

together with Lemma 1.7, yields ‖Iαx‖p . ‖Jαx‖p.
To show the converse inequality, let η be an infinite differentiable function on Rd such that

η(ξ) = 0 for |ξ| ≤ 1
2 and η(ξ) = 1 for |ξ| ≥ 1, and let φ = JαI−αη. Then the Fourier multiplier

with symbol φIα coincides with Jα on the subspace of distributions on Tdθ with vanishing Fourier
coefficients at the origin. Thus we are reduced to proving F−1(φ) ∈ L1(R

d). To that end, first
observe that for any m ∈ Nd0, ∣∣Dmφ(ξ)

∣∣ . 1

|ξ||m|1+2
.

Consider first the case d ≥ 3. Choose positive integers ℓ and k such that d
2 − 2 < ℓ < d

2 and k > d
2 .

Then by the Cauchy-Schwarz inequality and the Plancherel theorem,
(∫

|s|<1

|F−1φ(s)|ds
)2

≤
∫

|s|<1

|s|−2ℓds

∫

|s|<1

|s|2ℓ|F−1φ(s)|2ds

.
∑

m∈Nd0,|m|1=ℓ

∫

Rd

|Dmφ(ξ)|2dξ

.

∫

|ξ|≥ 1
2

1

|ξ|2(ℓ+2)
dξ . 1.

On the other hand,
(∫

|s|≥1

|F−1φ(s)|ds
)2

≤
∫

|s|≥1

|s|−2kds

∫

|s|≥1

|s|2k|F−1φ(s)|2ds

.
∑

m∈Nd0 ,|m|1=k

∫

Rd

|Dmφ(ξ)|2dξ . 1.

Thus F−1(φ) is integrable for d ≥ 3.
If d ≤ 2, the second part above remains valid, while the first one should be modified since the

required positive integer ℓ does not exist for d ≤ 2. We will consider d = 2 and d = 1 separately.
For d = 2, choosing 0 < ε < 1

2 , we have
∫

|s|<1

|F−1φ(s)|ds ≤
( ∫

|s|<1

|s|−2εds
) 1

2
( ∫

Rd

|s|2ε|F−1φ(s)|2ds
) 1

2

. ‖Iεφ‖2 .

Writing Iε = Iε−1 I1 and using the classical Hardy-Littlewood-Sobolev inequality (see [67, Theo-
rem V.1]) and the Riesz transform, we obtain

‖Iεφ‖2 . ‖I1φ‖q ≈ ‖∇φ‖q .
( ∫

|ξ|≥ 1
2

1

|ξ|3q dξ
) 1
q

. 1 ,

where 1
q = 1− ε

2 (so 1 < q <∞). Thus we are done in the case d = 2.

It remains to deal with the one-dimensional case. Write

φ(ξ) = (1 + ξ−2)
α
2 η(ξ) = η(ξ) + ρ(ξ)η(ξ), ξ ∈ R \ {0},

where ρ(ξ) = O(ξ−2) as |ξ| → ∞. Since η − 1 is infinitely differentiable and supported by [−1, 1],
its inverse Fourier transform is integrable. So η is the Fourier transform of a finite measure on R.
On one hand, as ρη ∈ L1(R

d), F−1(ρη) is a bounded continuous function, so it is integrable on
[−1, 1]. On the other hand, by the second part of the preceding argument for d ≥ 3, we see that
F−1(ρη) is integrable outside [−1, 1] too, whence F−1(ρη) ∈ L1(R

d). We thus deduce that φ is
the Fourier transform of a finite measure on R. Hence the assertion is completely proved. �

Theorem 2.9. Let 1 < p <∞. Then Hk
p (T

d
θ) =W k

p (T
d
θ) with equivalent norms.
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Proof. This proof is based on Fourier multipliers by virtue of Lemma 1.7. For any m ∈ Nd0 with

|m|1 ≤ k, the function φ, defined by φ(ξ) = (2πi)|m|1ξm(1+ |ξ|2)− k
2 , is clearly a Mikhlin multiplier.

Then for any x ∈ S ′(Tdθ),

‖Dmx‖p = ‖Mφ(J
kx)‖p . ‖Jkx‖p ,

whence ‖x‖Wk
p
. ‖x‖Hkp . To prove the converse inequality, choose an infinite differentiable function

χ on R such that χ = 0 on {ξ : |ξ| ≤ 4−1} and χ = 1 on {ξ : |ξ| ≥ 2−1}. Let

φ(ξ) =
(1 + |ξ|2) k2

1 + χ(ξ1)|ξ1|k + · · ·+ χ(ξd)|ξd|k
and φj(ξ) =

χ(ξj)|ξj |k
(2πi ξj)k

, 1 ≤ j ≤ d.

These are Mikhlin multipliers too, and

Jkx =Mφ(x+Mφ1∂
k
1x+ · · ·+Mφd∂

k
dx).

It then follows that

‖x‖Hkp .
(
‖x‖pp +

d∑

j=1

‖∂kj x‖pp
) 1
p ≤ ‖x‖Wk

p
.

The assertion is thus proved. �

Remark 2.10. Incidentally, the above proof shows that if 1 < p <∞, then

‖x‖Wk
p
≈

(
‖x‖pp +

d∑

j=1

‖∂kj x‖pp
) 1
p

with relevant constants depending only on p and d.

However, if one allows the above sum to run over all partial derivations of order k, then p can
be equal to 1 or ∞. Namely, for any 1 ≤ p ≤ ∞,

‖x‖Wk
p
≈

(
‖x‖pp +

∑

m∈Nd0, |m|1=k
‖Dmx‖pp

) 1
p

with relevant constants depending only on d. This equivalence can be proved by standard argu-
ments (see Lemma 2.15 below and its proof). In fact, we have a nicer result, a Poincaré-type
inequality:

‖x‖p .
d∑

j=1

‖∂jx‖p

for any x ∈ W 1
p (T

d
θ) with x̂(0) = 0. So ‖x‖p can be removed from the right-hand side of the above

equivalence. This inequality will be proved in the next section.

We conclude this section with an easy description of the dual space of W k
p (T

d
θ). Let N =

N(d, k) =
∑
m∈Nd0 , 0≤|m|1≤k 1 and

LNp =

N∏

j=1

Lp(T
d
θ) equipped with the norm ‖x‖LNp =

( N∑

j=1

‖xj‖pp
) 1
p

.

The map x 7→ (Dmx)0≤|m|1≤k establishes an isometry from W k
p (T

d
θ) into L

N
p . Therefore, the dual

of W k
p (T

d
θ) with 1 ≤ p <∞ is identified with a quotient of LNp′ , where p

′ is the conjugate index of

p. More precisely, for every ℓ ∈ (W k
p (T

d
θ))

∗ there exists an element y = (ym)m∈Nd0 , 0≤|m|1≤k ∈ LNp′

such that

(2.2) ℓ(x) =
∑

0≤|m|1≤k
τ(ymD

mx), ∀x ∈W k
p (T

d
θ),

and

‖ℓ‖(Wk
p )

∗ = inf ‖y‖LN
p′
,

the infimum running over all y ∈ LNp′ as above.
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(W k
p (T

d
θ))

∗ can be described as a space of distributions. Indeed, let ℓ ∈ (W k
p (T

d
θ))

∗ and y ∈ LNp′

be a representative of ℓ as in (2.2). Define ℓy ∈ S ′(Tdθ) by

(2.3) ℓy =
∑

0≤|m|1≤k
(−1)|m|1Dmym.

Then

ℓy(x) =
∑

0≤|m|1≤k
τ(ymD

mx) = ℓ(x), x ∈ S(Tdθ).

So ℓ is an extension of ℓy; moreover,

‖ℓ‖(Wk
p )

∗ = min{‖y‖LN
p′
: ℓ extends ℓy given by (2.3)}.

Conversely, suppose ℓ is an element of S ′(Tdθ) of the above form ℓy for some y ∈ LNp′ . Then by the

density of S(Tdθ) in W k
p (T

d
θ), ℓ extends uniquely to a continuous functional on W k

p (T
d
θ). Thus we

have proved the following

Proposition 2.11. Let 1 ≤ p <∞ and W−k
p′ (Tdθ) be the space of those distributions ℓ which admit

a representative ℓy as above, equipped with the norm inf{‖y‖LN
p′

: y as in (2.3)}. Then (W k
p (T

d
θ))

∗

is isometric to W−k
p′ (Tdθ).

Note that the duality problem for the potential Sobolev spaces is trivial. Since Jα is an isometry
between Hα

p (T
d
θ) and Lp(T

d
θ), we see that for 1 ≤ p < ∞ and α ∈ R, the dual space of Hα

p (T
d
θ)

coincides with H−α
p′ (Tdθ) isometrically.

2.3. A Poincaré-type inequality

For x ∈W k
p (T

d
θ) let

|x|Wk
p
=

( ∑

m∈Nd0, |m|1=k
‖Dmx‖pp

) 1
p

.

Theorem 2.12. Let 1 ≤ p ≤ ∞. Then for any x ∈ W 1
p (T

d
θ),

‖x− x̂(0)‖p . |x|W 1
p
.

More generally, if k ∈ N and x ∈ W k
p (T

d
θ) with x̂(0) = 0, then

|x|W j
p
. |x|Wk

p
, ∀ 0 ≤ j < k.

Consequently, |x̂(0)|+ |x|Wk
p
is an equivalent norm on W k

p (T
d
θ).

The proof given below is quite different from standard approaches to the Poincaré inequality.
We will divide it into several lemmas, each of which might be interesting in its own right. We start
with the following definition which will be frequently used later. Note that the function eu and the
translation operator Tu have been defined in Remark 2.1.

Definition 2.13. Given u ∈ Rd let du = eu − 1. The Fourier multiplier on Tdθ with symbol du is
called the difference operator by u and denoted by ∆u.

Remark 2.14. Note that eu is the Fourier transform of the Dirac measure δu at u. Thus considered
as operators on Lp(T

d
θ) with 1 ≤ p ≤ ∞, Tu is an isometry and ∆u is of norm 2.

Lemma 2.15. Let 1 ≤ p ≤ ∞, and j, k ∈ N with j < k. Then for any x ∈W k
p (T

d
θ),

|x|W j
p
. ‖x‖1−

j
k

p |x|
j
k

Wk
p
.

Proof. Fix x ∈ W k
p (T

d
θ) with x̂(0) = 0. For any u, ξ ∈ Rd we have

du(ξ)−
∂

∂r
dru(ξ)

∣∣
r=0

=

∫ 1

0

( ∂
∂r
dru(ξ)−

∂

∂r
dru(ξ)

∣∣
r=0

)
dr

=

∫ 1

0

∫ r

0

∂2

∂s2
dsu(ξ) ds dr.
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Since
∂

∂r
dru(ξ) = eru(ξ)(2πiu · ξ) and

∂2

∂s2
dsu(ξ) = esu(ξ)(2πiu · ξ)2 ,

letting u = tej with t > 0 and ej the jth canonical basic vector of Rd, we deduce

∆ux− t∂jx =

∫ 1

0

∫ r

0

Tsu(t
2∂2j x)ds dr.

Thus

t‖∂jx‖p ≤ ‖∆ux‖p + t2
∫ 1

0

∫ r

0

‖Tsu(∂2j x)‖pds dr ≤ 2‖x‖p +
t2

2
‖∂2jx‖p .

Dividing by t and taking the infimum over all t > 0, we get

(2.4) ‖∂jx‖p ≤ 2
√
‖x‖p‖∂2jx‖p.

This gives the assertion for the case j = 1 and k = 2. An iteration argument yields the general
case. �

Lemma 2.16. Let j ∈ {1, · · · , d} and x ∈ W 2
p (T

d
θ) such that mj 6= 0 whenever x̂(m) 6= 0 for

m ∈ Zd. Then

‖x‖p ≤ c‖∂2jx‖p ,
where c is a universal constant. More generally, for any x ∈W 2

p (T
d
θ) with x̂(0) = 0

‖x‖p ≤ c

d∑

j=1

‖∂2jx‖p .

Proof. Assume j = 1. Define φ : Z → R by

φ(m1) =
1

m2
1

for m1 ∈ Z \ {0} and φ(m1) = 0 for m1 = 0.

We also view φ as a function on Zd, independent of (m2, · · · ,md). Then the inequality to prove
amounts to showing that φ is a bounded Fourier multiplier on Lp(T

d
θ) for any 1 ≤ p ≤ ∞. This is

easy. Indeed, let ψ : R → R be the 2π-periodic even function determined by

ψ(s) =
(π − s)2

2
− π2

6
for s ∈ [0, π).

Then

ψ̂ = φ and ‖ψ‖L1(T) =
2π2

9
√
3
.

Thus by Lemma 1.3, φ is a bounded Fourier multiplier on Lp(T
d
θ) with norm 2π2

9
√
3
, which proves

the first inequality of the lemma.
The second one is an immediate consequence of the first. Indeed, let EU1,··· ,Ud−1

be the trace

preserving conditional expectation from Tdθ onto the subalgebra generated by (U1, · · · , Ud−1). Let
x′ = EU1,··· ,Ud−1

(x) and xd = x− x′. Then md 6= 0 whenever x̂d(m) 6= 0 for m ∈ Zd. Thus

‖xd‖p ≤ c‖∂2dxd‖p = c‖∂2dx‖p .
Since x′ depends only on (U1, · · · , Ud−1), an induction argument then yields the desired inequality.

�

Lemma 2.17. The sequence {|x|Wk
p
}k≥1 is increasing, up to constants. More precisely, for any

k ≥ 1 there exists a constant cd,k such that

|x|Wk
p
≤ cd,k |x|Wk+1

p
, ∀x ∈ W k

p (T
d
θ).

Proof. The proof is done easily by induction with the help of the previous two lemmas. Indeed,
we have (assuming x̂(0) = 0)

|x|W 1
p
.

√
‖x‖p |x|W 2

p
. |x|W 2

p
.

Thus the assertion is proved for k = 1. Then induction gives the general case by virtue of
Lemma 2.15. �
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Proof of Theorem 2.12. By the preceding lemma, it remains to show ‖x‖p . |x|W 1
p
for any x ∈

W 1
p (T

d
θ) with x̂(0) = 0. By approximation, we can assume that x is a polynomial. We proceed by

induction on the dimension d. Consider first the case d = 1. Then

x =
∑

m1∈Z\{0}
x̂(m1)U

m1
1 .

Define

y =
∑

m1∈Z\{0}

1

2πim1
x̂(m1)U

m1
1 .

Then ∂1y = x and ∂21y = ∂1x. Thus Lemma 2.16 implies ‖x‖p . ‖∂1x‖p.
Now consider a polynomial x in (U1, · · · , Ud). As in the proof of Lemma 2.16, let x′ =

EU1,··· ,Ud−1
(x) and xd = x− x′. The induction hypothesis implies

‖x′‖p . |x′|W 1
p
=

( d−1∑

j=1

‖EU1,··· ,Ud−1
(∂jx)‖pp

) 1
p ≤ |x|W 1

p
,

where we have used the commutation between EU1,··· ,Ud−1
and the partial derivations.

To handle the term xd, recalling that md 6= 0 whenever x̂d(m) 6= 0 for m ∈ Zd, we introduce

yd =
∑

m∈Zd

1

2πimd
x̂d(m)Um .

Then ∂dyd = xd. So by (2.4) and Lemma 2.16,

‖xd‖p .
√
‖yd‖p ‖∂2dyd‖p . ‖∂2dyd‖p = ‖∂dxd‖p .

Thus we are done, so the theorem is proved. �

2.4. Lipschitz classes

In this section we show that W k
∞(Tdθ) is the quantum analogue of the classical Lipschitz class

of order k. We will use the translation and difference operators introduced in Remark 2.1 and
Definition 2.13. Note that for any positive integer k, T ku = Tku and ∆k

u is the kth difference
operator by u ∈ Rd.

Definition 2.18. Let k be a positive integer and 1 ≤ p ≤ ∞.

(i) The kth order modulus of Lp-smoothness of an element x ∈ Lp(T
d
θ) is defined by

ωkp (x, ε) = sup
0<|u|≤ε

∥∥∆k
ux

∥∥
p
.

(ii) An element x is said to be Lp-Lipschitzian of order k if

sup
ε>0

ωkp(x, ε)

εk
<∞.

Let Lipkp(T
d
θ) denote the class of all elements that are Lp-Lipschitzian of order k, equipped

with the norm

‖x‖Lipkp = |x̂(0)|+ sup
ε>0

ωkp (x, ε)

εk
.

(iii) The little Lipschitz class Lipkp,0(T
d
θ) of order k is defined to be the subspace of Lipkp(T

d
θ)

consisting of all elements x such that

lim
ε→0

ωkp (x, ε)

εk
= 0.

The spaces Lip1∞(Tdθ) and Lip1∞,0(T
d
θ) were introduced by Weaver [78, 79].

Remark 2.19. It is clear that ωkp(x, ε) ≤ 2k‖x‖p and ωkp (x, ε) is nondecreasing in ε. On the other

hand, ω1
p(x, ε) is subadditive in ε; for k ≥ 2, ωkp(x, ε) is quasi subadditive in the sense that there

exists a constant c = ck such that ωkp (x, ε+ η) ≤ c (ωkp(x, ε) + ωkp (x, η)).

The following is the main result of this section.
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Theorem 2.20. Let k be a positive integer and 1 ≤ p ≤ ∞. Then W k
p (T

d
θ) = Lipkp(T

d
θ) with

equivalent norms. More precisely,

sup
ε>0

ωkp (x, ε)

εk
≈ |x|Wk

p
, ∀x ∈ W k

p (T
d
θ) ,

where the equivalence constants depend only on d and k.

We require the following lemma for the proof.

Lemma 2.21. For any x ∈ Lp(T
d
θ),

lim
ε→0

ωkp(x, ε)

εk
= sup

0<ε≤1

ωkp(x, ε)

εk
.

Proof. The assertion for k = 1 is a common property of increasing and subadditive functions (in
ε), and easy to check. Indeed, for any 0 < ε, δ < 1, choose n ∈ N such that nδ ≤ ε < (n + 1)δ.
Then

ω1
p(x, ε)

ε
≤ n+ 1

n

ω1
p(x, δ)

δ
,

whence the result for k = 1. The general case is treated in the same way. Instead of being
subadditive, ωkp (x, ε) is quasi subadditive in the sense that ωkp(x, nε) ≤ nkωkp(x, ε) for any n ∈ N.
The latter follows immediately from

dknu =
( n−1∑

j=0

eju
)k
dku, so ∆k

nu =
( n−1∑

j=0

Tju
)k

∆k
u.

Thus the lemma is proved. �

Proof of Theorem 2.20. If the assertion is proved for all p < ∞ with constants independent of p,
the case p = ∞ will follow by letting p→ ∞. So we will assume p <∞.

We first consider the case k = 1 whose proof contains all main ideas. As in the proof of
Lemma 2.15, for any u ∈ Rd, we have

du(ξ) =

∫ 1

0

∂

∂t
dtu(ξ)dt =

∫ 1

0

etu(ξ) (2πiu · ξ)dt, ξ ∈ Rd .

In terms of Fourier multipliers, this yields

∆ux =

∫ 1

0

Ttu(u · ∇x)dt,

where u · ∇x = u1∂1x+ · · ·+ ud∂dx. Since the translation Ttu is isometric, it then follows that

(2.5) ‖∆ux‖p ≤ |u|
∥∥(|∂1x|2 + · · ·+ |∂dx|2

) 1
2
∥∥
p

def
= |u| ‖∇x‖p ,

whence

lim
ε→0

ω1
p(x, ε)

ε
≤ ‖∇x‖p .

To show the converse inequality, by the density of Pθ in W k
p (T

d
θ) (see Proposition 2.7), we can

assume that x is a polynomial. Given u ∈ Rd define φ on Rd by

φ(ξ) = du(ξ)−
∂

∂t
dtu(ξ)

∣∣∣
t=0

.

Then the Fourier multiplier on Tdθ associated to φ is

φ̃ ∗ x = ∆ux− u · ∇x.
Thus if |u| = ε,

‖u · ∇x‖p ≤ ωp(x, ε) + sup
|u|=ε

‖∆ux− u · ∇x‖p .

Since x is a polynomial,

lim
ε→0

sup
|u|=ε

‖∆ux− u · ∇x‖p
ε

= 0.
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For u = (ε, 0, · · · , 0), we then deduce

‖∂1x‖p ≤ lim
ε→0

ωp(x, ε)

ε
.

Hence the desired assertion for k = 1 is proved.
Now we consider the case k > 1. (2.5) can be easily iterated as follows:

‖∆k
ux‖p ≤ |u|

d∑

j=1

‖∂j∆k−1
u x‖p = |u|

d∑

j=1

‖∆k−1
u ∂jx‖p

≤ |u|k
∑

|m|1=k
‖∆mx‖p ≈ |u|k |x|Wk

p
.

So

sup
ε>0

ωkp (x, ε)

εk
. |x|Wk

p
.

The converse inequality is proved similarly to the case k = 1. Let m ∈ Nd0 with |m|1 = k. For each
j with mj > 0, using the Taylor formula of the function dεej (recalling that (e1 , · · · , ed) denotes

the canonical basis of Rd), we get

∆
mj
εejx = εmj ∂

mj
j x+ o(εmj ) ,

which implies
d∏

j=0

∆
mj
εejx = εkDmx+ o(εk) as ε→ 0.

Thus by the next lemma, we deduce

‖Dmx‖p ≤ ε−k
∥∥

d∏

j=0

∆
mj
εejx

∥∥
p
+ o(1) . ε−kωkp(x, ε) + o(1),

whence the desired converse inequality by letting ε → 0. So the theorem is proved modulo the
next lemma. �

Lemma 2.22. Let u1, · · · , uk ∈ Rd. Then

∆u1 · · ·∆uk =
∑

D⊂{1,··· ,k}
(−1)|D| TuD∆

k
uD ,

where the sum runs over all subsets of {1, · · · , k}, and where

uD =
∑

j∈D
uj, uD =

∑

j∈D

1

j
uj .

Consequently, for ε > 0 and x ∈ Lp(T
d
θ),

sup
|u1|≤ε,··· ,|uk|≤ε

∥∥∆u1 · · ·∆ukx
∥∥
p
≈ ωkp(x, ε).

Proof. This is a well-known lemma in the classical setting (see [6, Lemma 5.4.11]). We outline its
proof for the convenience of the reader. The above equality is equivalent to the corresponding one
with ∆u and Tu replaced by du and eu, respectively. Setting

v =
∑

ℓ∈D
ℓuℓ and w = −

∑

ℓ∈D
uℓ ,

for each 0 ≤ j ≤ k, we have

k∏

ℓ=1

d(ℓ−j)uℓ =
∑

D⊂{1,··· ,k}
(−1)k−|D| ∏

ℓ∈D
e(ℓ−j)uℓ

=
∑

D⊂{1,··· ,k}
(−1)k−|D|ev (ew)

j .
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The left hand side is nonzero only for j = 0. Multiply by (−1)k−j
(
k

j

)
and sum over 0 ≤ j ≤ k;

then replacing uℓ by
uℓ
ℓ gives the desired equality. �

Remark 2.23. It might be interesting to note that in the commutative case, the proof of Theo-
rem 2.20 shows

sup
0<ε≤1

ωp(x, ε)

ε
= lim

ε→0

ωp(x, ε)

ε
= ‖∇x‖p .

So Lemma 2.21 is not needed in this case.

2.5. The link with the classical Sobolev spaces

The transference enables us to establish a strong link between the quantum Sobolev spaces
defined previously and the vector-valued Sobolev spaces on Td. Note that the theory of vector-
valued Sobolev spaces is well-known and can be found in many books on the subject (see, for
instance, [2]). Here we just recall some basic notions. In the sequel, X will always denote a
(complex) Banach space.

Let S(Td;X) be the space of X-valued infinitely differentiable functions on Td with the standard
Fréchet topology, and S ′(Td;X) be the space of continuous linear maps from S(Td) to X . All
operations on S(Td) such as derivations, convolution and Fourier transform transfer to S ′(Td;X)
in the usual way. On the other hand, Lp(T

d;X) naturally embeds into S ′(Td;X) for 1 ≤ p ≤ ∞,
where Lp(T

d;X) stands for the space of strongly p-integrable functions from Td to X .

Definition 2.24. Let 1 ≤ p ≤ ∞, k ∈ N and α ∈ R.

(i) The X-valued Sobolev space of order k is

W k
p (T

d;X) =
{
f ∈ S ′(Td;X) : Dmf ∈ Lp(T

d;X) for each m ∈ Nd0 with |m|1 ≤ k
}

equipped with the norm

‖f‖Wk
p
=

( ∑

0≤|m|1≤k
‖Dmf‖p

Lp(Td;X)

) 1
p

.

(ii) The X-valued potential Sobolev space of order α is

Hα
p (T

d;X) =
{
f ∈ S ′(Td;X) : Jαf ∈ Lp(T

d;X)
}

equipped with the norm
‖f‖Hαp = ‖Jαf‖Lp(Td;X) .

Remark 2.25. There exists a parallel theory of vector-valued Sobolev spaces on Rd. In fact,
a majority of the literature on the subject is devoted to the case of Rd which is simpler from
the pointview of treatment. The corresponding spaces are W k

p (R
d;X) and Hα

p (R
d;X). They are

subspaces of S ′(Rd;X). The latter is the space of X-valued distributions on Rd, that is, the space
of continuous linear maps from S(Rd) to X . We will sometimes use the space S(Rd;X) of X-valued
Schwartz functions on Rd. We set W k

p (R
d) =W k

p (R
d;C) and Hα

p (R
d) = Hα

p (R
d;C).

The properties of the Sobolev spaces on Tdθ in the previous sections also hold for the present
setting. For instance, the proof of Proposition 2.9 and Lemma 1.6 give the following well-known
result:

Remark 2.26. Let X be a UMD space. Then W k
p (T

d;X) = Hk
p (T

d;X) with equivalent norms
for 1 < p <∞.

Let us also mention that Theorem 2.12, the Poincaré inequality, transfers to the vector-valued
case too. It seems that this result does not appear in literature but it should be known to experts.
We record it explicitly here.

Theorem 2.27. Let X be a Banach space and 1 ≤ p ≤ ∞, k ∈ N. Then
(
‖f̂(0)‖pX +

∑

m∈Nd0, |m|1=k
‖Dmf‖p

Lp(Td;X)

) 1
p

is an equivalent norm on W k
p (T

d;X) with relevant constants depending only on d and k.
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Now we use the transference method in Corollary 1.2. It is clear that the map x 7→ x̃ there

commutes with ∂j , that is, ∂j x̃ = ∂̃jx (noting that the ∂j on the left-hand side is the jth partial
derivation on Td and that on the right-hand side is the one on Tdθ). On the other hand, the
expectation in that corollary commutes with ∂j too. We then deduce the following:

Proposition 2.28. Let 1 ≤ p ≤ ∞. The map x 7→ x̃ is an isometric embedding from W k
p (T

d
θ)

and Hα
p (T

d
θ) into W

k
p (T

d;Lp(T
d
θ)) and H

α
p (T

d;Lp(T
d
θ)), respectively. Moreover, the ranges of these

embeddings are 1-complemented in their respective spaces.

This result allows us to reduce many problems about W k
p (T

d
θ) to the corresponding ones about

W k
p (T

d;Lp(T
d
θ)). For example, we could deduce the properties of W k

p (T
d
θ) in the preceding sections

from those ofW k
p (T

d;Lp(T
d
θ)). But we have chosen to work directly on Tdθ for the following reasons.

It is more desirable to develop an intrinsic quantum theory, so we work directly on Tdθ whenever
possible. On the other hand, the existing literature on vector-valued Sobolev spaces often concerns
the case of Rd, for instance, there exist few publications on periodic Besov or Triebel-Lizorkin
spaces. In order to use existing results, we have to transfer them from Rd to Td. However,
although it is often easy, this transfer may not be obvious at all, which is the case for Hardy spaces
treated in [17] and recalled in section 1.4. This difficulty will appear again later for Besov and
Triebel-Lizorkin spaces.

Remark 2.29. The preceding discussion on vector-valued Sobolev spaces on Td can be also trans-
ferred to the quantum case. We have seen in section 1.3 that all noncommutative Lp-spaces are
equipped with their natural operator space structure. Thus W k

p (T
d
θ) and Hα

p (T
d
θ) becomes oper-

ator spaces in the natural way. More generally, given an operator space E, following Pisier [54],
we define the E-valued noncommutative Lp-space Lp(T

d
θ ;E) (recalling that Tdθ is an injective von

Neumann algebra). Similarly, we define the E-valued distribution space S ′(Tdθ ;E) that consists
of continuous linear maps from S(Tdθ) to E. Then as in Definition 2.6, we define the correspond-
ing Sobolev spaces W k

p (T
d
θ ;E) and Hα

p (T
d
θ ;E). Almost all previous results remain valid in this

vector-valued setting since all Fourier multipliers used in their proofs are c.b. maps. For instance,
Theorem 2.9 (or Remark 2.26) now becomes Hk

p (T
d
θ ;E) =W k

p (T
d
θ ;E) for any 1 < p <∞ and any

OUMD space E (OUMD is the operator space version of UMD; see [54]). Note that we recover
W k
p (T

d;E) and Hα
p (T

d;E) if θ = 0 and if E is equipped with its minimal operator space structure.

Chapter 3. Besov spaces

We study Besov spaces on Tdθ in this chapter. The first section presents the relevant definitions
and some basic properties of these spaces. The second one shows a general characterization of
them. This is the most technical part of the chapter. The formulation of our characterization is
very similar to Triebel’s classical theorem. Although modeled on Triebel’s pattern, our proof is
harder than his. The main difficulty is due to the unavailability in the noncommutative setting
of the usual techniques involving maximal functions which play an important role in the study
of the classical Besov and Triebel-Lizorkin spaces. Like for the Sobolev spaces in the previous
chapter, Fourier multipliers are our main tool. We then concretize this general characterization by
means of Poisson, heat kernels and differences. We would like to point out that when θ = 0 (the
commutative case), these characterizations (except that by differences) improve the corresponding
ones in the classical case. Using the characterization by differences, we extend a recent result of
Bourgain, Brézis and Mironescu on the limits of Besov norms to the quantum setting. The chapter
ends with a section on vector-valued Besov spaces on Td.

3.1. Definitions and basic properties

We will use Littlewood-Paley decompositions as in the classical theory. Let ϕ be a Schwartz
function on Rd such that

(3.1)





suppϕ ⊂ {ξ : 2−1 ≤ |ξ| ≤ 2},
ϕ > 0 on {ξ : 2−1 < |ξ| < 2},
∑

k∈Z

ϕ(2−kξ) = 1, ξ 6= 0.
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Note that if m ∈ Zd with m 6= 0, ϕ(2−km) = 0 for all k < 0, so
∑

k≥0

ϕ(2−km) = 1, m ∈ Zd \ {0} .

On the other hand, the support of the function ϕ(2−k·) is equal to {ξ : 2k−1 ≤ |ξ| ≤ 2k+1}, thus
suppϕ(2−k·) ∩ suppϕ(2−j ·) = ∅ whenver |j − k| ≥ 2; consequently,

(3.2) ϕ(2−k·) = ϕ(2−k·)
k+1∑

j=k−1

ϕ(2−j ·), k ≥ 0.

Therefore, the sequence {ϕ(2−k·)}k≥0 is a Littlewood-Paley decomposition of Td, modulo constant
functions.

The Fourier multiplier on S ′(Tdθ) with symbol ϕ(2−k·) is denoted by x 7→ ϕ̃k ∗ x:
ϕ̃k ∗ x =

∑

m∈Zd

ϕ(2−km)x̂(m)Um.

As noted in section 1.3, the convolution here has the usual sense. Indeed, let ϕk be the function
whose Fourier transform is equal to ϕ(2−k·), and let ϕ̃k be its 1-periodization, that is,

ϕ̃k(s) =
∑

m∈Zd

ϕk(s+m).

Viewed as a function on Td by our convention, ϕ̃k admits the following Fourier series:

ϕ̃k(z) =
∑

m∈Zd

ϕ(2−km)zm.

Thus for any distribution f on Td,

ϕ̃k ∗ f(z) =
∑

m∈Zd

ϕ(2−km)f̂(m)zm.

We will maintain the above notation throughout the remainder of the paper.

We can now start our study of quantum Besov spaces.

Definition 3.1. Let 1 ≤ p, q ≤ ∞ and α ∈ R. The associated Besov space on Tdθ is defined by

Bαp,q(T
d
θ) =

{
x ∈ S ′(Tdθ) : ‖x‖Bαp,q <∞

}
,

where

‖x‖Bαp,q =
(
|x̂(0)|q +

∑

k≥0

2qkα‖ϕ̃k ∗ x‖qp
) 1
q

.

Let Bαp,c0(T
d
θ) be the subspace of B

α
p,∞(Tdθ) consisting of all x such that 2kα‖ϕ̃k∗x‖p → 0 as k → ∞.

Remark 3.2. The Besov spaces defined above are independent of the choice of the function ϕ, up
to equivalent norms. More generally, let {ψ(k)}k≥0 be a sequence of Schwartz functions such that





suppψ(k) ⊂ {ξ : 2k−1 ≤ |ξ| ≤ 2k+1},
sup
k≥0

∥∥F−1(ψ(k))
∥∥
1
<∞,

∑

k≥0

ψ(k)(m) = 1, ∀m ∈ Zd \ {0}.

Let ψk = F−1(ψ(k)) and ψ̃k be the periodization of ψk. Then

‖x‖Bαp,q ≈
(
|x̂(0)|q +

∑

k≥0

2qkα‖ψ̃k ∗ x‖qp
) 1
q

.

Let us justify this remark. By the discussion leading to (3.2), we have (with ϕ̃−1 = 0)

ψ̃k ∗ x =
k+1∑

j=k−1

ψ̃k ∗ ϕ̃j ∗ x.
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By Lemma 1.7,

‖ψ̃k ∗ x‖p .
k+1∑

j=k−1

‖ϕ̃j ∗ x‖p.

It then follows that
(
|x̂(0)|q +

∑

k≥0

2qkα‖ψ̃k ∗ x‖qp
) 1
q

.
(
|x̂(0)|q +

∑

k≥0

2qkα‖ϕ̃k ∗ x‖qp
) 1
q

.

The reverse inequality is proved similarly.

Proposition 3.3. Let 1 ≤ p, q ≤ ∞ and α ∈ R.

(i) Bαp,q(T
d
θ) is a Banach space.

(ii) Bαp,q(T
d
θ) ⊂ Bαp,r(T

d
θ) for r > q and Bαp,q(T

d
θ) ⊂ Bβp,r(T

d
θ) for β < α and 1 ≤ r ≤ ∞.

(iii) Pθ is dense in Bαp,q(T
d
θ) and B

α
p,c0(T

d
θ) for 1 ≤ p ≤ ∞ and 1 ≤ q <∞.

(iv) The dual space of Bαp,q(T
d
θ) coincides isomorphically with B−α

p′,q′(T
d
θ) for 1 ≤ p ≤ ∞ and

1 ≤ q <∞, where p′ denotes the conjugate index of p. Moreover, the dual space of Bαp,c0(T
d
θ)

coincides isomorphically with B−α
p′,1(T

d
θ).

Proof. (i) To show the completeness of Bαp,q(T
d
θ), let {xn}n be a Cauchy sequence in Bαp,q(T

d
θ).

Then {x̂n(0)}n converges to some ŷ(0) in C, and for every k ≥ 0, {ϕ̃k ∗ xn}n converges to some yk
in Lp(T

d
θ). Let

y = ŷ(0) +
∑

k≥0

yk .

Since ŷk is supported in {m ∈ Zd : 2k−1 ≤ |m| ≤ 2k+1}, the above series converges in S ′(Tdθ). On
the other hand, by (3.2), as n→ ∞, we have

ϕ̃k ∗ xn =
k+1∑

j=k−1

ϕ̃k ∗ ϕ̃j ∗ xn →
k+1∑

j=k−1

ϕ̃k ∗ yj = ϕ̃k ∗ y.

We then deduce that y ∈ Bαp,q(T
d
θ) and xn → y in Bαp,q(T

d
θ).

(ii) is obvious.
(iii) We only show the density of Pθ in Bαp,q(T

d
θ) for finite q. For N ∈ N let

xN = x̂(0) +

N∑

j=0

ϕ̃j ∗ x.

Then by (3.1), ϕ̃k ∗ (x − xN ) = 0 for k ≤ N − 1, ϕ̃k ∗ (x − xN ) = ϕ̃k ∗ x for k > N + 1, and
ϕ̃N ∗ (x − xN ) = ϕ̃N ∗ x − ϕ̃N ∗ ϕ̃N ∗ x, ϕ̃N+1 ∗ (x − xN ) = ϕ̃N+1 ∗ x − ϕ̃N+1 ∗ ϕ̃N ∗ x. We then
deduce

‖x− xN‖qBαp,q ≤ 2
∑

k≥N
2qkα‖ϕ̃k ∗ x‖qp → 0 as N → ∞.

(iv) In this part, we view Bαp,q(T
d
θ) as Bαp,c0(T

d
θ) when q = ∞. Let y ∈ B−α

p′,q′(T
d
θ). Define

ℓy(x) = τ(xy) for x ∈ Pθ. Then

|ℓy(x)| =
∣∣x̂(0)ŷ(0) +

∑

k≥0

τ
(
ϕ̃k ∗ x

k+1∑

j=k−1

ϕ̃j ∗ y
)∣∣

≤ |x̂(0)ŷ(0)|+
∑

k≥0

∥∥ϕ̃k ∗ x
∥∥
p

∥∥
k+1∑

j=k−1

ϕ̃j ∗ y
∥∥
p′

. ‖x‖Bαp,q ‖y‖B−α

p′,q′
.

Thus by the density of Pθ in Bαp,q(T
d
θ), ℓy defines a continuous functional on Bαp,q(T

d
θ).

To prove the converse, we need a more notation. Given a Banach space X , let ℓαq (X) be the
weighted direct sum of (C, X,X, · · · ) in the ℓq-sense, that is, this is the space of all sequences
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(a, x0, x1, · · · ) with a ∈ C and xk ∈ X , equipped with the norm

(
|a|q +

∑

k≥0

2qkα‖xk‖q
) 1
q

.

If q = ∞, we replace ℓαq (X) by its subspace cα0 (X) consisting of sequences (a, x0, x1, · · · ) such that

2kα‖xk‖ → 0 as k → ∞. Recall that the dual space of ℓαq (X) is ℓ−αq′ (X∗). By definition, Bαp,q(T
d
θ)

embeds into ℓαq (Lp(T
d
θ)) via x 7→ (x̂(0), ϕ̃0 ∗ x, ϕ̃1 ∗ x, · · · ). Now let ℓ be a continuous functional on

Bαp,q(T
d
θ) for p < ∞. Then by the Hahn-Banach theorem, ℓ extends to a continuous functional on

ℓαq (Lp(T
d
θ)) of unit norm, so there exists a unit element (b, y0, y1, · · · ) belonging to ℓ−αq′ (Lp′(T

d
θ))

such that

ℓ(x) = bx̂(0) +
∑

k≥0

τ(ykϕ̃k ∗ x), x ∈ Bαp,q(T
d
θ).

Let

y = b+
∑

k≥0

(ϕ̃k−1 ∗ yk + ϕ̃k ∗ yk + ϕ̃k+1 ∗ yk) .

Then clearly y ∈ B−α
p′,q′(T

d
θ) and ℓ = ℓy when p < ∞. The same argument works for p = ∞ too.

Indeed, for ℓ as above, there exists a unit element (b, y0, y1, · · · ) belonging to ℓ−αq′ (L∞(Tdθ)
∗) such

that

ℓ(x) = bx̂(0) +
∑

k≥0

〈yk, ϕ̃k ∗ x〉, x ∈ Bαp,q(T
d
θ).

Let y be defined as above. Then y is still a distribution and
(
|ŷ(0)|q′ +

∑

k≥0

2q
′kα‖ϕ̃k ∗ y‖q

′

L∞(Td
θ
)∗

) 1
q′

<∞ .

Since it is a polynomial, ϕ̃k ∗ y belongs to L1(T
d
θ); and we have

‖ϕ̃k ∗ y‖L∞(Td
θ
)∗ = ‖ϕ̃k ∗ y‖L1(Tdθ)

.

Thus we are done for p = ∞ too. �

To proceed further, we require some elementary lemmas. Recall that Jα(ξ) = (1 + |ξ|2)α2 and
Iα(ξ) = |ξ|α.
Lemma 3.4. Let α ∈ R and k ∈ N0. Then

∥∥F−1(Jαϕk)
∥∥
1
. 2αk and

∥∥F−1(Iα ϕk)
∥∥
1
. 2αk .

where the constants depend only on ϕ, α and d. Consequently, for x ∈ Lp(T
d
θ) with 1 ≤ p ≤ ∞,

‖Jα(ϕ̃k ∗ x)‖p . 2αk‖ϕ̃k ∗ x‖p and ‖Iα(ϕ̃k ∗ x)‖p . 2αk‖ϕ̃k ∗ x‖p .
Proof. The first part is well-known and easy to check. Indeed,

∥∥F−1(Jαϕk)
∥∥
1
= 2αk

∥∥F−1((4−k + | · |2)α2 ϕ)
∥∥
1
;

the function (4−k + | · |2)α2 ϕ is a Schwartz function supported by {ξ : 2−1 ≤ |ξ| ≤ 2}, whose all
partial derivatives, up to a fixed order, are bounded uniformly in k, so

sup
k≥0

∥∥F−1((4−k + | · |2)α2 ϕ)
∥∥
1
<∞.

Similarly, ∥∥F−1(Iαϕk)
∥∥
1
= 2αk

∥∥F−1(Iαϕ)
∥∥
1
.

Since ϕk = ϕk(ϕk−1 + ϕk + ϕk+1), by Lemma 1.7, we obtain the second part. �

Given a ∈ R+, we define Di,a(ξ) = (2πiξi)
a for ξ ∈ Rd, and Da

i to be the associated Fourier
multiplier on Tdθ . We set Da = D1,a1 · · ·Dd,ad and D

a = Da1
1 · · ·Dad

d for any a = (a1, · · · , ad) ∈ Rd+.
Note that if a is a positive integer, Da

i = ∂ai , so there does not exist any conflict of notation. The
following lemma is well-known. We include a sketch of proof for the reader’s convenience (see the
proof of Remark 1 in Section 2.4.1 of [74]).
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Lemma 3.5. Let ρ be a compactly supported infinitely differentiable function on Rd. Assume

σ, β ∈ R+ and a ∈ Rd+ such that σ > d
2 , β > σ − d

2 and |a|1 > σ − d
2 . Then the functions Iβρ and

Daρ belong to Hσ
2 (R

d).

Proof. If σ is a positive integer, the assertion clearly holds in view of Hσ
2 (R

d) = W σ
2 (R

d). On
the other hand, Iβρ ∈ L2(R

d) = H0
2 (R

d) for β > − d
2 . The general case follows by complex

interpolation. Indeed, under the assumption on σ and β, we can choose σ1 ∈ N, β1, β0 ∈ R and
η ∈ (0 , 1) such that

σ1 > σ, β1 > σ1 −
d

2
, β0 > − d

2
, σ = ησ1 , β = (1− η)β0 + ηβ1 .

For a complex number z in the strip {z ∈ C : 0 ≤ Re(z) ≤ 1} define

Fz(ξ) = e(z−η)
2 |ξ|β0(1−z)+β1z ρ(ξ).

Then
sup
b∈R

∥∥Fib

∥∥
L2

.
∥∥Iβ0 ρ

∥∥
L2

and sup
b∈R

∥∥F1+ib

∥∥
H
σ1
2

.
∥∥Iβ1 ρ

∥∥
H
σ1
2

.

It thus follows that
Iβρ = Fη ∈ (L2(R

d), Hσ1

2 (Rd))η .

The second assertion is proved in the same way. �

The usefulness of the previous lemma relies upon the following well-known fact.

Remark 3.6. Let σ > d
2 and f ∈ Hσ

2 (R
d). Then

∥∥F−1(f)
∥∥
1
.

∥∥f
∥∥
Hσ2

.

The verification is extremely easy:
∥∥F−1(f)

∥∥
1
=

∫

|s|≤1

∣∣F−1(f)(s)
∣∣ds+

∑

k≥0

∫

2k<|s|≤2k+1

∣∣F−1(f)(s)
∣∣ds

.
(∫

|s|≤1

∣∣F−1(f)(s)
∣∣2ds+

∑

k≥0

22kσ
∫

2k<|s|≤2k+1

∣∣F−1(f)(s)
∣∣2ds

) 1
2

≈
∥∥f

∥∥
Hσ2

.

The following is the so-called reduction (or lifting) theorem of Besov spaces.

Theorem 3.7. Let 1 ≤ p, q ≤ ∞, α ∈ R.

(i) For any β ∈ R, both Jβ and Iβ are isomorphisms between Bαp,q(T
d
θ) and B

α−β
p,q (Tdθ).

(ii) Let a ∈ Rd+. If x ∈ Bαp,q(T
d
θ), then D

ax ∈ B
α−|a|1
p,q (Tdθ) and

‖Dax‖
B
α−|a|1
p,q

. ‖x‖Bαp,q .

(iii) Let β > 0. Then x ∈ Bαp,q(T
d
θ) iff D

β
i x ∈ Bα−βp,q (Tdθ) for all i = 1, · · · , d. Moreover, in this

case,

‖x‖Bαp,q ≈ |x̂(0)|+
d∑

i=1

‖Dβ
i x‖Bα−β

p,q
.

Proof. (i) Let x ∈ Bsp,q(T
d
θ) with x̂(0) = 0. Then by Lemma 3.4,

‖Jβx‖Bα−β
p,q

=
(∑

k≥0

(
2k(α−β)‖Jβ(ϕ̃k ∗ x)‖p

)q) 1
q

.
(∑

k≥0

(
2kα‖ϕ̃k ∗ x‖p

)q) 1
q

= ‖x‖Bαp,q .

Thus Jβ is bounded from Bαp,q(T
d
θ) to Bα−βp,q (Tdθ), and its inverse, which is J−β , is bounded too.

The case of Iβ is treated similarly.
(ii) By Lemma 3.5 and Remark 3.6, we have

∥∥F−1(Daϕk)
∥∥
1
= 2k|a|1

∥∥F−1(Daϕ)
∥∥
1
. 2k|a|1 .
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Consequently, by Lemma 1.7,

‖ϕ̃k ∗Dax‖p . 2k|a|1‖ϕ̃k ∗ x‖p , ∀j ≥ 0,

whence

‖Dax‖
B
α−|a|1
p,q

. ‖x‖Bαp,q .
(iii) One implication is contained in (ii). To show the other, choose an infinitely differentiable

function χ : R → R+ such that χ(s) = 0 if |s| < 1
4
√
d
and χ(s) = 1 if |s| ≥ 1

2
√
d
. For i = 1, · · · , d,

let χi on Rd be defined by

χi(ξ) =
1

χ(ξ1)|ξ1|β + · · ·+ χ(ξd)|ξd|β
χ(ξi)|ξi|β
(2πiξi)β

whenever the first denominator is positive, which is the case when |ξ| ≥ 2−1. Then for any k ≥ 0,
χiϕk is a well-defined infinitely differentiable function on Rd \ {ξ : ξi = 0}. We have

∥∥F−1(χiϕk)
∥∥
1
= 2−kβ

∥∥F−1(ψϕ)
∥∥
1
,

where

ψ(ξ) =
1

χ(2kξ1)|ξ1|β + · · ·+ χ(2kξd)|ξd|β
χ(2kξi)|ξi|β
(2πiξi)β

.

The function ψϕ is supported in {ξ : 2−1 ≤ |ξ| ≤ 2}. An inspection reveals that all its partial
derivatives of order less than a fixed integer are bounded uniformly in k. It then follows that the
L1-norm of F−1(ψϕ) is majorized by a constant independent of k, so

∥∥F−1(χiϕk)
∥∥
1
. 2−kβ ,

and by Lemma 1.7,

‖χ̃i ∗ ϕ̃k ∗Dβ
i x‖p . 2−kβ‖ϕ̃k ∗Dβ

i x‖p .
Since

ϕk =
d∑

i=1

χiDi,βϕk,

we deduce

‖ϕ̃k ∗ x‖ . 2−kβ
d∑

i=1

‖ϕ̃k ∗Dβ
i x‖p ,

which implies

‖x‖Bαp,q . |x̂(0)|+
d∑

i=1

‖Dβ
i x‖Bα−β

p,q
.

Thus (iii) is proved. �

The following result relates the Besov and potential Sobolev spaces.

Theorem 3.8. Let 1 ≤ p ≤ ∞ and α ∈ Rd. Then we have the following continuous inclusions:

Bαp,min(p,2)(T
d
θ) ⊂ Hα

p (T
d
θ) ⊂ Bαp,max(p,2)(T

d
θ).

Proof. By Propositions 2.7 and 3.7, we can assume α = 0. In this case, H0
p (T

d
θ) = Lp(T

d
θ). Let x

be a distribution on Tdθ with x̂(0) = 0. Since

x =
∑

k≥0

ϕ̃k ∗ x,

we see that the inclusion B0
p,1(T

d
θ) ⊂ Lp(T

d
θ) follows immediately from triangular inequality. On

the other hand, the inequality

‖ϕ̃k ∗ x‖p . ‖x‖p, k ≥ 0

yields the inclusion Lp(T
d
θ) ⊂ B0

p,∞(Tdθ). Both inclusions can be improved in the range 1 < p <∞.

Let us consider only the case 2 ≤ p < ∞. Then the inclusion Lp(T
d
θ) ⊂ B0

p,p(T
d
θ) can be easily

proved by interpolation. Indeed, the two spaces coincide isometrically when p = 2. The other
extreme case p = ∞ has been already proved. We then deduce the case 2 < p < ∞ by complex
interpolation and by embedding B0

p,∞(Tdθ) into ℓ∞(Lp(T
d
θ)).
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The converse inclusion B0
p,2(T

d
θ) ⊂ Lp(T

d
θ) is subtler. To show it, we use Hardy spaces and the

equality Lp(T
d
θ) = Hp(T

d
θ) (see Lemma 1.9). Then we must show

max(‖x‖Hc
p
, ‖x‖Hr

p
) . ‖x‖B0

p,2
.

To this end, we appeal to Lemma 1.10. The function ψ there is now equal to ϕ. The associated
square function of x is thus given by

scϕ(x) =
(∑

k≥0

|ϕ̃k ∗ x|2
) 1

2 .

Recall the following well-known inequality
∥∥(∑

k≥0

|xk|2
) 1

2
∥∥
p
≤

(∑

k≥0

‖xk‖2p
) 1

2

for xk ∈ Lp(T
d
θ) and 2 ≤ p ≤ ∞. Note that this inequality is proved simply by the triangular

inequality in L p
2
(Tdθ). Thus

‖x‖Hc
p
≈ ‖scϕ(x)‖p ≤

(∑

k≥0

‖ϕ̃k ∗ x‖2p
) 1

2 = ‖x‖B0
p,2
.

Passing to adjoints, we get ‖x‖Hr
p
. ‖x‖B0

p,2
. Therefore, the desired inequality follows. �

3.2. A general characterization

In this and next sections we extend some characterizations of the classical Besov spaces to the
quantum setting. Our treatment follows Triebel [74] rather closely.

We give a general characterization in this section. We have observed in the previous section that
the definition of the Besov spaces is independent of the choice of ϕ satisfying (3.1). We now show
that ϕ can be replaced by more general functions. To state the required conditions, we introduce
an auxiliary Schwartz function h such that

(3.3) supph ⊂ {ξ ∈ Rd : |ξ| ≤ 4} and h = 1 on {ξ ∈ Rd : |ξ| ≤ 2}.
Let α0, α1 ∈ R. Let ψ be an infinitely differentiable function on Rd \ {0} satisfying the following
conditions

(3.4)





|ψ| > 0 on {ξ : 2−1 ≤ |ξ| ≤ 2},
F−1(ψhI−α1 ) ∈ L1(R

d),

sup
j∈N0

2−α0j
∥∥F−1(ψ(2j ·)ϕ)

∥∥
1
<∞.

The first nonvanishing condition above on ψ is a Tauberian condition. The integrability of the
inverse Fourier transforms can be reduced to a handier criterion by means of the potential Sobolev
space Hσ

2 (R
d) with σ > d

2 ; see Remark 3.6.
We will use the same notation for ψ as for ϕ. In particular, ψk is the inverse Fourier transform

of ψ(2−k·) and ψ̃k is the Fourier multiplier on Tdθ with symbol ψ(2−k·). It is to note that compared
with [74, Theorem 2.5.1], we need not require α1 > 0 in the following theorem. This will have
interesting consequences in the next section.

Theorem 3.9. Let 1 ≤ p, q ≤ ∞ and α ∈ R. Assume α0 < α < α1. Let ψ satisfy the above

assumption. Then a distribution x on Tdθ belongs to Bαp,q(T
d
θ) iff

(∑

k≥0

(
2kα‖ψ̃k ∗ x‖p

)q) 1
q

<∞.

If this is the case, then

(3.5) ‖x‖Bαp,q ≈
(
|x̂(0)|q +

∑

k≥0

(
2kα‖ψ̃k ∗ x‖p

)q) 1
q

with relevant constants depending only on ϕ, ψ, α, α0, α1 and d.
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Proof. We will follow the pattern of the proof of [74, Theorem 2.4.1]. Given a function f on Rd,
we will use the notation that f (k) = f(2−k·) for k ≥ 0 and f (k) = 0 for k ≤ −1. Recall that fk is

the inverse Fourier transform of f (k) and f̃k is the 1-periodization of fk:

f̃k(s) =
∑

m∈Zd

fk(s+m).

In the following, we will fix a distribution x on Tdθ . Without loss of generality, we assume x̂(0) = 0.
We will denote the right-hand side of (3.5) by ‖x‖Bα,ψp,q

when it is finite. For clarity, we divide the

proof into several steps.

Step 1. In the first two steps, we assume x ∈ Bαp,q(T
d
θ). LetK be a positive integer to be determined

later in step 3. By (3.1), we have

ψ(j) =

∞∑

k=0

ψ(j)ϕ(k) =

K∑

k=−∞
ψ(j)ϕ(j+k) +

∞∑

k=K

ψ(j)ϕ(j+k) on {ξ : |ξ| ≥ 1}.

Then

(3.6) ψ̃j ∗ x =
∑

k≤K
ψ̃j ∗ ϕ̃j+k ∗ x+

∑

k>K

ψ̃j ∗ ϕ̃j+k ∗ x .

For the moment, we do not care about the convergence issue of the second series above, which is

postponed to the last step. Let aj,k = 2jα‖ψ̃j ∗ ϕ̃j+k ∗ x‖p. Then

(3.7) ‖x‖Bα,ψp,q
≤

( ∞∑

j=0

[ ∑

k≤K
aj,k

]q) 1
q

+
( ∞∑

j=0

[ ∑

k>K

aj,k
]q) 1

q

.

We will treat the two sums on the right-hand side separately. For the first one, by the support
assumption on ϕ and h, for k ≤ K, we can write

ψ(j)(ξ)ϕ(j+k)(ξ) = 2kα1
ψ(j)(ξ)

|2−jξ|α1
h(j+K)(ξ)|2−j−kξ|α1ϕ(j+k)(ξ)

= 2kα1η(j)(ξ)ρ(j+k)(ξ),

(3.8)

where η and ρ are defined by

η(ξ) =
ψ(ξ)

|ξ|α1
h(K)(ξ) and ρ(ξ) = |ξ|α1ϕ(ξ).

Note that F−1(η) is integrable on Rd. Indeed, write

(3.9) η(ξ) =
ψ(ξ)

|ξ|α1
h(ξ) +

ψ(ξ)

|ξ|α1
(h(K)(ξ) − h(ξ)).

By (3.4), the inverse Fourier transform of the first function on the right-hand side is integrable.
The second one is an infinitely differentiable function with compact support, so its inverse Fourier
transform is also integrable with L1-norm controlled by a constant depending only on ψ, h, α1 and
K. Therefore, Lemma 1.7 implies that each η(j) is a Fourier multiplier on Lp(T

d
θ) for all 1 ≤ p ≤ ∞

with norm controlled by a constant c1, depending only on ψ, h, α1 and K. Therefore,

(3.10) aj,k ≤ c12
jα+kα1‖ρ̃j+k ∗ x‖p = c12

k(α1−α)(2(j+k)α‖ρ̃j+k ∗ x‖p
)
.

Thus by triangular inequality and Lemma 3.4, we deduce

( ∞∑

j=0

[ ∑

k≤K
aj,k

]q) 1
q ≤ c1

∑

k≤K
2k(α1−α)

( ∞∑

j=−∞

(
2(j+k)α‖ρ̃j+k ∗ x‖p

)q) 1
q

= c1
∑

k≤K
2k(α1−α)

( ∞∑

j=0

(
2jα2−jα1‖Iα1ϕ̃j ∗ x‖p

)q) 1
q

≤ c′1‖x‖Bαp,q ,
where c′1 depends only on ψ, h, K, α and α1.
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Step 2. The second sum on the right-hand side of (3.7) is treated similarly. Like in step 1 and by
(3.2), we write

ψ(j)(ξ)ϕ(j+k)(ξ) =
ψ(j)(ξ)

|2−j−kξ|α0
(ϕ(j+k−1) + ϕ(j+k) + ϕ(j+k+1))(ξ)|2−j−kξ|α0ϕ(j+k)(ξ)

=
[ψ(2−j−k · 2kξ)

|2−j−kξ|α0
H(2−j−kξ)

]
ρ(j+k)(ξ),

(3.11)

where H = ϕ(−1) + ϕ+ ϕ(1), and where ρ is now defined by

ρ(ξ) = |ξ|α0ϕ(ξ).

The L1-norm of the inverse Fourier transform of the function

ψ(2−j−k · 2kξ)
|2−j−kξ|α0

H(2−j−kξ)

is equal to
∥∥F−1(I−α0Hψ(2

k·))
∥∥
1
. Using Lemma 3.4, we see that the last norm is majorized by

∥∥F−1(ψ(2k·)H)
∥∥
1
.

∥∥F−1(ψ(2k·)ϕ)
∥∥
1
.

Then, using (3.4), for k > K we get

(3.12) aj,k ≤ c22
k(α0−α)(2(j+k)α‖ρ̃j+k ∗ x‖p

)
,

where c2 depends only on ϕ, α0 and the supremum in (3.4). Thus as before, we get

( ∞∑

j=0

[ ∑

k>K

aj,k
]q) 1

q ≤ c′2
2K(α0−α)

1− 2α0−α ‖x‖Bαp,q ,

which, together with the inequality obtained in step 1, yields

‖x‖Bα,ψp,q
. ‖x‖Bαp,q .

Step 3. Now we prove the inequality reverse to the previous one. We first assume that x is a
polynomial. We write

(3.13) ϕ(j) = ϕ(j)h(j+K) =
ϕ(j)

ψ(j)
h(j+K)ψ(j) .

The function ϕψ−1 is an infinitely differentiable function with compact support, so its inverse
Fourier transform belongs to L1(R

d). Thus by Lemma 1.7,

‖ϕ̃j ∗ x‖p ≤ c3‖h̃j+K ∗ ψ̃j ∗ x‖p ,
where c3 =

∥∥F−1(ϕψ−1)
∥∥
1
. Hence,

‖x‖Bαp,q ≤ c3

( ∞∑

j=0

(
2jα‖h̃j+K ∗ ψ̃j ∗ x‖p

)q) 1
q

.

To handle the right-hand side, we let λ = 1− h and write h(j+K)ψ(j) = ψ(j) − λ(j+K)ψ(j). Then

( ∞∑

j=0

(
2jα‖h̃j+K ∗ ψ̃j ∗ x‖p

)q) 1
q ≤ ‖x‖Bα,ψp,q

+
( ∞∑

j=0

(
2jα‖λ̃j+K ∗ ψ̃j ∗ x‖p

)q) 1
q

.

Thus it remains to deal with the last sum. We do this as in the previous steps with ψ replaced by
λψ, by writing

λ(j+K)ψ(j) =
∞∑

k=−∞
λ(j+K)ψ(j)ϕ(j+k) .

The crucial point now is the fact that λ(j+K)ϕ(j+k) = 0 for all k ≤ K and all j. So

λ(j+K)ψ(j) =
∑

k>K

λ(j+K)ψ(j)ϕ(j+k) ,
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that is, only the second sum on the right-hand side of (3.7) survives now:

( ∞∑

j=0

(2jα‖λ̃j+K ∗ ψ̃j ∗ x‖p)q
) 1
q ≤

( ∞∑

j=0

[
2jα

∑

k>K

‖λ̃j+K ∗ ψ̃j ∗ ϕ̃j+k ∗ x‖p
]q) 1

q

.

Let us reexamine the argument of step 2 and formulate (3.11) with λ(K)ψ instead of ψ. We then
arrive at majorizing the norm

∥∥F−1
(
λ(2k−K ·)ψ(2k·)ϕ

)∥∥
1
:

∥∥F−1
(
λ(2k−K ·)ψ(2k·)ϕ

)∥∥
1
≤

∥∥F−1(λ)
∥∥
1

∥∥F−1
(
ψ(2k·)ϕ

)∥∥
1
.

Keeping the notation of step 2 and as for (3.12), we get

‖λ̃j+K ∗ ψ̃j ∗ ϕ̃j+k ∗ x‖p ≤ cc22
k(α0−α)(2(j+k)α‖ρ̃j+k ∗ x‖p

)
,

where c =
∥∥F−1(λ)

∥∥
1
. Thus

( ∞∑

j=0

[
2αj

∑

k>K

‖λ̃j+K ∗ ψ̃j ∗ ϕ̃j+k ∗ x‖p
]q) 1

q ≤ cc′2
2K(α0−α)

1− 2α0−α ‖x‖Bαp,q .

Combining the preceding inequalities, we obtain

‖x‖Bαp,q ≤ c3‖x‖Bα,ψp,q
+ cc′2

2K(α0−α)

1− 2α0−α ‖x‖Bαp,q .

Choosing K so that

c c′2
2K(α0−α)

1− 2α0−α ≤ 1

2
,

we finally deduce

‖x‖Bαp,q ≤ 2c3‖x‖Bα,ψp,q
,

which shows (3.5) in case x is a polynomial.
The general case can be easily reduced to this special one. Indeed, assume ‖x‖Bα,ψp,q

<∞. Then

using the Fejér means FN as in the proof of Proposition 2.7, we see that

‖FN (x)‖Bα,ψp,q
≤ ‖x‖Bα,ψp,q

.

Applying the above part already proved for polynomials yields

‖FN(x)‖Bαp,q ≤ 2c3‖FN (x)‖Bα,ψp,q
≤ 2c3‖x‖Bα,ψp,q

.

However, it is easy to check that

lim
N→∞

‖FN(x)‖Bαp,q = ‖x‖Bαp,q .

We thus deduce (3.5) for general x, modulo the convergence problem on the second series of (3.6).

Step 4. We now settle up the convergence issue left previously. Each term ψ̃j ∗ ϕ̃j+k ∗ x is a
polynomial, so a distribution on Tdθ . We must show that the series converges in S ′(Tdθ). By (3.12),
for any L > K, by the Hölder inequality (with q′ the conjugate index of q), we get

2jα
L∑

k=K+1

‖ψ̃j ∗ ϕ̃j+k ∗ x‖p ≤ c′2

L∑

k=K+1

2k(α0−α)(2(j+k)α‖ϕ̃j+k ∗ x‖p
)

≤ c′2RK,L
( L∑

k=K+1

(
2(j+k)α‖ϕ̃j+k ∗ x‖p

)q) 1
q

. c′2RK,L‖x‖Bαp,q ,
where

RK,L =
( L∑

k=K+1

2q
′k(α0−α)

) 1
q′

.

Since α0 < α, RK,L → 0 as K tends to ∞. Thus the series
∑

k>K ψ̃j ∗ ϕ̃j+k ∗x converges in Lp(T
d
θ),

so in S ′(Tdθ) too. In the same way, we show that the series also converges in Bαp,q(T
d
θ). Hence, the

proof of the theorem is complete. �
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Remark 3.10. The infinite differentiability of ψ can be substantially relaxed without changing the
proof. Indeed, we have used this condition only once to insure that the inverse Fourier transform
of the second term on the right-hand side of (3.9) is integrable. This integrability is guaranteed
when ψ is continuously differentiable up to order [d2 ] + 1. The latter condition can be replaced by

the following slightly weaker one: there exists σ > d
2 +1 such that ψη ∈ Hσ

2 (R
d) for any compactly

supported infinitely differentiable function η which vanishes in a neighborhood of the origin.

The following is the continuous version of Theorem 3.9. We will use similar notation for contin-
uous parameters: given ε > 0, ψε denotes the function with Fourier transform ψ(ε) = ψ(ε·), and
ψ̃ε denotes the Fourier multiplier on Tdθ associated to ψ(ε).

Theorem 3.11. Keep the assumption of the previous theorem. Then for any distribution x on Tdθ,

(3.14) ‖x‖Bαp,q ≈
(
|x̂(0)|q +

∫ 1

0

ε−qα
∥∥ψ̃ε ∗ x

∥∥q
p

dε

ε

) 1
q

.

The above equivalence is understood in the sense that if one side is finite, so is the other, and the

two are then equivalent with constants independent of x.

Proof. This proof is very similar to the previous one. Keeping the notation there, we will point
out only the necessary changes. Let us first discretize the integral on the right-hand side of (3.14):

∫ 1

0

(
ε−α‖ψ̃ε ∗ x‖p

)q dε
ε

≈
∞∑

j=0

2jqα
∫ 2−j

2−j−1

‖ψ̃ε ∗ x‖qp
dε

ε
.

Now for j ≥ 0 and 2−j−1 < ε ≤ 2−j, we transfer (3.8) to the present setting:

ψ(ε)(ξ)ϕ(j+k)(ξ) = 2α1k
[ ψ(2−j · 2jεξ)

|2−jξ|α1
h(j+K)(ξ)

]
ρ(j+k)(ξ).

We then must estimate the L1-norm of the inverse Fourier transform of the function in the brackets.
It is equal to ∥∥F−1

(
I−α1ψ(2

jε·)h(K)
)∥∥

1
= δ−α1

∥∥F−1
(
I−α1ψh(δ2

−K ·)
)∥∥

1
,

where δ = 2−jε−1. The last norm is estimated as follows:∥∥F−1
(
I−α1ψh(δ2

−K ·)
)∥∥

1
≤

∥∥F−1
(
I−α1ψh

)∥∥
1
+
∥∥F−1

(
I−α1ψ [h− h(δ2−K ·)]

)∥∥
1

≤
∥∥F−1

(
I−α1ψh

)∥∥
1
+ sup

1≤δ≤2

∥∥F−1
(
I−α1ψ [h− h(δ2−K ·)]

)∥∥
1
.

Note that the above supremum is finite since I−α1ψ[h− h(δ2−K ·)] is a compactly supported infin-
itely differentiable function and its inverse Fourier transform depends continuously on δ. It follows
that for k ≤ K and 2−j−1 ≤ ε ≤ 2−j

(3.15) 2jα‖ψ̃ε ∗ ϕ̃j+k ∗ x‖p . 2k(α1−α)(2(j+k)α‖ρ̃j+k ∗ x‖p
)
,

which is the analogue of (3.10). Thus, we get the continuous analogue of the final inequality of
step 1 in the preceding proof.

We can make similar modifications in step 2, and then show the second part. Hence, we have
proved

(∫ 1

0

(
ε−α‖ψ̃ε ∗ x‖p

)q dε
ε

) 1
q

. ‖x‖Bαp,q .

To show the converse inequality, we proceed as in step 3 above. By (3.4), there exists a constant

a > 2 such that ψ > 0 on {ξ : a−1 ≤ |ξ| ≤ a}. Assume also a ≤ 2
√
2. For j ≥ 0 let Rj =

(a−12−j−1, a2−j+1]. The Rj ’s are disjoint subintervals of (0, 1]. Now we slightly modify (3.13) as
follows:

(3.16) ϕ(j) = ϕ(j)h(j+K) =
ϕ(j)

ψ(ε)
h(j+K)ψ(ε) , ε ∈ Rj .

Then
∥∥F−1

(ϕ(j)

ψ(ε)

)∥∥
1
=

∥∥F−1
(ϕ(2−jε−1·)

ψ

)∥∥
1
≤ sup

2a−1≤δ≤a2−1

∥∥F−1
(ϕ(δ)

ψ

)∥∥
1
<∞.
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Like in step 3, we deduce

‖x‖Bαp,q .
( ∞∑

j=0

(
2jα

∫

Rj

‖h̃j+K ∗ ψ̃ε ∗ x‖p
)q dε

ε

) 1
q

.
( ∫ 1

0

(
ε−α‖ψ̃ε ∗ x‖p

)q dε
ε

) 1
q

+
( ∞∑

j=0

(
2jα

∫

Rj

‖h̃j+K ∗ ψ̃ε ∗ x‖p
)q dε

ε

) 1
q

.

The remaining of the proof follows step 3 with necessary modifications as in the first part. �

Remark 3.12. Theorems 3.9 and 3.11 admit analogous characterizations for Bαp,c0(T
d
θ) too. For

example, a distribution x on Tdθ belongs to Bαp,c0(T
d
θ) iff

lim
ε→0

∥∥ψ̃ε ∗ x
∥∥
p

εα
= 0.

This easily follows from Theorem 3.11 for q = ∞. The same remark applies to the characterizations
by the Poisson, heat semigroups and differences in the next two sections.

3.3. The characterizations by Poisson and heat semigroups

We now concretize the general characterization in the previous section to the case of Poisson
and heat kernels. We begin with the Poisson case. Recall that P denotes the Poisson kernel of Rd

and

P̃ε(x) = P̃ε ∗ x =
∑

m∈Zd

e−2πε|m|x̂(m)Um .

So for any positive integer k, the kth derivation relative to ε is given by

∂k

∂εk
P̃ε(x) =

∑

m∈Zd

(−2π|m|)ke−2πε|m|x̂(m)Um .

The inverse of the kth derivation is the kth integration Ik defined for x with x̂(0) = 0 by

Ikε P̃ε(x) =
∫ ∞

ε

∫ ∞

εk

· · ·
∫ ∞

ε2

P̃ε1(x)dε1 · · · dεk−1dεk

=
∑

m∈Zd\{0}
(2π|m|)−ke−2πε|m|x̂(m)Um .

In order to simplify the presentation, for any k ∈ Z, we define

J k
ε =

∂k

∂εk
for k ≥ 0 and J k

ε = I−k
ε for k < 0.

It is worth to point out that all concrete characterizations in this section in terms of integra-
tion operators are new even in the classical case. Also, compare the following theorem with [74,
Section 2.6.4], in which k is assumed to be a positive integer in the Poisson characterization, and
a nonnegative integer in the heat characterization.

Theorem 3.13. Let 1 ≤ p, q ≤ ∞, α ∈ R and k ∈ Z such that k > α. Then for any distribution

x on Tdθ, we have

‖x‖Bαp,q ≈
(
|x̂(0)|q +

∫ 1

0

εq(k−α)
∥∥J k

ε P̃ε(x)
∥∥q
p

dε

ε

) 1
q

.

Proof. Recall that P = P1. Thanks to P̂(ξ) = e−2π|ξ|, we introduce the function ψ(ξ) = (−sgn(k)2π|ξ|)ke−2π|ξ|.
Then

ψ(εξ) = εk J k
ε e

−2πε|ξ| = εk J k
ε P̂ε(ξ).

It follows that for x ∈ Bαp,q(T
d
θ),

ψ̃ε ∗ x = εk J k
ε P̃ε ∗ x = εk J k

ε P̃ε(x) .
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Thus by Theorem 3.11, it remains to check that ψ satisfies (3.4) for some α0 < α < α1. It is clear
that the last condition there is verified for any α0. For the second one, choosing k = α1 > α, we

have I−α1hψ = (−sgn(k)2π)k h P̂. So
∥∥F−1

(
Ik−α1hψ

)∥∥
1
≤ (2π)k

∥∥F−1(h)
∥∥
1

∥∥P
∥∥
1
<∞ .

The theorem is thus proved. �

There exists an analogous characterization in terms of the heat kernel. Let Wε be the heat
semigroup of Rd:

Wε(s) =
1

(4πε)
d
2

e−
|s|2

4ε .

As usual, let W̃ε be the periodization of Wε. Given a distribution x on Tdθ let

W̃ε(x) = W̃ε ∗ x =
∑

m∈Zd

Ŵ(
√
εm)x̂(m)Um ,

where W = W1. Recall that

Ŵ(ξ) = e−4π2|ξ|2 .

Theorem 3.14. Let 1 ≤ p, q ≤ ∞, α ∈ R and k ∈ Z such that k > α
2 . Then for any distribution

x on Tdθ,

‖x‖Bαp,q ≈
(
|x̂(0)|q +

∫ 1

0

εq(k−
α
2 )
∥∥J k

ε W̃ε(x)
∥∥q
p

dε

ε

) 1
q

.

Proof. This proof is similar to and simpler than the previous one. This time, the function ψ is

defined by ψ(ξ) = (−sgn(k)4π2|ξ|2)ke−4π2|ξ|2 . Clearly, it satisfies (3.4) for 2k = α1 > α and any
α0 < α. Thus Theorem 3.11 holds for this choice of ψ. Note that a simple change of variables
shows that the integral in (3.14) is equal to

2−
1
q

(∫ 1

0

ε−
αq
2

∥∥ψ̃√
ε ∗ x

∥∥q
p

dε

ε

) 1
q

.

Then using the identity

ψ(
√
ε ξ) = εk J k

ε Ŵε(ξ),

we obtain the desired assertion. �

Now we wish to formulate Theorems 3.13 and 3.14 directly in terms of the circular Poisson and
heat semigroups of Td. Recall that Pr denote the circular Poisson kernel of Td introduced by (1.6)
and the Poisson integral of a distribution x on Tdθ is defined by

Pr(x) =
∑

m∈Zd

x̂(m)r|m|Um, 0 ≤ r < 1.

Accordingly, we introduce the circular heat kernel W of Td:

(3.17) Wr(z) =
∑

m∈Zd

r|m|2zm, z ∈ Td, 0 ≤ r < 1.

Then for x ∈ S ′(Tdθ) we put

Wr(x) =
∑

m∈Zd

x̂(m)r|m|2Um, 0 ≤ r < 1.

As before, J k
r denotes the kth derivation ∂k

∂rk if k ≥ 0 and the (−k)th integration I−k
r if k < 0:

J k
r Pr(x) =

∑

m∈Zd

Cm,kx̂(m)r|m|−kUm ,

where

Cm,k = |m| · · · (|m| − k + 1) if k ≥ 0 and Cm,k =
1

(|m|+ 1) · · · (|m| − k)
if k < 0.

J k
r Wr(x) is defined similarly. Since |m| is not necessarily an integer, the coefficient Cm,k may not

vanish for |m| < k and k ≥ 2. In this case, the corresponding term in J k
r Pr(x) above cause a

certain problem of integrability since r(|m|−k)q is integrable on (0, 1) only when (|m| − k)q > −1.
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This explains why we will remove all these terms from J k
r Pr(x) in the following theorem. However,

this difficulty does not occur for the heat semigroup.

The following is new even in the classical case, that is, in the case of θ = 0.

Theorem 3.15. Let 1 ≤ p, q ≤ ∞, α ∈ R and k ∈ Z. Let x be a distribution on Tdθ.

(i) If k > α, then

‖x‖Bαp,q ≈
(
max
|m|<k

|x̂(m)|q +
∫ 1

0

(1 − r)q(k−α)
∥∥J k

r Pr(xk)
∥∥q
p

dr

1− r

) 1
q

,

where xk = x−
∑

|m|<k
x̂(m)Um.

(ii) If k > α
2 , then

‖x‖Bαp,q ≈
(

max
|m|2<k

|x̂(m)|q +
∫ 1

0

(1− r)q(k−
α
2 )
∥∥J k

r Wr(x)
∥∥q
p

dr

1− r

) 1
q

.

Proof. We consider only the case of the Poisson kernel. Fix x ∈ Bαp,q(T
d
θ) with x̂(0) = 0. We first

claim that for any 0 < ε0 < 1,

(∫ 1

0

εq(k−α)
∥∥J k

ε P̃ε(x)
∥∥q
p

dε

ε

) 1
q ≈

( ∫ ε0

0

εq(k−α)
∥∥J k

ε P̃ε(x)
∥∥q
p

dε

ε

) 1
q

.

Indeed, since

J k
ε P̃ε(x) =

∑

m∈Zd\{0}
(−sgn(k)2π|m|)ke−2πε|m|x̂(m)Um ,

we have

( ∫ ε0

0

εq(k−α)
∥∥J k

ε P̃ε(x)
∥∥q
p

dε

ε

) 1
q ≥ sup

m∈Zd\{0}
(2π|m|)k|x̂(m)|

( ∫ ε0

0

εq(k−α)e−2πε|m|q dε
ε

) 1
q

& sup
m∈Zd\{0}

|m|α|x̂(m)| .

On the other hand, by triangular inequality,

(∫ 1

ε0

εq(k−α)
∥∥J k

ε P̃ε(x)
∥∥q
p

dε

ε

) 1
q ≤

∑

m∈Zd\{0}
(2π|m|)k|x̂(m)|

( ∫ 1

ε0

εq(k−α)e−2πε|m|q dε
ε

) 1
q

. sup
m∈Zd\{0}

|m|α|x̂(m)|
∑

m∈Zd

|m|k−αe−2πε0|m|

. sup
m∈Zd\{0}

|m|α|x̂(m)| .

We then deduce the claim.
Similarly, we can show that for any 0 < r0 < 1,

( ∫ 1

0

(1− r)q(k−α)
∥∥J k

r Pr(xk)
∥∥q
p

dr

1− r

) 1
q ≈

(∫ 1

r0

(1 − r)q(k−α)
∥∥J k

r Pr(xk)
∥∥q
p

dr

1− r

) 1
q

.

Now we use the relation r = e−2πε. If ε0 > 0 is sufficiently small, then

1− r ≈ ε for ε ∈ (0, ε0).

So

(∫ ε0

0

εq(k−α)
∥∥J k

ε P̃ε(x)
∥∥q
p

dε

ε

) 1
q ≈

(
sup

0<|m|<k
|x̂(m)|q +

∫ 1

r0

(1 − r)q(k−α)
∥∥J k

r Pr(xk)
∥∥q
p

dr

1− r

) 1
q

.

Combining this with Theorem 3.13, we get the desired assertion. �
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3.4. The characterization by differences

In this section we show the quantum analogue of the classical characterization of Besov spaces by
differences. Recall that ωkp (x, ε) is the Lp-modulus of smoothness of x introduced in Definition 2.18.
The result of this section is the following:

Theorem 3.16. Let 1 ≤ p, q ≤ ∞ and 0 < α < n with n ∈ N. Then for any distribution x on Tdθ,

(3.18)
∥∥x

∥∥
Bαp,q

≈
(
|x̂(0)|q +

∫ 1

0

ε−qαωnp (x, ε)
q dε

ε

) 1
q

.

Proof. We will derive the result from Theorem 3.11, or more precisely, from its proof. Since α > 0,
we take α0 = 0 and α1 = n in that theorem. Recall that du(ξ) = e2πiu·ξ − 1. Then the last
condition of (3.4) with ψ = dnu is satisfied uniformly in u since

∥∥F−1(dnu(2
j·)ϕ)

∥∥
1
=

∥∥∆n
2juF−1(ϕ)

∥∥
1
≤ 2n

∥∥F−1(ϕ)
∥∥
1
.

We will use a variant of the second one (which is not necessarily verified). To this end, let us come
back to (3.8) and rewrite it as follows:

ψ(j)(ξ)ϕ(j+k)(ξ) = 2nk
ψ(j)(ξ)

(2−ju · ξ)n h
(j+K)(ξ)(2−j−ku · ξ)nϕ(j+k)(ξ)

= 2nkη(j)(ξ)ρ(j+k)(ξ),

where η and ρ are now defined by

η(ξ) =
ψ(ξ)

(u · ξ)n h
(K)(ξ) and ρ(ξ) = (u · ξ)nϕ(ξ).

The second condition of (3.4) becomes the requirement that

sup
u∈Rd,|u|≤1

∥∥F−1(η)
∥∥
1
<∞.

The crucial point here is that ψ(ξ) = dnu(ξ) = (u · ξ)nζ(u · ξ), where ζ is an analytic function on R.
This shows that the above supremum is finite.

However, the first condition of (3.4), the Tauberian condition is not verified for a single dnu. We
will return back to this point later. For the moment, we just observe that the Tauberian condition
has not been used in steps 1 and 2 of the proof of Theorem 3.9. Reexamining those two steps with
ψ = dnu, we see that all estimates there can be made independent of u. For instance, (3.15) now
becomes (with α1 = n)

2jα‖∆n
εuϕ̃j+k ∗ x‖p . 2(α1−α)k(2(j+k)α‖ρ̃j+k ∗ x‖p

)
,

where the new function ρ is defined as above. Thus taking the supremum over all u with |u| ≤ 1,
we get

2jαωnp (x, ε) . 2k(α1−α)(2(j+k)α‖ρ̃(j+k) ∗ x‖p
)
.

Therefore, by Lemma 3.4, we obtain

(∫ 1

0

ε−qαωnp (x, ε)
q dε

ε

) 1
q

.
∥∥x

∥∥
Bαp,q

.

The reverse inequality requires necessarily a Tauberian-type condition. Although a single dnu
does not satisfy it, a finite family of dnu’s does satisfy this condition, which we precise below. Choose
a 1

2 -net {vℓ}1≤ℓ≤L of the unit sphere of Rd. Let uℓ = 4−1vℓ and

Ωℓ =
{
ξ : 2−1 ≤ |ξ| ≤ 2,

∣∣ ξ
|ξ| − vℓ

∣∣ ≤ 2−1
}
.

Then the union of the Ωℓ’s is equal to {ξ : 2−1 ≤ |ξ| ≤ 2} and |dnuℓ | > 0 on Ωℓ. So the family
{dnuℓ}1≤ℓ≤L satisfies the following Tauberian-type condition:

L∑

ℓ=1

|dnuℓ | > 0 on {ξ : 2−1 ≤ |ξ| ≤ 2}.
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Now we reexamine step 3 of the proof of Theorem 3.9. To adapt it to the present setting, by an
appropriate partition of unity, we decompose ϕ into a sum of infinitely differentiable functions,
ϕ = ϕ1 + · · ·+ ϕL such that suppϕℓ ⊂ Ωℓ. Accordingly, for every j ≥ 0, let

ϕ(j) =

L∑

ℓ=1

ϕ
(j)
ℓ .

Then we write the corresponding (3.16) with (ϕℓ, d
n
uℓ
) in place of (ϕ, ψ) for every ℓ ∈ {1, · · · , L}.

Arguing as in step 3 of the proof of Theorem 3.9, we get

∥∥x
∥∥
Bαp,q

.
(
|x̂(0)|q +

L∑

ℓ=1

∫ 1

0

ε−qα
∥∥(̃dnuℓ)ε ∗ x

∥∥q
p

dε

ε

) 1
q

.

Since (̃dnuℓ)ε ∗ x = ∆n
εuℓ
x, we deduce

∥∥x
∥∥
Bαp,q

.
(
|x̂(0)|q +

∫ 1

0

ε−qα sup
1≤ℓ≤L

∥∥∆n
εuℓ
x
∥∥q
p

dε

ε

) 1
q

.
(
|x̂(0)|q +

∫ 1

0

ε−qαωnp (x, ε)
q dε

ε

) 1
q

.

Thus the theorem is proved. �

As a byproduct, the preceding theorem implies that the right-hand side of (3.18) does not depend
on n with n > α, up to equivalence. This fact admits a direct simple proof and is an immediate
consequence of the following analogue of Marchaud’s classical inequality which is of interest in its
own right.

Proposition 3.17. For any positive integers n and N with n < N and for any ε > 0, we have

2n−NωNp (x, ε) ≤ ωnp (x, ε) . εn
∫ ∞

ε

ωNp (x, δ)

δn
dδ

δ
.

Proof. The argument below is standard. Using the identity ∆N
u = ∆N−n

u ∆n
u, we get

∥∥∆N
u (x)

∥∥
p
≤ 2N−n∥∥∆n

u(x)
∥∥
p
,

whence the lower estimate. The upper one is less obvious. By elementary calculations, for any
u ∈ Rd, we have

dn2u = 2ndnu +
[ n∑

j=0

(
n

j

)
eju − 2n

]
dnu = 2ndnu +

n∑

j=0

(
n

j

) j−1∑

i=0

eiud
n+1
u .

In terms of Fourier multipliers, this means

∆n
2u = 2n∆n

u +

n∑

j=0

(
n

j

) j−1∑

i=0

Tiu∆
n+1
u .

It then follows that

ωnp (x, ε) ≤
n

2
ωn+1
p (x, ε) + 2−nωnp (x, 2ε).

Iterating this inequality yields

ωnp (x, ε) ≤
n

2

J−1∑

j=1

ωn+1
p (x, 2jε) + 2−Jnωnp (x, 2

Jε),

from which we deduce the desired inequality for N = n+1 as J → ∞. Another iteration argument
then yields the general case. �

In view of Definition 2.18 and Theorem 3.16, we introduce the following quantum analogue of
the classical Lp-Zygmund class of order α. The case where 0 < α < 1 and p = ∞ was already
studied by Weaver [79].
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Definition 3.18. Let 1 ≤ p ≤ ∞, α > 0 and n be the smallest integer greater than α. The
Lp-Zygmund class of order α, Λαp (T

d
θ), is defined to be the space of all distributions x such that

sup
ε>0

ωnp (x)

εα
<∞,

equipped with the norm

‖x‖ = |x̂(0)|+ sup
ε>0

ωnp (x)

εα
.

The little Lp-Zygmund class of order α, Λαp,0(T
d
θ), is the subspace of Λαp (T

d
θ) consisting of all

elements x such that

lim
ε→0

ωnp (x)

εα
= 0.

Remark 3.19. Theorem 3.16 shows that Bαp,∞(Tdθ) = Λαp (T
d
θ) and Bαp,c0(T

d
θ) = Λαp,0(T

d
θ) with

equivalent norms. Consequently, the integer n in the above definition can be any integer greater
than α. On the other hand, by the reduction Theorem 3.7, if α is not an integer and if k is the
biggest integer less than α, then

Λαp (T
d
θ) =

{
x ∈ S ′(Tdθ) : δ

k
j x ∈ Lipα−kp (Tdθ), j = 1, · · · , d.

}
.

A similar equality holds for the little Lp-Zygmund and Lipschitz classes of order α.

3.5. Limits of Besov norms

In this section we consider the behavior of the right-hand side of (3.18) as α→ n. The study of
this behavior is the subject of several recent publications in the classical setting; see, for instance,
[4, 5, 38, 41, 75]. It originated from [14] in which Bourgain, Brézis and Mironescu proved that for
any 1 ≤ p <∞ and any f ∈ C∞

0 (Rd)

lim
α→1

(
(1− α)

∫

Rd×Rd

|f(s)− f(t)|p
|s− t|αp+d ds dt

) 1
p

= Cp,d‖∇f(t)‖p.

It is well known that
(∫

Rd×Rd

|f(s)− f(t)|p
|s− t|αp+d ds dt

) 1
p ≈

(∫ ∞

0

sup
u∈Rd,|u|≤ε

∥∥∆uf
∥∥p
p

dε

ε

) 1
p

.

The right-hand side is the norm of f in the Besov space B1
p,p(R

d). Higher order extensions have
been obtained in [38, 75].

The main result of the present section is the following quantum extension of these results. Let

(3.19) ‖x‖Bα,ωp,q
=

( ∫ 1

0

ε−αqωkp (x, ε)
q dε

ε

) 1
q

.

Theorem 3.20. Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and 0 < α < k with k an integer. Then for
x ∈ W k

p (T
d
θ),

lim
α→k

(k − α)
1
q ‖x‖Bα,ωp,q

≈ q−
1
q |x|Wk

p

with relevant constants depending only on d and k.

Proof. The proof is easy by using the results of section 2.4. Let x ∈ W k
p (T

d
θ) with x̂(0) = 0. Let A

denote the limit in Lemma 2.21. Then
∫ 1

0

ε−αqωkp(x, ε)
q dε

ε
≤ Aq

∫ 1

0

ε(k−α)q
dε

ε
,

whence

lim sup
α→k

(k − α)

∫ 1

0

ε−αqωp(x, ε)
q dε

ε
≤ Aq

q
.

Conversely, for any η > 0, choose δ ∈ (0, 1) such that

ωkp(x, ε)

εk
≥ A− η, ∀ε ≤ δ.
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Then

(k − α)

∫ 1

0

ε−αqωkp (x, ε)
q dε

ε
≥ (A− η)q

q
δ(k−α)q,

which implies

lim inf
α→k

(k − α)

∫ 1

0

ε−αqωkp(x, ε)
q dε

ε
≥ (A− η)q

q
.

Therefore,

lim
α→k

(k − α)

∫ 1

0

ε−αqωkp(x, ε)
q dε

ε
=

1

q
lim
ε→0

ωkp(x, ε)

εk
.

So Theorem 2.20 implies the desired assertion. �

Remark 3.21. We will determine later the behavior of ‖x‖Bα,ωp,q
when α → 0; see Corollary 5.20

below.

3.6. The link with the classical Besov spaces

Like for the Sobolev spaces on Tdθ , there exists a strong link between Bαp,q(T
d
θ) and the classical

vector-valued Besov spaces on Td. Let us give a precise definition of the latter spaces. We maintain
the assumption and notation on ϕ in section 3.1. In particular, f 7→ ϕ̃k ∗f is the Fourier multiplier
on Td associated to ϕ(2−k·):

ϕ̃k ∗ f =
∑

m∈Zd

ϕ(2−km)f̂(m)zm

for any f ∈ S ′(Td;X). Here X is a Banach space.

Definition 3.22. Let 1 ≤ p, q ≤ ∞ and α ∈ R. Define

Bαp,q(T
d;X) =

{
f ∈ S ′(Td;X) : ‖f‖Bαp,q <∞

}
,

where

‖f‖Bαp,q =
(
‖f̂(0)‖qX +

∑

k≥0

2αkq
∥∥ϕ̃k ∗ f

∥∥q
Lp(Td;X)

) 1
q

.

These vector-valued Besov spaces have been largely studied in literature. Note that almost all
publications concern only the case of Rd, but the periodic theory is parallel (see, for instance,
[24, 71]; see also [3] for the vector-valued case). Bαp,q(R

d;X) is defined in the same way with

the necessary modifications among them the main difference concerns the term ‖f̂(0)‖X above
which is replaced by

∥∥φ ∗ f
∥∥
Lp(Rd;X)

, where φ is the function whose Fourier transform is equal to

1−∑
k≥0 ϕ(2

−k·).
All results proved in the previous sections remain valid in the present vector-valued setting

with essentially the same proofs for any Banach space X , except Theorem 3.8 whose vector-valued
version holds only if X is isomorphic to a Hilbert space. On the other hand, the duality assertion
in Proposition 3.3 should be slightly modified by requiring that X∗ have the Radon-Nikodym
property.

Let us state the vector-valued analogue of Theorem 3.15. As said before, it is new even in the
scalar case. The circular Poisson and heat semigroups are extended to the present case too. For
any f ∈ S ′(Td;X),

Pr(f)(z) =
∑

m∈Zd

r|m|f̂(m)zm and Wr(f)(z) =
∑

m∈Zd

r|m|2 f̂(m)zm, z ∈ Td, 0 ≤ r < 1.

The operator J k
r has the same meaning as before, for instance, in the Poisson case, we have

J k
r Pr(f) =

∑

m∈Zd

Cm,kf̂(m)r|m|−kzm ,

where

Cm,k = |m| · · · (|m| − k + 1) if k ≥ 0 and Cm,k =
1

(|m|+ 1) · · · (|m| − k)
if k < 0.

Theorem 3.23. Let 1 ≤ p, q ≤ ∞, α ∈ R and k ∈ Z. Let X be a Banach space.
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(i) If k > α, then for any f ∈ Bαp,q(T
d;X),

‖f‖Bαp,q ≈
(

sup
|m|<k

‖f̂(m)‖qX +

∫ 1

0

(1− r)(k−α)q
∥∥J k

r Pr(fk)
∥∥q
Lp(Td;X)

dr

1− r

) 1
q

,

where fk = f −
∑

|m|<k
f̂(m)zm.

(ii) If k > α
2 , then for any f ∈ Bαp,q(T

d;X),

‖f‖Bαp,q ≈
(

sup
|m|2<k

‖f̂(m)‖qX +

∫ 1

0

(1− r)(k−
α
2 )q

∥∥J k
r Wr(f)

∥∥q
Lp(Td;X)

dr

1− r

) 1
q

.

The following transference result from Tdθ to Td is clear. It can be used to prove a majority of the
preceding results on Tdθ , under the hypothesis that the corresponding results in the vector-valued
case on Td are known.

Proposition 3.24. Let 1 ≤ p, q ≤ ∞ and α ∈ R. The map x 7→ x̃ in Corollary 1.2 is an isometric
embedding from Bαp,q(T

d
θ) into B

α
p,q(T

d;Lp(T
d
θ)) with 1-complemented range.

Remark 3.25. As a subspace of ℓαq (Lp(T
d
θ)) (see the proof of Proposition 3.3 for the definition

of this space), Bαp,q(T
d
θ) can be equipped with a natural operator space structure in Pisier’s sense

[54]. Moreover, in the spirit of the preceding vector-valued case, we can also introduce the vector-
valued quantum Besov spaces. Given an operator space E, Bαp,q(T

d
θ ;E) is defined exactly as in the

scalar case; it is a subspace of ℓαq (Lp(T
d
θ ;E)). Then all results of this chapter are extended to this

vector-valued case, except the duality in Proposition 3.3 and Theorem 3.8.

Chapter 4. Triebel-Lizorkin spaces

This chapter is devoted to the study of Triebel-Lizorkin spaces. These spaces are much subtler
than Besov spaces even in the classical setting. Like Besov spaces, the classical Triebel-Lizorkin
spaces Fαp,q(R

d) have three parameters, p, q and α. The difference is that the ℓq-norm is now

taken before the Lp-norm. Namely, f ∈ Fαp,q(R
d) iff

∥∥(∑
k≥0 2

kαq|ϕk ∗ f |q
) 1
q
∥∥
p
is finite. Besides

the usual subtlety just mentioned, more difficulties appear in the noncommutative setting. For
instance, a first elementary one concerns the choice of the internal ℓq-norm. It is a well-known fact
in the noncommutative integration that the simple replacement of the usual absolute value by the
modulus of operators does not give a norm except for q = 2. Alternately, one could use Pisier’s
definition of ℓq-valued noncommutative Lp-spaces in the category of operator spaces. However, we
will not study the latter choice and will confine ourselves only to the case q = 2, by considering the
column and row norms (and their mixture) for the internal ℓ2-norms. This choice is dictated by the
theory of noncommutative Hardy spaces. In fact, we will show that the so-defined Triebel-Lizorkin
spaces on Tdθ are isomorphic to the Hardy spaces developed in [17].

Another difficulty is linked with the frequent use of maximal functions in the commutative case.
These functions play a crucial role in the classical theory. However, the pointwise analogue of
maximal functions is no longer available in the present setting, which makes our study harder than
the classical case. We have already encountered this difficulty in the study of Besov spaces. It is
much more substantial now. Instead, our development will rely heavily on the theory of Hardy
spaces developed in [81] through a Fourier multiplier theorem that is proved in the first section. It
is this multiplier theorem which clears the obstacles on our route. After the definitions and basic
properties, we prove some characterizations of the quantum Triebel-Lizorkin spaces. Like in the
Besov case, they are better than the classical ones even in the commutative case. We conclude the
chapter with a short section on the operator-valued Triebel-Lizorkin spaces on Td (or Rd). These
spaces are interesting in view of the theory of operator-valued Hardy spaces.

Throughout this chapter, we will use the notation introduced in the previous one. In particular,
ϕ is a function satisfying (3.1), ϕ(k) = ϕ(2−k·) and ϕ̂k = ϕ(k).

4.1. A multiplier theorem

The following multiplier result will play a crucial role in this chapter.
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Theorem 4.1. Let σ ∈ R with σ > d
2 . Assume that (φj)j≥0 and (ρj)j≥0 are two sequences of

continuous functions on Rd \ {0} such that

(4.1)





supp(φjρj) ⊂ {ξ : 2j−1 ≤ |ξ| ≤ 2j+1}, ∀j ≥ 0,

sup
j≥0

−2≤k≤2

∥∥φj(2j+k·)ϕ
∥∥
Hσ2 (Rd)

<∞.

(i) Let 1 < p <∞. Then for any distribution x on Tdθ,
∥∥(∑

j≥0

22jα|φ̃j ∗ ρ̃j ∗ x|2
) 1

2
∥∥
Lp(Tdθ)

. sup
j≥0

−2≤k≤2

∥∥φj(2j+k·)ϕ
∥∥
Hσ2

∥∥(∑

j≥0

22jα|ρ̃j ∗ x|2
) 1

2
∥∥
Lp(Tdθ)

,

where the constant depends only on p, σ, d and ϕ.

(ii) Assume, in addition, that ρj = ρ̂(2−j ·) for some Schwartz function with supp(ρ) = {ξ : 2−1 ≤
|ξ| ≤ 2}. Then the above inequality also holds for p = 1 with relevant constant depending
additionally on ρ.

The remainder of this section is devoted to the proof of the above theorem. As one can guess,
the proof is based on the Calderón-Zygmund theory. We require several lemmas. The first one is
an elementary inequality.

Lemma 4.2. Assume that f : Rd → ℓ2 and g : Rd → C satisfy

f ∈ Hσ
2 (R

d; ℓ2) and

∫

Rd

(1 + |s|2)σ|F−1(g)(s)|ds <∞.

Then fg ∈ Hσ
2 (R

d; ℓ2) and

∥∥fg
∥∥
Hσ2 (Rd;ℓ2)

≤
∥∥f

∥∥
Hσ2 (Rd;ℓ2)

∫

Rd

(1 + |s|2)σ|F−1(g)(s)|ds.

Proof. The norm ‖ · ‖ below is that of ℓ2. By the Cauchy-Schwarz inequality, for s ∈ Rd, we have

∥∥F−1(fg)(s)
∥∥2

=
∥∥F−1(f) ∗ F−1(g)(s)

∥∥2 ≤
∥∥F−1(g)

∥∥
1

∫

Rd

∥∥F−1(f)(s− t)
∥∥2 ∣∣F−1(g)(t)

∣∣dt.

It then follows that
∥∥fg

∥∥2
Hσ2 (Rd;ℓ2)

=

∫

Rd

(1 + |s|2)σ
∥∥F−1(fg)(s)

∥∥2ds

≤
∥∥F−1(g)

∥∥
1

∫

Rd

(1 + |s|2)σ
∫

Rd

∥∥F−1(f)(s− t)
∥∥2 ∣∣F−1(g)(t)

∣∣dt ds

≤
∥∥F−1(g)

∥∥
1

∫

Rd

∫

Rd

(1 + |s− t|2)σ
∥∥F−1(f)(s− t)

∥∥2ds (1 + |t|2)σ|F−1(g)(t)|dt

≤
∥∥f

∥∥2
Hσ2 (Rd;ℓ2)

(∫

Rd

(1 + |t|2)σ|F−1(g)(t)|dt
)2

.

Thus the assertion is proved. �

The following lemma is a well-known result in harmonic analysis, which asserts that every
Hörmander multiplier is a Calderón-Zygmund operator. Note that the usual Hörmander condition
is expressed in terms of partial derivatives up to order [d2 ] + 1, while the condition below, in terms

of the potential Sobolev space Hσ
2 (R

d), is not commonly used (it is explicitly stated on page 263 of
[68]). Combined with the previous lemma, the standard argument as described in [25, p. 211-214],
[68, p. 245-247] or [72, p. 161-165] can be easily adapted to the present setting.

Lemma 4.3. Let φ = (φj)j≥0 be a sequence of continuous functions on Rd \ {0}, viewed as a

function from Rd to ℓ2. Assume that

(4.2) sup
k∈Z

∥∥φ(2k·)ϕ
∥∥
Hσ2 (Rd;ℓ2)

<∞.

Let k = (kj)j≥0 with kj = F−1(φj). Then k is a Calderón-Zygmund kernel with values in ℓ2, more

precisely,

•
∥∥k̂

∥∥
L∞(Rd;ℓ2)

. sup
k∈Z

∥∥φ(2k·)ϕ
∥∥
Hσ2 (Rd;ℓ2)

;
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• sup
t∈Rd

∫

|s|>2|t|
‖k(s− t)− k(s)‖ℓ2ds . sup

k∈Z

∥∥φ(2k·)ϕ
∥∥
Hσ2 (Rd;ℓ2)

.

The relevant constants depend only on ϕ, σ and d.

The above kernel k defines a Calderón-Zygmund operator on Rd. But we will consider only the
periodic case, so we need to periodize k:

k̃(s) =
∑

m∈Zd

k(s+m).

By a slight abuse of notation, we use k̃j to denote the Calderón-Zygmund operator on Td associated

to k̃j too:

k̃j(f)(s) =

∫

Id

k̃j(s− t)f(t)dt,

where we have identified T with I = [0, 1). k̃j is the Fourier multiplier on Td with symbol φj :

f 7→ φ̃j ∗ f .
We have

̂̃
k = k̂

∣∣
Zd
. If φ satisfies (4.2), then Lemma 4.3 implies

(4.3)





∥∥̂̃k
∥∥
ℓ∞(Zd;ℓ2)

<∞,

sup
t∈Id

∫

{s∈Id:|s|>2|t|}
‖k̃(s− t)− k̃(s)‖ℓ2ds <∞.

Now let M be a von Neumann algebra equipped with a normal faithful tracial state τ , and
let N = L∞(Td)⊗M, equipped with the tensor trace. The following lemma should be known to
experts; it is closely related to similar results of [29, 46, 51], notably to [35, Lemma 2.3]. Note that
the sole difference between the following condition (4.4) and (4.2) is that the supremum in (4.2)
runs over all integers while the one below is restricted to nonnegative integers.

Lemma 4.4. Let φ = (φj)j≥0 be a sequence of continuous functions on Rd \ {0} such that

(4.4) ‖φ‖hσ2 = sup
k≥0

∥∥φ(2k·)ϕ
∥∥
Hσ2 (Rd;ℓ2)

<∞.

Then for 1 < p <∞ and any finite sequence (fj) ⊂ Lp(N ),
∥∥(∑

j≥0

|φ̃j ∗ fj |2
) 1

2
∥∥
p
. ‖φ‖hσ2

∥∥(∑

j≥0

|fj|2
) 1

2
∥∥
p
.

The relevant constant depends only on p, ϕ, σ and d.

Proof. The argument below is standard. First, note that the Fourier multiplier on Td with symbol
φj does not depend on the values of φj in the open unit ball of Rd. So letting η be an infinitely
differentiable function on Rd such that η(ξ) = 0 for |ξ| ≤ 1

2 and η(ξ) = 1 for |ξ| ≥ 1, we see that

φj and ηφj induce the same Fourier multiplier on Td (restricted to distributions with vanishing
Fourier coefficients at the origin). On the other hand, it is easy to see that (4.4) implies that the
sequence (ηφj)j≥0 satisfies (4.2) with (ηφj)j≥0 in place of φ. Thus replacing φj by ηφj if necessary,
we will assume that φ satisfies the stronger condition (4.2).

We will use the Calderón-Zygmund theory and consider k̃ as a diagonal matrix with diagonal

entries (k̃j)j≥1. The Calderón-Zygmund operator associated to k̃ is thus the convolution operator:

k̃(f)(s) =

∫

Id

k̃(s− t)f(t)dt

for any finite sequence f = (fj) (viewed as a column matrix). Then the assertion to prove amounts

to the boundedness of k̃ on Lp(N ; ℓc2).

We first show that k̃ is bounded from L∞(N ; ℓc2) into BMOc(Td, B(ℓ2)⊗M). Let f be a finite
sequence in L∞(N ; ℓc2), and let Q be a cube of Id whose center is denoted by c. We decompose f

as f = g + h with g = f1Q̃, where Q̃ = 2Q, the cube with center c and twice the side length of Q.

Setting

a =

∫

Id\Q̃
k̃(c− t)f(t)dt,
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we have

k̃(f)(s)− a = k̃(g)(s) +

∫

Id

(k̃(s− t)− k̃(c− t))h(t)dt.

Thus
1

|Q|

∫

Q

|k̃(f)(s)− a|2ds ≤ 2(A+B),

where

A =
1

|Q|

∫

Q

|k̃(g)(s)|2ds,

B =
1

|Q|

∫

Q

∣∣∣
∫

Id

(k̃(s− t)− k̃(c− t))h(t)dt
∣∣∣
2

ds.

The first term A is easy to estimate. Indeed, by (4.3) and the Plancherel formula,

|Q|A ≤
∫

Id

|k̃(g)(s)|2ds =
∑

m∈Zd

∣∣̂̃k(m)ĝ(m)
∣∣2

=
∑

m∈Zd

ĝ(m)∗
[ ̂̃
k(m)∗

̂̃
k(m)

]
ĝ(m) ≤

∑

m∈Zd

‖̂̃k(m)‖2B(ℓ2)
|ĝ(m)|2

≤
∥∥̂̃k

∥∥
ℓ∞(Zd;ℓ∞)

∫

Id

|g(s)|2ds

≤
∥∥̂̃k

∥∥
ℓ∞(Zd;ℓ2)

∫

Id

|g(s)|2ds . |Q̃| ‖f‖2L∞(N ;ℓc2)
,

whence

‖A‖B(ℓ2)⊗M . ‖f‖2L∞(N ;ℓc2)
.

To estimate B, let h = (hj). Then by (4.3), for any s ∈ Q we have
∣∣∣
∫

Id

(k̃(s− t)− k̃(c− t))h(t)dt
∣∣∣
2

=
∑

j

∣∣∣
∫

Id

(k̃j(s− t)− k̃j(c− t))hj(t)dt
∣∣∣
2

.
∑

j

∫

Id\Q̃
|k̃j(s− t)− k̃j(c− t)| |hj(t)|2dt

.

∫

Id\Q̃
‖k̃(s− t)− k̃(c− t)‖ℓ∞

∑

j

|hj(t)|2dt

. ‖f‖2L∞(N ;ℓc2)

∫

Id\Q̃
‖k̃(s− t)− k̃(c− t)‖ℓ2dt

. ‖f‖2L∞(N ;ℓc2)
.

Thus

‖B‖B(ℓ2)⊗M ≤ 1

|Q|

∫

Q

∥∥∥
∫

Id

(k̃(s− t)− k̃(c− t))h(t)dt
∥∥∥
2

B(ℓ2)⊗M
ds

=
1

|Q|

∫

Q

∥∥∥
∣∣∣
∫

Id

(k̃(s− t)− k̃(c− t))h(t)dt
∣∣∣
2∥∥∥
B(ℓ2)⊗M

ds

. ‖f‖2L∞(N ;ℓc2)
.

Therefore, k̃ is bounded from L∞(N ; ℓc2) into BMOc(Td, B(ℓ2)⊗M).

We next show that k̃ is bounded from L∞(N ; ℓc2) into BMOr(Td, B(ℓ2)⊗M). Let f,Q and a be
as above. Now we have to estimate

∥∥∥ 1

|Q|

∫

Q

∣∣[ k̃(f)(s)− a
]∗∣∣2ds

∥∥∥
B(ℓ2)⊗M

.

We will use the same decomoposition f = g + h. Then

1

|Q|

∫

Q

∣∣[ k̃(f)(s)− a
]∗∣∣2ds ≤ 2(A′ +B′),
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where

A′ =
1

|Q|

∫

Q

∣∣[ k̃(g)(s)
]∗∣∣2ds,

B′ =
1

|Q|

∫

Q

∣∣∣
∫

Id

[
(k̃(s− t)− k̃(c− t))h(t)

]∗
dt
∣∣∣
2

ds.

The estimate of B′ can be reduced to that of B before. Indeed,

‖B′‖B(ℓ2)⊗M ≤ 1

|Q|

∫

Q

∥∥∥
∫

Id

[
(k̃(s− t)− k̃(c− t))h(t)

]∗
dt
∥∥∥
2

B(ℓ2)⊗M
ds

=
1

|Q|

∫

Q

∥∥∥
[ ∫

Id

(k̃(s− t)− k̃(c− t))h(t)dt
]∗∥∥∥

2

B(ℓ2)⊗M
ds

=
1

|Q|

∫

Q

∥∥∥
∫

Id

(k̃(s− t)− k̃(c− t))h(t)dt
∥∥∥
2

B(ℓ2)⊗M
ds

. ‖f‖2L∞(N ;ℓc2)
.

However, A′ needs a different argument. Setting g = (gj), we have

‖A′‖B(ℓ2)⊗M = sup
{ 1

|Q|

∫

Q

τ
[∑

i,j

k̃i(gi)(s)k̃j(gj)(s)
∗a∗jai

]
ds
}
,

where the supremum runs over all a = (ai) in the unit ball of ℓ2(L2(M)). Considering ai as a
constant function on Id, we can write

aik̃i(gi) = k̃i(aigi).

Thus ∫

Q

τ
[∑

i,j

k̃i(gi)(s)k̃j(gj)(s)
∗a∗jai

]
ds =

∫

Q

∥∥∑

i

k̃i(aigi)(s)
∥∥2

L2(M)
ds.

So by the Plancherel formula,
∫

Q

∥∥∑

i

k̃i(aigi)(s)
∥∥2

L2(M)
ds ≤

∫

Id

∥∥∑

i

k̃i(aigi)(s)
∥∥2

L2(M)
ds

=
∑

m∈Zd

∥∥∑

i

̂̃
ki(m) ai ĝi(m)

∥∥2

L2(M)
.

On the other hand, by the Cauchy-Schwarz inequality, (4.3) and the Plancherel formula once more,
we have

∑

m∈Zd

∥∥∑

i

̂̃
ki(m) ai ĝi(m)

∥∥2

L2(M)
≤

∑

m∈Zd

‖̂̃k(m)‖2ℓ2
∑

i

τ(|aiĝi(m)|2)

.
∑

i

τ
[
ai

∑

m∈Zd

ĝi(m)ĝi(m)∗ a∗i
]

=
∑

i

τ
[
ai

∫

Id

gi(s)gi(s)
∗ds a∗i

]

=
∑

i

τ
[
ai

∫

Q̃

fi(s)fi(s)
∗ds a∗i

]

≤ |Q̃|
∑

i

τ
[
ai ‖fi‖2L∞(N ) a

∗
i

]

. |Q| ‖f‖2L∞(N ;ℓc2)

∑

i

τ(|ai|2)

≤ |Q| ‖f‖2L∞(N ;ℓc2)
.

Combining the above estimates, we get the desired estimate of A′:

‖A′‖B(ℓ2)⊗M . ‖f‖2L∞(N ;ℓc2)
.
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Thus, k̃ is bounded from L∞(N ; ℓc2) into BMOr(Td, B(ℓ2)⊗M), so is it from L∞(N ; ℓc2) into
BMO(Td, B(ℓ2)⊗M).

It is clear that k̃ is bounded from L2(N ; ℓc2) into L2(B(ℓ2)⊗N ). Hence, by interpolation via

(1.2) and Lemma 1.8, k̃ is bounded from Lp(N ; ℓc2) into Lp(B(ℓ2)⊗N ) for any 2 < p <∞. This is
the announced assertion for 2 ≤ p <∞. The case 1 < p < 2 is obtained by duality. �

Remark 4.5. In the commutative case, i.e., M = C, it is well known that the conclusion of the
preceding lemma holds under the following weaker assumption on φ:

(4.5) sup
k≥0

( ∫

Rd

(1 + |s|2)σ
∥∥F−1(φ(2k·)ϕ)(s)

∥∥2

ℓ∞
ds
) 1

2

<∞.

Like at the beginning of the preceding proof, this assumption can be strengthened to

sup
k∈Z

( ∫

Rd

(1 + |s|2)σ
∥∥F−1(φ(2k·)ϕ)(s)

∥∥2

ℓ∞
ds
) 1

2

<∞.

Then if we consider k = (kj)j≥0 as a kernel with values in ℓ∞, Lemma 4.3 admits the following
ℓ∞-analogue:

•
∥∥k̂

∥∥
L∞(Rd;ℓ∞)

<∞;

• sup
t∈Rd

∫

|s|>2|t|
‖k(s− t)− k(s)‖ℓ∞ds <∞.

Transferring this to the periodic case, we have

•
∥∥̂̃k

∥∥
ℓ∞(Zd;ℓ∞)

<∞;

• sup
t∈Id

∫

{s∈Id:|s|>2|t|}
‖k̃(s− t)− k̃(s)‖ℓ∞ds <∞.

The last two properties of the kernel k̃ are exactly what is needed for the estimates of A and B in
the proof of Lemma 4.4, so the conclusion holds when M = C. However, we do not know whether
Lemma 4.4 remains true when (4.4) is weakened to (4.5).

Lemma 4.6. Let φ = (φj)j≥0 be a sequence of continuous functions on Rd \ {0} satisfying (4.4).
Then for 1 ≤ p ≤ 2 and any f ∈ Hc

p(T
d,M),

∥∥(∑

j≥0

|φ̃j ∗ f |2
) 1

2
∥∥
Lp(N )

. ‖φ‖hσ2 ‖f‖Hc
p
.

The relevant constant depends only on ϕ, σ and d.

Proof. Like in the proof of Lemma 4.4, we can assume, without loss of generality, that φ satisfies

(4.2). We use again the Calderón-Zygmund theory. Now we view k̃ = (k̃j)j≥0 as a column matrix

and the associated Calderón-Zygmund operator k̃ as defined on Lp(N ):

k̃(f)(s) =

∫

Id

k̃(s− t)f(t)dt.

Thus k̃ maps functions to sequences of functions. We have to show that k̃ is bounded from
Hc
p(T

d,M) to Lp(N ; ℓc2) for 1 ≤ p ≤ 2. This is trivial for p = 2. So by Lemma 1.9 via in-
terpolation, it suffices to consider the case p = 1. The argument below is based on the atomic
decomposition of Hc

1(T
d,M) obtained in [17] (see also [44]). Recall that an Mc-atom is a function

a ∈ L1(M;Lc2(T
d)) such that

• a is supported by a cube Q ⊂ Td ≈ Id;
•

∫
Q a(s)ds = 0;

• τ
[( ∫

Q |a(s)|2ds
) 1

2
]
≤ |Q|− 1

2 .

Thus we need only to show that for any atom a

‖k̃(a)‖L1(N ;ℓc2)
. 1.
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Let Q be the supporting cube of a. By translation invariance of the operator k̃, we can assume

that Q is centered at the origin. Set Q̃ = 2Q as before. Then

(4.6) ‖k̃(a)‖L1(N ;ℓc2)
≤ ‖k̃(a)1Q̃‖L1(N ;ℓc2)

+ ‖k̃(a)1
Id\Q̃‖L1(N ;ℓc2)

.

The operator convexity of the square function x 7→ |x|2 implies
∫

Q̃

|k(a)(s)|ds ≤ |Q̃| 12
(∫

Q̃

|k̃(a)(s)|2ds
) 1

2

.

However, by the Plancherel formula,
∫

Q̃

|k̃(a)(s)|2ds ≤
∫

Id

|k̃(a)(s)|2ds =
∑

m∈Zd

|̂̃k(a)(m)|2 =
∑

m∈Zd

|̂̃k(m)â(m)|2

≤
∥∥̂̃k

∥∥
ℓ∞(Zd;ℓ2)

∑

m∈Zd

|â(m)|2 =
∥∥̂̃k

∥∥
ℓ∞(Zd;ℓ2)

∫

Q

|a(s)|2ds .

Therefore, by (4.3)

‖k̃(a)1Q̃‖L1(N ;ℓc2)
= τ

∫

Q̃

|k̃(a)(s)|ds . |Q̃| 12 τ
[( ∫

Q

|a(s)|2ds
) 1

2
]
. 1.

This is the desired estimate of the first term of the right-hand side of (4.6). For the second, since

a is of vanishing mean, for every s 6∈ Q̃ we can write

k̃(a)(s) =

∫

Q

[ k̃(s− t)− k̃(s)]a(t)dt.

Then by the Cauchy-Schwarz inequality via the operator convexity of the square function x 7→ |x|2,
we have

|k̃(a)(s)|2 ≤
∫

Q

‖k̃(s− t)− k̃(s)‖ℓ2dt ·
∫

Q

‖k̃(s− t)− k̃(s)‖ℓ2 |a(t)|2dt.

Thus by (4.3),

‖k̃(a)1
Id\Q̃‖L1(N ;ℓc2)

= τ

∫

Id\Q̃
|k̃(a)(s)|ds

. τ
[( ∫

Q

∫

Id\Q̃
‖k̃(s− t)− k̃(s)‖ℓ2ds dt

) 1
2 ·

( ∫

Q

∫

Id\Q̃
‖k̃(s− t)− k̃(s)‖ℓ2 |a(t)|2ds dt

) 1
2

]

. |Q|1/2 τ
[( ∫

Q

|a(s)|2ds
) 1

2
]
. 1.

Hence the desired assertion is proved. �

By transference, the previous lemmas imply the following. According to our convention used in

the previous chapters, the map x 7→ φ̃ ∗ x denotes the Fourier multiplier associated to φ on Tdθ .

Lemma 4.7. Let φ = (φj)j satisfy (4.4).

(i) For 1 < p <∞ we have

∥∥(∑

j≥0

|φ̃j ∗ xj |2
) 1

2
∥∥
p
. ‖φ‖hσ2

∥∥(∑

j≥0

|xj |2
) 1

2
∥∥
p
, xj ∈ Lp(T

d
θ)

with relevant constant depending only on p, ϕ, σ and d.

(ii) For 1 ≤ p ≤ 2 we have

∥∥(∑

j≥0

|φ̃j ∗ x|2
) 1

2
∥∥
p
. ‖φ‖hσ2 ‖x‖Hc

p
, x ∈ Hc

p(T
d
θ)

with relevant constant depending only on ϕ, σ and d.

We are now ready to prove Theorem 4.1.
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Proof of Theorem 4.1. Let ζj = φj(ϕ
(j−1) + ϕ(j) + ϕ(j+1)). By (3.2) and the support assumption

on φjρj , we have

φjρj = ζjρj , so φ̃j ∗ ρ̃j ∗ x = ζ̃j ∗ ρ̃j ∗ x
for any distribution x on Tdθ . We claim that ζ = (ζj)j≥0 satisfies (4.4) in place of φ. Indeed, given
k ∈ N0, by the support assumption on ϕ in (3.1), the sequence ζ(2k·)ϕ = (ζj(2

k·)ϕ)j≥0 has at
most five nonzero terms of indices j such that k − 2 ≤ j ≤ k + 2. Thus

∥∥ζ(2k·)ϕ
∥∥
Hσ2 (Rd;ℓ2)

≤
k+2∑

j=k−2

∥∥ζj(2k·)ϕ
∥∥
Hσ2 (Rd)

.

However, by Lemma 4.2,
∥∥ζj(2k·)ϕ

∥∥
Hσ2 (Rd)

. sup
−2≤k≤2

∥∥φj(2j+k·)ϕ
∥∥
Hσ2 (Rd)

, k − 2 ≤ j ≤ k + 2,

where the relevant constant depends only on d, σ and ϕ. Therefore, the second condition of (4.1)
yields the claim.

Now applying Lemma 4.7 (i) with ζj instead of φj and xj = 2jαϕ̃j ∗ x, we prove part (i) of the
theorem.

To show part (ii), we need the characterization of Hc
1(T

d
θ) by discrete square functions stated in

Lemma 1.10 with ψ = I−αρ. Let x be a distribution on Tdθ with x̂(0) = 0 such that

∥∥(∑

j≥0

2jα|ρ̃j ∗ x|2
) 1

2
∥∥
1
<∞.

Let y = Iα(x). Then the discrete square function of y associated to ψ is given by

scψ(y)
2 =

∑

j≥0

|ψ̃j ∗ y|2 =
∑

j≥0

2jα|ρ̃j ∗ x|2 .

So y ∈ Hc
1(T

d
θ) and

‖y‖Hc
1
≈

∥∥(∑

j≥0

2jα|ρ̃j ∗ x|2
) 1

2
∥∥
1
.

We want to apply Lemma 4.7 (ii) to y but with a different multiplier in place of φ. To that end,
let ηj = 2jαI−αφj and η = (ηj)j≥0. We claim that η satisfies (4.1) too. The support condition of
(4.1) is obvious for η. To prove the second one, by (3.2), we write

ηj(2
jξ)ϕ(ξ) = |ξ|−αϕ(ξ)φj(2jξ) = |ξ|−α[ϕ(2−1ξ) + ϕ(ξ) + ϕ(2ξ)]ϕ(ξ)φj(2

jξ).

Since I−α(ϕ(−1) + ϕ+ ϕ(1)) is an infinitely differentiable function with compact support,
∫

Rd

(1 + |s|2)σ
∣∣F−1(I−α(ϕ

(−1) + ϕ+ ϕ(1)))(s)
∣∣ds <∞.

Thus by Lemma 4.2,
∥∥ηj(2j+k·)ϕ

∥∥
Hs2 (R

d)
.

∥∥φj(2j+k·)ϕ
∥∥
Hs2 (R

d)
,

whence the claim.
As in the first part of the proof, we define a new sequence ζ by setting ζj = ηjρj . Then the new

sequence ζ satisfies (4.4) too and

sup
k≥0

∥∥ζj(2k·)ϕ
∥∥
Hσ2 (Rd)

. sup
j≥0

−2≤k≤2

∥∥ηj(2j+k·)ϕ
∥∥
Hσ2 (Rd)

. sup
j≥0

−2≤k≤2

∥∥φj(2j+k·)ϕ
∥∥
Hσ2 (Rd)

.

On the other hand, we have

2jαφ̃j ∗ ρ̃j ∗ x = ζ̃j ∗ y .
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Thus we can apply Lemma 4.7 (ii) to y with this new ζ instead of φ, and as before, we get
∥∥(∑

j≥0

22jα|φ̃j ∗ ρ̃j ∗ x|2
) 1

2
∥∥
1
=

∥∥(∑

j≥0

|ζ̃j ∗ y|2
) 1

2
∥∥
1

. sup
k≥0

∥∥ζ(2k·)ϕ
∥∥
Hσ2 (Rd;ℓ2)

‖y‖Hc
p

. sup
j≥0

−2≤k≤2

∥∥φj(2j+k·)ϕ
∥∥
Hσ2 (Rd)

∥∥(∑

j≥0

2jα|ρ̃j ∗ x|2
) 1

2
∥∥
1
.

Hence the proof of the theorem is complete. �

4.2. Definitions and basic properties

As said at the beginning of this chapter, we consider the Triebel-Lizorkin spaces on Tdθ only for
q = 2. In this case, there exist three different families of spaces according to the three choices of
the internal ℓ2-norms.

Definition 4.8. Let 1 ≤ p <∞ and α ∈ R.

(i) The column Triebel-Lizorkin space Fα,cp (Tdθ) is defined by

Fα,cp (Tdθ) =
{
x ∈ S ′(Tdθ) : ‖x‖Fα,cp

<∞
}
,

where

‖x‖Fα,cp
= |x̂(0)|+

∥∥(∑

k≥0

22kα|ϕ̃k ∗ x|2
) 1

2
∥∥
p
.

(ii) The row space Fα,rp (Tdθ) consists of all x such that x∗ ∈ Fα,cp (Tdθ), equipped with the norm
‖x‖Fα,rp

= ‖x∗‖Fα,cp
.

(iii) The mixture space Fαp (T
d
θ) is defined to be

Fαp (T
d
θ) =

{
Fα,cp (Tdθ) + Fα,rp (Tdθ) if 1 ≤ p < 2,

Fα,cp (Tdθ) ∩ Fα,rp (Tdθ) if 2 ≤ p <∞,

equipped with

‖x‖Fαp =

{
inf

{
‖y‖Fα,cp

+ ‖z‖Fα,rp
: x = y + z

}
if 1 ≤ p < 2,

max(‖x‖Fα,cp
, ‖x‖Fα,rp

) if 2 ≤ p <∞.

In the sequel, we will concentrate our study only on the column Triebel-Lizorkin spaces. All
results will admit the row and mixture analogues. The following shows that Fα,cp (Tdθ) is independent
of the choice of the function ϕ.

Proposition 4.9. Let ψ be a Schwartz function satisfying the same condition (3.1) as ϕ. Let

ψ̂k = ψ(k) = ψ(2−k·). Then

‖x‖Fα,cp
≈ |x̂(0)|+

∥∥(∑

k≥0

22kα|ψ̃k ∗ x|2
) 1

2
∥∥
p
.

Proof. Fix a distribution x on Tdθ with x̂(0) = 0. By the support assumption on ψ(k) and (3.2), we
have (with ϕ̃−1 = 0)

ψ̃k ∗ x =
1∑

j=−1

ψ̃k ∗ ϕ̃k+j ∗ x.

Thus by Theorem 4.1,

∥∥(∑

k≥0

22kα|ψ̃k ∗ x|2
) 1

2
∥∥
p
≤

1∑

j=−1

∥∥(∑

k≥0

22kα|ψ̃k ∗ ϕ̃k+j ∗ x|2
) 1

2
∥∥
p

.
∥∥(∑

k≥0

22kα|ϕ̃k ∗ x|2
) 1

2
∥∥
p
.

Changing the role of ϕ and ψ, we get the reverse inequality. �

Proposition 4.10. Let 1 ≤ p <∞ and α ∈ R.
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(i) Fα,cp (Tdθ) is a Banach space.

(ii) Fα,cp (Tdθ) ⊂ F β,cp (Tdθ) for β < α.

(iii) Pθ is dense in Fα,cp (Tdθ) .

(iv) F 0,c
p (Tdθ) = Hc

p(T
d
θ).

(v) Bαp,min(p,2)(T
d
θ) ⊂ Fα,cp (Tdθ) ⊂ Bαp,max(p,2)(T

d
θ).

Proof. (i) is proved as in the case of Besov spaces; see the corresponding proof of Proposition 3.3.
(ii) is obvious. To show (iii), we use the Fejér means as in the proof of Proposition 2.7. We need one
more property of those means, that is, they are completely contractive. So they are also contractive
on Lp(B(ℓ2)⊗Tdθ), in particular, on the column subspace Lp(T

d
θ ; ℓ

c
2) too. We then deduce that FN

is contractive on Fα,cp (Tdθ) and limN→∞ FN (x) = x for every x ∈ Fα,cp (Tdθ).
(iv) has been already observed during the proof of Theorem 4.1. Indeed, for any distribution x

on Tdθ , the square function associated to ϕ defined in Lemma 1.10 is given by

scϕ(x) =
(∑

k≥0

|ϕ̃k ∗ x|2
) 1

2 .

Thus ‖x‖Hc
p
≈ ‖x‖F 0,c

p
.

(v) follows from the following well-known property:

ℓ2(Lp(T
d
θ)) ⊂ Lp(T

d
θ ; ℓ

c
2) ⊂ ℓp(Lp(T

d
θ))

are contractive inclusions for 2 ≤ p ≤ ∞; both inclusions are reversed for 1 ≤ p ≤ 2. Note that
the first inclusion is an immediate consequence of the triangular inequality of L p

2
(Tdθ), the second

is proved by complex interpolation. �

The following is the Triebel-Lizorkin analogue of Theorem 3.7. We keep the notation introduced
before that theorem.

Theorem 4.11. Let 1 ≤ p <∞ and α ∈ R.

(i) For any β ∈ R, both Jβ and Iβ are isomorphisms between Fα,cp (Tdθ) and Fα−β,cp (Tdθ). In

particular, Jα and Iα are isomorphisms between Fα,cp (Tdθ) and Hc
p(T

d
θ).

(ii) Let a ∈ Rd+. If x ∈ Fα,cp (Tdθ), then D
ax ∈ F

α−|a|1,c
p (Tdθ) and

‖Dax‖
F
α−|a|1,c
p

. ‖x‖Fα,cp
.

(iii) Let β > 0. Then x ∈ Fα,cp (Tdθ) iff D
β
i x ∈ Fα−β,cp (Tdθ) for all i = 1, · · · , d. Moreover, in this

case,

‖x‖Fα,cp
≈ |x̂(0)|+

d∑

i=1

‖Dβ
i x‖Fα−β,c

p
.

Proof. (i) Let x ∈ Fα,cp (Tdθ) with x̂(0) = 0. By Theorem 4.1,

‖Jβx‖Fα−β,c
p

=
∥∥(∑

k≥0

22k(α−β)|Jβ ∗ ϕ̃k ∗ x|2
) 1

2
∥∥
p

. sup
k≥0

2−kβ‖Jβ(2k·)ϕ‖Hσ2 (Rd)

∥∥(∑

k≥0

22kα|ϕ̃k ∗ x|2
) 1

2
∥∥
p
.

However, it is easy to see that all partial derivatives of the function 2−kβJβ(2k·)ϕ, of order less
than a fixed integer, are bounded uniformly in k. It then follows that

sup
k≥0

2−kβ‖Jβ(2k·)ϕ‖Hσ2 (Rd) <∞.

Thus ‖Jβx‖Fα−β,c
p

. ‖x‖Fα,cp
. So Jβ is bounded from Fα,cp (Tdθ) to F

α−β,c
p (Tdθ), its inverse, which

is J−β , is bounded too. Iβ is handled similarly.
If β = α, then Fα−β,cp (Tdθ) = F 0,c

p (Tdθ) = Hc
p(T

d
θ) by Proposition 4.10 (iv).

(ii) This proof is similar to the previous one by replacing Jβ by Da and using Lemma 3.5.
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(iii) One implication is contained in (ii). To show the other, we follow the proof of Theorem 3.7
(iii) and keep the notation there. Since

ϕk =

d∑

i=1

χiDi,βϕk,

by Theorem 4.1,

‖x‖Fα,cp
≤

d∑

i=1

∥∥(∑

k≥0

22kα|χ̃i ∗ ϕ̃k ∗Dβ
i x|2

) 1
2
∥∥
p

.

d∑

i=1

sup
k≥0

2kβ‖χi(2k·)ϕ‖Hσ2 (Rd)

∥∥(∑

k≥0

22k(α−β)|ϕ̃k ∗Dβ
i x|2

) 1
2
∥∥
p
.

However,
2kβ‖χi(2k·)ϕ‖Hσ2 (Rd) = ‖ψϕ‖Hσ2 (Rd) ,

where

ψ(ξ) =
1

χ(2kξ1)|ξ1|β + · · ·+ χ(2kξd)|ξd|β
χ(2kξi)|ξi|β
(2πiξi)β

.

As all partial derivatives of ψϕ, of order less than a fixed integer, are bounded uniformly in k, the
norm of ψϕ in Hσ

2 (R
d) are controlled by a constant independent of k. We then deduce

‖x‖Fα,cp
.

d∑

i=1

∥∥(∑

k≥0

22k(α−β)|ϕ̃k ∗Dβ
i x|2

) 1
2
∥∥
p
=

d∑

i=1

‖Dβ
i x‖Fα−β,c

p
.

The theorem is thus completely proved. �

Corollary 4.12. Let 1 < p <∞ and α ∈ R. Then Fαp (T
d
θ) = Hα

p (T
d
θ) with equivalent norms.

Proof. Since Jα is an isomorphism from Fαp (T
d
θ) onto F

0
p (T

d
θ), and from Hα

p (T
d
θ) onto H0

p (T
d
θ), it

suffices to consider the case α = 0. But then H0
p (T

d
θ) = Lp(T

d
θ) by definition, and F 0

p (T
d
θ) = Hp(T

d
θ)

by Proposition 4.10. It remains to apply Lemma 1.9 to conclude F 0
p (T

d
θ) = H0

p (T
d
θ). �

We now discuss the duality of Fα,cp (Tdθ). For this we need to define Fα,c∞ (Tdθ) that is excluded
from the definition at the beginning of the present section. Let ℓα2 denote the Hilbert space of all
complex sequences a = (ak)k≥0 such that

‖a‖ =
(∑

k≥0

22kα|ak|2
) 1

2 <∞.

Thus Lp(T
d
θ ; ℓ

α,c
2 ) is the column subspace of Lp(B(ℓα2 )⊗Tdθ).

Definition 4.13. For α ∈ R we define Fα,c∞ (Tdθ) as the space of all distributions x on Tdθ that
admit a representation of the form

x =
∑

k≥0

ϕ̃k ∗ xk with (xk)k≥0 ∈ L∞(Tdθ ; ℓ
α,c
2 ),

and endow it with the norm

‖x‖Fα,c∞
= |x̂(0)|+ inf

{∥∥(∑

k≥0

22kα|ϕ̃k ∗ xk|2
) 1

2
∥∥
∞
}
,

where the infimum runs over all representations of x as above.

Proposition 4.14. Let 1 ≤ p < ∞ and α ∈ R. Then the dual space of Fα,cp (Tdθ) coincides

isomorphically with F
−α,c
p′ (Tdθ).

Proof. For simplicity, we will consider only distributions with vanishing Fourier coefficients at
m = 0. We view Fα,cp (Tdθ) as an isometric subspace of Lp(T

d
θ ; ℓ

α,c
2 ) via x 7→ (ϕ̃k ∗ x)k≥0. Then the

dual space of Fα,cp (Tdθ) is identified with the following quotient of the latter:

Gp′ =
{
y =

∑

k≥0

ϕ̃k ∗ yk : (yk)k≥0 ∈ Lp′(T
d
θ ; ℓ

−α,c
2 )

}
,
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equipped with the quotient norm

‖y‖ = inf
{∥∥(yk)

∥∥
Lp′(T

d
θ
;ℓ−α,c2 )

: y =
∑

k≥0

ϕ̃k ∗ yk
}
.

The duality bracket is given by 〈x, y〉 = τ(xy∗). If p = 1, then Gp′ = F−α,c
∞ (Tdθ) by definition.

It remains to show that Gp′ = F
−α,c
p′ (Tdθ) for 1 < p < ∞. It is clear that F−α,c

p′ (Tdθ) ⊂ Gp′ , a

contractive inclusion. Conversely, let y ∈ Gp′ and y =
∑
ϕ̃k ∗ yk for some (yk)k≥0 ∈ Lp′(T

d
θ ; ℓ

−α,c
2 ).

Then
ϕ̃k ∗ y = ϕ̃k ∗ ϕ̃k−1 ∗ yk−1 + ϕ̃k ∗ ϕ̃k ∗ yk + ϕ̃k ∗ ϕ̃k+1 ∗ yk+1 .

Therefore, by Lemma 4.7,

∥∥(∑

k≥0

22kα|ϕ̃k ∗ y|2
) 1

2
∥∥
p′

≤
1∑

j=−1

∥∥(∑

k≥0

2−2kα|ϕ̃k ∗ ϕ̃k+j ∗ yk+j |2
) 1

2
∥∥
p′

.
∥∥(∑

k≥0

2−2kα|yk|2
) 1

2
∥∥
p′
.

Thus y ∈ F
−α,c
p′ (Tdθ) and ‖y‖F−α,c

p′
. ‖y‖Gp′ . �

Remark 4.15. (i) The above proof shows that Fα,cp (Tdθ) is a complemented subspace of Lp(T
d
θ ; ℓ

α,c
2 )

for 1 < p <∞.
(ii) By duality, Propositions 4.9, 4.10 and Theorem 4.11 remain valid for p = ∞, except the

density of Pθ. In particular, F 0,c
∞ (Tdθ) = BMOc(Tdθ).

We conclude this section with the following Fourier multiplier theorem, which is an immediate
consequence of Theorem 4.1 for p < ∞. The case p = ∞ is obtained by duality. In the case of
α = 0, this result is to be compared with Lemma 1.7 where more smoothness of φ is assumed.

Theorem 4.16. Let φ be a continuous function on Rd \ {0} such that

sup
k≥0

∥∥φ(2k·)ϕ
∥∥
Hσ2 (Rd)

<∞

for some σ > d
2 . Then φ is a bounded Fourier multiplier on Fα,cp (Tdθ) for all 1 ≤ p ≤ ∞ and α ∈ R.

In particular, φ is a bounded Fourier multiplier on Hc
p(T

d
θ) for 1 ≤ p <∞ and on BMOc(Tdθ).

4.3. A general characterization

In this section we give a general characterization of Triebel-Lizorkin spaces on Tdθ in the same
spirit as that given in section 3.2 for Besov spaces.

Let α0, α1, σ ∈ R with σ > d
2 . Let h be a Schwartz function satisfying (3.3). Assume that ψ is

an infinitely differentiable function on Rd \ {0} such that

(4.7)





|ψ| > 0 on {ξ : 2−1 ≤ |ξ| ≤ 2},
∫

Rd

(1 + |s|2)σ
∣∣F−1(ψhI−α1)(s)

∣∣ds <∞,

sup
k∈N0

2−kα0
∥∥F−1(ψ(2k·)ϕ)

∥∥
Hσ2 (Rd)

<∞.

Writing ϕ = ϕ(ϕ(−1) + ϕ+ ϕ(1)) and using Lemma 4.2, we have

∥∥F−1(ψ(2k·)ϕ)
∥∥
Hσ2 (Rd)

.

∫

Rd

(1 + |s|2)σ
∣∣F−1(ψ(2k·)ϕ)(s)

∣∣ds.

So the third condition of (4.7) is weaker than the corresponding one assumed in [74, Theorem 2.4.1].
On the other hand, consistent with Theorem 3.9 but contrary to [74, Theorem 2.4.1], our following
theorem does not require that α1 > 0.

Theorem 4.17. Let 1 ≤ p < ∞ and α ∈ R. Assume that α0 < α < α1 and ψ satisfies (4.7).
Then for any distribution x on Tdθ, we have

(4.8) ‖x‖Fα,cp
≈ |x̂(0)|+

∥∥(∑

k≥0

22kα|ψ̃k ∗ x|2
) 1

2
∥∥
p
.



Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori 55

The equivalence is understood in the sense that whenever one side is finite, so is the other, and the

two are then equivalent with constants independent of x.

Proof. Although it resembles, in form, the proof of Theorem 3.9, the proof given below is harder and
subtler than the Besov space case. The key new ingredient is Theorem 4.1. The main differences
will already appear in the first part of the proof, which is an adaptation of step 1 of the proof of
Theorem 3.9. In the following, we will fix x with x̂(0) = 0. By approximation, we can assume that
x is a polynomial. We will denote the right-hand side of (4.8) by ‖x‖Fα,c

p,ψ
.

Given a positive integer K, we write, as before

ψ(j) =

∞∑

k=0

ψ(j)ϕ(k) =

K∑

k=−∞
ψ(j)ϕ(j+k) +

∞∑

k=K

ψ(j)ϕ(j+k) .

Then

(4.9) ‖x‖Fα,c
p,ψ

≤ I + II,

where

I =
∑

k≤K

∥∥(∑

j

22jα|ψ̃j ∗ ϕ̃j+k ∗ x|2
) 1

2
∥∥
p
,

II =
∑

k>K

∥∥(∑

j

22jα|ψ̃j ∗ ϕ̃j+k ∗ x|2
) 1

2
∥∥
p
.

The estimate of the term I corresponds to step 1 of the proof of Theorem 3.9. We use again (3.8)
with η and ρ defined there. Then applying Theorem 4.1 twice, we have

I =
∑

k≤K
2k(α1−α)∥∥(∑

j

22(j+k)α|η̃j ∗ ρ̃j+k ∗ x|2
) 1

2
∥∥
p

=
∑

k≤K
2k(α1−α)∥∥(∑

j

22jα|η̃j−k ∗ ρ̃j ∗ x|2
) 1

2
∥∥
p

.
∑

k≤K+2

2k(α1−α)∥∥η(−k)ϕ
∥∥
Hσ2

∥∥(∑

j

22jα|ρ̃j ∗ x|2
) 1

2
∥∥
p

.
∥∥Iα1ϕ

∥∥
Hσ2

∑

k≤K+2

2k(α1−α)∥∥η(−k)ϕ
∥∥
Hσ2

∥∥(∑

j

22jα|ϕ̃j ∗ x|2
) 1

2
∥∥
p

=
∥∥Iα1ϕ

∥∥
Hσ2

∑

k≤K+2

2k(α1−α)∥∥η(−k)ϕ
∥∥
Hσ2

∥∥x‖Fα,cp
.

Being an infinitely differentiable function with compact support, Iα1ϕ belongs to Hσ
2 (R

d), that is,∥∥Iα1ϕ
∥∥
Hσ2

< ∞. Next, we must estimate
∥∥η(−k)ϕ

∥∥
Hσ2

uniformly in k. To that end, for s ∈ Rd,

using

∣∣F−1(η(−k)ϕ)(s)
∣∣2 =

∣∣∣
∫

Rd

F−1(η)(t) ∗ F−1(ϕ)(s − 2kt)dt
∣∣∣
2

≤
∥∥F−1(η)

∥∥
1

∫

Rd

∣∣F−1(η)(t)
∣∣ ∣∣F−1(ϕ)(s − 2kt)

∣∣2dt ,

for k ≤ K + 2, we have

∥∥η(−k)ϕ
∥∥2
Hσ2

=

∫

Rd

(1 + |s|2)σ
∣∣F−1(η(−k)ϕ)(s)

∣∣2ds

≤
∥∥F−1(η)

∥∥
1

∫

Rd

(1 + |s|2)σ
∫

Rd

∣∣F−1(η)(t)
∣∣ ∣∣F−1(ϕ)(s − 2kt)

∣∣2dtds

.
∥∥F−1(η)

∥∥
1

∫

Rd

(1 + |2kt|2)σ
∣∣F−1(η)(t)

∣∣
∫

Rd

(1 + |s− 2kt|2)σ
∣∣F−1(ϕ)(s − 2kt)

∣∣2dsdt

≤ 2Kσ
∥∥F−1(η)

∥∥
1

∫

Rd

(1 + |t|2)σ
∣∣F−1(η)(t)

∣∣dt
∫

Rd

(1 + |s|2)σ
∣∣F−1(ϕ)(s)

∣∣2ds

≤ cϕ,σ,K

( ∫

Rd

(1 + |t|2)σ
∣∣F−1(η)(t)

∣∣dt
)2

.
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In order to return back from η to ψ, write

η = I−α1ψh+ I−α1ψ(h
(K) − h).

Note that

(4.10)

∫

Rd

(1 + |t|2)σ
∣∣F−1(I−α1ψ(h

(K) − h))(t)
∣∣dt = cψ,h,α1,σ,K <∞

since I−α1ψ(h
(K)−h) is an infinitely differentiable function with compact support. We then deduce

∫

Rd

(1 + |t|2)σ
∣∣F−1(η)(t)

∣∣dt .
∫

Rd

(1 + |t|2)σ
∣∣F−1(I−α1ψh)(t)

∣∣dt.

The term on the right-hand side is the second condition of (4.7). Combining the preceding in-
equalities, we obtain

I .

∫

Rd

(1 + |t|2)σ
∣∣F−1(I−α1ψh)(t)

∣∣dt ‖x‖Fα,cp
.

The second term II on the right-hand side of (4.9) is easier to estimate. Using (3.11), Theorem 4.1
and arguing as in the preceding part for the term I, we obtain

II .
∥∥Iα0ϕ

∥∥
Hσ2

∑

k>K−2

2−2kα
∥∥I−α0ψ(2

k·)Hϕ
∥∥
Hσ2

‖x‖Fα,cp

.
∑

k>K−2

2−2kα
∥∥I−α0ψ(2

k·)Hϕ
∥∥
Hσ2

‖x‖Fα,cp
,

where H = ϕ(2−1·)+ϕ+ϕ(2 ·). To treat the last Sobolev norm, noting that I−α0H is an infinitely
differentiable function with compact support, by Lemma 4.2, we have

∥∥I−α0ψ(2
k·)Hϕ

∥∥
Hσ2

≤
∥∥ψ(2k·)ϕ

∥∥
Hσ2

∫

Rd

(1 + |t|2)σ
∣∣F−1(I−α0H)(t)

∣∣dt .
∥∥ψ(2k·)ϕ

∥∥
Hσ2

.

Therefore,

II . sup
k>K−2

2−kα0
∥∥ψ(2k·)ϕ

∥∥
Hσ2

∑

k>K−2

22k(α0−α) ‖x‖Fα,cp

≤ c sup
k>K−2

2−kα0
∥∥ψ(2k·)ϕ

∥∥
Hσ2

2(α0−α)K

1− 2α0−α ‖x‖Fα,cp

(4.11)

with some constant c independent of K. Putting this estimate together with that of I, we finally
get

‖x‖Fα,c
p,ψ

. ‖x‖Fα,cp
.

Now we show the reverse inequality by following step 3 of the proof of Theorem 3.9 (recalling
that λ = 1− h). By (3.13) and Theorem 4.1,

‖x‖Fα,cp
.

∥∥ψ−1ϕ2
∥∥
Hσ2

∥∥(
∞∑

j=0

22jα|h̃j+K ∗ ψ̃j ∗ x|2
) 1

2
∥∥
p

.
∥∥(

∞∑

j=0

22jα|h̃j+K ∗ ψ̃j ∗ x|2
) 1

2
∥∥
p

≤ ‖x‖Fα,c
p,ψ

+
∥∥(

∞∑

j=0

22jα|λ̃j+K ∗ ψ̃j ∗ x|2
) 1

2
∥∥
p
.

Then combining the arguments in step 3 of the proof of Theorem 3.9 and (4.11) with λ(K)ψ in
place of ψ, we deduce

∥∥(
∞∑

j=0

22jα|λ̃j+K ∗ ψ̃j ∗ x|2
) 1

2
∥∥
p
≤ c sup

k>K−2
2−kα0

∥∥λ(2k−K ·)ψ(2k·)ϕ
∥∥
Hσ2

2(α0−α)K

1− 2α0−α ‖x‖Fα,cp
.

To remove λ(2k−K ·) from the above Sobolev norm, by triangular inequality, we have
∥∥λ(2k−K ·)ψ(2k·)ϕ

∥∥
Hσ2

≤
∥∥ψ(2k·)ϕ

∥∥
Hσ2

+
∥∥h(2k−K ·)ψ(2k·)ϕ

∥∥
Hσ2

.
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By the support assumption on h and ϕ, h(2k−K ·)ϕ 6= 0 only for k ≤ K + 2, so the second term on
the right hand side above matters only for k = K + 1 and k = K + 2. But for these two values of
k, by Lemma 4.2, we have

∥∥h(2k−K ·)ψ(2k·)ϕ
∥∥
Hσ2

≤ c′
∥∥ψ(2k·)ϕ

∥∥
Hσ2

,

where c′ depends only on h. Thus
∥∥λ(2k−K ·)ψ(2k·)ϕ

∥∥
Hσ2

≤ (1 + c′)
∥∥ψ(2k·)ϕ

∥∥
Hσ2

.

Putting together all estimates so far obtained, we deduce

‖x‖Fα,cp
≤ ‖x‖Fα,c

p,ψ
+ c (1 + c′) sup

k>K−2
2−kα0

∥∥ψ(2k·)ϕ
∥∥
Hσ2

2(α0−α)K

1− 2α0−α ‖x‖Fα,cp
.

So if K is chosen sufficiently large, we finally obtain

‖x‖Fα,cp
. ‖x‖Fα,c

p,ψ
,

which finishes the proof of the theorem. �

Remark 4.18. Note that we have used the infinite differentiability of ψ only to insure (4.10),
which holds whenever ψ is continuously differentiable up to order [ 3d2 ]+1. More generally, we need

only to assume that there exists σ > 3d
2 + 1 such that ψη ∈ Hσ

2 (R
d) for any compactly supported

infinite differentiable function η which vanishes in a neighborhood of the origin.

Like in the case of Besov spaces, Theorem 4.17 admits the following continuous version.

Theorem 4.19. Under the assumption of the previous theorem, for any distribution x on Tdθ,

‖x‖Fα,cp
≈ |x̂(0)|+

∥∥∥
(∫ 1

0

ε−2α|ψ̃ε ∗ x|2
dε

ε

) 1
2
∥∥∥
p
.

Proof. This proof is very similar to that of Theorem 4.17. The main idea is, of course, to discretize
the continuous square function:

∫ 1

0

ε−2α|ψ̃ε ∗ x|2
dε

ε
≈

∞∑

j=0

22jα
∫ 2−j

2−j−1

|ψ̃ε ∗ x|2
dε

ε
.

We can further discretize the internal integrals on the right-hand side. Indeed, by approximation
and assuming that x is a polynomial, each internal integral can be approximated uniformly by
discrete sums. Then we follow the proof of Theorem 3.11 with necessary modifications as in the
preceding proof. The only difference is that when Theorem 4.1 is applied, the L1-norm of the
inverse Fourier transforms of the various functions in consideration there must be replaced by the
two norms of these functions appearing in (4.7). We omit the details. �

4.4. Concrete characterizations

This section concretizes the general characterization in the previous one in terms of the Poisson
and heat kernels. We keep the notation introduced in section 3.3.

The following result improves [74, Section 2.6.4] at two aspects even in the classical case: Firstly,
in addition to derivation operators, it can also use integration operators (corresponding to negative
k); secondly, [74, Section 2.6.4] requires k > d +max(α, 0) for the Poisson characterization while
we only need k > α.

Theorem 4.20. Let 1 ≤ p <∞ and α ∈ R.

(i) Let k ∈ Z such that k > α. Then for any distribution x on Tdθ,

‖x‖Fα,cp
≈ |x̂(0)|+

∥∥∥
( ∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
.

(ii) Let k ∈ Z such that k > α
2 . Then for any distribution x on Tdθ,

‖x‖Fα,cp
≈ |x̂(0)|+

∥∥∥
(∫ 1

0

ε2(k−
α
2 )
∣∣J k
ε W̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
.
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The preceding theorem can be formulated directly in terms of the circular Poisson and heat
semigroups of Tdθ . The proof of the following result is similar to that of Theorem 3.15, and is left
to the reader.

Theorem 4.21. Let 1 ≤ p <∞, α ∈ R and k ∈ Z.

(i) If k > α, then for any distribution x on Tdθ,

‖x‖Fα,cp
≈ max

|m|<k
|x̂(m)|+

∥∥∥
( ∫ 1

0

(1− r)2(k−α)
∣∣J k
r Pr(xk)

∣∣2 dr

1− r

) 1
2
∥∥∥
p
,

where xk = x−
∑

|m|<k
x̂(m)Um.

(ii) If k > α
2 , then for any any distribution x on Tdθ,

‖x‖Fα,cp
≈ max

|m|2<k
|x̂(m)|+

∥∥∥
( ∫ 1

0

(1− r)2(k−
α
2 )
∣∣J k
r Wr(x)

∣∣2 dr

1− r

) 1
2
∥∥∥
p
.

The proof of Theorem 4.20. Similar to the Besov case, the proof of (ii) is done by choosing α1 =
2k > α. But (i) is much subtler. We will first prove (i) under the stronger assumption that
k > d + α, the remaining case being postponed. The proof in this case is similar to and a little
bit harder than the proof of Theorem 3.13. Let again ψ(ξ) = (−sgn(k)2π|ξ|)ke−2π|ξ|. As in that
proof, it remains to show that ψ satisfies the second condition of (4.7) for some α1 > α and σ > d

2 .

Since k > d+ α, we can choose α1 such that α < α1 < k − d. We claim that Ik−α1h P̂ ∈ Hσ1
2 (Rd)

for every σ1 ∈ (d2 , k−α1+
d
2 ). Indeed, this is a variant of Lemma 3.5 with a = k−α1 and ρ = h P̂.

The difference is that this function ρ is not infinitely differentiable at the origin. However, the
claim is true if σ1 is an integer. Then by complex interpolation as in the proof of that lemma,
we deduce the claim in the general case. Now choose σ such that d

2 < σ < 1
2 (σ1 − d

2 ) and set

η = σ1 − 2σ. Then η > d
2 , and by the Cauchy-Schwarz inequality, we have

∫

Rd

(1 + |s|2)σ
∣∣F−1

(
Ik−α1h P̂

)
(s)

∣∣ds ≤
(∫

Rd

(1 + |s|2)2σ+η
∣∣F−1

(
Ik−α1h P̂

)
(s)

∣∣2ds
) 1

2

.
∥∥F−1

(
Ik−α1h P̂

)∥∥
H
σ1
2 (Rd)

.

Therefore, the second condition of (4.7) is verified. This shows part (i) in the case k > d+ α. �

To deal with the remaining case k > α, we need the following:

Lemma 4.22. Let 1 ≤ p < ∞ and k, ℓ ∈ Z such that ℓ > k > α. Then for any distribution x on
Tdθ with x̂(0) = 0,

∥∥∥
(∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
≈

∥∥∥
(∫ 1

0

ε2(ℓ−α)
∣∣J ℓ
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
.

Proof. By induction, it suffices to consider the case ℓ = k + 1. We first show the lower estimate:
∥∥∥
( ∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
.

∥∥∥
( ∫ 1

0

ε2(k+1−α)∣∣J ℓ
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
.

To that end, we use

J k
ε P̃ε(x) = −sgn(k)

∫ ∞

ε

J k+1
δ P̃δ(x)dδ.

Choose β ∈ (0, k−α). By the Cauchy-Schwarz inequality via the operator convexity of the function
t 7→ t2, we obtain

∣∣J k
ε P̃ε(x)

∣∣2 ≤ ε−2β

2β

∫ ∞

ε

δ2(1+β)
∣∣J k+1
δ P̃δ(x)

∣∣2 dδ
δ
.

It then follows that
∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

≤ 1

2β

∫ ∞

0

δ2(1+β)
∣∣J k+1
δ P̃δ(x)

∣∣2 dδ
δ

∫ δ

0

ε2(k−α−β)
dε

ε

=
1

4β(k − α− β)

∫ ∞

0

δ2(k+1−α)∣∣J k+1
δ P̃δ(x)

∣∣2 dδ
δ
.
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Therefore,

∥∥∥
( ∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
.

∥∥∥
( ∫ ∞

0

δ2(k+1−α)∣∣J k+1
δ P̃δ(x)

∣∣2 dδ
δ

) 1
2
∥∥∥
p

.
∥∥∥
( ∫ 1

0

δ2(k+1−α)∣∣J k+1
δ P̃δ(x)

∣∣2 dδ
δ

) 1
2
∥∥∥
p
,

as desired.
The upper estimate is harder. This time, writing P̃ε1+ε2 = P̃ε1 ∗ P̃ε2 , we have

(
δk+1J k+1

δ P̃δ

)∣∣∣
δ=2ε

= sgn(k)2k+1 εk+1 ∂

∂ε
P̃ε ∗ J k

ε P̃ε

= sgn(k)2k+1 εk φ̃ε ∗ J k
ε P̃ε ,

where φ(ξ) = −2π|ξ| e−2π|ξ|. Thus

∥∥∥
( ∫ 1

0

ε2(k+1−α)∣∣J k+1
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
=

∥∥∥
( ∫ 1

2

0

∣∣∣
(
δk+1−αJ k+1

δ P̃δ

)∣∣∣
δ=2ε

∣∣2 dε
ε

) 1
2
∥∥∥
p

= 2k+1−α
∥∥∥
(∫ 1

2

0

ε2(k−α)
∣∣φ̃ε ∗ J k

ε P̃ε(x)
∣∣2 dε

ε

) 1
2
∥∥∥
p

≤ 2k+1−α
∥∥∥
(∫ 1

0

ε2(k−α)
∣∣φ̃ε ∗ J k

ε P̃ε(x)
∣∣2 dε

ε

) 1
2
∥∥∥
p
.

Now our task is to remove φε from the integrand on the right-hand side in the spirit of Theorem 4.1.
To that end, we will use a multiplier theorem analogous to Lemma 4.7. Let H = L2((0, 1),

dε
ε )

and define the H-valued kernel k on Rd by k(s) =
(
φε(s)

)
0<ε<1

. It is a well-known elementary fact

that this is a Calderón-Zygmund kernel, namely,

•
∥∥k̂

∥∥
L∞(Rd;H)

<∞;

• sup
t∈Rd

∫

|s|>2|t|
‖k(s− t)− k(s)‖Hds <∞.

Thus by Lemma 4.7 (i) (more exactly, following its proof), we obtain that the singular integral
operator associated to k is bounded on Lp(T

d
θ ;H

c) for any 1 < p <∞; consequently,

(4.12)
∥∥∥
(∫ 1

0

ε2(k−α)
∣∣φ̃ε ∗ J k

ε P̃ε(x)
∣∣2 dε

ε

) 1
2
∥∥∥
p
.

∥∥∥
(∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
,

whence
∥∥∥
( ∫ 1

0

ε2(k+1−α)∣∣J k+1
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
.

∥∥∥
( ∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
.

Thus the lemma is proved for 1 < p <∞.
The case p = 1 necessitates a separate argument like Lemma 4.7. We will require a more

characterization of Hc
1(T

d
θ) which is a complement to Lemma 1.10. It is the following equivalence

proved in [81]:
Let β > 0. Then for a distribution x on Tdθ with x̂(0) = 0, we have

(4.13) ‖x‖Hc
1
≈

∥∥∥
( ∫ 1

0

∣∣(IβP)ε ∗ x
∣∣2 dε
ε

) 1
2
∥∥∥
1
.

Armed with this characterization, we can easily complete the proof of the lemma. Indeed,

(Ĩk−αP)ε ∗ (Iαx) = (−sgn(k)2π)−k εk−αJ k
ε P̃ε(x) .

Thus by (4.13) with β = k − α,

∥∥∥
( ∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
1
≈ ‖Iαx‖Hc

1
.

It then remains to apply Lemma 4.7 (ii) to Iαx to conclude that (4.12) holds for p = 1 too, so the
proof of the lemma is complete. �
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End of the proof of Theorem 4.20. The preceding lemma shows that the norm in the right-hand
side of the equivalence in part (i) is independent of k with k > α. As (i) has been already proved
to be true for k > d+ α, we deduce the assertion in full generality. �

We end this section with a Littlewood-Paley type characterizations of Sobolev spaces. The
following is an immediate consequence of Corollary 4.12 and the characterizations proved previously
in this chapter.

Proposition 4.23. Let ψ satisfy (4.7), k > α and 1 < p <∞. Then for any distribution on Tdθ,

‖x‖Hαp ≈ |x̂(0)|+




inf
{∥∥(∑

k≥0

(
22kα|ψ̃k ∗ y|2

) 1
2
∥∥
p
+
∥∥(∑

k≥0

(
22kα|(ψ̃k ∗ z)∗|2

) 1
2
∥∥
p

}
if 1 < p < 2,

max
{∥∥(∑

k≥0

(
22kα|ψ̃k ∗ x|2

) 1
2
∥∥
p
,
∥∥(∑

k≥0

(
22kα|(ψ̃k ∗ x)∗|2

) 1
2
∥∥
p

}
if 2 ≤ p <∞;

and

‖x‖Hαp ≈ |x̂(0)|+




inf
{∥∥∥

(∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(y)

∣∣2 dε
ε

) 1
2
∥∥∥
p
+
∥∥∥
(∫ 1

0

ε2(k−α)
∣∣(J k

ε P̃ε(z)
)∗∣∣2 dε

ε

) 1
2
∥∥∥
p

}
if 1 < p < 2,

max
{∥∥∥

(∫ 1

0

ε2(k−α)
∣∣J k
ε P̃ε(x)

∣∣2 dε
ε

) 1
2
∥∥∥
p
,
∥∥∥
(∫ 1

0

ε2(k−α)
∣∣(J k

ε P̃ε(x)
)∗∣∣2 dε

ε

) 1
2
∥∥∥
p

}
if 2 ≤ p <∞.

The above infima are taken above all decompositions x = y + z.

4.5. Operator-valued Triebel-Lizorkin spaces

Unlike Sobolev and Besov spaces, the study of vector-valued Triebel-Lizorkin spaces in the
classical setting does not allow one to handle their counterparts in quantum tori by means of
transference. Given a Banach space X , a straightforward way of defining the X-valued Triebel-
Lizorkin spaces on Td is as follows: for 1 ≤ p <∞, 1 ≤ q ≤ ∞ and α ∈ R, an X-valued distribution
f on Td belongs to Fαp,q(T

d;X) if

‖f‖Fαp,q = ‖f̂(0)‖X +
∥∥(∑

k≥0

2qkα‖ϕ̃k ∗ f‖qX
) 1
q
∥∥
Lp(Td)

<∞.

A majority of the classical results on Triebel-Lizorkin spaces can be proved to be true in this vector-
valued setting with essentially the same methods. Contrary to the Sobolev or Besov case, the space
Fαp,2(T

d;Lp(T
d
θ)) is very different from the previously studied space Fα,cp,2 (T

d
θ). This explains why

the transference method is not efficient here.
However, there exists another way of defining Fαp,2(T

d;X). Let (rk) be a Rademacher sequence,
that is, an independent sequence of random variables on a probability space (Ω, P ), taking only
two values ±1 with equal probability. We define Fαp,rad(T

d;X) to be the space of all X-valued

distributions f on Td such that

‖f‖Fα
p,rad

= ‖f̂(0)‖X +
∥∥∑

k≥0

rk 2
kα ϕ̃k ∗ f

∥∥
Lp(Ω×Td;X)

<∞.

It seems that these spaces Fαp,rad(T
d;X) have never been studied so far in literature. They might

be worth to be investigated. If X is a Banach lattice of finite concavity, then by the Khintchine
inequality,

‖f‖Fα
p,rad

≈ ‖f̂(0)‖X +
∥∥(∑

k≥0

22kα |ϕ̃k ∗ f |2
) 1

2
∥∥
Lp(Td;X)

.

This norm resembles, in form, more the previous one ‖f‖Fαp,2. Moreover, in this case, one can also

define a similar space by replacing the internal ℓ2-norm by any ℓq-norm.
But what we are interested in here is the noncommutative case, where X is a noncommutative

Lp-space, say, X = Lp(T
d
θ). Then by the noncommutative Khintchine inequality [40], we can show
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that for 2 ≤ p <∞ (assuming f̂(0) = 0),

‖f‖Fα
p,rad

≈ max
{∥∥(∑

k≥0

22kα |ϕ̃k ∗ f |2
) 1

2
∥∥
p
,
∥∥(∑

k≥0

22kα |(ϕ̃k ∗ f)∗|2
) 1

2
∥∥
p

}
.

Here ‖ ‖p is the norm of Lp(T
d;Lp(T

d
θ)). Thus the right hand-side is closely related to the norm

of Fαp (T
d
θ) defined in section 4.2. In fact, if x 7→ x̃ denotes the transference map introduced in

Corollary 1.2, then for 1 < p <∞, we have

‖x‖Fαp (Td
θ
) ≈ ‖x̃‖Fα

p,rad(T
d;Lp(Tdθ))

.

This shows that if one wishes to treat Triebel-Lizorkin spaces on Tdθ via transference, one should
first investigate the spaces Fαp,rad(T

d;Lp(T
d
θ)). The latter ones are as hard to deal with as Fαp (T

d
θ).

We would like to point out, at this stage, that the method we have developed in this chap-
ter applies as well to Fαp,rad(T

d;Lp(T
d
θ)). In view of operator-valued Hardy spaces, we will call

Fαp,rad(T
d;Lp(T

d
θ)) an operator-valued Triebel-Lizorkin space on Td. We can define similarly its

column and row counterparts. We will give below an outline of these operator-valued Triebel-
Lizorkin spaces in the light of the development made in the previous sections. A systematic study
will be given elsewhere. In the remainder of this section, M will denote a finite von Neumann
algebra M with a faithful normal tracial state τ and N = L∞(Td)⊗M.

Definition 4.24. Let 1 ≤ p <∞ and α ∈ R. The column operator-valued Triebel-Lizorkin space
Fα,cp (Td,M) is defined to be

Fα,cp (Td,M) =
{
f ∈ S ′(Td;L1(M)) : ‖f‖Fα,cp

<∞
}
,

where

‖f‖Fα,cp
= ‖f̂(0)‖Lp(M) +

∥∥(∑

k≥0

22kα|ϕ̃k ∗ f |2
) 1

2
∥∥
Lp(N )

.

The main ingredient for the study of these spaces is still a multiplier result like Theorem 4.1
that is restated as follows:

Theorem 4.25. Assume that (φj)≥0 and (ρj)≥0 satisfy (4.1) with some σ > d
2 .

(i) Let 1 < p <∞. Then for any f ∈ S ′(Td;L1(M)),

∥∥(∑

j≥0

22jα|φ̃j ∗ ρ̃j ∗ f2| 12
∥∥
Lp(N )

. sup
j≥0

−2≤k≤2

∥∥φj(2j+k·)ϕ
∥∥
Hσ2

∥∥(∑

j≥0

22jα|ρ̃j ∗ f |2
) 1

2
∥∥
Lp(N )

.

(ii) If ρj = ρ̂(2−j·) for some Schwartz function ρ with supp(ρ) = {ξ : 2−1 ≤ |ξ| ≤ 2}. Then the

above inequality holds for p = 1 too.

The proof of Theorem 4.1 already gives the above result. Armed with this multiplier theorem,
we can check that all results proved in the previous sections admit operator-valued analogues
with the same proofs. For instance, the dual space of Fα,c1 (Td,M) can be described as a space
F−α,c
∞ (Td,M) analogous to the one defined in Definition 4.13. However, following the H1-BMO

duality developed in the theory of operator-valued Hardy spaces in [81], we can show the following
nicer characterization of the latter space in the style of Carleson measures:

Theorem 4.26. A distribution f ∈ S ′(Td;L1(M)) with f̂(0) = 0 belongs to Fα,c∞ (Td,M) iff

sup
Q

∥∥∥ 1

|Q|

∫

Q

∑

k≥log2(l(Q))

22kα|ϕ̃k ∗ f(s)|2ds
∥∥∥
M
<∞,

where the supremum runs over all cubes of Td, and where l(Q) denotes the side length of Q.

The characterizations of Triebel-Lizorkin spaces given in the previous two sections can be trans-
ferred to the present setting too. Let us formulate only the analogue of Theorem 4.21.

Theorem 4.27. Let 1 ≤ p <∞, α ∈ R and k ∈ Z.
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(i) If k > α, then for any f ∈ S ′(Td;L1(M)),

‖f‖Fα,cp
≈ max

|m|<k
‖f̂(m)‖Lp(M) +

∥∥∥
(∫ 1

0

(1− r)2(k−α)
∣∣J k
r Pr(fk)

∣∣2 dr

1− r

) 1
2
∥∥∥
Lp(N )

,

where fk = f −
∑

|m|<k
f̂(m)Um.

(ii) If k > α
2 , then for any f ∈ S ′(Td;L1(M)),

‖f‖Fα,cp
≈ max

|m|2<k
‖f̂(m)‖Lp(M) +

∥∥∥
(∫ 1

0

(1 − r)2(k−
α
2 )
∣∣J k
r Wr(f)

∣∣2 dr

1− r

) 1
2
∥∥∥
Lp(N )

.

Chapter 5. Interpolation

Now we study the interpolation of the various spaces introduced in the preceding three chapters.
We start with the interpolation of Besov and Sobolev spaces. Like in the classical case, the
interpolation of Besov spaces on Tdθ is very simple. However, the situation of (fractional) Sobolev
spaces is much more delicate. Recall that the complex interpolation problem of the classical couple
(W k

1 (R
d), W k

∞(Rd)) remains always open (see [27, p. 173]). We show in the first section some
partial results on the interpolation of W k

p (T
d
θ) and Hα

p (T
d
θ). The main result there concerns the

Hardy-Sobolev spaces W k
H1

(Tdθ) and H
α
H1

(Tdθ), that is, when the L1-norm is replaced by the nicer

H1-norm on Tdθ . The spaces W k
BMO(T

d
θ) and H

α
BMO(T

d
θ) are also considered. The most important

problem left unsolved in the first section is to transfer DeVore and Scherer’s theorem on the real
interpolation of (W k

1 (R
d), W k

∞(Rd)) to the quantum setting. The main result of the second section
characterizes the K-functional of the couple (Lp(T

d
θ), W

k
p (T

d
θ)) by the Lp-modulus of smoothness,

thereby extending a theorem of Johnen and Scherer to the quantum tori. This result is closely
related to the limit theorem of Besov spaces proved in section 3.5. The last short section contains
some simple results on the interpolation of Triebel-Lizorkin spaces.

5.1. Interpolation of Besov and Sobolev spaces

This section collects some results on the interpolation of Besov and Sobolev spaces. We start
with the Besov spaces.

Proposition 5.1. Let 0 < η < 1. Assume that α, α0, α1 ∈ R and p, p0, p1, q, q0, q1 ∈ [1, ∞] satisfy
the constraints given in the formulas below. We have

(i)
(
Bα0
p,q0(T

d
θ), B

α1
p,q1(T

d
θ)
)
η,q

= Bαp,q(T
d
θ), α0 6= α1, α = (1− η)α0 + ηα1;

(ii)
(
Bαp,q0(T

d
θ), B

α
p,q1(T

d
θ)
)
η,q

= Bαp,q(T
d
θ),

1

q
=

1− η

q0
+
η

q1
;

(iii)
(
Bα0
p0,q0(T

d
θ), B

α1
p1,q1(T

d
θ)
)
η,q

= Bαp,q(T
d
θ), α = (1− η)α0 + ηα1,

1

p
=

1− η

p0
+

η

p1
,
1

q
=

1− η

q0
+
η

q1
, p = q;

(iv)
(
Bα0
p0,q0(T

d
θ), B

α1
p1,q1(T

d
θ)
)
η
= Bαp,q(T

d
θ), α = (1− η)α0 + ηα1,

1

p
=

1− η

p0
+

η

p1
,

1

q
=

1− η

q0
+
η

q1
, q <∞.

Proof. We will use the embedding of Bαp,q(T
d
θ) into ℓ

α
q (Lp(T

d
θ)). Recall that given a Banach space

X , ℓαq (X) denotes the weighted ℓq-direct sum of (C, X,X, · · · ), equipped with the norm

‖(a, x0, x1, · · · )‖ =
(
|a|q +

∑

k≥0

2kqα‖xk‖q
) 1
q

.

Then Bαp,q(T
d
θ) isometrically embeds into ℓαq (Lp(T

d
θ)) via the map I defined by Ix = (x̂(0), ϕ̃0 ∗

x, ϕ̃1∗x, · · · ). On the other hand, it is easy to check that the range of I is 1-complemented. Indeed,
let P : ℓαq (Lp(T

d
θ)) → Bαp,q(T

d
θ) be defined by (with ϕ̃k = 0 for k ≤ −1)

P(a, x0, x1, · · · ) = a+
∑

k≥0

(ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ xk.
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Then by (3.2), PIx = x for all x ∈ Bαp,q(T
d
θ). On the other hand, letting y = P(a, x0, x1, · · · ), we

have

ϕ̃j ∗ y =

j+2∑

k=j−2

ϕj ∗ (ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ xk, j ≥ 0.

Thus we deduce that P is bounded with norm at most 15.
Therefore, the interpolation of the Besov spaces is reduced to that of the spaces ℓαq (Lp(T

d
θ)),

which is well-known and is treated in [8, Section 5.6]. Let us recall the results needed here. For a
Banach space X and an interpolation couple (X0, X1) of Banach spaces, we have

•
(
ℓα0
q0 (X), ℓα1

q1 (X)
)
η,q

= ℓαq (X), α0 6= α1, α = (1 − η)α0 + ηα1;

•
(
ℓα0
q0 (X0), ℓ

α1
q1 (X1)

)
η,q

= ℓαq
(
(X0, X1)η,q

)
, α = (1− η)α0 + ηα1,

1

q
=

1− η

q0
+
η

q1
;

•
(
ℓα0
q0 (X0), ℓ

α1
q1 (X1)

)
η
= ℓαq

(
(X0, X1)η

)
, α = (1 − η)α0 + ηα1,

1

q
=

1− η

q0
+
η

q1
, q <∞.

It is then clear that the interpolation formulas of the theorem follow from the above ones thanks
to the complementation result proved previously. �

Remark 5.2. If q = ∞, part (iv) holds for Calderón’s second interpolation method, namely,

(
Bα0
p0,∞(Tdθ), B

α1
p1,∞(Tdθ)

)η
= Bαp,∞(Tdθ), α = (1− η)α0 + ηα1,

1

p
=

1− η

p0
+

η

p1
.

On the other hand, if one wishes to stay with the first complex interpolation method in the case
q = ∞, one should replace Bαp,∞(Tdθ) by B

α
p,c0(T

d
θ):(

Bα0
p0,c0(T

d
θ), B

α1
p1,c0(T

d
θ)
)
η
= Bαp,c0(T

d
θ) .

Now we consider the potential Sobolev spaces. Since Jα is an isometry between Hα
p (T

d
θ) and

Lp(T
d
θ) for all 1 ≤ p ≤ ∞, we get immediately the following

Remark 5.3. Let 0 < η < 1, α ∈ R, 1 ≤ p0, p1 ≤ ∞ and 1
p = 1−η

p0
+ η

p1
. Then

(
Hα
p0(T

d
θ), H

α
p1(T

d
θ)
)
η
= Hα

p (T
d
θ) and

(
Hα
p0(T

d
θ), H

α
p1(T

d
θ)
)
η,p

= Hα
p (T

d
θ) .

The interpolation problem of the couple
(
Hα0
p0 (T

d
θ), H

α1
p1 (T

d
θ)
)
for α0 6= α1 is delicate. At the

time of this writing, we cannot, unfortunately, solve it completely. To our knowledge, it seems that
even in the commutative case, its interpolation spaces by real or complex interpolation method
have not been determined in full generality. We will prove some partial results.

Proposition 5.4. Let 0 < η < 1, α0 6= α1 ∈ R and 1 ≤ p, q ≤ ∞. Then
(
Hα0
p (Tdθ), H

α1
p (Tdθ)

)
η,q

= Bαp,q(T
d
θ), α = (1− η)α0 + ηα1 .

Proof. The assertion follows from Theorem 3.8, the reiteration theorem and Proposition 5.1 (i). �

To treat the complex interpolation, we introduce the potential Hardy-Sobolev spaces.

Definition 5.5. For α ∈ R, define

Hα
H1

(Tdθ) =
{
x ∈ S ′(Tdθ) : Jαx ∈ H1(T

d
θ)
}

with
∥∥x

∥∥
HαH1

=
∥∥Jαx

∥∥
H1
.

We define Hα
BMO(T

d
θ) similarly.

Theorem 5.6. Let α0, α1 ∈ R and 1 < p <∞. Then

(
Hα0

BMO(T
d
θ), H

α1

H1
(Tdθ)

)
1
p

= Hα
p (T

d
θ), α = (1− 1

p
)α0 +

α1

p
.

We require the following result which extends Lemma 1.7(ii):

Lemma 5.7. Let φ be a Mikhlin multiplier in the sense of Definition 1.5. Then φ is a Fourier
multiplier on both H1(T

d
θ) and BMO(Tdθ) with norms majorized by cd‖φ‖M.

Proof. This is an immediate consequence of Lemma 4.7 (the sequence (φj) there becomes now the
single function φ). Indeed, by that Lemma, φ is a bounded Fourier multiplier on H1(T

d
θ), so by

duality, it is bounded on BMO(Tdθ) too. �
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We will use Bessel potentials of complex order. For z ∈ C, define Jz(ξ) = (1 + |ξ|2) z2 and Jz to
be the associated Fourier multiplier.

Lemma 5.8. Let t ∈ R. Then J it is bounded on both H1(T
d
θ) and BMO(Tdθ) with norms majorized

by cd(1 + |t|)d.
Proof. One easily checks that Jit is a Mikhlin multiplier and ‖Jit‖M ≤ cd(1 + |t|)d. Thus, the
assertion follows from the previous lemma. �

Proof of Theorem 5.6. Let x ∈ Hα
p (T

d
θ) with norm less than 1, that is, Jαx ∈ Lp(T

d
θ) and ‖Jαx‖p <

1. By Lemma 1.9, and the definition of complex interpolation, there exists a continuous function
f from the strip S = {z ∈ C : 0 ≤ Re(z) ≤ 1} to H1(T

d
θ), analytic in the interior, such that

f( 1p ) = Jαx,

sup
t∈R

∥∥f(it)
∥∥
BMO

≤ c and sup
t∈R

∥∥f(1 + it)
∥∥
H1

≤ c.

Define (with η = 1
p )

F (z) = e(z−η)
2

J−(1−z)α0−zα1 f(z), z ∈ S.

Then for any t ∈ R, by the preceding lemma,
∥∥F (it)

∥∥
H
α0
BMO

= e−t
2+η2

∥∥J it(α0−α1) f(it)
∥∥
BMO

≤ c′.

A similar estimate holds for the other extreme point Hα1

H1
(Tdθ). Therefore,

x = F (η) ∈
(
Hα0

BMO(T
d
θ), H

α1

H1
(Tdθ)

)
η

with norm ≤ c′.

We have thus proved

Hα
p (T

d
θ) ⊂

(
Hα0

BMO(T
d
θ), H

α1

H1
(Tdθ)

)
η
.

Since the dual space of H1(T
d
θ) is BMO(Tdθ), we have

Hα1

H1
(Tdθ)

∗ = H−α1

BMO(T
d
θ) .

Thus dualizing the above inclusion (for appropriate αi and p), we get
(
Hα0

BMO(T
d
θ) , H

−α1

BMO(T
d
θ)

∗)η ⊂ Hα
p (T

d
θ) ,

where ( · · )η denotes Calderón’s second complex interpolation method. However, by [7]
(
Hα0

BMO(T
d
θ) , H

−α1

BMO(T
d
θ)

∗)
η
⊂

(
Hα0

BMO(T
d
θ) , H

−α1

BMO(T
d
θ)

∗)η isometrically.

Since

Hα1

H1
(Tdθ) ⊂ H−α1

BMO(T
d
θ)

∗ isometrically,

we finally deduce (
Hα0

BMO(T
d
θ) , H

α1

H1
(Tdθ)

)
η
⊂ Hα

p (T
d
θ) ,

which concludes the proof of the theorem. �

Corollary 5.9. Let 0 < η < 1, α0, α1 ∈ R and 1 < p0, p1 <∞. Then

(
Hα0
p0 (T

d
θ), H

α1
p1 (T

d
θ)
)
η
= Hα

p (T
d
θ) , α = (1 − η)α0 + ηα1 ,

1

p
=

1− η

p0
+

η

p1
.

Proof. The preceding proof works equally for this corollary. Alternately, in the case p0 6= p1, the
corollary immediately follows from the previous theorem by reiteration. Indeed, if p0 6= p1, then
for any α0, α1 ∈ R there exist β0, β1 ∈ R such that

(1 − 1

p0
)β0 +

1

p0
β1 = α0 and (1− 1

p1
)β0 +

1

p1
β1 = α1 .

Thus the previous theorem implies
(
H
β0

BMO(T
d
θ) , H

β1

H1
(Tdθ)

)
1
pj

= Hαj
pj (T

d
θ), j = 0, 1.

The corollary then follows from the reiteration theorem. �

It is likely that the above corollary still holds for all 1 ≤ p0, p1 ≤ ∞:
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Conjecture 5.10. Let α0, α1 ∈ R and 1 < p <∞. Then
(
Hα0

∞ (Tdθ), H
α1
1 (Tdθ)

)
1
p

= Hα
p (T

d
θ) , α = (1− 1

p
)α0 +

α1

p
.

By duality and Wolff’s reiteration theorem [80], the conjecture is reduced to showing that for
any 0 < η < 1 and 1 < p0 <∞,

(
Hα0
p0 (T

d
θ), H

α1
1 (Tdθ)

)
η
= Hα

p (T
d
θ) , α = (1− η)α0 + ηα1 ,

1

p
=

1− η

p0
+
η

1
.

Since Hα1

H1
(Tdθ) ⊂ Hα1

1 (Tdθ), Theorem 5.6 implies

Hα
p (T

d
θ) ⊂

(
Hα0
p0 (T

d
θ), H

α1
1 (Tdθ)

)
η
.

So the conjecture is equivalent to the validity of the converse inclusion.

Remark 5.11. The proof of Theorem 5.6 shows that for α0, α1 ∈ R and 0 < η < 1,
(
Hα0

H1
(Tdθ), H

α1

H1
(Tdθ)

)
η
= Hα

H1
(Tdθ), α = (1− η)α0 + ηα1 .

We do not know if this equality remains true for the couple
(
Hα0

1 (Tdθ), H
α1
1 (Tdθ)

)
.

We conclude this section with a discussion on the interpolation of
(
W k
p0(T

d
θ), W

k
p1(T

d
θ)
)
. Here, the

most interesting case is, of course, that where p0 = ∞ and p1 = 1. Recall that in the commutative
case, the K-functional of

(
W k

∞(Td), W k
1 (T

d)
)
is determined by DeVore and Scherer [21]; however,

determining the complex interpolation spaces of this couple is a longstanding open problem.
Note that if 1 < p0, p1 < ∞,

(
W k
p0(T

d
θ), W

k
p1 (T

d
θ)
)
reduces to

(
Hk
p0(T

d
θ), H

k
p1(T

d
θ)
)
by virtue

of Theorem 2.9. So in this case, the interpolation problem is solved by the preceding results on
potential Sobolev spaces. This reduction is, unfortunately, impossible when one of p0 and p1 is
equal to 1 or ∞. However, in the spirit of potential Hardy-Sobolev spaces, it remains valid if we
work with the Hardy-Sobolev spaces W k

BMO(T
d
θ) and W k

H1
(Tdθ) instead of W k

∞(Tdθ) and W k
1 (T

d
θ),

respectively. Here, the Hardy-Sobolev spaces are defined as they should be.
Using Lemma 5.7, we see that the proof of Theorem 2.9 remains valid for the Hardy-Sobolev

spaces too. Thus we have the following:

Lemma 5.12. For any k ∈ N, W k
BMO(T

d
θ) = Hk

BMO(T
d
θ) and W

k
H1

(Tdθ) = Hk
H1

(Tdθ).

Theorem 5.13. Let k ∈ N and 1 < p <∞. Then for X =W k
H1

(Tdθ) or X =W k
1 (T

d
θ),(

W k
BMO(T

d
θ), X

)
1
p

=W k
p (T

d
θ) =

(
W k

BMO(T
d
θ), X

)
1
p
,p
.

Consequently, for any 0 < η < 1 and 1 < p0 <∞,

(
W k
p0 (T

d
θ), W

k
1 (T

d
θ)
)
η
=W k

p (T
d
θ) =

(
W k
p0(T

d
θ), W

k
1 (T

d
θ)
)
η,p
,

1

p
=

1− η

p0
+
η

1
.

Proof. The first part for X = W k
H1

(Tdθ) follows immediately from Remark 5.3, Theorem 5.6 and
Lemma 5.12. Then by the reiteration theorem, for any 1 < p <∞ and 0 < η < 1, we get

(
W k

BMO(T
d
θ), W

k
p (T

d
θ)
)
η
=W k

q (T
d
θ) and

(
W k
p (T

d
θ), W

k
H1

(Tdθ)
)
η
=W k

r (T
d
θ),

where 1
q = 1−η

∞ + η
p and 1

r = 1−η
p + η

1 . On the other hand, by the continuous inclusion H1(T
d
θ) ⊂

L1(T
d
θ), we have

W k
r (T

d
θ) =

(
W k
p (T

d
θ), W

k
H1

(Tdθ)
)
η
⊂

(
W k
p (T

d
θ), W

k
1 (T

d
θ)
)
η
⊂W k

r (T
d
θ),

the last inclusion above being trivial. Thus
(
W k
p (T

d
θ), W

k
1 (T

d
θ)
)
η
=W k

r (T
d
θ).

Therefore, by Wolff’s reiteration theorem [80], we deduce the first part for X = W k
1 (T

d
θ). The

second part follows from the first by the reiteration theorem. �

Remark 5.14. The second part of the previous theorem had been proved by Marius Junge by a
different method; he reduced it to the corresponding problem on H1 too.

The main problem left open at this stage is the following:

Problem 5.15. Does the second part of the previous theorem hold for p0 = ∞?
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5.2. The K-functional of (Lp, W
k
p )

In this section we characterize the K-functional of the couple (Lp(T
d
θ), W

k
p (T

d
θ)) for any 1 ≤ p ≤

∞ and k ∈ N. First, recall the definition of the K-functional. For an interpolation couple (X0, X1)
of Banach spaces, we define

K(x, ε; X0, X1) = inf
{
‖x0‖X0 + ε‖x0‖X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}

for ε > 0 and x ∈ X0+X1. SinceW
k
p (T

d
θ) ⊂ Lp(T

d
θ) contractively,K(x, ε; Lp(T

d
θ),W

k
p (T

d
θ)) = ‖x‖p

for ε ≥ 1; so only the case ε < 1 is nontrivial. The following result is the quantum analogue of
Johnen-Scherer’s theorem for Sobolev spaces on Rd (see [30]; see also [6, Theorem 5.4.12]). Recall
that ωkp (x, ε) denotes the kth order modulus of Lp-smoothness of x introduced in section 3.4.

Theorem 5.16. Let 1 ≤ p ≤ ∞ and k ∈ N. Then

K(x, εk; Lp(T
d
θ),W

k
p (T

d
θ)) ≈ εk|x̂(0)|+ ωkp (x, ε), 0 < ε ≤ 1

with relevant constants depending only on d and k.

Proof. We will adapt the proof of [6, Theorem 5.4.12]. Denote K(x, ε; Lp(T
d
θ),W

k
p (T

d
θ)) simply by

K(x, ε). It suffices to consider the elements of Lp(T
d
θ) whose Fourier coefficients vanish at m = 0.

Fix such an element x. Let x = y + z with y ∈ Lp(T
d
θ) and z ∈ W k

p (T
d
θ) (with vanishing Fourier

coefficients at 0). Then by Theorem 2.20,

ωkp(x, ε) ≤ ωkp (y, ε) + ωkp (z, ε) . ‖y‖p + εk|z|Wk
p
,

which implies
ωkp(x, ε) . K(x, εk).

The converse inequality is harder. We have to produce an appropriate decomposition of x. To
this end, let I = [0, 1)d and define the required decomposition by

y = (−1)k
∫

I

· · ·
∫

I

∆k
εu(x)du1 · · · duk and z = x− y,

where u = u1 + · · ·+ uk. Then

‖y‖p ≤
∫

I

· · ·
∫

I

‖∆k
εu(x)‖pdu1 · · · duk ≤ ωkp(x, k

√
d ε) . ωkp(x, ε).

To handle z, using the formula

∆k
εu =

k∑

j=0

(−1)k−j
(
k

j

)
Tjεu ,

we rewrite z as

z = (−1)k+1
k∑

j=1

(−1)k−j
(
k

j

)∫

I

· · ·
∫

I

Tjεu(x)du1 · · · duk.

All terms on the right-hand side are treated in the same way. Let us consider only the first one by
setting

z1 =

∫

I

· · ·
∫

I

Tεu(x)du1 · · · duk.

Write each ui in the canonical basis of Rd:

ui =

d∑

j=1

ui,jej .

We compute ∂1z1 explicitly, as example, in the spirit of (2.1):

∂1z1 =
1

ε

k∑

i=1

∫

I

· · ·
∫

I

∂

∂ui,1
Tεu(x)du1 · · · duk.

Integrating the partial derivative on the right-hand side with respect to ui,1 yields:
∫ 1

0

∂

∂ui,1
Tεu(x)dui,1 = ∆ε(e1+u−ui,1e1)(x) =

∫ 1

0

∆ε(e1+u−ui,1e1)(x)dui,1 ,
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where for the second equality, we have used the fact that ∆ε(e1+u−ui,1e1)(x) is constant in ui,1.
Thus

∂1z1 =
1

ε

k∑

i=1

∫

I

· · ·
∫

I

∆ε(e1+u−ui,1e1)(x)du1 · · · duk.

To iterate this formula, we use multi-index notation. For n ∈ N let

[[k]]n =
{
i = (i1, · · · , in) : 1 ≤ iℓ ≤ k, all iℓ’s are distinct

}
.

Then for any m1 ∈ N with m1 ≤ k, we have

∂m1
1 z1 = ε−m1

∑

i1∈[[k]]m1

∫

I

· · ·
∫

I

∆m1
εui1

(x)du1 · · · duk ,

where

ui1 = e1 + u− (ui11,1 + · · ·+ ui1m1
,1)e1 .

Iterating this procedure, for any m ∈ Nd0 with |m|1 = k, we get

Dmz1 = ε−k
∑

id∈[[k]]md

· · ·
∑

i1∈[[k]]m1

∫

Ik

∆md
εuid

· · ·∆m1

εui1(x)du1 · · · duk ,

where the uij ’s are defined by induction

uij = ej + uij−1 − (uij1,j
+ · · ·+ uijmj ,j

)ej , j = 2, · · · , d.

Thus we are in a position of appealing Lemma 2.22 to conclude that
∥∥Dmz1

∥∥
p
. ε−kωkp (x, ε),

whence

|z|Wk
p
. ε−kωkp (x, ε).

Therefore, K(x, εk) . ωkp(x, ε). �

Remark 5.17. The preceding proof shows a little bit more: for any x ∈ W k
p (T

d
θ) with x̂(0) = 0,

ωkp (x, ε) ≈
{
‖y‖p + εk|z|Wk

p
: x = y + z, ŷ(0) = ẑ(0) = 0

}
, 0 < ε ≤ 1.

In particular, this implies

‖x‖p . ωkp(x, ε),

which is the analogue for moduli of Lp-continuity of the inequality in Theorem 2.12 (the Poincaré
inequality). On the other hand, together with Lemma 2.22, the above inequality provides an
alternate proof of Theorem 2.12.

The preceding theorem, together with Theorem 3.16 and the reiteration theorem, implies the
following

Corollary 5.18. Let 0 < η < 1, α > 0, k, k0, k1 ∈ N and 1 ≤ p, q, q1 ≤ ∞. Then

(i)
(
Lp(T

d
θ), W

k
p (T

d
θ)
)
η,q

= Bηkp,q(T
d
θ);

(ii)
(
W k
p (T

d
θ), B

α
p,q1(T

d
θ)
)
η,q

= Bβp,q(T
d
θ) , k 6= α, β = (1− η)k + ηα;

(iii)
(
W k0
p (Tdθ), W

k1
p (Tdθ)

)
η,q

= Bαp,q(T
d
θ) , k0 6= k1, α = (1 − η)k0 + ηk1.

We can also consider the complex interpolation of
(
Lp(T

d
θ), W

k
p (T

d
θ)
)
. If 1 < p < ∞, this is

reduced to that of
(
Lp(T

d
θ), H

k
p (T

d
θ)
)
; so by the result of the previous section, for any 0 < η < 1,

(
Lp(T

d
θ), W

k
p (T

d
θ)
)
η
= Hηk

p (Tdθ).

Problem 5.19. Does the above equality hold for p = 1? The problem is closely related to that in
Remark 5.11.
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We conclude this section with a remark on the link between Theorem 3.20 and Theorem 5.16.
The former can be easily deduced from the latter, by using the following elementary fact (see [8]
p. 40): for any couple (X0, X1) of Banach spaces and x ∈ X0 ∩X1

lim
η→1

(
η(1− η)

) 1
q
∥∥x

∥∥
(X0, X1)η,q

= q−
1
q ‖x‖X1 ,

lim
η→0

(
η(1− η)

) 1
q
∥∥x

∥∥
(X0, X1)η,q

= q−
1
q ‖x‖X0 .

Here the norm of (X0, X1)η,q is that defined by the K-functional. Then Theorem 3.20 follows from
Theorem 5.16 and the first limit above. This is the approach adopted in [38, 47]. It also allows
us to determine the other extreme case α = 0 in Theorem 3.20, which was done by Maz’ya and
Shaposhnikova [41] in the commutative case. Let us record this result here.

Corollary 5.20. Let 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. Then for x ∈ Bα0
p,q(T

d
θ) with x̂(0) = 0 for some

α0 > 0,

lim
α→0

α
1
q ‖x‖Bα,ωp,q

≈ q−
1
q ‖x‖p .

5.3. Interpolation of Triebel-Lizorkin spaces

This short section contains some simple results on the interpolation of Triebel-Lizorkin spaces.
They are similar to those for potential Sobolev spaces presented in section 5.1. It is surprising,
however, that the real interpolation spaces of Fα,cp (Tdθ) for a fixed p do not depend on the column
structure.

Proposition 5.21. Let 1 ≤ p, q ≤ ∞ and α0, α1 ∈ R with α0 6= α1. Then
(
Fα0,c
p (Tdθ), F

α1,c
p (Tdθ)

)
η,q

= Bαp,q(T
d
θ), α = (1− η)α0 + ηα1.

Similar statements hold for the row and mixture Triebel-Lizorkin spaces.

Proof. The assertion is an immediate consequence of Proposition 4.10 (v) and Proposition 5.1 (i).
Note, however, that Proposition 4.10 (v) is stated for p <∞; but by duality via Proposition 4.14,
it continues to hold for p = ∞. �

On the other hand, the interpolation of Fα,cp (Tdθ) for a fixed α is reduced to that of Hardy spaces
by virtue of Proposition 4.10 (iv) and Lemma 1.9.

Remark 5.22. Let α ∈ R and 1 < p <∞. Then
(
Fα,c∞ (Tdθ), F

α,c
1 (Tdθ)

)
1
p

= Fα,cp (Tdθ) =
(
Fα,c∞ (Tdθ), F

α,c
1 (Tdθ)

)
1
p
,p
.

Proposition 5.23. Let α0, α1 ∈ R and 1 < p <∞. Then

(
Fα0,c
∞ (Tdθ), F

α1,c
1 (Tdθ)

)
1
p

= Fα,cp (Tdθ), α = (1− 1

p
)α0 +

α1

p
.

Proof. This proof is similar to that of Theorem 5.6. Let x be in the unit ball of Fα,cp (Tdθ). Then by

Proposition 4.10, Jα(x) ∈ Hc
p(T

d
θ). Thus by Lemma 1.9, there exists a continuous function f from

the strip S = {z ∈ C : 0 ≤ Re(z) ≤ 1} to Hc
1(T

d
θ), analytic in the interior, such that f( 1p ) = Jα(x)

and such that
sup
t∈R

∥∥f(it)
∥∥
BMOc

≤ c, sup
t∈R

∥∥f(1 + it)
∥∥
Hc

1

≤ c.

Define
F (z) = e(z−

1
p
)2 J−(1−z)α0−zα1 f(z), z ∈ S.

By Remark 4.15 and Lemma 5.8, for any t ∈ R,
∥∥F (it)

∥∥
Fα,c∞

≈ e
−t2+ 1

p2
∥∥J it(α0−α1) f(it)

∥∥
BMOc

≤ c′.

Similarly, ∥∥F (1 + it)
∥∥
Fα,c1

≈ e−t
2+(1− 1

p
)2
∥∥J it(α0−α1) f(1 + it)

∥∥
Hc

1
≤ c′.

Therefore,

x = F (
1

p
) ∈

(
Fα0,c
∞ (Tdθ), F

α1,c
1 (Tdθ)

)
1
p

,
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whence

Fα,cp (Tdθ) ⊂
(
Fα0,c
∞ (Tdθ), F

α1,c
1 (Tdθ)

)
1
p

.

The converse inclusion is obtained by duality. �

Chapter 6. Embedding

We consider the embedding problem in this chapter. We begin with Besov spaces, then pass to
Sobolev spaces. Our embedding theorem for Besov spaces is complete; however, the embedding
problem of W 1

1 (T
d
θ) is, unfortunately, left unsolved at the time of this writing. The last section

deals with the compact embedding.

6.1. Embedding of Besov spaces

This section deals with the embedding of Besov spaces. We will follow the semigroup approach
developed by Varopolous [76] (see also [20, 77]). This approach can be adapted to the noncom-
mutative setting, which has been done by Junge and Mei [33]. Here we can use either the circular
Poisson or heat semigroup of Tdθ , already considered in section 3.3. We choose to work with the
latter. Recall that for x ∈ S ′(Tdθ),

Wr(x) =
∑

m∈Zd

x̂(m)r|m|2Um, 0 ≤ r < 1.

The following elementary lemma will be crucial.

Lemma 6.1. Let 1 ≤ p ≤ p1 ≤ ∞. Then

(6.1) ‖Wr(x)‖p1 . (1− r)
d
2 (

1
p1

− 1
p
)‖x‖p, x ∈ Lp(T

d
θ), 0 ≤ r < 1.

Proof. Consider first the case p = 1 and p1 = ∞. Then

‖Wr(x)‖∞ ≤
∑

m∈Zd

r|m|2 |x̂(m)| ≤ ‖x‖1
∑

m∈Zd

r|m|2

= ‖x‖1
∑

k≥0

rk
∑

|m|2=k
1 . ‖x‖1

∑

k≥0

(1 + k)
d
2 rk

≈ (1− r)−
d
2 ‖x‖1 .

The general case easily follows from this special one by interpolation. Indeed, the inequality just

proved means that Wr is bounded from L1(T
d
θ) to L∞(Tdθ) with norm controlled by (1− r)−

d
2 . On

the other hand, Wr is a contraction on Lp(T
d
θ) for 1 ≤ p ≤ ∞. Interpolating these two cases, we

get (6.1) for 1 < p < p1 = ∞. The remaining case p1 <∞ is treated similarly. �

The following is the main theorem of this section.

Theorem 6.2. Assume that 1 ≤ p < p1 ≤ ∞, 1 ≤ q ≤ q1 ≤ ∞ and α, α1 ∈ R such that

α− d
p = α1 − d

p1
. Then we have the following continuous inclusion:

Bαp,q(T
d
θ) ⊂ Bα1

p1,q1(T
d
θ) .

Proof. Since Bα1
p1,q(T

d
θ) ⊂ Bα1

p1,q1(T
d
θ), it suffices to consider the case q = q1. On the other hand,

by the lifting Theorem 3.7, we can assume max{α, α1} < 0, so that we can take k = 0 in Theorem
3.15. Thus, we are reduced to showing

(∫ 1

0

(1 − r)−
qα1
2

∥∥Wr(x)
∥∥q
p1

dr

1− r

) 1
q

.
( ∫ 1

0

(1− r)−
qα
2

∥∥Wr(x)
∥∥q
p

dr

1− r

) 1
q

.

To this end, we write Wr(x) = W√
r

(
W√

r(x)
)
and apply (6.1) to get

∥∥Wr(x)
∥∥
p1

. (1 −√
r)

d
2 (

1
p1

− 1
p
)∥∥W√

r(x)
∥∥
p
.
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Thus
( ∫ 1

0

(1− r)−
qα1
2

∥∥Wr(x)
∥∥q
p1

dr

1− r

) 1
q

.
(∫ 1

0

(1− r)−
qα1
2 (1−√

r)
qd
2 ( 1

p1
− 1
p
)
∥∥W√

r(x)
∥∥q
p

dr

1− r

) 1
q

=
(∫ 1

0

(1− r2)−
qα1
2 (1 − r)

qd
2 ( 1

p1
− 1
p
)∥∥Wr(x)

∥∥q
p

2rdr

1− r2

) 1
q

.
(∫ 1

0

(1− r)−
qα
2

∥∥Wr(x)
∥∥q
p

dr

1− r

) 1
q

,

as desired. �

Corollary 6.3. Assume that 1 ≤ p < p1 ≤ ∞, 1 ≤ q ≤ ∞ and α = d( 1p − 1
p1
). Then

Bαp,q(T
d
θ) ⊂ Lp1,q(T

d
θ) if p1 <∞ and Bαp,1(T

d
θ) ⊂ L∞(Tdθ) if p1 = ∞ .

Proof. Applying the previous theorem to α1 = 0 and q = q1 = 1, and by Theorem 3.8, we get

Bαp,1(T
d
θ) ⊂ B0

p1,1(T
d
θ) ⊂ Lp1(T

d
θ) .

This gives the assertion in the case p1 = ∞. For p1 < ∞, we fix p and choose two appropriate
values of α (which give the two corresponding values of p1); then we interpolate the resulting
embeddings as above by real interpolation; finally, using (1.1) and Proposition 5.1, we obtain the
announced embedding for p1 <∞. �

The preceding corollary admits a self-improvement in terms of modulus of smoothness.

Corollary 6.4. Assume that 1 ≤ p < p1 ≤ ∞, α = d( 1p − 1
p1
) and k ∈ N such that k > α. Then

ωkp1(x, ε) .

∫ ε

0

δ−αωkp (x, δ)
dδ

δ
, 0 < ε ≤ 1.

Proof. Without loss of generality, assume x̂(0) = 0. Then by the preceding corollary and Theo-
rem 3.16, we have

‖x‖p1 .

∫ 1

0

δ−αωkp (x, δ)
dδ

δ
.

Now let u ∈ Rd with |u| ≤ ε. Noting that

ωkp(∆u(x), δ) ≤ 2kmin
(
ωkp(x, ε), ω

k
p (x, δ)

)
≤ 2kωkp (x,min(ε, δ)),

we obtain

‖∆u(x)‖p1 .

∫ ε

0

δ−αωkp (x, δ)
dδ

δ
+ ε−αωkp(x, ε)

.

∫ ε

0

δ−αωkp (x, δ)
dδ

δ
+

∫ ε

ε
2

δ−αωkp(x, δ)
dδ

δ

.

∫ ε

0

δ−αωkp (x, δ)
dδ

δ
.

Taking the supremum over all u with |u| ≤ ε yields the desired inequality. �

Remark 6.5. We will discuss the optimal order of the best constant of the embedding in Corol-
lary 6.3 at the end of the next section.

6.2. Embedding of Sobolev spaces

This section is devoted to the embedding of Sobolev spaces. The following is our main theorem.
Recall that Bα1∞,∞(Tdθ) in the second part below is the quantum analogue of the classical Zygmund
class of order α1 (see Remark 3.19).

Theorem 6.6. Let α, α1 ∈ R with α > α1.

(i) If 1 < p < p1 <∞ are such that α− d
p = α1 − d

p1
, then

Hα
p (T

d
θ) ⊂ Hα1

p1 (T
d
θ) continuously.

In particular, if additionally α = k and α1 = k1 are nonnegative integers, then

W k
p (T

d
θ) ⊂W k1

p1 (T
d
θ) continuously.
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(ii) If 1 ≤ p <∞ is such that p(α− α1) > d and α1 = α− d
p , then

Hα
p (T

d
θ) ⊂ Bα1

∞,∞(Tdθ) continuously.

In particular, if additionally α = k ∈ N, and if either p > 1 or p = 1 and k is even, then

W k
p (T

d
θ) ⊂ Bα1

∞,∞(Tdθ) continuously.

Proof. (i) By Theorem 2.9, the embedding of W k
p (T

d
θ) is a special case of that of Hα

p (T
d
θ). Thus we

just deal with the potential spaces Hα
p (T

d
θ). On the other hand, by the lifting property of potential

Sobolev spaces, we can assume α1 = 0. By Theorem 3.8 and Corollary 6.3, we have

Hα
p (T

d
θ) ⊂ Lq,∞(Tdθ).

Now choose 0 < η < 1 and two indices s0, s1 with 1 < s0, s1 <
d
α such that

1

p
=

1− η

s0
+

η

s1
.

Let
1

tj
=

1

sj
− α

d
, j = 0, 1.

Then interpolating the above inclusions with sj in place of p for j = 0, 1, using Remark 5.3 and
(1.1), we get

Hα
p (T

d
θ) =

(
Hα
s0(T

d
θ), H

α
s1(T

d
θ)
)
η,p

⊂
(
Lt0,∞(Tdθ), Lt1,∞(Tdθ)

)
η,p

= Lp1,p(T
d
θ) ⊂ Lp1(T

d
θ).

(ii) By Theorems 3.8 and 6.2, we obtain

Hα
p (T

d
θ) ⊂ Bαp,∞(Tdθ) ⊂ Bα1

∞,∞(Tdθ) .

If k is even, W k
1 (T

d
θ) ⊂ Hk

1 (T
d
θ). Thus the theorem is proved. �

Remark 6.7. The case pα = d with α1 = 0 is excluded from the preceding theorem. In this case,
it is easy to see that Hα

p (T
d
θ) ⊂ Lq(T

d
θ) for any q < ∞. It is well known in the classical case that

this embedding is false for q = ∞. Consider, for instance, the ball B = {s ∈ Rd : |s| ≤ 1
4} and the

function f defined by f(s) = log log(1 + 1
|s| ). Then f belongs to W d

1 (B) but is unbounded on B.

Now extending f to a 1-periodic function on Rd which is infinitely differentiable in [− 1
2 ,

1
2 ]
d \ B,

we obtain a function in W d
1 (T

d) but unbounded on Td.

Remark 6.8. Part (ii) of the preceding theorem implies W d
p (T

d
θ) ⊂ L∞(Tdθ) for all p > 1. In the

commutative case, representing a function as an indefinite integral of its derivatives, one easily
checks that this embedding remains true for p = 1. However, we do not know how to prove it in
the noncommutative case. A related question concerns the embedding W k

p (T
d
θ) ⊂ Bα1∞,∞(Tdθ) in

the case of odd k which is not covered by the same part (ii).

The quantum analogue of the Gagliardo-Nirenberg inequality can be also proved easily by in-
terpolation.

Proposition 6.9. Let k ∈ N, 1 < r, p <∞, 1 ≤ q <∞ and β ∈ Nd0 with 0 < |β|1 < k. If

η =
|β|1
k

and
1

r
=

1− η

q
+
η

p
,

then for every x ∈W k
p (T

d
θ) ∩ Lq(Tdθ),

‖Dβx‖r . ‖x‖1−ηq

( ∑

|m|=k
‖Dmx‖p

)η
.

Proof. This inequality immediately follows from Theorem 5.13 and the well-known relation between
real and complex interpolations:

(
Lq(T

d
θ), W

k
p (T

d
θ)
)
η,1

⊂
(
Lq(T

d
θ), W

k
p (T

d
θ)
)
η
=W |β|1

r (Tdθ).

It then follows that
‖x‖

W
|β|1
r

. ‖x‖1−ηq ‖x‖η
Wk
p
.

Applying this inequality to x − x̂(0) instead of x and using Theorem 2.12, we get the desired
Gagliardo-Nirenberg inequality. �
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An alternate approach to Sobolev embedding. Note that the preceding proof of Theo-
rem 6.6 is based on Theorem 6.2, which is, in its turn, proved by Varopolous’ semigroup approach.
Varopolous initially developed his method for the Sobolev embedding, which was transferred to
the noncommutative setting by Junge and Mei [33]. Our argument for the embedding of Besov
spaces has followed this route. Let us now give an alternate proof of Theorem 6.6 (i) by the same
way. We state its main part as the following lemma that is of interest in its own right.

Lemma 6.10. Let 1 ≤ p < q <∞ such that 1
q = 1

p − 1
d . Then

W 1
p (T

d
θ) ⊂ Lq,∞(Tdθ).

Proof. We will use again the heat semigroup Wr of Tdθ . Recall that Wr = W̃ε with r = e−4π2ε,

where W̃ε is the periodization of the usual heat kernel Wε of Rd (see section 3.3). It is more

convenient to work with W̃ε. In the following, we assume x ∈ S(Tdθ) and x̂(0) = 0. Let ∆j =
∆−1∂j , 1 ≤ j ≤ d. Then

∆−1x = 4π2

∫ ∞

0

W̃ε(x)dε and ∆jx = 4π2

∫ ∞

0

W̃ε(∂jx) dε.

We claim that for any 1 ≤ p ≤ ∞
(6.2) ‖W̃ε(∂jx)‖p . ε−

1
2 ‖x‖p and ‖W̃ε(∂jx)‖∞ . ε−

1
2 (
d
p
+1)‖x‖p , ε > 0.

Indeed, in order to prove the first inequality, by the transference method, it suffices to show a similar
one for the Banach space valued heat semigroup of the usual d-torus. The latter immediately follows
from the following standard estimate on the heat kernel Wε of Rd:

sup
ε>0

ε
1
2

∫

Rd

∣∣∇Wε(s)
∣∣ ds <∞.

The second inequality of (6.2) is proved in the same way as (6.1). First, for the case p = 1, we
have (recalling that x̂(0) = 0)

‖W̃ε(∂jx)‖∞ ≤ 2π
∑

m∈Zd\{0}
|mj |e−ε|m|2 |x̂(m)|

≤ 2π‖x‖1
∑

m∈Zd\{0}
|mj |e−ε|m|2

. e−ε(1 − e−ε)−
d+1
2 ‖x‖1 . ε−

d+1
2 ‖x‖1.

Interpolating this with the first inequality for p = ∞, we get the second one in the general case.
Now let ε > 0 and decompose ∆jx into the following two parts:

y = 4π2

∫ ∞

ε

W̃δ(∂jx) dδ and z = 4π2

∫ ε

0

W̃δ(∂jx) dδ.

Then by (6.2),

‖y‖∞ . ‖x‖p
∫ ∞

ε

δ−
1
2 (
d
p
+1) dδ ≈ ε−

1
2 (
d
p
−1)‖x‖p

and

‖z‖p . ‖x‖p
∫ ε

0

δ−
1
2 dδ ≈ ε

1
2 ‖x‖p.

Thus for any t > 0, choosing ε such that ε−
d
2p = t, we deduce

‖y‖∞ + t‖z‖p . t1−
p
d ‖x‖p = tη‖x‖p ,

where η = 1− p
d . It then follows that

‖∆jx‖q,∞ ≈ ‖∆jx‖(L∞(Td
θ
), Lp(Tdθ))η,∞

. ‖x‖p .
Since

x = −
d∑

j=1

∆j∂jx,
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we finally get

‖x‖q,∞ .

d∑

j=1

‖∆j∂jx‖q,∞ .

d∑

j=1

‖∂jx‖p = ‖∇x‖p.

Thus the lemma is proved. �

Alternate proof of Theorem 6.6 (i). For 1 < p < d, choose p0, p1 such that 1 < p0 < p < p1 < d.
Let 1

qi
= 1

pi
− 1

d for i = 0, 1. Then by the previous lemma,

W 1
pi(T

d
θ) ⊂ Lqi,∞(Tdθ), i = 0, 1.

Interpolating these two inclusions by real method, we obtain

W 1
p (T

d
θ) ⊂ Lq,p(T

d
θ).

This is the embedding of Sobolev spaces in Theorem 6.6 (i) for k = 1. The case k > 1 immediately
follows by iteration. Then using real interpolation, we deduce the embedding of potential Sobolev
spaces. �

Sobolev embedding for p = 1. Now we discuss the case p = 1 which is not covered by
Theorem 6.6. The main problem concerns the following:

(6.3) W 1
1 (T

d
θ) ⊂ L d

d−1
(Tdθ).

At the time of this writing, we are unable, unfortunately, to prove it. However, Lemma 6.10
provides a weak substitute, namely,

(6.4) W 1
1 (T

d
θ) ⊂ L d

d−1 ,∞(Tdθ).

In the classical case, one can rather easily deduce (6.3) from (6.4). Let us explain the idea coming
from [77, page 58]. It was kindly pointed out to us by Marius Junge. Let f be a nice real function

on Td with f̂(0) = 0. For any t ∈ R let ft be the indicator function of the subset {f > t}. Then f
can be decomposed as an integral of the ft’s:

(6.5) f =

∫ +∞

−∞
ft dt.

By triangular inequality (with q = d
d−1 ),

‖f‖q ≤
∫ +∞

−∞
‖ft‖q dt.

However,
‖ft‖q = ‖ft‖q,∞ ∀ t ∈ R.

Thus by (6.4) for θ = 0,
‖ft‖q . ‖ft‖1 + ‖∇ft‖1 .

It comes now the crucial point which is the following

(6.6)

∫ +∞

−∞
‖∇ft‖1 dt . ‖∇f‖1 .

In fact, the two sides are equal in view of Sard’s theorem. We then get the strong embedding (6.3)
in the case θ = 0. Note that this proof yields a stronger embedding:

(6.7) W 1
1 (T

d) ⊂ L d
d−1 ,1

(Td).

The above decomposition of f is not smooth in the sense that ft is not derivable even though f is
nice. In his proof of Hardy’s inequality in Sobolev spaces, Bourgain [11] discovered independently
the same decomposition but using nicer functions ft (see also [60]). Using (6.7) and the Hausdorff-
Young inequality, Bourgain derived the following Hardy type inequality (assuming d ≥ 3):

∑

m∈Zd

|f̂(m)|
(1 + |m|)d−1

. ‖f‖W 1
1 (T

d) .

We have encountered difficulties in the attempt of extending this approach to the noncommu-
tative case. Let us formulate the corresponding open problems explicitly as follows:
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Problem 6.11. Let d ≥ 2.

(i) Does one have the following embedding

W 1
1 (T

d
θ) ⊂ L d

d−1
(Tdθ) or W 1

1 (T
d
θ) ⊂ L d

d−1 ,1
(Tdθ) ?

(ii) Does one have the following inequality

∑

m∈Zd

|x̂(m)|
(1 + |m|)d−1

. ‖x‖W 1
1 (Td

θ
) ?

By the previous discussion, part (i) is reduced to a decomposition for operators inW 1
1 (T

d
θ) of the

form (6.5) and satisfying (6.6). One could attempt to do this by transference by first considering
operator-valued functions on Rd. With this in mind, the following observation, due to Marius
Junge, might be helpful.

Given an interval I = [s, t] ⊂ R and an element a ∈ L1(T
d
θ), we have

∂(1I ⊗ a) = δs ⊗ a− δt ⊗ a,

where ∂ denotes the distribution derivative relative to R and δs is the Dirac measure at s. Let
‖ ·‖L denote the norm of the dual space C0(R;Aθ)

∗, which contains L1(R;L1(T
d
θ)) isometrically. If

f is a (nice) linear combination of 1I ⊗ a’s, then we have the desired decomposition of f . Indeed,
assume f =

∑n
i=1 αi1Ii ⊗ ei, where αi ∈ R+ and the 1Ii ⊗ ei’s are pairwise disjoint projections of

L∞(R)⊗Tdθ . Let ft = 1(t,∞)(f). Then

f =

∫ ∞

0

ft dt.

So for any q ≥ 1,

‖f‖q ≤
∫ ∞

0

‖ft‖qdt.

On the other hand, by writing explicitly ft for every t, one easily checks

‖∂f‖L =

∫ ∞

0

‖∂ft‖L dt.

By iteration, the above decomposition can be extended to higher dimensional case for all functions
f of the form

∑n
i=1 αi1Ri ⊗ ei, where αi ∈ R+, Ri’s are rectangles (with sides parallel to the axes)

and 1Ri ⊗ ei’s are pairwise disjoint projections of L∞(Rd)⊗Tdθ .
The next idea would be to apply Lemma 6.10 to these special functions. Then two difficulties

come up to us, even in the commutative case. The first is that these functions do not belong to
W 1

1 ; this difficulty can be resolved quite easily by regularization. The second one, substantial, is
the density of these functions, more precisely, of suitable regularizations of them, in W 1

1 .

Uniform Besov embedding. We end this section with a discussion on the link between a
certain uniform embedding of Besov spaces and the embedding of Sobolev spaces. Let 0 < α < 1,
1 ≤ p <∞ with αp < d and 1

r = 1
p − α

d . Then

(6.8) ‖x‖pr ≤ cd,p
α(1 − α)

(d− αp)
‖x‖p

Bα,ωp,p
, x ∈ Bαp,p(T

d
θ) ,

where ‖x‖Bα,ωp,p
is the Besov norm defined by (3.19). In the commutative case, this inequality is

proved in [13] for α close to 1 and in [41] for general α. One can show that (6.8) is essentially
equivalent to the embedding of W 1

p (T
d
θ) into Lq(T

d
θ) (or Lq,p(T

d
θ)) for d > p and 1

q = 1
p − 1

d . Indeed,

assume(6.8). Then taking limit in both sides of (6.8) as α→ 1, by Theorem 3.20, we get

‖x‖q . |x|W 1
p

for all x ∈ W 1
p (T

d
θ) with x̂(0) = 0. Conversely, if W 1

p (T
d
θ) ⊂ Lq(T

d
θ), then

(
Lp(T

d
θ), W

1
p (T

d
θ)
)
α,p

⊂
(
Lp(T

d
θ), Lq(T

d
θ)
)
α,p

.

Theorem 5.16 implies that (
Lp(T

d
θ), W

1
p (T

d
θ)
)
α,p

⊂ Bαp,p(T
d
θ)
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with relevant constant depending only on d, here Bαp,p(T
d
θ) being equipped with the norm ‖ ‖Bα,ωp,p

.

On the other hand, By a classical result of Holmstedt [28] on real interpolation of Lp-spaces (which
readily extends to the noncommutative case, as observed in [37, Lemma 3.7]),

(
Lp(T

d
θ), Lq(T

d
θ)
)
α,p

⊂ Lr,p(T
d
θ)

with the inclusion constant uniformly controlled by α
1
p (1 − α)

1
q . We then deduce

‖x‖r,p . α
1
p (1 − α)

1
q ‖x‖Bα,ωp,p

.

This implies a variant of (6.8) since Lr,p(T
d
θ) ⊂ Lr(T

d
θ).

Since we have proved the embedding W 1
p (T

d
θ) ⊂ Lq(T

d
θ) for p > 1, (6.8) holds for p > 1. Let us

record this explicitly as follows:

Proposition 6.12. Let 0 < α < 1, 1 < p <∞ with αp < d and 1
r = 1

p − α
d . Then

‖x‖r .
(
α(1− α)

) 1
p ‖x‖p

Bα,ωp,p
, x ∈ Bαp,p(T

d
θ)

with relevant constant independent of α.

In the case p = 1, Problem 6.11 (i) is equivalent to (6.8) for p = 1 and α close to 1.

6.3. Compact embedding

This section deals with the compact embedding. The case p = 2 for potential Sobolev spaces
was solved by Spera [65]:

Lemma 6.13. The embedding Hα1
2 (Tdθ) →֒ Hα2

2 (Tdθ) is compact for α1 > α2 ≥ 0.

We will require the following real interpolation result on compact operators, due to Cwikel [19].

Lemma 6.14. Let (X0, X1) and (Y0, Y1) be two interpolation couples of Banach spaces, and
let T : Xj → Yj be a bounded linear operator, j = 0, 1. If T : X0 → Y0 is compact, then

T : (X0, X1)η,p → (Y0, Y1)η,p is compact too for any 0 < η < 1 and 1 ≤ p ≤ ∞.

Theorem 6.15. Assume that 1 ≤ p < p1 ≤ ∞, 1 ≤ p∗ < p1, 1 ≤ q ≤ q1 ≤ ∞ and α− d
p = α1− d

p1
.

Then the embedding Bαp,q(T
d
θ) →֒ Bα1

p∗,q1(T
d
θ) is compact.

Proof. Without loss of generality, we can assume q = q1. First consider the case p = 2. Choose t
sufficiently close to q and 0 < η < 1 such that

1

q
=

1− η

2
+
η

t
.

Then by Proposition 5.1,

Bα2,q(T
d
θ) =

(
Bα2,2(T

d
θ), B

α
2,t(T

d
θ)
)
η,q
.

By Lemma 6.13, Bα2,2(T
d
θ) →֒ Bα1

2,2(T
d
θ) is compact. On the other hand, by Theorem 6.2, Bα2,t(T

d
θ) →֒

Bα1
p1,t(T

d
θ) is continuous. So by Lemma 6.14,

Bα2,q(T
d
θ) →֒

(
Bα1

2,2(T
d
θ), B

α1
p1,t(T

d
θ)
)
η,q

is compact.

However, by the proof of Proposition 5.1 and (1.1), we have
(
Bα1

2,2(T
d
θ), B

α1
p1,t(T

d
θ)
)
η,q

⊂ ℓα1
q

(
(L2(T

d
θ), Lp1(T

d
θ)η,q

)
= ℓα1

q (Ls,q(T
d
θ)),

where s is determined by

1

s
=

1− η

2
+

η

p1
=

1

p1
+

(1− η)(α − α1)

d
.

Note that η tends to 1 as t tends to q. Thus we can choose η so that s > p∗. Then Ls,q(T
d
θ) ⊂

Lp∗(T
d
θ). Thus the desired assertion for p = 2 follows.

The case p 6= 2 but p > 1 is dealt with similarly. Let t and η be as above. Choose r < p (r close
to p). Then

(
Bα2,2(T

d
θ), B

α
r,t(T

d
θ)
)
η,q

⊂ ℓαq
(
(L2(T

d
θ), Lr(T

d
θ)η,q

)
= ℓαq (Lp0,q(T

d
θ)),
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where p0 is determined by
1

p0
=

1− η

2
+
η

r
.

If η is sufficiently close to 1, then p0 < p that we will assume. Thus Lp(T
d
θ) ⊂ Lp0,q(T

d
θ). It then

follows that
Bαp,q(T

d
θ) ⊂

(
Bα2,2(T

d
θ), B

α
r,t(T

d
θ)
)
η,q
.

The rest of the proof is almost the same as the case p = 2, so is omitted.
The remaining case p = 1 can be easily reduced to the previous one. Indeed, first embed Bαp,q(T

d
θ)

into Bα2
p2,q(T

d
θ) for some α2 ∈ (α, α1) (α2 close to α) and p2 determined by α− d

p = α2 − d
p2
. Then

by the previous case, the embedding Bα2
p2,q(T

d
θ) →֒ Bα1

p∗,q1(T
d
θ) is compact, so we are done. �

Theorem 6.16. Let 1 < p < p1 <∞ and α, α1 ∈ R.

(i) If α − d
p = α1 − d

p1
, then Hα

p (T
d
θ) →֒ Hα1

p∗ (T
d
θ) is compact for p∗ < p1. In particular, if

additionally α = k and α1 = k1 are nonnegative integers, then W k
p (T

d
θ) →֒ W k1

p∗ (T
d
θ) is

compact.
(ii) If p(α−α1) > d and α∗ < α1 = α− d

p , then H
α
p (T

d
θ) →֒ Bα

∗

∞,∞(Tdθ) is compact. In particular,

if additionally α = k ∈ N, then W k
p (T

d
θ) →֒ Bα

∗

∞,∞(Tdθ) is compact.

Proof. Based on the preceding theorem, this proof is similar to that of Theorem 6.6 and left to the
reader. �

Chapter 7. Fourier multiplier

This chapter deals with Fourier multipliers on Sobolev, Besov and Triebel-Lizorkin spaces on
Tdθ . The first section concerns the Sobolev spaces. Its main result is the analogue for W k

p (T
d
θ)

of [17, Theorem 7.3] (see also Lemma 1.3) on c.b. Fourier multipliers on Lp(T
d
θ); so the space

of c.b. Fourier multipliers on W k
p (T

d
θ) is independent of θ. The second section turns to Besov

spaces on which Fourier multipliers behave better. We extend some classical results to the present
setting. We show that the space of c.b. Fourier multipliers on Bαp,q(T

d
θ) does not depend on θ (nor

on q or α). We also prove that a function on Zd is a Fourier multiplier on Bα1,q(T
d
θ) iff it is the

Fourier transform of an element of B0
1,∞(Td). The last section deals with Fourier multipliers on

Triebel-Lizorkin spaces.

7.1. Fourier multipliers on Sobolev spaces

We now investigate Fourier multipliers on Sobolev spaces. We refer to [59, 9] for the study of
Fourier multipliers on the classical Sobolev spaces. If X is a Banach space of distributions on Tdθ ,
we denote by M(X) the space of bounded Fourier multipliers on X ; if X is further equipped with
an operator space structure, Mcb(X) is the space of c.b. Fourier multipliers on X . These spaces are
endowed with their natural norms. Recall that the Sobolev spacesW k

p (T
d
θ), H

α
p (T

d
θ) and the Besov

Bαp,q(T
d
θ) are equipped with their natural operator space structures as defined in Remarks 2.29 and

3.25.
The aim of this section is to extend [17, Theorem 7.3] (see also Lemma 1.3) on c.b. Fourier

multipliers on Lp(T
d
θ) to Sobolev spaces. Inspired by Neuwirth and Ricard’s transference theorem

[48], we will relate Fourier multipliers with Schur multipliers. Given a distribution x on Tdθ , we
write its matrix in the basis (Um)m∈Zd :

[x] =
(
〈xUn, Um〉

)
m,n∈Zd

=
(
x̂(m− n)einθ̃(m−n)t

)
m,n∈Zd

.

Here kt denotes the transpose of k = (k1, . . . , kd) and θ̃ is the following d× d-matrix deduced from
the skew symmetric matrix θ:

θ̃ = −2π




0 θ12 θ13 . . . θ1d
0 0 θ23 . . . θ2d
...

...
...

...
...

0 0 0 . . . θd−1,d

0 0 0 . . . 0



.
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Now let φ : Zd → C and Mφ be the associated Fourier multiplier on Tdθ . Set φ̊ =
(
φm−n

)
m,n∈Zd

.

Then

(7.1)
[
Mφx

]
=

(
φm−nx̂(m− n)einθ̃(m−n)t)

m,n∈Zd
= Sφ̊([x]),

where Sφ̊ is the Schur multiplier with symbol φ̊.

According to the definition of W k
p (T

d
θ), for any matrix a = (am,n)m,n∈Zd and ℓ ∈ Nd0 define

Dℓa =
(
(2πi(m− n))ℓam,n

)
m,n∈Zd

.

If x is a distribution on Tdθ , then clearly
[
MφD

ℓx
]
= Sφ̊

(
Dℓ[x]

)
.

We introduce the space

Skp =
{
a = (am,n)m,n∈Zd : Dℓa ∈ Sp(ℓ2(Z

d)), ∀ ℓ ∈ Nd0, 0 ≤ |ℓ|1 ≤ k
}

and endow it with the norm

‖a‖Skp =
( ∑

0≤|ℓ|1≤k
‖Dℓa‖pSp

) 1
p

.

Then Skp is a closed subspace of the ℓp-direct sum of L copies of Sp(ℓ2(Z
d)) with L =

∑
0≤|ℓ|1≤k 1.

The latter direct sum is equipped with its natural operator space structure, which induces an
operator space structure on Skp too.

If ψ = (ψm,n)m,n∈Zd is a complex matrix, its associated Schur multiplier Sψ on Skp is defined

by Sψa = (ψm,n am,n)m,n∈Zd . Let Mcb(S
k
p ) denote the space of all c.b. Schur multipliers on Skp ,

equipped with the natural norm.

Theorem 7.1. Let 1 ≤ p ≤ ∞ and k ∈ N. Then

Mcb(W
k
p (T

d
θ)) = Mcb(S

k
p ) with equal norms.

Consequently,

Mcb(W
k
p (T

d
θ)) = Mcb(W

k
p (T

d)) with equal norms.

Proof. This proof is an adaptation of that of [17, Theorem 7.3]. We start with an elementary
observation. Let V = diag(· · · , Un, · · · )n∈Zd . For any a = (am,n)m,n∈Zd ∈ B(ℓ2(Z

d)), let x =

V (a⊗ 1Td
θ
)V ∗ ∈ B(ℓ2(Z

d))⊗Tdθ , where 1Td
θ
denotes the unit of Tdθ . Then

x = (UmamnU
−n)m,n∈Zd =

∑

m,n

am,nem,n ⊗ UmU−n =
∑

m,n

am,nem,n ⊗ e−inθ̃mtUm−n,

where (em,n) are the canonical matrix units of B(ℓ2(Z
d)). So,

[x] =
(
am,nem,n

)
m,n∈Zd

,

a matrix with entries in B(ℓ2(Z
d)). Since V is unitary, we have

∥∥x
∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)
=

∥∥a⊗ 1Td
θ

∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)
=

∥∥a
∥∥
Sp(ℓ2(Zd))

.

Similarly, for ℓ ∈ Nd0,

(7.2)
∥∥Dℓx

∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)
=

∥∥Dℓa
∥∥
Sp(ℓ2(Zd))

.

Now suppose that φ ∈ Mcb(W
k
p (T

d
θ)). For a = (am,n)m,n∈Zd ∈ B(ℓ2(Z

d)), define x = V (a ⊗
1Td

θ
)V ∗ as above. Then by (7.1), for ℓ ∈ Nd0,

(IdB(ℓ2(Zd))⊗Mφ)(D
ℓx) = V (Sφ̊(D

ℓa)⊗ 1Td
θ
)V ∗ .
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It then follows from (7.2) that

‖Sφ̊(a)‖Skp =
[ ∑

|ℓ|1≤k
‖(IdB(ℓ2(Zd)) ⊗Mφ)(D

ℓx)‖p
Lp(B(ℓ2(Zd))⊗Td

θ
)

] 1
p

≤ ‖φ‖Mcb(Wk
p (T

d
θ
))

[ ∑

|ℓ|1≤k
‖Dℓx‖p

Lp(B(ℓ2(Zd))⊗Td
θ
)

] 1
p

= ‖φ‖
Mcb(Wk

p (T
d
θ
))‖a‖Skp .

Therefore, φ̊ is a bounded Schur multiplier on Skp . Considering matrices a = (am,n)m,n∈Zd with

entries in Sp, we show in the same way that Mφ̊ is c.b. on Skp , so φ̊ is a c.b. Schur multiplier on

Skp and

‖φ̊‖Mcb(Skp )
≤ ‖φ‖Mcb(Wk

p (Td
θ
)).

To show the converse direction, introducing the following Folner sequence of Zd:

ZN = {−N, . . . ,−1, 0, 1, . . . , N}d ⊂ Zd,

we define two maps AN and BN as follows:

AN : Tdθ → B(ℓ
|ZN |
2 ) with x 7→ PN ([x]),

where PN : B(ℓ2(Z
d)) → B(ℓ

|ZN |
2 ) with (am,n) 7→ (am,n)m,n∈ZN ; and

BN : B(ℓ
|ZN |
2 ) → Tdθ with em,n 7→ 1

|ZN |e
−inθ̃(m−n)tUm−n.

Here B(ℓ
|ZN |
2 ) is endowed with the normalized trace. Both AN , BN are unital, completely positive

and trace preserving, so extend to complete contractions between the corresponding Lp-spaces.
Moreover,

lim
N→∞

BN ◦AN (x) = x in Lp(T
d
θ), ∀x ∈ Lp(T

d
θ).

If we define Skp (ℓ
|ZN |
2 ) as before for Skp just replacing Sp(ℓ2(Z

d)) by Sp(ℓ
|ZN |
2 ), we see that AN

extends to a complete contraction from W k
p (T

d
θ) into S

k
p (ℓ

|ZN |
2 ), while BN a complete contraction

from Skp (ℓ
|ZN |
2 ) into W k

p (T
d
θ).

Now assume that φ̊ is a c.b. Schur multiplier on Skp , then it is also a c.b. Schur multiplier on

Skp (ℓ
|ZN |
2 ). We want to prove that Mφ is c.b. on W k

p (T
d
θ). For any x ∈ Lp(B(ℓ2(Z

d))⊗Tdθ),∥∥Id⊗Mφ(x)
∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)
= lim

N

∥∥(Id⊗BN
)
◦
(
Id⊗AN

)(
Id⊗Mφ(x)

)∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)

= lim
N

∥∥(Id⊗BN
)
◦
(
Id⊗ Sφ̊

)(
Id⊗AN (x)

)∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)

≤ lim sup
N

∥∥Id⊗ Sφ̊(Id⊗AN (x))
∥∥
Sp(ℓ2(Zd);Skp (ℓ

|ZN |

2 ))

≤ lim sup
N

∥∥Sφ̊
∥∥
cb

∥∥Id⊗AN (x)
∥∥
Sp(ℓ2(Zd);Skp (ℓ

|ZN |

2 ))

≤
∥∥Sφ̊

∥∥
cb

∥∥x
∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)
,

where in the second equality we have used the fact that

Id⊗AN (Id⊗Mφ(x)) = Id⊗ Sφ̊(Id⊗AN (x)),

which follows from (7.1). Therefore, Mφ is c.b. on W k
p (T

d
θ) and

‖φ‖Mcb(Wk
p (Td

θ
)) ≤ ‖φ̊‖Mcb(Skp )

.

The theorem is thus proved. �

Remark 7.2. Let 1 ≤ p ≤ ∞ and α ∈ R. Since Jα is a complete isometry from Hα
p (T

d
θ) onto

Lp(T
d
θ), we have

Mcb(H
α
p (T

d
θ)) = Mcb(Lp(T

d
θ)) with equal norms.

Thus, by Lemma 1.3

Mcb(H
α
p (T

d
θ)) = Mcb(H

α
p (T

d)) with equal norms.
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Note that the proof of Theorem 2.9 shows that W k
p (T

d
θ) = Hk

p (T
d
θ) holds completely isomorphi-

cally for 1 < p <∞. Thus the above remark implies

Corollary 7.3. Let 1 < p <∞ and k ∈ N.

Mcb(W
k
p (T

d
θ)) = Mcb(Lp(T

d)) with equivalent norms.

Clearly, the above equality still holds for p = 1 or p = ∞ if d = 1 (the commutative case) since
then W k

p (T) = Lp(T) for all 1 ≤ p ≤ ∞ by the (complete) isomorphism

Lp(T) ∋ x 7→ x̂(0) +
∑

m∈Z\{0}

1

(2πim)k
x̂(m)zm ∈W k

p (T) .

However, this is no longer the case as soon as d ≥ 2, as proved by Poornima [59] in the commutative
case for Rd. Poornima’s example comes from Ornstein [50] which is still valid for our setting.
Indeed, by [50], there exists a distribution T on T2 which is not a measure and such that T = ∂1µ0,
∂1T = ∂2µ1 and ∂2T = ∂1µ2 for three measures µi on T2. T induces a Fourier multiplier on
T2
θ, which is defined by the Fourier transform of T and is denoted by x 7→ T ∗ x. Then for any

x ∈ W 1
1 (T

2
θ),

T ∗ x = ∂1µ0 ∗ x = µ0 ∗ ∂1x ∈ L1(T
2
θ),

∂1T ∗ x = ∂1µ1 ∗ x = µ1 ∗ ∂2x ∈ L1(T
2
θ),

∂2T ∗ x = ∂2µ2 ∗ x = µ2 ∗ ∂1x ∈ L1(T
2
θ).

Thus T ∗ x ∈ W 1
1 (T

2
θ), so the Fourier multiplier induced by T is bounded on W 1

1 (T
2
θ). We show in

the same way that it is c.b. too. Since T is not a measure, it does not belong to M(L1(T
2)).

7.2. Fourier multipliers on Besov spaces

It is well known that in the classical setting, Fourier multipliers behave better on Besov spaces
than on Lp-spaces. We will see that this fact remains true in the quantum case. We maintain the

notation introduced in section 3.1. In particular, ϕ is a function satisfying (3.1) and ϕ(k)(ξ) =
ϕ(2−kξ) for k ∈ N0. As usual, ϕ

(k) is viewed as a function on Zd too.

The following is the main result of this section. Compared with the corresponding result in
the classical case (see, for instance, Section 2.6 of [73]), our result is more precise since it gives a
characterization of Fourier multipliers on Bαp,q(T

d
θ) in terms of those on Lp(T

d
θ).

Theorem 7.4. Let α ∈ R and 1 ≤ p, q ≤ ∞. Let φ : Zd → C. Then φ is a Fourier multiplier on

Bαp,q(T
d
θ) iff the φϕ(k)’s are Fourier multipliers on Lp(T

d
θ) uniformly in k. In this case, we have

∥∥φ
∥∥
M(Bαp,q(T

d
θ
))
≈ |φ(0)|+ sup

k≥0

∥∥φϕ(k)
∥∥
M(Lp(Tdθ))

with relevant constants depending only on α. A similar c.b. version holds too.

Proof. Without loss of generality, we assume that φ(0) = 0 and all elements x considered below
have vanishing Fourier coefficients at the origin. Let φ ∈ M(Bαp,q(T

d
θ)) and x ∈ Lp(T

d
θ). Then

y = (ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ x ∈ Bαp,q(T
d
θ) and

‖y‖Bαp,q ≤ cα2
kα‖x‖p with cα = 9 · 4|α| .

So

‖Mφ(y)‖Bαp,q ≤ ‖φ
∥∥
M(Bαp,q(T

d
θ
))
‖y‖Bαp,q ≤ cα2

kα
∥∥φ

∥∥
M(Bαp,q(T

d
θ
))
‖x‖p .

On the other hand, by (3.2), ϕ̃k ∗Mφ(y) =Mφϕ(k)(x) and

‖Mφ(y)‖Bαp,q ≥ 2kα‖ϕ̃k ∗Mφ(y)‖p = 2kα‖Mφϕ(k)(x)‖p .
It then follows that

‖Mφϕ(k)(x)‖p ≤ cα
∥∥φ

∥∥
M(Bαp,q(T

d
θ
))
‖x‖p ,

whence

sup
k≥0

∥∥φϕ(k)
∥∥
M(Lp(Tdθ))

≤ cα
∥∥φ

∥∥
M(Bαp,q(T

d
θ
))
.
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Conversely, for x ∈ Bαp,q(T
d
θ),

‖ϕ̃k ∗Mφ(x)‖p = ‖Mφϕ(k)

(
(ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ x

)
‖p

≤
∥∥φϕ(k)

∥∥
M(Lp(Tdθ))

‖(ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ x‖p .
We then deduce ∥∥Mφ(x)

∥∥
Bαp,q

≤ 3 · 2|α| sup
k≥0

∥∥φϕ(k)
∥∥
M(Lp(Tdθ))

∥∥x
∥∥
Bαp,q

,

which implies ∥∥φ
∥∥
M(Bαp,q(T

d
θ
))
≤ 3 · 2|α| sup

k≥0

∥∥φϕ(k)
∥∥
M(Lp(Tdθ))

.

Thus the assertion concerning bounded multipliers is proved.
The preceding argument can be modified to work in the c.b. case too. First note that for k ≥ 0,

ϕ(k) is a c.b. Fourier multiplier on Lp(T
d
θ) for all 1 ≤ p ≤ ∞ with c.b. norm 1, that is, the map

x 7→ ϕ̃k ∗ x is c.b. on Lp(T
d
θ). So for any x ∈ Sq[Lp(T

d
θ)] (the Lp(T

d
θ)-valued Schatten q-class),

∥∥(IdSq ⊗Mϕ(k))(x)
∥∥
Sq [Lp(Tdθ)]

≤ ‖x‖Sq[Lp(Tdθ)] .

Now let φ ∈ Mcb(B
α
p,q(T

d
θ)) and x ∈ Sq[Lp(T

d
θ)]. Define y as above: y = (ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ x.

Then for k − 2 ≤ j ≤ k + 2,

‖ϕ̃j ∗ y‖Sq[Lp(Tdθ)] ≤ 3 ‖x‖Sq[Lp(Tdθ)] .
It thus follows that∥∥(IdSq ⊗Mφ)(y)

∥∥
Sq [Bαp,q(T

d
θ
)]
≤ ‖φ‖Mcb(Bαp,q(T

d
θ
)) ‖y‖Sq[Bαp,q(Tdθ)]

≤ ‖φ‖Mcb(Bαp,q(T
d
θ
))

k+2∑

j=k−2

2jα‖ϕ̃j ∗ y‖Sq[Lp(Tdθ)]

≤ cα2
kα‖φ‖

Mcb(Bαp,q(T
d
θ
)) ‖x‖Sq[Lp(Tdθ)] .

Then as before, we deduce

sup
k≥0

∥∥φϕ(k)
∥∥
Mcb(Lp(Tdθ))

≤ cα
∥∥φ

∥∥
Mcb(Bαp,q(T

d
θ
))
.

To show the converse inequality, assume

sup
k≥0

∥∥φϕ(k)
∥∥
Mcb(Lp(Tdθ))

≤ 1.

Then for x ∈ Sq[B
α
p,q(T

d
θ)],

‖ϕ̃k ∗Mφ(x)‖Sq [Lp(Tdθ)] ≤
∥∥φϕ(k)

∥∥
Mcb(Lp(Tdθ))

‖(ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ x‖Sq [Lp(Tdθ)]
≤ ‖(ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ x‖Sq[Lp(Tdθ)] .

Therefore,

‖Mφ(x)‖Sq [Bαp,q(Tdθ)] =
(∑

k≥0

(
2kα‖ϕ̃k ∗Mφ(x)‖Sq [Lp(Tdθ)]

)q) 1
q

≤
(∑

k≥0

(
2kα‖(ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ x‖Sq [Lp(Tdθ)]

)q) 1
q

≤ 3 · 2|α|‖x‖Sq[Bαp,q(Tdθ)] .
We thus get the missing converse inequality, so the theorem is proved. �

The following is an immediate consequence of the preceding theorem.

Corollary 7.5. (i) M(Bαp,q(T
d
θ)) is independent of α and q, up to equivalent norms.

(ii) M(B0
p,∞(Tdθ)) = M(B0

p′,∞(Tdθ)), where p
′ is the conjugate index of p.

(iii) M(B0
p0,∞(Tdθ)) ⊂ M(B0

p1,∞(Tdθ)) for 1 ≤ p0 < p1 ≤ 2.

(iv) M(Lp(T
d
θ)) ⊂ M(Bαp,q(T

d
θ)).

Similar statements hold for the spaces Mcb(B
α
p,q(T

d
θ)).
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Theorem 7.4 and Lemma 1.3 imply the following:

Corollary 7.6. Mcb(B
α
p,q(T

d
θ)) = Mcb(B

α
p,q(T

d)) with equivalent norms.

Let F(B0
1,∞(Td)) be the space of all Fourier transforms of functions in B0

1,∞(Td) (a commutative

Besov space), equipped with the norm ‖f̂‖ = ‖f‖B0
1,∞

.

Corollary 7.7. Mcb(B
α
1,q(T

d
θ)) = F(B0

1,∞(Td)) with equivalent norms.

Proof. Let φ ∈ Mcb(B
0
1,∞(Tdθ)) and f be the distribution on Td such that f̂ = φ. By Theorem 7.4

and Lemma 1.3, we have

sup
k≥0

∥∥φϕ(k)
∥∥
M(L1(Td))

<∞.

Recall that the Fourier transform of ϕk is ϕ(k) and ϕ̃k is the periodization of ϕk. So

‖ϕ̃k‖L1(Td) = ‖ϕk‖L1(Rd) = ‖ϕ‖L1(Rd) .

Noting that by (3.2), ϕ̃k ∗ f =Mφϕ(k)(ϕ̃k−1 + ϕ̃k + ϕ̃k+1), we get

‖ϕ̃k ∗ f‖1 ≤
∥∥φϕ(k)

∥∥
M(L1(Td))

‖ϕ̃k−1 + ϕ̃k + ϕ̃k+1‖1 ≤ 3‖ϕ‖L1(Rd)

∥∥φϕ(k)
∥∥
M(L1(Td))

,

whence

‖f‖B0
1,∞

≤ 3‖ϕ‖L1(Rd) sup
k≥0

∥∥φϕ(k)
∥∥
M(L1(Td))

.

Conversely, assume φ = f̂ with f ∈ B0
1,∞(Td). Let g ∈ B0

1,∞(Td). Then

‖ϕ̃k ∗Mφ(g)‖1 = ‖ϕ̃k ∗ f ∗ g‖1 = ‖ϕ̃k ∗ f ∗ (ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ g‖1
≤ ‖ϕ̃k ∗ f‖1 ‖(ϕ̃k−1 + ϕ̃k + ϕ̃k+1) ∗ g‖1
≤ 3‖f‖B0

1,∞
‖g‖B0

1,∞
.

Thus Mφ(g) ∈ B0
1,∞(Td) and

‖Mφ(g)‖B0
1,∞

≤ 3‖f‖B0
1,∞

‖g‖B0
1,∞

,

which implies that φ is a Fourier multiplier on B0
1,∞(Tdθ) and

‖φ‖M(B0
1,∞(Td

θ
)) ≤ 3‖f‖B0

1,∞
.

Considering g with values in S∞, we show that φ is c.b. too. Alternately, since M(L1(T
d)) =

Mcb(L1(T
d)), Theorem 7.4 yields M(B0

1,∞(Td)) = Mcb(B
0
1,∞(Td)), which allows us to conclude the

proof too. �

We have seen previously that every bounded (c.b.) Fourier multiplier on Lp(T
d
θ) is a bounded

(c.b.) Fourier multiplier on Bαp,q(T
d
θ). Corollary 7.7 shows that the converse is false for p = 1. We

now show that it also is false for any p 6= 2.

Proposition 7.8. There exists a Fourier multiplier φ which is c.b. on Bαp,q(T
d
θ) for any p, q and

α but never belongs to M(Lp(T
d
θ)) for any p 6= 2 and any θ.

Proof. The example constructed by Stein and Zygmund [70] for a similar circumstance can be
shown to work for our setting too. Their example is a distribution on T defined as follows:

µ(z) =
∞∑

n=2

1

logn
(wnz)

2nDn(wnz)

for some appropriate wn ∈ T, where

Dn(z) =

n∑

j=0

zj , z ∈ T.

Since ‖Dn‖L1(T) ≈ logn, we see that µ ∈ B0
1,∞(T). Considered as a distribution on Td, µ ∈

B0
1,∞(Td) too. Thus by Corollaries 7.5 and 7.7, φ = µ̂ belongs to Mcb(B

α
p,p(T

d
θ)) for any p, q and

α. However, Stein and Zygmund proved that φ is not a Fourier multiplier on Lp(T) for any p 6= 2
if the wn’s are appropriately chosen. Consequently, φ cannot be a Fourier multiplier on Lp(T

d
θ) for
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any p 6= 2 and any θ since Lp(T) isometrically embeds into Lp(T
d
θ) by an embedding that is also a

c.b. Fourier multiplier. �

We conclude this section with some comments on the vector-valued case. The proof of The-
orem 7.4 works equally for vector-valued Besov spaces. Recall that for an operator space E,
Bαp,q(T

d
θ ;E) denotes the E-valued Besov space on Tdθ (see Remark 3.25).

Proposition 7.9. For any operator space E,
∥∥φ

∥∥
M(Bαp,q(T

d
θ
;E))

≈ |φ(0)|+ sup
k≥0

∥∥φϕ(k)
∥∥
M(Lp(Tdθ ;E))

with equivalence constants depending only on α.

If θ = 0, we go back to the classical vector-valued case. The above proposition explains the
well-known fact mentioned at the beginning of this section that Fourier multipliers behave better
on Besov spaces than on Lp-spaces. To see this, it is more convenient to write the above right-hand
side in a different form:

∥∥φϕ(k)
∥∥
M(Lp(Tdθ ;E))

=
∥∥φ(2k·)ϕ

∥∥
M(Lp(Tdθ ;E))

.

Thus if φ is homogeneous, the above multiplier norm is independent of k, so φ is a Fourier multiplier
on Bαp,q(T

d;E) for any p, q, α and any Banach space E. In particular, the Riesz transform is

bounded on Bαp,q(T
d;E).

The preceding characterization of Fourier multipliers is, of course, valid for Rd in place of Td.
Let us record this here:

Proposition 7.10. Let E be a Banach space. Then for any φ : Rd → C,
∥∥φ

∥∥
M(Bαp,q(R

d;E))
≈ ‖φψ‖M(Lp(Rd;E)) + sup

k≥0

∥∥φ(2k·)ϕ
∥∥
M(Lp(Rd;E))

,

where ψ is defined by

ψ(ξ) =
∑

k≥1

ϕ(2kξ), ξ ∈ Rd .

7.3. Fourier multipliers on Triebel-Lizorkin spaces

As we have seen in the chapter on Triebel-Lizorkin spaces, Fourier multipliers on such spaces
are subtler than those on Sobolev and Besov spaces. Similarly to the previous two sections, our
target here is to show that the c.b. Fourier multipliers on Fα,cp (Tdθ) are independent of θ. By

definition, Fα,cp (Tdθ) can be viewed as a subspace of the column space Lp(T
d
θ ; ℓ

α,c
2 ), the latter is the

column subspace of Lp(B(ℓα2 )⊗Tdθ). Thus F
α,c
p (Tdθ) inherits the natural operator space structure of

Lp(B(ℓα2 )⊗Tdθ). Similarly, the row Triebel-Lizorkin space Fα,rp (Tdθ) carries a natural operator space

structure too. Finally, the mixture space Fαp (T
d
θ) is equipped with the sum or intersection operator

space structure according to p < 2 or p ≥ 2. Note that according to this definition, even though it
is a commutative function space, the space Fαp (T

d) (corresponding to θ = 0) is endowed with three

different operator space structures, the first two being defined by its embedding into Lp(T
d; ℓα,c2 )

and Lp(T
d; ℓα,r2 ), the third one being the mixture of these two. The resulting operator spaces are

denoted by Fα,cp (Td) , Fα,rp (Td) and Fαp (T
d), respectively. Similarly, we introduce operator space

structures on the Hardy space Hc
p(T

d
θ), its row and mixture versions too.

The main result of this section is the following:

Theorem 7.11. Let 1 ≤ p ≤ ∞ and α ∈ R. Then

Mcb(F
α,c
p (Tdθ)) = Mcb(F

α,c
p (Td)) with equal norms,

Mcb(F
α,c
p (Tdθ)) = Mcb(F

0,c
p (Td)) with equivalent norms.

Similar statements hold for the row and mixture spaces.

We will show the theorem only in the case p < ∞. The proof presented below can be easily
modified to work for p = ∞ too. Alternately, the case p = ∞ can be also obtained by duality
from the case p = 1. Note, however, that this duality argument yields only the first equality of the
theorem with equivalent norms for p = ∞.
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We adapt the proof of Theorem 7.1 to the present situation, by introducing the space

Sα,cp =
{
a = (am,n)m,n∈Zd :

(∑

k≥0

22kα
∣∣ϕ̃k ∗ a

∣∣2) 1
2 ∈ Sp(ℓ2(Z

d))
}
,

equipped with the norm

‖a‖Sα,cp
=

∥∥(∑

k≥0

22kα
∣∣ϕ̃k ∗ a

∣∣2) 1
2
∥∥
Sp
,

where

ϕ̃k ∗ a =
(
ϕ(2−k(m− n)) am,n

)
m,n∈Zd

.

Then Sα,cp is a closed subspace of the column subspace of Sp(ℓ
α
2⊗ℓ2(Zd)), which introduces a natural

operator space structure on Sα,cp . Let Mcb(S
α,c
p ) denote the space of all c.b. Schur multipliers on

Sα,cp , equipped with the natural norm.

Lemma 7.12. Let 1 ≤ p <∞ and α ∈ R. Then

Mcb(F
α,c
p (Tdθ)) = Mcb(S

α,c
p ) with equal norms.

Proof. This proof is similar to the one of Theorem 7.1; we point out the necessary changes. Keeping
the notation there, we have for a = (am,n)m,n∈Zd ∈ Sα,cp and x = V (a⊗ 1Td

θ
)V ∗ ∈ B(ℓ2(Z

d))⊗Tdθ

∥∥(∑

k

22kα|ϕ̃k ∗ x
∣∣2) 1

2
∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)
=

∥∥a
∥∥
Sα,cp

.

Suppose that φ ∈ Mcb(F
α,c
p (Tdθ)). It then follows that

∥∥Sφ̊(a)
∥∥
Sα,cp

=
∥∥(∑

k

22kα
∣∣ϕ̃k ∗ (V (Sφ̊(a)⊗ 1Td

θ
)V ∗)

∣∣2) 1
2
∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)

=
∥∥(∑

k

22kα
∣∣Mφ

(
ϕ̃k ∗ (V (a⊗ 1Td

θ
)V ∗)

)∣∣2) 1
2
∥∥
Lp(B(ℓ2(Zd))⊗Td

θ
)

≤
∥∥φ

∥∥
Mcb(F

α,c
p (Td

θ
))
‖x‖Sp[Fα,cp (Td

θ
)]

= ‖φ‖Mcb(F
α,c
p (Td

θ
))‖a‖Sα,cp

.

Therefore, φ̊ is a bounded Schur multiplier on Sα,cp . Considering matrices a = (am,n)m,n∈Zd with

entries in B(ℓ2), we show in the same way that Sφ̊ is c.b. on Sα,cp , so φ̊ is a c.b. Schur multiplier

on Sα,cp and

‖φ̊‖Mcb(S
α,c
p ) ≤ ‖φ‖Mcb(F

α,c
p (Td

θ
)).

To show the opposite inequality, we just note that the contractive and convergence properties
of the maps AN and BN introduced in the proof of Theorem 7.1 also hold on the corresponding
Fα,cp (Tdθ) or Sα,cp spaces. To see this, we take AN for example. Since it is c.b. between the

corresponding Lp-spaces, it is also c.b. from Lp(B(ℓ2)⊗Tdθ) to Lp(B(ℓ2)⊗B(ℓ
|ZN |
2 )). Applying this

to the elements of the form 


ϕ̃0 ∗ x 0 0 . . .

2αϕ̃1 ∗ x 0 0 . . .

22αϕ̃2 ∗ x 0 0 . . .

· · · . . .




we see that AN is completely contractive from Fα,cp (Tdθ) to S
α,c
p (B(ℓ

|ZN |
2 )), the latter space being

the finite dimensional analogue of Sα,cp . We then argue as in the proof of Theorem 7.1 to deduce
the desired opposite inequality. �

Proof of Theorem 7.11. The first part is an immediate consequence of the previous lemma. For the
second, we need the c.b. version of Theorem 4.11 (i), whose proof is already contained in section
4.1. To see this, we just note that, letting M = B(ℓ2(Z

d))⊗Tdθ and N = B(ℓ2(Z
d))⊗L∞(Td)⊗Tdθ

in Lemma 4.6 we obtain the c.b. version of Lemma 4.7, and that, in the same way, the c.b. version
of Lemma 1.10 holds, i.e., for x ∈ Sp[Hc

p(T
d
θ)],

‖x‖Sp[Hc
p(T

d
θ
)] ≈ ‖x̂(0)‖Sp + ‖scψ(x)‖Sp[Lp(Tdθ)] .
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Finally, the previous lemma and the c.b. version of Theorem 4.11 (i) yield the desired conclusion.
�

Remark 7.13. The preceding theorem and the c.b. version of Theorem 4.11 (i) show that

Mcb(Hc
p(T

d
θ)) = Mcb(Hc

p(T
d)) with equivalent norms.

In fact, using arguments similar to the proof of the preceding theorem, we can show that the above
equality holds with equal norms.
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