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ABSTRACT. This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces
on a noncommutative d-torus ']I‘g (with 6 a skew symmetric real d X d-matrix). These spaces
share many properties with their classical counterparts. We prove, among other basic properties,
the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces. We
also show that the Sobolev space W(fo (Tg) coincides with the Lipschitz space of order k, already
studied by Weaver in the case k = 1. We establish the embedding inequalities of all these
spaces, including the Besov and Sobolev embedding theorems. We obtain Littlewood-Paley type
characterizations for Besov and Triebel-Lizorkin spaces in a general way, as well as the concrete
ones in terms of the Poisson, heat semigroups and differences. Some of them are new even in the
commutative case, for instance, our Poisson semigroup characterizations improve the classical
ones. As a consequence of the characterization of the Besov spaces by differences, we extend to the
quantum setting the recent results of Bourgain-Brézis -Mironescu and Maz’ya-Shaposhnikova on
the limits of Besov norms. The same characterization implies that the Besov space Bgo’oo(']l‘g)
for @« > 0 is the quantum analogue of the usual Zygmund class of order a. We investigate
the interpolation of all these spaces, in particular, determine explicitly the K-functional of the
couple (Lp(T%), W;f (T4)), which is the quantum analogue of a classical result due to Johnen and
Scherer. Finally, we show that the completely bounded Fourier multipliers on all these spaces
do not depend on the matrix 6, so coincide with those on the corresponding spaces on the usual
d-torus. We also give a quite simple description of (completely) bounded Fourier multipliers
on the Besov spaces in terms of their behavior on the Ly-components in the Littlewood-Paley
decomposition.
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Chapter 0. Introduction

This paper is the second part of our project about analysis on quantum tori. The previous one
[17] studies several subjects of harmonic analysis on these objects, including maximal inequalities,
mean and pointwise convergences of Fourier series, completely bounded Fourier multipliers on L,-
spaces and the theory of Hardy spaces. It was directly inspired by the current line of investigation
on noncommutative harmonic analysis. As pointed out there, very little had been done about the
analytic aspect of quantum tori before [I7]; this situation is in strong contrast with their geometry
on which there exists a considerably long list of publications. Presumably, this deficiency is due to
numerous difficulties one may encounter when dealing with noncommutative L,-spaces, since these
spaces come up unavoidably if one wishes to do analysis. [I7] was made possible by the recent
developments on noncommutative martingale/ergodic inequalities and the Littlewood-Paley-Stein
theory for quantum Markovian semigroups, which had been achieved thanks to the efforts of many

researchers; see, for instance, [50, 311 [36] 37, [611 [62, (2], and [32] [44] [45] 33, [34].

This second part intends to study Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori.
In the classical setting, these spaces are fundamental for many branches of mathematics such as
harmonic analysis, PDE, functional analysis and approximation theory. Our references for the
classical theory are [ [42, 49, 53| [73] [74]. However, they have never been investigated so far
in the quantum setting, except two special cases to our best knowledge. Firstly, Sobolev spaces
with the La-norm were studied by Spera [65] in view of applications to the Yang-Mills theory for
quantum tori [66] (see also [26] [39, 58 [64] for related works). On the other hand, inspired by
Connes’ noncommutative geometry [I8], or more precisely, the part on noncommutative metric
spaces, Weaver [(8, [79] developed the Lipschitz classes of order a for 0 < < 1 on quantum
tori. The fact that only these two cases have been studied so far illustrates once more the above
mentioned difficulties related to noncommutativity.

Among these difficulties, a specific one is to be emphasized: it is notably relevant to this paper,
and is the lack of a noncommutative analogue of the usual pointwise maximal function. However,
maximal function techniques play a paramount role in the classical theory of Besov and Triebel-
Lizorkin spaces (as well as in the theory of Hardy spaces). They are no longer available in the
quantum setting, which forces us to invent new tools, like in the previously quoted works on
noncommutative martingale inequalities and the quantum Littlewood-Paley-Stein theory where
the same difficulty already appeared.

One powerful tool used in [I7] is the transference method. It consists in transferring problems on
quantum tori to the corresponding ones in the case of operator-valued functions on the usual tori, in
order to use existing results in the latter case or adapt classical arguments. This method is efficient
for several problems studied in [I7], including the maximal inequalities and Hardy spaces. It is still
useful for some parts of the present work; for instance, Besov spaces can be investigated through
the classical vector-valued Besov spaces by means of transference, the relevant Banach spaces being
the noncommutative Ly-spaces on a quantum torus. However, it becomes inefficient for others. For
example, the Sobolev or Besov embedding inequalities cannot be proved by transference. On the
other hand, if one wishes to study Triebel-Lizorkin spaces on quantum tori via transference, one
should first develop the theory of operator-valued Triebel-Lizorkin spaces on the classical tori. The
latter is as hard as the former. Contrary to [I7] , the transference method will play a very limited
role in the present paper. Instead, we will use Fourier multipliers in a crucial way, this approach
is of interest in its own right. We thus develop an intrinsic differential analysis on quantum tori,
without frequently referring to the usual tori via transference as in [I7]. This is a major advantage
of the present methods over those of [I7]. We hope that the study carried out here would open
new perspectives of applications and motivate more future research works on quantum tori or in
similar circumstances. In fact, one of our main objectives of developing analysis on quantum tori
is to gain more insights on the geometrical structures of these objects, so ultimately to return back
to their differential geometry.

To describe the content of the paper, we need some definitions and notation (see the respective
sections below for more details). Let d > 2 and 6 = (6;) be a real skew-symmetric d x d-matrix.
The d-dimensional noncommutative torus Ay is the universal C*-algebra generated by d unitary
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operators Uy, ..., Uy satisfying the following commutation relation
UpU; = ™0 U,Uy, 1< 4,k <d.
Let U = (Uy,---,Uy). For m = (my,--- ,mq) € Z%, set
uom=u-.-Up.
A polynomial in U is a finite sum:
T = Z a, U™, a,, € C.
meZa

For such a polynomial z, we define 7(z) = «ag. Then 7 extends to a faithful tracial state on
Ag. Let Tg be the w*-closure of Ay in the GNS representation of 7. This is our d-dimensional
quantum torus. It is to be viewed as a deformation of the usual d-torus T?, or more precisely, of the
commutative algebra Lo (T?). The noncommutative L,-spaces associated to (T¢,7) are denoted
by L,(T4). The Fourier transform of an element z € L1(T§) is defined by

z(m) =7(U™)*z), me AR

The formal Fourier series of z is
z~ Y B m)U

meZd
The differential structure of Tg is modeled on that of T%. Let

={ Z amU™ : {@m}meza rapidly decreasing}.
meZa

This is the deformation of the space of infinitely differentiable functions on T%; it is the Schwartz
class of T¢. Like in the commutative case, S(T%) carries a natural locally convex topology. Its
topological dual S’(T$) is the space of distributions on T¢. The partial derivations on S(T$) are
determined by
8j(Uj)=27Tin and 8j(Uk)=0, k?éj, IS],de

Given m = (my,...,mq) € N¢ (Ny denoting the set of nonnegative integers), the associated partial
derivation D™ is defined to be 07" ---97"*. The order of D™ is |m|; = mi + --- + mgq. Let
A =97 + -+ + 0% be the Laplacian. By duality, the derivations and Fourier transform transfer to
S'(T) too.

Fix a Schwartz function ¢ on R? satisfying the usual Littlewood-Paley decomposition property
expressed in (I). For each k > 0 let ¢;, be the function whose Fourier transform is equal to
©(27%.). For a distribution 2 on T¢, define

Prrr= Y @2 Fm)E(m)U™.
mezZd

So = +— @ * x is the Fourier multiplier with symbol ¢(27%.).
We can now define the four families of function spaces on T¢ to be studied . Let 1 < p,q < oo
and k € N,a € R, and let J be the Bessel potential of order a: J* = (1 — (27)72A)%.

e Sobolev spaces:
W’C Td {m S Td) D"z € LP(Tg) for each m € Ng with |m|; < k}
e Potential or fractoinal Sobolev spaces:
H(T§) = {z € S'(T§) : J*x € L,(T§)}.
e Besov spaces:
By, (T4) = {w € S'(T3) : (FO)" + > 273 x ) * < o0}.
k>0
o Triebel-Lizorkin spaces for p < oo :

Foe(Td) = {x € 8'(T8) - | (RO + 3 223 » o) || < 00}
k>0
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Equipped with their natural norms, all these spaces become Banach spaces.
Now we can describe the main results proved in this paper by classifying them into five families.

Basic properties. A common basic property of potential Sobolev, Besov and Triebel-Lizorkin
spaces is a reduction theorem by the Bessel potential. For example, J? is an isomorphism from
B¢ (T§) onto By, ?(T§) for all 1 < p,q < oo and av, f € R; this is the so-called lifting or reduction
theorem. Specifically to Triebel-Lizorkin spaces, J¢ establishes an isomorphism between F;’C(Tg)
and the Hardy space Hg(Tg) for any 1 < p < co. As a consequence, we deduce that the potential
Sobolev space Hg‘(Tg) admits a Littlewood-Paley type characterization for 1 < p < oo.

Another type of reduction for Besov and Triebel-Lizorkin spaces is that for any positive integer
k,x € F;’C(Tg) (resp. Bf,"q(Tg)) iff all its partial derivatives of order k belong to FI‘)’"’”(Tg) (resp.
By *(T3)).

Concerning Sobolev spaces, we obtain a Poincaré type inequality: For any = € Wp1 (’]I‘g) with
1 < p < oo, we have

[z =ZO)ll, S [Vl -

Our proof of this inequality greatly differs with standard arguments for such results in the com-
mutative case.

We also show that WZ (T4) is the analogue for T¢ of the classical Lipschitz class of order k. For
u € RY, define A,z = 7, (x) — z, where z = (e2™¥1 ... ¢2™iud) and 7, is the automorphism of T¢
determined by U; + 2;U; for 1 < j < d. Then for a positive integer k, AF is the kth difference
operator on Tg associated to u. Note that AF is also the Fourier multiplier with symbol e, where
ey (€) = e¥™w& — 1. The kth order modulus of L,-smoothness of an z € L,(T$) is defined to be

wg(x,e): sup HAq’ijp.
0<|u|<e

We then prove that for any 1 <p < oo and k € N,

k
wk(x,e)
sup 7’76]; ~ E | D™z, .
>0 meNg, Im|1=k

In particular, we recover Weaver’s results [78, [79] on the Lipschitz class on Tg when p = oo and
k=1.

Embedding. The second family of results concern the embedding of the preceding spaces. A
typical one is the analogue of the classical Sobolev embedding inequality for Wi (’]I‘g): fl<p<
1k

. 1 _
q<oosuchthat5—;—3,then

sz (T¢) € L,(T¢) continuously.

Similar embedding inequalities hold for the other spaces too. Combined with real interpolation, the
embedding inequality of B q(’ﬂ‘g) yields the above Sobolev embedding. Our proofs of these embed-
ding inequalities are based on Varopolous’ celebrated semigroup approach [76] to the Littlewood-
Sobolev theory, which has also been developed by Junge and Mei [34] in the noncommutative
setting for the study of BMO spaces on quantum Markovian semigroups. Thus the characteriza-
tion of Besov spaces by Poisson or heat semigroup described below is essential for the proof of our
embedding inequalities.

We also establish compact embedding theorems. For instance, the previously mentioned Sobolev
embedding becomes a compact one W) (Tq) < Lg-(T§) for any ¢* with 1 < ¢* <q.

Characterizations. The third family of results are various characterizations of Besov and Triebel-
Lizorkin spaces. This is the most difficult and technical part of the paper. In the classical case,
all existing proofs of these characterizations that we know use maximal function techniques in
a crucial way. As pointed out earlier, these techniques are no longer available. Instead, we use
frequently Fourier multipliers. We would like to emphasize that our results are better than those
in literature even in the commutative case. Let us illustrate this by stating the characterization of
Besov spaces in terms of the circular Poisson semigroup.
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Given a distribution x on T¢ and k € Z, let

P(x) = > Z(m)r™mUm
mezd
and
Jrk P.(x) = Z Cm,kﬁ:\(m)r‘mlkam, 0<r<1,
meZa

where | - | denotes the Euclidean norm of R? and

1
Cop=1Im|---(Jm|—k+1) if k>0 and Cpp= it £<O.
(Im[+1) - (Im| = k)
Note that JF is the kth derivation operator relative to r if k& > 0, and the (—k)th integration
operator if k& < 0. Then our characterization asserts that for 1 < p,q < oo and a € R,k € Z with
k> «,

dr )%

1
Jallzg, ~ (max @l + [ (1= &7 p, )
g |m 0 p 1—7‘

<k
where z; = x — Z z(m)U™.
Im|<k

The use of the integration operator (corresponding to negative k) in the above statement is
completely new even in the case = 0 (the commutative case). This is very natural, and consistent
with the fact that the smaller « is, the lower smoothness the elements of By q(Tg) have. This is
also consistent with the previously mentioned lifting theorem. A similar result holds for Triebel-
Lizorkin spaces too. But its proof is much subtler. For the latter spaces, another improvement of
our characterization over the classical one lies on the assumption on k: in the classical case, k is
required to be greater than d + max(a,0), while we only need to assume k > .

The classical characterization of Besov spaces by differences is also extended to the quantum
setting. This result resembles the previous one in terms of the derivations of the Poisson semigroup.
For1 <p,g<oocand a € R,k € Nwith 0 < a <k, let

1 1
_ de\ ¢
HxHBg;; = (/ € O‘qw’;(x,s)q—)q.
0 €

Then = € Bg (T§) iff 2]l pge < oc.

The difference characterization of Besov spaces shows that Bg‘o’oo(Tg) is the quantum analogue
of the classical Zygmund class. In particular, for 0 < o < 1, Bg‘oyoo(Tg) is the Holder class of order
a, already studied by Weaver [79].

In the commutative case, the limit behavior of the quantity [|z[/ps» as o — k or a — 0 are
object of a recent series of publications. This line of research was initiated by Bourgain, Brézis
and Mironescu [13] [14] who considered the case o — 1 (k = 1). Their work was later simplified
and extended by Maz’ya and Shaposhnikova [41]. Here, we obtain the following analogue for T4 of
their results: For 1 <p<oo,1<g<ooand 0 < a <k with k € N,

. 1 _1
lim (k — o) @ [||| pow ~ ¢ > 1D™ 2|,
a—k

meNg, Im|1=k
. 1 1
lim o lal gz ~ 07|l
with relevant constants depending only on d and k.

Interpolation. Our fourth family of results deal with interpolation. Like in the usual case, the
interpolation of Besov spaces is quite simple, and that of Triebel-Lizorkin spaces can be easily
reduced to the corresponding problem of Hardy spaces. Thus the really hard task here concerns
the interpolation of Sobolev spaces for which we have obtained only partial results. The most
interesting couple is (W{(T4), WX (T4)). Recall that the complex interpolation problem of this
couple remains always unsolved even in the commutative case (a well-known longstanding open
problem which is explicitly posed by P. Jones in [27, p. 173]), while its real interpolation spaces
were completely determined by DeVore and Scherer [21]. We do not know, unfortunately, how to
prove the quantum analogue of DeVore and Scherer’s theorem.
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However, we are able to extend to the quantum tori the K-functional formula of the couple
(Lp(RY), WF(RY)) obtained by Johnen and Scherer [30]. This result reads as follows:

K (2,65 L,(T3), WE(TY) ~ *[3(0)] + wh(z,8), 0<e<L.

As a consequence, we determine the real interpolation spaces of (L,(T§), W (T§)), which are
Besov spaces.

The real interpolation of (L, (T¢), Wi(’]l‘g)) is closely related to the limit behavior of Besov
norms described previously. We show that it implies the optimal order (relative to «) of the best
constant in the embedding of Bg’p(’]l‘g) into L, (Tg) for % = % — 9 and 0 < a < 1, which is the
quantum analogue of a result of Bourgain, Brézis and Mironescu. On the other hand, the latter

result is equivalent to the Sobolev embedding W, (T§) C Lq(T§) for % = % - I

Multipliers. The last family of results of the paper describe Fourier multipliers on the preceding
spaces. Like in the L, case treated in [I7], we are mainly concerned with completely bounded
Fourier multipliers. All spaces in consideration carry a natural operator space structure in Pisier’s
sense. We show that the completely bounded Fourier multipliers on Wj(Tg) are independent of 6,
so they coincide with those on the usual Sobolev space Wf (T?). This is the Sobolev analogue of the
corresponding result for L, proved in [I7]. The main tool is Neuwirth-Ricard’s transference between
Fourier multipliers and Schur multipliers in [48]. A similar result holds for the Triebel-Lizorkin
spaces too.

The situation for Besov spaces is very satisfactory since it is well known that Fourier multipliers
behave much better on Besov spaces than on L,-spaces (in the commutative case). We prove that
a function ¢ on Z% is a (completely) bounded Fourier multiplier on B (Tq) iff the ¢p(27%-)’s are
(completely) bounded Fourier multipliers on L, (T¢) uniformly in k£ > 0. Consequently, the Fourier
multipliers on By q(Tg) are completely determined by the Fourier multipliers on L,(T%) associated
to their components in the Littlewood-Paley decomposition. So the completely bounded multipliers
on ng('ﬂ‘g) depend solely on p. In the case of p = 1, a multiplier is bounded on Bﬁq(Tg) iff it
is completely bounded iff it is the Fourier transform of an element of B?m(’ﬂ’d). Using a classical
example of Stein-Zygmund [70], we show that there exists a ¢ which is a completely bounded
Fourier multiplier on By q(Tg) for all p but bounded on L, (T$) for no p # 2.

We will frequently use the notation A < B, which is an inequality up to a constant: A < ¢ B for
some constant ¢ > 0. The relevant constants in all such inequalities may depend on the dimension
d, the test function ¢ or 1, etc. but never on the functions f or distributions z in consideration.
The main results of this paper have been announced in [82].

Chapter 1. Preliminaries

This chapter collects the necessary preliminaries for the whole paper. The first two sections
present the definitions and some basic facts about noncommutative L,-spaces and quantum tori
which are the central objects of the paper. The third one contains some results on Fourier mul-
tipliers that will play a paramount role in the whole paper. The last section gives the definitions
and some fundamental results on operator-valued Hardy spaces on the usual and quantum tori.
This section will be needed only starting from chapter [4] on Triebel-Lizorkin spaces.

1.1. NONCOMMUTATIVE L,-SPACES

Let M be a von Neumann algebra equipped with a normal semifinite faithful trace 7 and Sj{,l
be the set of all positive elements x in M with 7(s(z)) < oo, where s(z) denotes the support of z,
i.e., the smallest projection e such that exe = x. Let Sy be the linear span of Sj{,t. Then every
x € Spq has finite trace, and Sy is a w*-dense *-subalgebra of M.

Let 0 < p < oo. For any & € Sxq, the operator |z|? belongs to S}, (recalling |z| = (z*z)2). We
define

1
2l = (r(lzl"))?.
One can check that || - ||, is a norm or p-norm on Sy according to p > 1 or p < 1. The completion

of (Sm, || - ||p) is denoted by L,(M), which is the usual noncommutative L,-space associated to
(M, 7). For convenience, we set Lo (M) = M equipped with the operator norm || - ||o4. The
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norm of L, (M) will be often denoted simply by || - ||,. But if different L,-spaces appear in a same
context, we will sometimes precise their norms in order to avoid possible ambiguity. The reader is
referred to [57] and [83] for more information on noncommutative Ly-spaces.

The elements of L,(M) can be described as closed densely defined operators on H (H being the
Hilbert space on which M acts). A closed densely defined operator = on H is said to be affiliated
with M if ux = xu for any unitary u in the commutant M’ of M. An operator z affiliated with
M is said to be measurable with respect to (M, ) (or simply measurable) if for any ¢ > 0 there
exists a projection e € B(H) such that

e(H) € Dom(x) and 7(e*) <4,

where Dom(z) defines the domain of x. We denote by Lo(M,7), or simply Lo(M) the family of
all measurable operators. For such an operator z, we define

Xs(@) = 7(ex (|2])), s>0

€1

where e

() = 15 00)(x) is the spectrum projection of = corresponding to the interval (s, o), and
pe(x) =1inf{s > 0: A\s(z) <t}, t>0.

The function s — Ag(z) is called the distribution function of = and the p () the generalized singular
numbers of x. Similarly to the classical case, for 0 < p < 00,0 < ¢ < 00, the noncommutative
Lorentz space L, ,(M) is defined to be the collection of all measurable operators x such that

Bt dt,
va= (| Gu@rf) <.

Clearly, Ly, ,(M) = L,(M). The space Ly, oo(M) is usually called a weak L,-space, 0 < p < 00,
and

|

=

[#]lp,c0 = sup sAs(x) 7.
s>0

Like the classical L,-spaces, noncommutative L,-spaces behave well with respect to interpola-
tion. Our reference for interpolation theory is [8]. Let 1 < py <p; <00, 1 <¢g<ooand 0 < n < 1.
Then

(1'1) (LZDO(M)v LP1 (M)) = LP(M) and (LPO(M)5 LPI(M)) = LP#I(M)v

.9

where + =11 4 1
p Po p1

Now we introduce noncommutative Hilbert space-valued L,-spaces L,(M; H¢) and L,(M;H"),
which are studied at length in [32]. Let H be a Hilbert space and v a norm one element of H. Let
py be the orthogonal projection onto the one-dimensional subspace generated by v. Then define
the following row and column noncommutative L,-spaces:

Lp(M; H") = (py @ 1a) Ly (B(H)@M),
Ly(M; HY) = Ly(B(H)&M)(p, ® 1p1),

where the tensor product B(H)®M is equipped with the tensor trace while B(H) is equipped with
the usual trace. For f € L,(M; H®),

Rt
Iz, msmrey = )2 L, omy -

A similar formula holds for the row space by passing to adjoints: f € L,(M;H") iff f* €

Ly(M;H®), and || fllz,vmsmry = 1L, (msmey- Tt is clear that L,(M; H®) and L,(M; H") are

1-complemented subspaces of L,(B(H)®M) for any p. Thus they also form interpolation scales

with respect to both complex and real interpolation methods: Let 1 < pg,p; < oo and 0 <n < 1.
Then

(Lo (M: HO), Ly, (M HY)), = Ly(M; HO),

(1.2)
(Lo (M; HC), Ly (M: HC)), = Ly(M: HO),

where % = 1;0” + pﬂl. The same formulas hold for row spaces too.
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1.2. QUANTUM TORI

Let d > 2 and 6 = (0y;) be a real skew symmetric d x d-matrix. The associated d-dimensional
noncommutative torus Ay is the universal C*-algebra generated by d unitary operators Uy, ..., Uy
satisfying the following commutation relation

(1.3) UU; = ™00y, jk=1,...,d.
We will use standard notation from multiple Fourier series. Let U = (Uy,---,Uq). For m =
(m1,- -+ ,mg) € Z¢ we define

Um=um ...y,

A polynomial in U is a finite sum

T = Z anp U™ with  ay, € C,

that is, o, = 0 for all but finite indices m € Z%. The involution algebra Py of all such polynomials
is dense in Ay. For any polynomial z as above we define

7(z) = ap,

where 0 = (0,---,0). Then, 7 extends to a faithful tracial state on Ag. Let T¢ be the w*-closure
of Ay in the GNS representation of 7. This is our d-dimensional quantum torus. The state T
extends to a normal faithful tracial state on Tg that will be denoted again by 7. Recall that the
von Neumann algebra ’]I‘g is hyperfinite.

Any x € L1(T¢) admits a formal Fourier series:

z~ Y B m)U™,
meZd
where
Z(m) = 7((U™)*z), m ez

are the Fourier coefficients of x. The operator x is, of course, uniquely determined by its Fourier
series.

We introduced in [I7] a transference method to overcome the full noncommutativity of quantum
tori and use methods of operator-valued harmonic analysis. Let T be the usual d-torus equipped
with normalized Haar measure dz. Let Np = Loo(T)®TY, equipped with the tensor trace v =
J dz @ 7. It is well known that for every 0 < p < oo,

LP(NGa v) = Lp(Td§ Lp(Tg))-

The space on the right-hand side is the space of Bochner p-integrable functions from T% to L, (’]I‘g).
In general, for any Banach space X and any measure space (€, u), we use L,(€; X) to denote
the space of Bochner p-integrable functions from Q to X. For each z € T¢, define 7, to be the
isomorphism of Tg determined by

(1.4) . (U™) =2"U" = 2" - 20" - U
Since 7(m,(z)) = 7(x) for any x € T4, 7, preserves the trace 7. Thus for every 0 < p < oo,
(1.5) 7= (2)llp = l[zllp, Vo € Lp(Tg)~

Now we state the transference method as follows (see [I7]).

Lemma 1.1. For any = € L,(T$), the function T : z + 7. (z) is continuous from T? to L,(T%)
(with respect to the w*-topology for p = o0). If x € Ay, it is continuous from T? to Ajg.

Corollary 1.2. (i) Let 0 < p < cc. If & € L,(T4), then ¥ € L,(Np) and ||Z|, = |||, that is,
x +— T is an isometric embedding from L,(T4) into L,(Np). Moreover, this map is also an
isomorphism from Ag into C(T%; Ay).
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(ii) Let T¢ = {7 : @ € T¢}. Then T¢ is a von Neumann subalgebra of Ny and the associated
conditional expectation is given by

E(f)(2) :ﬂ'z(/w wm[f(w)]dw), ze T, feNg.

Moreover, E extends to a contractive projection from L,(Np) onto Lp(’]l‘g) for 1 <p < 0.
(iil) L,(T4) is isometric to L,(T%) for every 0 < p < oo.

1.3. FOURIER MULTIPLIERS

Fourier multipliers will be the most important tool for the whole work. Now we present some
known results on them for later use. Given a function ¢ : Z¢ — C, let M, denote the associated

Fourier multiplier on T?, namely, ]\//[;f (m) = (b(m)f(m) for any trigonometric polynomial f on
T?. We call ¢ a multiplier on L,(T%) if My extends to a bounded map on L,(T%). Fourier
multipliers on Tg are defined exactly in the same way, we still use the same symbol My to denote
the corresponding multiplier on T¢. Note that the isomorphism 7, defined in (I) is the Fourier
multiplier associated to the function ¢ given by ¢(m) = 2™.

It is natural to ask if the boundedness of My on L,(T?) is equivalent to that on L,(T4). This
is open until a negative answer given by Ricard [63] recently. However, it is proved in [I7] that
the answer is affirmative if “boundedness” is replaced by “complete boundedness”, a notion from
operator space theory for which we refer to [23] and [55]. All noncommutative L,-spaces are
equipped with their natural operator space structure introduced by Pisier [54] [55].

We will use the following fundamental property of completely bounded (c.b. for short) maps
due to Pisier [54]. Let E and F be operator spaces. Then a linear map T : E — F is c.b. iff
Ids, ® T : Sp[E] — Sp[F] is bounded for some 1 < p < oco. In this case,

IT||et = ||1d5p @ T : SylE] — Sp[F]H.

Here S,[E] denotes the E-valued Schatten p-class. In particular, if E = C, S,[C] = S, is the
noncommutative L,-space associated to B({2), equipped with the usual trace. Applying this cri-
terion to the special case where E = F' = L,(M), we see that a map T on L,(M) is c.b. iff
Ids, ® T' : Lp(B(l2)@M) — Ly(B(f2)@M) is bounded. The readers unfamiliar with operator
space theory can take this property as the definition of c.b. maps between L,-spaces.

Thus ¢ is a c.b. multiplier on L,(T§) if My is c.b. on L,(T§), or equivalently, if Idg, @ M,
is bounded on L,(B(f2)®@T$). Let M(L,(T%)) (resp. Mep(Ly(T4))) denote the space of Fourier
multipliers (resp. c.b. Fourier multipliers) on L,(T$), equipped with the natural norm. When
6 = 0, we recover the (c.b.) Fourier multipliers on the usual d-torus T?. The corresponding
multiplier spaces are denoted by M(L,(T%)) and Mc,(L,(T?)). Note that in the latter case (8 = 0),
L,(B(£2)®T?) = L,(T% S,), thus ¢ is a c.b. multiplier on L,(T9) iff M, extends to a bounded
map on L,(T; S,).

The following result is taken from [I7].

Lemma 1.3. Let 1 < p < 0o. Then Mcp(Ly(TE)) = Mep (L, (T?)) with equal norms.

Remark 1.4. Note that Mg, (Li(T%)) = M, (Loo(T?)) coincides with the space of the Fourier
transforms of bounded measures on T?, and M, (L2(T?)) with the space of bounded functions on
Vi

The most efficient criterion for Fourier multipliers on L,(T%) for 1 < p < oo is Mikhlin’s
condition. Although it can be formulated in the periodic case, it is more convenient to state this
condition in the case of R?. On the other hand, the Fourier multipliers on T¢ used later will be the
restrictions to Z¢ of continuous Fourier multipliers on RY. As usual, for m = (my,--- ,mg) € Ng
(recalling that Ny denotes the set of nonnegative integers), we set

Dm:ai’rh.__a;’ﬂd’

where Jy denotes the kth partial derivation on R%. Also put |m|; = mq + - - - +mg. The Euclidean

norm of R? is denoted by |- ]: |€] = ,/g% +...+§3.
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Definition 1.5. A function ¢ : R? — C is called a Mikhlin multiplier if it is d-times differentiable
on R?\ {0} and satisfies the following condition

[6]lx = sup {[¢]™1 D™ (&) : € € R*\ {0}, m € Ng, |m|; < d} < oo.

Note that the usual Mikhlin condition requires only partial derivatives up to order [%] +1 (see,
for instance, |25, section I1.6] or [67, Theorem 4.3.2]). Our requirement above up to order d is
imposed by the boundedness of these multipliers on UMD spaces. We refer to section [l for the
usual Mikhlin condition and more multiplier results on Tg.

It is a classical result that every Mikhlin multiplier is a Fourier multiplier on Lp(Rd) for 1 <
p < oo (cf. [25, section I1.6] or [67, Theorem 4.3.2]), so its restriction ¢|,, is a Fourier multiplier
on L,(T%) too. It is, however, less classical that such a multiplier is also c.b. on L,(RY) or L,(T4).
This follows from a general result on UMD spaces. Recall that a Banach space X is called a UMD
space if the X-valued martingale differences are unconditional in L,(£2; X) for any 1 < p < oo and
any probability space (€2, P). This is equivalent to the requirement that the Hilbert transform be
bounded on L,(R% X) for 1 < p < co. Any noncommutative L,-space with 1 < p < oo is a UMD
space. We refer to [10] [I5] [16] for more information.

Before proceeding further, we make a convention used throughout the paper:

Convention. To simplify the notational system, we will use the same derivation symbols for R?
and T¢. Thus for a multi-index m € N¢, D™ = 97" - .- 97", introduced previously, will also denote
the partial derivation of order m on T¢. Similarly, A = 97 + --- + 9% will denote the Laplacian
on both R? and T¢. In the same spirit, for a function ¢ on R, we will call ¢ rather than ¢|Zd a
Fourier multiplier on L,(T?) or L,(T¢). This should not cause any ambiguity in concrete contexts.
Considered as a map on L,(T%) or L,(T4), My will be often denoted by f G* foras ¢x*a.

Note that the notation (5* f coincides with the usual convolution when ¢ is good enough. Indeed,

let (5 be the 1-periodization of the inverse Fourier transform of ¢ whenever it exists in a reasonable
sense:

d(s)= > FH)(s+m), seR’
meZd
Viewed as a function on T¢, $ admits the following Fourier series:
$(z) = Y d(m)=".
mezZd

Thus for any trigonometric polynomial f,
ox f(z) = o(zw ") f(w)dw, zeT?.

Td

The following lemma is proved in [43] [85] (see also [12] for the one-dimensional case).

Lemma 1.6. Let X be a UMD space and 1 < p < oo. Let ¢ be a Mikhlin multiplier. Then ¢

is a Fourier multiplier on L,(T% X). Moreover, its norm is controlled by |¢||m, p and the UMD
constant of X.

The following lemma will play a key role in the whole paper.

Lemma 1.7. Let ¢ be a function on R?,
(i) If F~1(¢) is integrable on R?, then ¢ is a c.b. Fourier multiplier on L,(T%) for 1 < p < oo.
Moreover, its c.b. norm is not greater than H}'_l(qﬁ)Hl.

(ii) If ¢ is a Mikhlin multiplier, then ¢ is a c.b. Fourier multiplier on L,(T$) for 1 < p < oc.
Moreover, its c¢.b. norm is controlled by ||¢||m and p.

Proof. (i) Since F~1(¢) is integrable, ¢ is a c.b. Fourier multiplier on L;(T?), so on L,(T¢) for
1 < p < o (see Remark [[4). Consequently, by Lemma [[3 ¢ is a c¢.b. Fourier multiplier on
L,(T%) for 1 < p < cc.

(ii) It is well known that S, is a UMD space for 1 < p < co. Thus, by Lemma [[.6, ¢ is a Fourier
multiplier on L,(T¢;S,); in other words, it is a c.b. Fourier multiplier on L, (T4). O
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1.4. HARDY SPACES

We now present some preliminaries on operator-valued Hardy spaces on T¢ and Hardy spaces
on T4. Motivated by the developments of noncommutative martingale inequalities in [56, 6] and
quantum Markovian semigroups in [32], Mei [44] developed the theory of operator-valued Hardy
spaces on R%. More recently, Mei’s work was extended to the torus case in [I7] with the objective of
developing the Hardy space theory in the quantum torus setting. We now recall the definitions and
results that will be needed later. Throughout this section, M will denote a von Neumann algebra
equipped with a normal faithful tracial state 7 and V' = L., (T¢)®M with the tensor trace. In our
future applications, M will be T¢.

A cube of T is a product Q = I x --- x I, where each I; is an interval (= arc) of T. As in
the Euclidean case, we use |@Q| to denote the normalized volume (= measure) of ). The whole T¢
is now a cube too (of volume 1).

We will often identify T¢ with the unit cube I¢ = [0, 1)¢ via (€21 ... 2™sd) &3 (59,--- , 54).
Under this identification, the addition in I? is the usual addition modulo 1 coordinatewise; an
interval of I is either a subinterval of I or a union [b, 1) U[0, a] with 0 < @ < b < 1, the latter union
being the interval [b—1, a] of T (modulo 1). So the cubes of I¢ are exactly those of T¢. Accordingly,
functions on T¢ and I¢ are identified too; they are considered as 1-periodic functions on R?. Thus
N = Loo(THBOM = Lo (1) DM.

We define BMO®(T?, M) to be the space of all f € Ly(N) such that

ﬁéﬁ(z)—ﬁéf(w)dwﬁdz”i} < 0.

The row BMO"(T9, M) consists of all f such that f* € BMO®(T¢, M), equipped with || f|Bmor =
|| f*|lBMoe. Finally, we define mixture space BMO(T?, M) as the intersection of the column and
row BMO spaces:

o = mass (el s w0

BMO(T%, M) = BMO*(T%, M) N BMO" (T%, M),

equipped with || f[lsmo = max(|| fllBmoe , [|f[lBymor)-
As in the Euclidean case, these spaces can be characterized by the circular Poisson semigroup.
Let P, denote the circular Poisson kernel of T¢:

(1.6) P.(2) = Z pmlzm L eTd 0<r< 1.

It is proved in [I7] that

1 / 1 2 2
— fz——/fwdw dzH ~ sup |(|P.(|f—P.(f

] Q| (2) @l s (w)dw)| “ OST<1|| (I NP
with relevant constants depending only on d. Thus

1 fllsvoe ~ max {[ FO)m, sup ||B.(1f = B(HP)]|2}-
0<r<1

(1.7) sup
QCTecube

Now we turn to the operator-valued Hardy spaces on T¢ which are defined by the Littlewood-
Paley functions associated to the circular Poisson kernel. For f € Ly (N) define

1
2

s°(f)(z) = (Al ‘8T]P)T(f)(z)|2(1 - ’I")d’l") , R E T¢.

For 1 <p < o0, let
Hy (T M) = {f € Li(N) : || fllng < o0},
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where

~

[ £llee = 1F Oz, ) + 115z, a0

The row Hardy space HJ(T%, M) is defined to be the space of all f such that f* € HE(T?, M),
equipped with the natural norm. Then we define

BT M) = HE(T?, M)+ H (T M) if 1<p<2,
o HE(TE, M) AHLTL M) if 2<p < oo,

equipped with the sum and intersection norms, respectively:
i {mf{|g||ﬂg+|h|%; f=g+h} i 1<p<2,
H, = .
max (|| fllacs , [1f]l2g) if 2<p<oo.
The following is the main results of [I7, Section 8]

Lemma 1.8. (i) Let 1 < p < oo. Then H,(T4 M) = L,(N) with equivalent norms.
(ii) The dual space of H§(T¢, M) coincides isomorphically with BMO®(T?, M).
(i) Let 1 < p < oco. Then

(BMO®(T?, M), HE(T4, M))
(BMO®(T?, M), HS(T?, M))

= H;(Tda M)
»=H (T M).

o=

1
P
Similar statements hold for the row and mizture spaces too.

By transference, the previous results can be transferred to the quantum torus case. The Poisson
integral of an element x in L1(T¢) is defined by

Po(z) = Y F(m)r™U™, 0<r<1.
meZa

Its associated Littlewood-Paley g-function is

1
2

1
() = (/ 0,,(2)*(1 — r)ar)
0
For 1 <p < oo let
[zll7; = 1Z(0)] + [Is°(2) ]| ,,(r2)-
The column Hardy space H5(T§) is then defined to be
H;(Tg) = {z e Ly(T}): 2l < 0o}
On the other hand, inspired by (7)), we define
BMO*(T§) = {x € L(T§) : e P, (|2 — Pr(m)|2)HTg < oo},

equipped with the norm

1
|#]|smoe = max {|Z(0)], sup ||P,(|z —Pp(z)[*) ||f,d }.
0<r<1 g

The corresponding row and mixture spaces are defined similarly to the preceding torus setting.

Lemma admits the following quantum analogue:

Lemma 1.9. (i) Let 1 < p < oco. Then H,(T4) = L,(T4) with equivalent norms.
(ii) The dual space of H{(T4) coincides isomorphically with BMO®(T$).
(i) Let 1 <p < oco. Then

(BMO®(T), H5(T)) (T§) = (BMO*(Tg), H5(T§))z ,-

1
P

Similar statements hold for the row and mizture spaces too.
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In the above definition of ’H;(Tg), the Poisson kernel can be replaced by any reasonable smooth
function. Let ¢ be a Schwartz function on R? and 1; be the function whose Fourier transform is
¥(277.). The map x @Zj * x is the Fourier multiplier on ’]I‘g associated to 1;. Now we define the
square function associated to v of an element z € L1(T%) by

50 = (L[5 af)”

Jj=0
The following lemma is the main result of [8I]. We will need it essentially in the case of p = 1.

Lemma 1.10. Let 1 < p < oo, and let 1 be a Schwartz function that does not vanish in {& : 1 <
€| < 2}. Then x € HE(TH) iff sy () € L,(T4). In this case, we have

[€]l#g = [20)] + (% (2)l L, (rg) »

where the equivalence constants depend only on d,p and .

Chapter 2. Sobolev spaces

This chapter starts with a brief introduction to distributions on quantum tori. We then pass
to the definitions of Sobolev spaces on T¢ and give some fundamental properties of them. Two
families of Sobolev spaces are studied: W} (T4) and the fractional Sobolev spaces HS'(Tj). We
prove a Poincaré type inequality for Wﬁ('ﬂ‘g) for any 1 < p < co. Our approach to this inequality
seems very different from existing proofs for such an inequality in the classical case. We show that
WE (T4) coincides with the Lipschitz class of order k, studied by Weaver [78| [79]. We conclude
the chapter with a section on the link between the quantum Sobolev spaces and the vector-valued
Sobolev spaces on the usual d-torus T¢.

2.1. DISTRIBUTIONS ON QUANTUM TORI

In this section we give an outline of the distribution theory on quantum tori. Let

S(Td) = { Z amU™ : {@m}meza rapidly decreasing}.

mezZd

This is a w*-dense *-subalgebra of T4 and contains all polynomials. We simply write S(T¢) =
S(T), the algebras of infinitely differentiable functions on T¢. Thus for a general 6, S(T%) should
be viewed as a noncommutative deformation of S(T¢). We will need the differential structure on
S(T¢), which is similar to that on S(T?).

According to our convention made in section and in order to lighten the notational system,
we will use the same derivation notation on Tg as on T?. For every 1 < j < d, define the following
derivations, which are operators on S(T$):

8j(Uj):27Tin and 8J(Uk)=0 for k‘;é]

These operators J; commute with the adjoint operation x, and play the role of the partial deriva-
tions in the classical analysis on the usual d-torus. Given m = (my,...,mg) € N&, the associated
partial derivation D™ is 97" --- 9]'*. We also use A to denote the Laplacian: A = 97 + - + 93.
The elementary fact expressed in the following remark will be frequently used later on.
Restricted to La(T%), the partial derivation 9; is a densely defined closed (unbounded) operator
whose adjoint is equal to —d;. This is an immediate consequence of the following obvious fact (cf.

[64]):
Lemma 2.1. Ifz,y € S(T4), then 7(9;(x)y) = —7(x0;(y)) for j=1,--- ,d.

Thus A = —(9701 + -+ - + 0504), so —A is a positive operator on Ly(T4) with spectrum equal
to {4m2|m|? : m € Z4}.

Remark 2.2. Given u € R? let e, be the function on R¢ defined by e, (&) = €2™%¢, where u - £
denotes the inner product of R?. The Fourier multiplier on ’H‘g associated to e, coincides with 7,
in (L) with z = (e*™%1,... ™). This Fourier multiplier will play an important role in the
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sequel. By analogy with the classical case, we will call it the translation by u and denote it by T%;:

Tu(z) = 7. (x) for any x € S(T4). Then it is clear that

9

8Uj
Following the classical setting as in [22], we now endow S(T¢) with an appropriate topology.

For each k € Ny define a norm py on S(T%) by

iTu(;zc) = 0jz.

(21) 8Uj u=0

Ty(z) = Tu(05x) , so

pr(z) = sup [[D"7| .
0<|m|1 <k
The sequence {py }r>0 induces a locally convex topology on S(T4). This topology is metrizable by

the following distance:

2" pi(z —y)
d(z,y) =S P2 7Y)
) kZ:O L+ pr(z—y)
with respect to which S(T%) is complete, an easily checked fact. The following simple proposition
describes the convergence in S(T%).

Proposition 2.3. A sequence {x,} C S(T4) converges to x € S(T4) if and only if for every
m e Ng, D™z, — D™z in Tg.

Proof. Without loss of generality, we assume x = 0. Suppose that =, — 0in S (Tg). Then for
m € N¢ and ¢ > 0, there exists an integer N such that for every n > N,

oo

2_kpk(33‘ ) €
d(x,,0) =Y L <omimh _—
(@n,0) kzzolerk(xn) - l+e

Thus, pjm, (zn) < €, s0 || D™z}« < €, which means D™x,, — 0 in T§.
Conversely, assume that for every m € N¢, D™z, — 0 in ’]I‘g. For € > 0 let Ny be an integer
such that >,y 27% < £. Since D™x,, — 0 for |m|; < Ny, there exists N € N such that for

n > N,
No

27kpk (ﬂin) IS
27T (@) 2
k—0 Pe\Tn
Consequently, d(z,,0) < ¢. O

Definition 2.4. A distribution on T¢ is a continuous linear functional on S(T¢). &'(T4) denotes
the space of distributions.

As a dual space, S'(T¢) is endowed with the w*-topology. We will use the bracket (, ) to denote
the duality between S(T4) and S'(T4): (F, z) = F(x) for x € S(T$) and F € S'(T¢). We list some
elementary properties of distributions:

(1) For 1 < p < oo, the space L,(T%) naturally embeds into S’(T4): an element y € L,(T¢%) induces
a continuous functional on S(T¢) by x — 7(yx).

(2) S(T4) acts as a bimodule on S'(T$): for a,b € S(TE) and F € S'(T¢), aFb is the distribution
defined by = — (F, bza).

(3) The partial derivations 9; extend to &'(T4) by duality: (9, F, z) = —(F, d;x). For m € N, we
use again D™ to denote the associated partial derivation on &'(T4%).

(4) The Fourier transform extends to 8'(T%): for F € 8'(T¢) and m € Z%, F(m) = (F, (U™)*).
The Fourier series of F' converges to F according to any (reasonable) summation method:

F=>Y" FmU™.

meZd
2.2. DEFINITIONS AND BASIC PROPERTIES

We begin this section with a simple observation on Fourier multipliers on S(T%) and S'(T$).
Let ¢ : Z¢ — C be a function of polynomial growth. Then its associated Fourier multiplier My is
a continuous map on both S(T4) and &’(T4). Here and in the sequel, a generic element of &’(T4)
is also denoted by x. Two specific Fourier multipliers will play a key role later: they are the Bessel
and Riesz potentials.
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Definition 2.5. Let o € R. Define J,, on R? and I, on R?\ {0} by
Ja(€) = (L +[¢%)% and Lo(§) = [¢]*-

Their associated Fourier multipliers are the Bessel and Riesz potentials of order «, denoted by J¢
and 1%, respectively.

By the above observation, J¢ is a Fourier multiplier on S'(T¢), and I® is also a Fourier multiplier
on the subspace of 8'(T%) of all x such that Z(0) = 0. Note that

J*=(1—-(2n)"2A)% and I* = (—(27)2A)%.

Definition 2.6. Let 1 <p < oo, k€ Nand a € R.
(i) The Sobolev space of order k on T¢ is defined to be

Wf(’l[‘g) ={ze€ S'(T$) : D™z € L,(Ty) for each m € N& with |m|, < k},
equipped with the norm

1
lellwe = (> 10™allz) "

0<|m|1<k
(ii) The potential (or fractional) Sobolev space of order « is defined to be
H(T§) = {x € S'(T§) : J*z € Ly(TH)},
equipped with the norm
el g = 1%l -

In the above definition of [lz[ly, we have followed the usual convention for p = oo that the
right-hand side is replaced by the corresponding supremum. This convention will be always made
in the sequel. We collect some basic properties of these spaces in the following:

Proposition 2.7. Let 1 <p < oo, k€ N and a € R.
(i) W)(Tg) and Hy(T§) are Banach spaces.
(ii) The polynomial subalgebra Py of Tj is dense in WF(T§) and HZ(T§) for 1 <p < oo. Conse-
quently, S(T2) is dense in W;(’]I‘g) and Hg‘('ﬂ‘g),
(iii) For any B € R, J is an isometry from HS(T§) onto HYP(T§). In particular, J* is an
isometry from HS(T§) onto Ly(T).
(iv) HY (Td) Hg (T4) continuously whenever B < .

Proof. (iii) is obvious. It implies (i) for H(Tq).

(i) It suffices to show that Wf(’ﬂ’g) is complete. Assume that {z,}, C W;(Tg) is a Cauchy
sequence. Then for every |m|y < k, {D™x,}, is a Cauchy sequence in Lp(’ﬂ‘g), so D™x, — Y, in
L,(T¢). Particularly, { D™, }, converges to y, in &'(T¢). On the other hand, since z,, — yo in
L,(T%), for every z € S(T%) we have 7(x,, D™z) — 7(yoD™x). Thus {D™x,,}, converges to D™y
in §'(T§). Consequently, D™yo = yy, for |m|; < k. Hence, yo € W}(T§) and x,, — yo in W} (T§).

(ii) Consider the square Fejér mean

|| |mal

fo-  E () o e
meZ4, max; |m;|<N

By [I7, Proposition 3.1], limy_o0 Fy(2) = 2 in Lp(Tg). On the other hand, Fy commutes with
D™: Fy(D™z) = D™Fy(z). We then deduce that limy_,o Fy(z) = 2 in WF(T§) for every
x € WJ(T§). Thus Py is dense in W}(Tg). On the other hand, Fy and J* commute; so by (iii),

the density of Py in L,(T%) implies its density in Hg‘('ﬂ‘g).
(iv) It is well known that if v < 0, the inverse Fourier transform of J, is an integrable function
on R? (see [67, Proposition V.3]). Thus, Lemma[[Zimplies that J°~¢ is a bounded map on L, (T%)
with norm majorized by H}"l(JB,a)HLl(Rd). This is the desired assertion. a

The following shows that the potential Sobolev spaces can be also characterized by the Riesz
potential.
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Theorem 2.8. Let 1 <p < oo. Then

lallag ~ (O + 116 - FO)IE)

where the equivalence constants depend only on o and d.

S

Proof. By changing a to —«, we can assume « > 0. It suffices to show ||I%z|, ~ | J%z|, for
Z(0) = 0. By [67, Lemma V.3.2], §—Z is the Fourier transform of a bounded measure on R?, which,
together with Lemma [[T7] yields |[I%z]|, < ||J%]/p.

To show the converse inequality, let 1 be an infinite differentiable function on R? such that
n(€) =0 for |¢| < % and n(¢) =1 for |¢| > 1, and let ¢ = JoI_4n. Then the Fourier multiplier
with symbol ¢1, coincides with J on the subspace of distributions on ’]I‘g with vanishing Fourier
coefficients at the origin. Thus we are reduced to proving F~!(¢) € L1(R?). To that end, first

observe that for any m € N,
m 1
[D™(€)] < g

Consider first the case d > 3. Choose positive integers ¢ and k such that g —2<i< g and k > g.
Then by the Cauchy-Schwarz inequality and the Plancherel theorem,

-1 ’ —2¢ 20 —1 2
([ protwis)’ < [ s [ jpirowp
< m 2
DS /R D" (6) g

meNZ,|m|1=¢

1
< ———d¢ < 1.
~ /|5|>é ECE
On the other hand,

-1 ? —2k 2k ——1 2
([ etwis)’ < [ s [ s ogw P
S mo()[2de < 1.
s X [ preord s

meNd,|m|1=k

Thus F~1(¢) is integrable for d > 3.

If d < 2, the second part above remains valid, while the first one should be modified since the
required positive integer ¢ does not exist for d < 2. We will consider d = 2 and d = 1 separately.
For d = 2, choosing 0 < € < %, we have

/s|<1 7 o(e)lds < (/s|<1 ) /. 417 6(s)2ds) < 115

Writing I¢ = I°71 I* and using the classical Hardy-Littlewood-Sobolev inequality (see [67, Theo-
rem V.1]) and the Riesz transform, we obtain

1
I N e P =
6124 [¢]
where % =1-35 (so 1< ¢q<o0). Thus we are done in the case d = 2.
It remains to deal with the one-dimensional case. Write

B(&) = (1+E2)2n(E) =n(&) +pEn(E), &eR\{0},

where p(£) = O(£72) as |¢| — oco. Since i — 1 is infinitely differentiable and supported by [—1, 1],
its inverse Fourier transform is integrable. So 7 is the Fourier transform of a finite measure on R.
On one hand, as pn € L;(R?), F~1(pn) is a bounded continuous function, so it is integrable on
[—1, 1]. On the other hand, by the second part of the preceding argument for d > 3, we see that
F~L(pn) is integrable outside [—1, 1] too, whence F~1(pn) € Li(R%). We thus deduce that ¢ is
the Fourier transform of a finite measure on R. Hence the assertion is completely proved. O

1
@)’ s 1,

Theorem 2.9. Let 1 < p < co. Then H}Y(T§) = WE(T3) with equivalent norms.
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Proof. This proof is based on Fourier multipliers by virtue of Lemma [[7l For any m € Ng with
Im|y < k, the function ¢, defined by ¢(&) = (2mi)™hem(1+[¢|2)~ 2, is clearly a Mikhlin multiplier.
Then for any = € S'(T9),

D™z, = | M(J*2)lp < 772l
whence ||z|ywx < [|z[|zx- To prove the converse inequality, choose an infinite differentiable function
x on R such that x =0 on {¢: ]| <47} and y =1 on {£: €] > 271}, Let
(1+1¢2)% X(&)I& 1 :
= and ¢;(§) = - , 1< <d
TEar el Y T g
These are Mikhlin multipliers too, and

JFe = My(x 4 My, 0%z + - + My, 0% ).

¢(&)

It then follows that
d 1
lellmg S (2l + 3 105alz)” < lallw
j=1
The assertion is thus proved. |

Remark 2.10. Incidentally, the above proof shows that if 1 < p < oo, then

d 1
k
lellws ~ (el + 3 10}allz)”
j=1

with relevant constants depending only on p and d.

However, if one allows the above sum to run over all partial derivations of order k, then p can
be equal to 1 or co. Namely, for any 1 < p < oo,

1
lellwe ~ (el + > Ip™alp)”

meNg, Im|1=k

with relevant constants depending only on d. This equivalence can be proved by standard argu-
ments (see Lemma [ZT0] below and its proof). In fact, we have a nicer result, a Poincaré-type
inequality:

d
lzllp < Z [0l
j=1

for any = € W}(T§) with Z(0) = 0. So |[z[|, can be removed from the right-hand side of the above
equivalence. This inequality will be proved in the next section.

We conclude this section with an easy description of the dual space of Wi(’]l‘g). Let N =

N(d,k) = ZmeNg,O§|m\1§k 1 and

N N 1

LZ],V = H L,(T$) equipped with the norm @]y = ( ij||£) "

j=1 j=1
The map @ — (D™x)g<|m|, <k establishes an isometry from W} (T§) into LY. Therefore, the dual
of Wf (’]I‘g) with 1 < p < oo is identified with a quotient of Li)\f , where p’ is the conjugate index of
p. More precisely, for every £ € (W}(T§))* there exists an element y = (Ym)meng, o<jmp <k € Lp'
such that
(2.2) Ux)= > 7(ymD™x), Vo W)(Ty),

0<|m|: <k
and
1€llwy- = inf Iyl

the infimum running over all y € L[ as above.



Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori 19

(W}(Tg))* can be described as a space of distributions. Indeed, let £ € (W} (T4))* and y € Lg
be a representative of ¢ as in (Z2). Define £, € S'(T%) by

(2.3) t,= 3 (~mhpmy,.

0<|m|1<k
Then
ly(x) = > T(ymD™x)=Ll(x), € S(T]).

0<|ml1 <k
So £ is an extension of £,; moreover,

1l wsy- = min{||y||L;v, : £ extends ¢, given by (Z3))}.

Conversely, suppose £ is an element of S'(T§) of the above form £, for some y € L)} Then by the
density of S(T§) in W}(T§), ¢ extends uniquely to a continuous functional on W (T4). Thus we
have proved the following

Proposition 2.11. Let 1 < p < co and Wp_,k(Tg) be the space of those distributions { which admit
a representative £, as above, equipped with the norm inf{||y||,~ : y as in @3)}. Then (W}(T§))*
P

is isometric to WPTk(’]I‘g).

Note that the duality problem for the potential Sobolev spaces is trivial. Since J is an isometry
between Hg‘('ﬂ‘g) and L,(T$), we see that for 1 < p < 0o and o € R, the dual space of Hg‘('ﬂ‘g)

coincides with H;O‘(’]I‘g) isometrically.
2.3. A POINCARE-TYPE INEQUALITY
For x € W}(T§) let
1
alwg = (>0 10l
mGNg, |m\1:k
Theorem 2.12. Let 1 <p < oo. Then for any x € Wpl('ﬂ‘g),
[z =ZO)p < llw,; -

More generally, if k € N and x € W}(T§) with Z(0) =0, then

2y S lehwg, VO <k
Consequently, [z(0)| + |z|wx is an equivalent norm on WE(Tg).

The proof given below is quite different from standard approaches to the Poincaré inequality.
We will divide it into several lemmas, each of which might be interesting in its own right. We start
with the following definition which will be frequently used later. Note that the function e, and the
translation operator T, have been defined in Remark 211

Definition 2.13. Given u € R% let d,, = e, — 1. The Fourier multiplier on ’]I‘g with symbol d,, is
called the difference operator by u and denoted by A,,.

Remark 2.14. Note that e, is the Fourier transform of the Dirac measure é,, at u. Thus considered
as operators on L,,(’]I‘g) with 1 <p < o0, T, is an isometry and A, is of norm 2.

Lemma 2.15. Let 1 < p < oo, and j,k € N with j < k. Then for any x € sz(’]l‘g),
<l ol
2l S llzlls * |2l -

Proof. Fix x € W} (T4) with Z(0) = 0. For any u,{ € R? we have

1
@)~ L] _ = [ (Ldru(©) — Lo _)r
or o ‘Or or

1 r 82
:/O /0 @dsu(f)dsdr.
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Since 5 52
Edru(f) = epu(§)(27iu - £) and @dsu(f) = egu(§)(2miu - 5)2 )

letting u = te; with ¢t > 0 and e; the jth canonical basic vector of R?, we deduce

1 T
Ayx —tojx = / / Tou (t26j2x)ds dr.
0o Jo
Thus ) )
" t
t10jzllp < | Auzllp + t2/0 /0 ITu (05 ) llpds dr < 2]zl + = |07y -
Dividing by ¢ and taking the infimum over all ¢ > 0, we get

(2.4) 10j2llp < 24/llpllOFlp-

This gives the assertion for the case j = 1 and k = 2. An iteration argument yields the general
case. g

Lemma 2.16. Let j € {1,---,d} and x € W2(T§) such that m; # 0 whenever Z(m) # 0 for
m € Z. Then
Izl < clloFll,,

where ¢ is a universal constant. More generally, for any x € Wg (T¢) with £(0) = 0

d
Izl < e 185,
j=1

Proof. Assume j = 1. Define ¢ : Z — R by
1
p(my) = p for my € Z\ {0} and ¢(m1) =0 for m; =0.
1

We also view ¢ as a function on Z<, independent of (msg,---,mg). Then the inequality to prove
amounts to showing that ¢ is a bounded Fourier multiplier on L,,(Tg) for any 1 < p < co. This is
easy. Indeed, let ¢ : R — R be the 27-periodic even function determined by

(r—s)? n?

P(s) = "% for s € [0, 7).
Then 5
-~ 27
=¢ and =—.
V=29 19 zy(m) 93
Thus by Lemma [[3] ¢ is a bounded Fourier multiplier on L,(T4) with norm %, which proves

the first inequality of the lemma.

The second one is an immediate consequence of the first. Indeed, let Ey, ... y,_, be the trace
preserving conditional expectation from ’]I‘g onto the subalgebra generated by (Uq,- -+ ,U4—1). Let
' =Ey, ... v, ,(x) and x4 =  — 2’. Then mgy # 0 whenever Z4(m) # 0 for m € Z%. Thus

lally < clldFzall, = cllOz, -

Since z’ depends only on (U, - -+ ,Ug—1), an induction argument then yields the desired inequality.
g

Lemma 2.17. The sequence {|x|W§}k21 is increasing, up to constants. More precisely, for any
k > 1 there exists a constant cq1, such that

|x|WIl7c < Cak |m|W;’f+1 , Vxe W;(Tz)

Proof. The proof is done easily by induction with the help of the previous two lemmas. Indeed,

we have (assuming z(0) = 0)
(2hwy S /Tl folws S Jolws

Thus the assertion is proved for & = 1. Then induction gives the general case by virtue of
Lemma 2.15 O
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Proof of Theorem[ZI2. By the preceding lemma, it remains to show |z, < |z|wy for any x €

WI} (T¢) with Z(0) = 0. By approximation, we can assume that x is a polynomial. We proceed by
induction on the dimension d. Consider first the case d = 1. Then

z= Y Em)Um.
m1€Z\{0}
Define

1 my
v= Sty LU
m1€Z\{0}
Then 01y = x and 93y = 0. Thus Lemma ZT6 implies ||z, < [|012],-
Now consider a polynomial z in (Uy,---,Ug). As in the proof of Lemma 2T6 let 2/ =
Ey, ... v, ,(x) and 24 = z — 2’. The induction hypothesis implies
d—1 1

1211y S 1"y = (30 IBos s, @2)112) " < ey
j=1

where we have used the commutation between Ey, ... 7, , and the partial derivations.
To handle the term x4, recalling that mg # 0 whenever Z4(m) # 0 for m € Z¢, we introduce

1
Yd = Z Za(m)U™ .

7 2mimyg

me

Then dyyq = xq. So by (Z4) and Lemma 2.T6]

lzallp < \/yallp 103yally < 107yally = l|0azall, -

Thus we are done, so the theorem is proved. O

2.4. LIPSCHITZ CLASSES

In this section we show that Wk (T¢) is the quantum analogue of the classical Lipschitz class
of order k. We will use the translation and difference operators introduced in Remark 2] and
Definition Note that for any positive integer k, TF = Ty, and AF is the kth difference
operator by u € R%.

Definition 2.18. Let k& be a positive integer and 1 < p < oco.
(i) The kth order modulus of L,-smoothness of an element = € L,(T%) is defined by
k k
wy(x,e) = sup HAU;UHP.
0<|u|<e

(ii) An element z is said to be L,-Lipschitzian of order k if

wy ()

sup < Q.

e>0 ek
Let Lipl; (Tg) denote the class of all elements that are L,-Lipschitzian of order £, equipped

with the norm i
. wy(z,€)
l#llipy = [2(0)] + sup ——=—.

(iii) The little Lipschitz class Lip];,o(’]l‘g) of order k is defined to be the subspace of LipI;(Tg)
consisting of all elements x such that

k
wr(x, e
hm¥:0
e—0 £

The spaces Lip. (T¢) and Lip(l)o’o('ﬂ‘g) were introduced by Weaver [78 [79].

Remark 2.19. It is clear that wf(z,£) < 2¥||z(|, and w(z, ) is nondecreasing in €. On the other
hand, wll)(x, €) is subadditive in ¢; for k > 2, w’g (z,€) is quasi subadditive in the sense that there
exists a constant ¢ = ¢ such that w?(x,e + 1) < ¢ (wf(z,e) + wf(z,7n)).

The following is the main result of this section.
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Theorem 2.20. Let k be a positive integer and 1 < p < co. Then WF(T§) = Lip’;(’]l‘g) with
equivalent norms. More precisely,
k
wy (w,€) ko
sup —— =~ |z , YeeWi(Ty),
sup 2~ [aly A

where the equivalence constants depend only on d and k.
We require the following lemma for the proof.

Lemma 2.21. For any x € L,(T%),

lim 22—~ = sup

wh(z,¢) wh(z,¢)
e=0 € o<e<1  €F 7

Proof. The assertion for k = 1 is a common property of increasing and subadditive functions (in
¢), and easy to check. Indeed, for any 0 < ¢, < 1, choose n € N such that nd < e < (n + 1)J.
Then

wil,(x,e) - n+1 wil,(x,é)
e~ n 5 7
whence the result for £ = 1. The general case is treated in the same way. Instead of being
subadditive, w’;(x, €) is quasi subadditive in the sense that w’; (x,ne) < nkw’; (x,¢) for any n € N.
The latter follows immediately from

n—1 n—1
b= (D ej)" s, so AR, = (] Ty)" AL,
§=0 §=0
Thus the lemma is proved. |

Proof of Theorem [2Z.20. If the assertion is proved for all p < oo with constants independent of p,
the case p = oo will follow by letting p — co. So we will assume p < co.

We first consider the case & = 1 whose proof contains all main ideas. As in the proof of
Lemma I for any u € R?, we have

1 1
a0 = [ 2 €yt = | et Criv-gar, eere.

In terms of Fourier multipliers, this yields

1
A,z = / Tiu(u - Va)dt,
0

where u - Vo = u101x + - - - + ugdgr. Since the translation T}, is isometric, it then follows that

1 def
(2.5) Az, < |ul H(|81x|2 4+ |8dx|2) 2 ||p = |ul[|Vz|,,
whence .
wy(x, e
tim 25 < 7a),.
e—0 IS

To show the converse inequality, by the density of Py in Wf(’ﬂ‘g) (see Proposition 7)), we can
assume that z is a polynomial. Given u € R? define ¢ on R? by

8(6) = dule) ~ od

Then the Fourier multiplier on ’]I‘g associated to ¢ is
a*x:Aux—u-Vx.

Thus if |u| =€,
u- Vall, < wp(z,e) + sup [Ayz —u- V.

lul=e

Since z is a polynomial,

A — -
lim sup 12wz —u Vpr

e—0 ‘UIZE E

=0.
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For u = (&,0,---,0), we then deduce

(2.2)

w
< li p
|01, Jim ==

Hence the desired assertion for k = 1 is proved.
Now we consider the case k > 1. ([Z3) can be easily iterated as follows:

d d
1ALl < Jul Y1085 2, = |ul Y I1AL 052,
j=1

j=1

< ful* D0 Ay = ful® |zl

|m\1:k
So
k
wy(z,€) -
sup ——— S lelwy -

The converse inequality is proved similarly to the case k = 1. Let m € Ng with |m|; = k. For each
J with m; > 0, using the Taylor formula of the function d.e, (recalling that (e;,---,eq) denotes
the canonical basis of RY), we get

Acejz =" 0,7z +o0(e"),

which implies
d
H Atdr=e"D™r 4+ o(e¥) as e — 0.
§=0
Thus by the next lemma, we deduce

d
ID™al|, < e | T] Ak]], +o(1) S e wp(z,e) +o(1),
j=0
whence the desired converse inequality by letting ¢ — 0. So the theorem is proved modulo the
next lemma. g

Lemma 2.22. Let uy,--- ,u € R Then
Aul Auk = Z (_1)|DITEDA§D )
DC{1,- ,k}
where the sum runs over all subsets of {1,--- ,k}, and where
1
ED:ZUJ‘, UD:Z—,Uj.
jeb jen?
Consequently, for e >0 and x € L,y(T%),

sup HAUI---AU,C;UHpmw;f(x,g).
lui|<e,|ug|<e

Proof. This is a well-known lemma in the classical setting (see [0, Lemma 5.4.11]). We outline its
proof for the convenience of the reader. The above equality is equivalent to the corresponding one
with A, and T, replaced by d,, and e,, respectively. Setting

v = E fuy and w = — E Uy,
teD teD

for each 0 < 57 < k, we have

k
Hdepu= D P ew s
=1

Dc{1,,k} LeD

= Y (CDFPle, (ew)

DC{1, k}
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The left hand side is nonzero only for j = 0. Multiply by (—1)*—7 < I; ) and sum over 0 < j < k;
then replacing u, by “# gives the desired equality. O

Remark 2.23. It might be interesting to note that in the commutative case, the proof of Theo-
rem [2.20] shows
wp(x, e . wp(z,e
sup wpl@,e) _ lim wpl@,e) _ IV, .
0<e<1 € =0 €
So Lemma [Z2T] is not needed in this case.

2.5. THE LINK WITH THE CLASSICAL SOBOLEV SPACES

The transference enables us to establish a strong link between the quantum Sobolev spaces
defined previously and the vector-valued Sobolev spaces on T¢. Note that the theory of vector-
valued Sobolev spaces is well-known and can be found in many books on the subject (see, for
instance, [2]). Here we just recall some basic notions. In the sequel, X will always denote a
(complex) Banach space.

Let S(T%; X) be the space of X-valued infinitely differentiable functions on T with the standard
Fréchet topology, and S’(T%; X) be the space of continuous linear maps from S(T9) to X. All
operations on S(T?) such as derivations, convolution and Fourier transform transfer to &' (T%; X)
in the usual way. On the other hand, L,(T% X) naturally embeds into &'(T%; X) for 1 < p < oo,
where L,(T%; X) stands for the space of strongly p-integrable functions from T to X.

Definition 2.24. Let 1 <p < o0, k € Nand a € R.
(i) The X-valued Sobolev space of order k is
Wy(THX) = {f €S'(T4X): D™ f € L,(T% X) for each m € N§ with |m|, < k}
equipped with the norm

1
lwe = (3 10", o))

0<|ml1 <k
(ii) The X-valued potential Sobolev space of order « is
HY (T X)={f eS8 (T4 X):J*f € L,(T X)}

equipped with the norm
[ fllag =17 fllz,(ra;x) -

Remark 2.25. There exists a parallel theory of vector-valued Sobolev spaces on R%. In fact,
a majority of the literature on the subject is devoted to the case of R? which is simpler from
the pointview of treatment. The corresponding spaces are WF(R% X) and Hg(R% X). They are
subspaces of &’(R%; X). The latter is the space of X-valued distributions on R?, that is, the space
of continuous linear maps from S(R?) to X. We will sometimes use the space S(R%; X) of X-valued
Schwartz functions on RY. We set Wf (RY) = Wi (R4 C) and HY (RY) = Hy (R4, C).

The properties of the Sobolev spaces on Tg in the previous sections also hold for the present
setting. For instance, the proof of Proposition and Lemma give the following well-known
result:

Remark 2.26. Let X be a UMD space. Then W (T4 X) = H}(T% X) with equivalent norms
for 1 <p < 0.

Let us also mention that Theorem [Z12] the Poincaré inequality, transfers to the vector-valued
case too. It seems that this result does not appear in literature but it should be known to experts.
We record it explicitly here.

Theorem 2.27. Let X be a Banach space and 1 < p < oo, k € N. Then

1

(IFOI+ > 10" )"

meNZ, Im|1=k

s an equivalent norm on sz (T?; X)) with relevant constants depending only on d and k.
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Now we use the transference method in Corollary It is clear that the map = — Z there
commutes with 9;, that is, 9;& = d;x (noting that the 0; on the left-hand side is the jth partial
derivation on T¢ and that on the right-hand side is the one on T%). On the other hand, the
expectation in that corollary commutes with d; too. We then deduce the following:

Proposition 2.28. Let 1 < p < oco. The map x — T is an isometric embedding from Wf('ﬂ‘g)
and H;(Tg) into Wi(Td; L,(T4)) and H;(Td; L,(T4%)), respectively. Moreover, the ranges of these
embeddings are 1-complemented in their respective spaces.

This result allows us to reduce many problems about Wf (T4) to the corresponding ones about
W}(T% L,(Tj)). For example, we could deduce the properties of W} (T§) in the preceding sections
from those of W} (T%; L,(T§)). But we have chosen to work directly on T§ for the following reasons.
It is more desirable to develop an intrinsic quantum theory, so we work directly on ’]I‘g whenever
possible. On the other hand, the existing literature on vector-valued Sobolev spaces often concerns
the case of R?, for instance, there exist few publications on periodic Besov or Triebel-Lizorkin
spaces. In order to use existing results, we have to transfer them from R? to T¢. However,
although it is often easy, this transfer may not be obvious at all, which is the case for Hardy spaces
treated in [I7] and recalled in section [[4l This difficulty will appear again later for Besov and
Triebel-Lizorkin spaces.

Remark 2.29. The preceding discussion on vector-valued Sobolev spaces on T? can be also trans-
ferred to the quantum case. We have seen in section that all noncommutative L,-spaces are
equipped with their natural operator space structure. Thus W (T§) and HZ(T§) becomes oper-
ator spaces in the natural way. More generally, given an operator space E, following Pisier [54],
we define the E-valued noncommutative L,-space L,(T%; E) (recalling that T¢ is an injective von
Neumann algebra). Similarly, we define the E-valued distribution space S'(T¢; E) that consists
of continuous linear maps from S(T¢) to E. Then as in Definition 26, we define the correspond-
ing Sobolev spaces W) (Tq; E) and H$(Td; E). Almost all previous results remain valid in this
vector-valued setting since all Fourier multipliers used in their proofs are c¢.b. maps. For instance,
Theorem T (or Remark ZZ26) now becomes H(Tg; E) = W} (T§; E) for any 1 < p < co and any
OUMD space E (OUMD is the operator space version of UMD; see [54]). Note that we recover
W}(T% E) and Hy(T% E) if § = 0 and if E is equipped with its minimal operator space structure.

Chapter 3. Besov spaces

We study Besov spaces on T¢ in this chapter. The first section presents the relevant definitions
and some basic properties of these spaces. The second one shows a general characterization of
them. This is the most technical part of the chapter. The formulation of our characterization is
very similar to Triebel’s classical theorem. Although modeled on Triebel’s pattern, our proof is
harder than his. The main difficulty is due to the unavailability in the noncommutative setting
of the usual techniques involving maximal functions which play an important role in the study
of the classical Besov and Triebel-Lizorkin spaces. Like for the Sobolev spaces in the previous
chapter, Fourier multipliers are our main tool. We then concretize this general characterization by
means of Poisson, heat kernels and differences. We would like to point out that when 6 = 0 (the
commutative case), these characterizations (except that by differences) improve the corresponding
ones in the classical case. Using the characterization by differences, we extend a recent result of
Bourgain, Brézis and Mironescu on the limits of Besov norms to the quantum setting. The chapter
ends with a section on vector-valued Besov spaces on T¢.

3.1. DEFINITIONS AND BASIC PROPERTIES

We will use Littlewood-Paley decompositions as in the classical theory. Let ¢ be a Schwartz
function on R¢ such that

suppp C {€:271 < ¢ <2},
@>0o0n{¢:271 < ¢ <2},
dowF =1, ¢£0.

kEZ

(3.1)
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Note that if m € Z? with m # 0, ¢(27%m) = 0 for all k < 0, so

ng(2_km) =1, mez\{0}.

k>0
On the other hand, the support of the function ¢(27*.) is equal to {¢ : 2¥~1 < |¢] < 251} thus
supp ©(27%-) N'supp (277-) = ) whenver |j — k| > 2; consequently,

k+1

(3.2) P2 =@ 3 27, k>0,
j=k—1

Therefore, the sequence {¢(27%)}r>0 is a Littlewood-Paley decomposition of T¢, modulo constant
functions.
The Fourier multiplier on &’'(T%) with symbol ¢(27%.) is denoted by = > @y *

Gorr= Y p@ FmEm)UT.
meZzd

As noted in section [[L3], the convolution here has the usual sense. Indeed, let . be the function
whose Fourier transform is equal to g0(2’k-), and let ¢ be its 1-periodization, that is,

Be(s) = D wr(s+m).
mezZd
Viewed as a function on T¢ by our convention, @), admits the following Fourier series:
Pe(z) = Y (2 Fm)z".
meZd

Thus for any distribution f on T¢,

Brx f(2) =D w2 Fm)f(m)z"

meZa
We will maintain the above notation throughout the remainder of the paper.

We can now start our study of quantum Besov spaces.
Definition 3.1. Let 1 <p,q < oo and « € R. The associated Besov space on T¢ is defined by
d d
B;q(TG) = {JZ S S/(Te) : HJ:”B{;JI < OO},

where )
lollzg, = (IBOI+ 3 2% |G+ l)
k>0
Let By, (T4) be the subspace of BY . (T§) consisting of all - such that 25| xz[|, — 0 as k — oo.

Remark 3.2. The Besov spaces defined above are independent of the choice of the function ¢, up
to equivalent norms. More generally, let {¢(k)}kzo be a sequence of Schwartz functions such that

suppyF) € {€: 2871 < | < 281,
sup ||.7-'*1(77[1(]€))H1 < 0,
k>0
> " (m) =1, vm e 24\ {0}.
k>0
Let ¢y = ]-"’1(1/)(’“)) and Jk be the periodization of 1. Then
1
oz, = (BOI+ 3 2% |+ alls) "
k>0

Let us justify this remark. By the discussion leading to [2), we have (with g_; = 0)
k+1

Jk*x: Z Jk*cﬁj*a}

j=k—1
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By Lemma [T,
k+1

I x 2l S D 1185 * iy

j=k—1
It then follows that

1
a

(1217 + Y- 27« 22)* S (RO + 3 2B allg) "

k>0 E>0
The reverse inequality is proved similarly.
Proposition 3.3. Let 1 <p,q < oo and o € R.

(i) Bg,(T§) is a Banach space.
(ii) Bg’q(’]l‘g) C Bg‘,r('ﬂ‘g) forr >q and Bg‘,q('ﬂ‘g) C Bg’r(’]l‘g) for B <a and 1l <r <oo.

(ili) Py is dense in BS,(T§) and BE, (T§) for 1 <p < oo and 1 < ¢ < oo.
(iv) The dual space of By (T§) coincides isomorphically with B, (T4) for 1 < p < oo and

1 < g < oo, where p’ denotes the conjugate index of p. Moreover, the dual space of By ., (Tg)
coincides isomorphically with B[;?‘l('ﬂ‘g),

Proof. (i) To show the completeness of ng('ﬂ‘g), let {x,}, be a Cauchy sequence in ng(’]l‘g).
Then {Z,(0)},, converges to some y(0) in C, and for every k > 0, {@) * x,, },, converges to some yy,
in L,(T%). Let

y=30)+ > -

k>0

Since i is supported in {m € Z% : 281 < |m| < 2¥+1}] the above series converges in S'(T¢). On
the other hand, by (32]), as n — oo, we have

k+1 k+1
Prrtn= D Grx@iran = »_ Puxy; =Pk *y.
G=k—1 G=k—1

We then deduce that y € Bg’q(’]l‘g) and z, =y in ng(’]l‘g).
(ii) is obvious.
(iii) We only show the density of Py in Bg’q(’]l‘g) for finite ¢. For N € N let

N
TN 25(0)—1—2@- * X
j=0

Then by B, pp * (x —axy) =0for k < N —1, gp* (x —axy) = pp*xx for k > N + 1, and
ON*(T—TN) = PN *T — PN * PN *T, PN11 % (T — TN) = ON11 % T — Pni1 * @y * . We then
deduce
_ q qgko|| > q
lz —on g, <2 D 2% G xal§ — 0 as N — oo,
k>N

(iv) In this part, we view BS (T§) as BS,. (T3) when ¢ = oo. Let y € B (T¢). Define

Ly(z) = 7(xy) for & € Py. Then

k+1
[ty(2)] = [Z2(0)F(0) + > 7(Grxz > F*y)
k>0 j=k—1
k+1
< ROFOI+ Y B =], | > &*y

k>0 j=k—1

p/
S llallzg, lyla e

Thus by the density of Py in BS,(T§), £, defines a continuous functional on By (Tq).
To prove the converse, we need a more notation. Given a Banach space X, let £5(X) be the
weighted direct sum of (C, X, X,---) in the f,-sense, that is, this is the space of all sequences
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(a,z0,x1,---) with a € C and z € X, equipped with the norm

1
(lal? + 3 27 7).
k>0

If ¢ = oo, we replace £§(X) by its subspace cf(X) consisting of sequences (a, o, 21, - - ) such that
2k ||z || — 0 as k — oo. Recall that the dual space of (g (X) is £,%(X™). By definition, Bg’q('ﬂ‘g)
embeds into £5 (L, (T§)) via z — (Z(0), @o * 2, @1 *x,---). Now let £ be a continuous functional on
B¢ (T§) for p < oo. Then by the Hahn-Banach theorem, ¢ extends to a continuous functional on
€3(Ly(T§)) of unit norm, so there exists a unit element (b,yo,y1,---) belonging to £,,*(Ly (Tg))
such that

Ua) = b2(0) + ) T(ynpr * ), @ € By (T5).

k>0

Let

y=b+Z((ﬁk71 * Y + Pk * Yk + Phkt1 * Yk) -

k>0

Then clearly y € Bz;?;’ (T¢) and ¢ = £, when p < co. The same argument works for p = co too.

Indeed, for £ as above, there exists a unit element (b, yo,y1,---) belonging to £,,* (Loo(T%)*) such
that
() = bZ(0) + Y (yk, Prxx), € By (T§).
k>0
Let y be defined as above. Then y is still a distribution and

[

—~ ’ 'k . q P
(1O + 327 | Gh s yll?_p.) " < 00
k>0
Since it is a polynomial, @, * y belongs to L1(T%); and we have

@ * y||Lm(1rg)* = ||@k * Z/||L1(Trg)-
Thus we are done for p = oo too. O

fe3
2

To proceed further, we require some elementary lemmas. Recall that J, (&) = (1 +[£?)% and

1,(8) = €]~
Lemma 3.4. Let o € R and k € Ng. Then
||.7:71(Jo¢g0;€)||1 < 2% and H}'*l(Ia gok)Hl < g0k

where the constants depend only on ¢, a and d. Consequently, for x € L,,(Tg) with 1 < p < oo,
1@k * 2)llp S 2°F(|Pk * 2llp and [[1%(@r * 2)llp S 2°% |k * 2l -
Proof. The first part is well-known and easy to check. Indeed,
177 Gae)l, =225 F (A" + - ) E )

the function (47% 4 |- |?)2 ¢ is a Schwartz function supported by {¢ : 271 < |¢| < 2}, whose all
partial derivatives, up to a fixed order, are bounded uniformly in k, so

sup [|[F~H (A% + ] )2 9)||, < o
k>0

Similarly,
||f71(fa<ﬂk)||1 = 2ak||]:71(1a90)”1'
Since ¢ = ¢k (Yr—1 + @k + Yk+1), by Lemma [T, we obtain the second part. O

Given a € Ry, we define D; ,(¢) = (27i&;)® for £ € R?, and D¢ to be the associated Fourier
multiplier on Tg. Weset Do = D1,q, - - Da,a, and D* = D{* --- Dy* for any a = (a1, - - ,aq) € R‘j_.
Note that if a is a positive integer, D = 9¢, so there does not exist any conflict of notation. The

following lemma is well-known. We include a sketch of proof for the reader’s convenience (see the
proof of Remark 1 in Section 2.4.1 of [74]).
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Lemma 3.5. Let p be a compactly supported infinitely differentiable function on R?. Assume
o, €ERy and a € Ri such that o > %, B>o0— % and |aly > o — %, Then the functions Igp and
D,p belong to HS (RY).

Proof. If o is a positive integer, the assertion clearly holds in view of H§(RY) = Wy (R%). On

the other hand, Igp € Ly(R?) = HI(R?) for 3 > —%. The general case follows by complex

interpolation. Indeed, under the assumption on o and 3, we can choose 01 € N, 1,89 € R and
1 € (0,1) such that

d
o1 > o, 51>01—§, ﬁo>—§7 o=mnoy, B=(1-n)+nbi.

For a complex number z in the strip {z € C: 0 < Re(z) < 1} define

F.(§) = el g =240 p(e),
Then

! < : <
s Bl S [ o, ond s Bl g S 175 g

It thus follows that

Isp = F, € (L2(RY), HT' (RY)), .
The second assertion is proved in the same way. O

The usefulness of the previous lemma relies upon the following well-known fact.

Remark 3.6. Let o > % and f € Hg(Rd), Then
174N £ 151

The verification is extremely easy:

7 0l= [ ey [ F(f)(s)ds

[s|<1 >0 Y 2k <[s| <2k 41

S (/s|§1 |]:_1(f)(8)|2d8—|—z22k0/

k>0 2k <|s|<2k+1

F 6] ds)”

The following is the so-called reduction (or lifting) theorem of Besov spaces.

Theorem 3.7. Let 1 < p,qg < oo, a € R.
(i) For any B € R, both J® and I? are isomorphisms between Bg‘,q(Tg) and Bg;B(Tg).
(i) Let a € RL. Ifx € B2 (T4), then D" € Byy'"*(T4) and
1D%l o ros < el s,
(iii) Let 8 > 0. Then x € BS (Tg) iff Dfm € By, P(T§) for alli = 1,---,d. Moreover, in this
case,
d
Izl zg,, ~ [2(0)| + Y |1 DY all oo
i=1
Proof. (i) Let « € By (T4) with Z(0) = 0. Then by Lemma 34

1

||JB$||B;{;B = (Z (2k(0—5)||J/3((;k * m)||p)q) !
k>0

1
a

< (X @B 21,)")" = lallsg, -

k>0

Thus J# is bounded from BY (T4) to B.?(T§), and its inverse, which is J~”, is bounded too.
The case of I? is treated similarly.
(ii) By Lemma B35 and Remark [3.6] we have

[F 7 (Dagn)||, = 2910 | FH (Daw)||, < 2411
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Consequently, by Lemma [[7]
1Bk * D[l S 28111 Gy 5 2], Vi > 0,

~

whence
1D%] o ros < el s,
(iii) One implication is contained in (ii). To show the other, choose an infinitely differentiable
function x : R — R4 such that x(s) =0 if |s] < 4%/3 and x(s) =1if |s| > ﬁ. Fori=1,---,d,
let y; on R be defined by

i) 1 x(&)l&1°

T xEEP + -+ x(E)lElP (2ni&)P

whenever the first denominator is positive, which is the case when |¢| > 271, Then for any k > 0,
Xi¢k is a well-defined infinitely differentiable function on R%\ {¢: & = 0}. We have

[F 7 Ol =277 17 W,

where
W(E) = 1 x(28&)1&1°

X(28€)16117 + - -+ x(2F&q)[€al” (2mi&;)P
The function ¢ is supported in {& : 271 < [¢| < 2}. An inspection reveals that all its partial
derivatives of order less than a fixed integer are bounded uniformly in k. It then follows that the
Ly-norm of F~1(1¢) is majorized by a constant independent of k, so

[F~ Oaen) ||, S27%7,

and by Lemma [[7]
1% * Bi  Dfall, < 27|15 * Dall,

Since
d
YK = ZXiDi,ﬂ<Pk7
i=1
we deduce
d
1Bk * 2l S 277> " |1@k + DYzl ,

i=1
which implies

d
lelzg, < FO)]+ 3105 o
i=1
Thus (iii) is proved. O
The following result relates the Besov and potential Sobolev spaces.

Theorem 3.8. Let 1 < p < oo and a € R%. Then we have the following continuous inclusions:

Bgimin(pﬂ) (Tg) - H;?(Tg) - B;max(pﬁ) (Tg)

Proof. By Propositions 27 and B, we can assume a = 0. In this case, H)(T§) = L,(T§). Let x
be a distribution on T¢ with Z(0) = 0. Since

fC:Z@c*x,

k>0

we see that the inclusion BY | (T§) C Ly(T§) follows immediately from triangular inequality. On
the other hand, the inequality
16k *zllp S llzllp, =0
yields the inclusion L, (T%) C Bgm(’]l‘g). Both inclusions can be improved in the range 1 < p < 0.
Let us consider only the case 2 < p < co. Then the inclusion L,(T§) C B) ,(Tq) can be easily
proved by interpolation. Indeed, the two spaces coincide isometrically when p = 2. The other

extreme case p = oo has been already proved. We then deduce the case 2 < p < co by complex
interpolation and by embedding B . (T§) into oo (Lp(T§)).
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The converse inclusion Bg’z(Tg) C L,(T$) is subtler. To show it, we use Hardy spaces and the
equality L,(T%) = H,(T¢) (see Lemma [LJ). Then we must show
max(||zllug ; [zllwgy) < ll#llsg, -

To this end, we appeal to Lemma [[L.T0] The function % there is now equal to . The associated
square function of x is thus given by

1
sp(@) = (D 1erxal’)”.
k>0
Recall the following well-known inequality
i 1
IO ) * L, < (O leel;)®
k>0 k>0

for 2, € L,(T¢) and 2 < p < oo. Note that this inequality is proved simply by the triangular
inequality in L» (T¢). Thus

1
lellg = lsg@)llp < (S 13k *2l2)* = lellos, -
k>0

Passing to adjoints, we get |||y < ||| B0, Therefore, the desired inequality follows. O

3.2. A GENERAL CHARACTERIZATION

In this and next sections we extend some characterizations of the classical Besov spaces to the
quantum setting. Our treatment follows Triebel [74] rather closely.

We give a general characterization in this section. We have observed in the previous section that
the definition of the Besov spaces is independent of the choice of ¢ satisfying ([B1). We now show
that ¢ can be replaced by more general functions. To state the required conditions, we introduce
an auxiliary Schwartz function h such that

(3.3) supph C {€ € R?:|¢) <4} and h=1on{£eR?: ¢ <2}

Let ag,; € R. Let v be an infinitely differentiable function on R\ {0} satisfying the following
conditions

|| >0 on {&:271 < ¢ <2},

(3.4) FH(Whl-a,) € Li(RY),
sup 2_°‘°j||]-'_1(¢(2j-)<p)||1 < 00.
Jj€Ng

The first nonvanishing condition above on v is a Tauberian condition. The integrability of the
inverse Fourier transforms can be reduced to a handier criterion by means of the potential Sobolev
space HY(R?) with o > 4; see Remark [3.0]

We will use the same notation for ¢ as for . In particular, ¥y is the inverse Fourier transform
of 9(27%) and 9y, is the Fourier multiplier on T¢ with symbol 1)(27%.). It is to note that compared
with [74, Theorem 2.5.1], we need not require a; > 0 in the following theorem. This will have
interesting consequences in the next section.

Theorem 3.9. Let 1 < p,q < o0 and a € R. Assume oy < o < «ay. Let v satisfy the above
assumption. Then a distribution x on T belongs to By ,(Tq) iff

1

(3 @l xaly))" < oo

k>0
If this is the case, then
1
(3.5) lallg, ~ (IFO)1 + Y @l *2l,)")"
k>0

with relevant constants depending only on v, v, o, ag, vy and d.
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Proof. We will follow the pattern of the proof of [74, Theorem 2.4.1]. Given a function f on R?
we will use the notation that f*) = f(27*.) for k > 0 and f* = 0 for k < —1. Recall that f is
the inverse Fourier transform of f(*) and fy, is the 1-periodization of fy:

9= fls +m).
meZd

In the following, we will fix a distribution z on T¢. Without loss of generality, we assume Z(0) = 0.
We will denote the right-hand side of (B3] by ||zl Bow when it is finite. For clarity, we divide the
proof into several steps.

Step 1. In the first two steps, we assume z € ng(Tg). Let K be a positive integer to be determined
later in step 3. By (BI), we have

W>_Z¢<J> (k) — Z MG <J+k>+z¢ﬁ U on {¢:1¢) = 1)

k=0 k=—00
Then
(3.6) ixx = ik Piynrz+ D U *x ik * .
k<K E>K

For the moment, we do not care about the convergence issue of the second series above, which is
postponed to the last step. Let a; = 27%||1); * $j4x * z||,. Then

(3.7) loll g < (31X @) + (21X al?)

=0 k<K j=0 k>K

1
q

We will treat the two sums on the right-hand side separately. For the first one, by the support
assumption on ¢ and h, for k¥ < K, we can write

WD (£)UTF) (¢) = 2k M RUHE) (g)|277 kg1 pUHR) (¢)

(3.8) 279¢]
= 2k () iR (),
where 1 and p are defined by
2O = el AIE) and €)= I p(6)
Note that F~1(n) is integrable on R%. Indeed, write
(3.9) 0O = gt HE) + Tl ((€) — i)

By (34), the inverse Fourier transform of the first function on the right-hand side is integrable.
The second one is an infinitely differentiable function with compact support, so its inverse Fourier
transform is also integrable with L;i-norm controlled by a constant depending only on 1, h, a; and
K. Therefore, Lemma [[7implies that each n) is a Fourier multiplier on L,,(Tg) foralll1 <p <o
with norm controlled by a constant ¢1, depending only on 1, h, a1 and K. Therefore,

(3.10) aj < 27RO ol = e 2K ) (U5 )

Thus by triangular inequality and Lemma B4 we deduce

[e’e) - :
(Z [ Z ajk ) <c Z ghlen= a)( Z (290 By *x“p)q) q
T K<k k<K j=—o0
- 1
— Z k(a1 — a)( (2jo¢2*ja1||_[al§5j *pr)‘Z)q
k<K J=

< 01||$||B;,{q7

where ¢} depends only on ¢, h, K, @ and «;.
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Step 2. The second sum on the right-hand side of (B is treated similarly. Like in step 1 and by

B2), we write
PV (§) = % (U0 4 U 4 QUHE () 277 7R [0 U ()

»(27I7F - 2%¢)
T Rge

(3.11)
H(2797%¢)] puth)(g),

where H = =1 + ¢ 4+ ¢ and where p is now defined by
p(&) = [€]*@(E).-

The Li-norm of the inverse Fourier transform of the function

Y2778 24

g H@7TO)

is equal to || F (I, Hip(25))||,. Using Lemma B4l we see that the last norm is majorized by

17w, S [F @], -
Then, using [B4), for k > K we get
(3.12) ajg < 20 (2R 5 s ]|,)
where ¢y depends only on ¢, ap and the supremum in ([34]). Thus as before, we get

K(ap—a)

0o 1 9
(Z (> aj,k]q) "< T ga0=a I%llBg,

j=0 k>K

which, together with the inequality obtained in step 1, yields
2]l gow < llllyg, -

Step 3. Now we prove the inequality reverse to the previous one. We first assume that x is a
polynomial. We write

(9)
() — D pG+E) _ P (G+E) (5)
(3.13) ® ©Yh 1/}(j)h P,

The function ¢¢~! is an infinitely differentiable function with compact support, so its inverse
Fourier transform belongs to L;(R?). Thus by Lemma [T
15 % 2llp < esllhyrox by 5 2l
where c3 = H}"l(gow’l)ul. Hence,
s —_ — =
oz, < es( D0 7N+ = ally))
§=0

To handle the right-hand side, we let A = 1 — h and write hUHK) ) = () — \G+K) (@) Then

[e'e] 1 e3¢} ) N N %
(D2 @ lhgenc s 2l,)") " < g + (D2 (@ Wy 05 all)”)

j=0 j=0
Thus it remains to deal with the last sum. We do this as in the previous steps with ¥ replaced by
A, by writing
AGHE) y(0) = Z AGHE) (1) (G Hk)
k=—o0

The crucial point now is the fact that AGTE) UK =0 for all k < K and all j. So

)\(jJrK)w(j) — Z )\(J'JrK)@[,(J’)SD(J'JHC)7
k>K
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that is, only the second sum on the right-hand side of B survives now:

1

(Z(2ja||xj+K % 1)) % mllp)q)a < (Z (270> ™ N * 0 * B * $||p}q)a :

j=0 j=0 k>K

-

Let us reexamine the argument of step 2 and formulate @IT) with A4} instead of 1. We then
arrive at majorizing the norm || F~1(A(2F )y (2% )p) ||

IF7 @R [, < [F L I @) |-
Keeping the notation of step 2 and as for (B.12), we get

Nt %05 % By 5l < ccp2(@0™) (20F0 5y w],)

where ¢ = || F7*())||,. Thus

© . ~ ~ N q % , K(ap—a)
(Do 3 s #0h + B v ally] ) < ey Nz,
j=0 E>K

Combining the preceding inequalities, we obtain
K(ap—a)
/
lzllBg, < csllell goy + ccs T _ge0-a Izl g, -

Choosing K so that
cch 721((040—&) < L
21— 2@0-a = 2’
we finally deduce
lzllBg ,, < 2ecsllz]l o »
which shows (1) in case z is a polynomial.
The general case can be easily reduced to this special one. Indeed, assume ||z o < 0o. Then
p.q

using the Fejér means Fiy as in the proof of Proposition 2.7 we see that
IEN (@) oy < N2/l oy -
Applying the above part already proved for polynomials yields
[En (@)l g, < 2e3]|Fn(2)] gay < 2¢s]lzllgoy -
However, it is easy to check that
Jim (B, = g,
We thus deduce (B3] for general =, modulo the convergence problem on the second series of (3.6]).

Step 4. We now settle up the convergence issue left previously. Each term {bvj * Qjyp x T is a
polynomial, so a distribution on T¢. We must show that the series converges in S'(T%). By @12,
for any L > K, by the Holder inequality (with ¢’ the conjugate index of q), we get

L L
2% " |k Bk xallp < cp Y 2ME0m ) (20K G )
k=K 41 h=K-+1
L 1
<R S UGk al,)’)’
h=K+1

/
< C2RK,L||33||B;Q )
where
L 1
’ 7
Ri,p = ( E 21 k(ao_a)) .
k=K+1

Since g < o, R,z — 0 as K tends to oo. Thus the series ), {[;j * Q4 ¥ X converges in Lp(Tg),
so in 8'(T¢) too. In the same way, we show that the series also converges in ng('ﬂ‘g). Hence, the
proof of the theorem is complete. O
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Remark 3.10. The infinite differentiability of ¢ can be substantially relaxed without changing the
proof. Indeed, we have used this condition only once to insure that the inverse Fourier transform
of the second term on the right-hand side of (39) is integrable. This integrability is guaranteed
when ¢ is continuously differentiable up to order [4] + 1. The latter condition can be replaced by
the following slightly weaker one: there exists o > % +1 such that n € HY (R?) for any compactly
supported infinitely differentiable function n which vanishes in a neighborhood of the origin.

The following is the continuous version of Theorem [3.91 We will use similar notation for contin-
uous parameters: given € > 0, 1. denotes the function with Fourier transform () = t(e-), and
¢s denotes the Fourier multiplier on ’H‘d associated to ().

Theorem 3.11. Keep the assumption of the previous theorem. Then for any distribution x on ’]I‘g,

! ~ de\ 7
~ oy —qo q— ¢
(3.14) |z 5g, ~ (|oc<0>|q+/0 e e wal|] )"

The above equivalence is understood in the sense that if one side is finite, so is the other, and the
two are then equivalent with constants independent of x.

Proof. This proof is very similar to the previous one. Keeping the notation there, we will point
out only the necessary changes. Let us first discretize the integral on the right-hand side of (314):

1
—« Jqo q
[ €<l Zz / . « 2l &

9—i=1
Now for j > 0 and 277971 < & <277, we transfer (3.8) to the present setting:

¢(s) (f)w(ﬁk) (&) = 9ok [ % pU+E) (f)} p(j+k) ().

‘We then must estimate the L-norm of the inverse Fourier transform of the function in the brackets.
It is equal to

|F (I ay (2 e)h TN || = 6~ | FH (Lo, vh(0275)
where § = 279!, The last norm is estimated as follows:
[F (I ay0h(627K))||, < [ F (Ianth) ||, + | FH (Ioay o [h — k(8275

<|F (I—alwh)Hﬁl;gggllf Y(I—ay o [h = h(827 %)) ||, -

Note that the above supremum is finite since I_,,¥[h — h(627%)] is a compactly supported infin-
itely differentiable function and its inverse Fourier transform depends continuously on 4. It follows
that for k < K and 277971 < ¢ <277

(3.15) 29 [he * @i * | S 287 (2R 5 ),

which is the analogue of [BI0). Thus, we get the continuous analogue of the final inequality of
step 1 in the preceding proof.
We can make similar modifications in step 2, and then show the second part. Hence, we have

proved
! ~ dev 5
_ q
(] e aly)’ €)% ol

To show the converse inequality, we proceed as in step 3 above. By ([B4), there exists a constant
a > 2 such that ¢ > 0 on {€ : a™! < |¢] < a}. Assume also a < 2v2. For j > 0 let R; =
(a=127971 a279%1]. The R;’s are disjoint subintervals of (0, 1]. Now we slightly modify (3I3) as
follows:

(J)
(3.16) (J) _ <p(3)h J+K) _ ¢(5) J+K)¢(€) ce€R;.
Then

T ED ) = 1 EEED) <
OR L a-1<s<aa1 w
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Like in step 3, we deduce

[ee]

o ~ ~ de\ 3
lollng, < (3@ [ hyerdexal) 5)

=0 3
S([ EWrat) E) + (@ [ Mere» e wal) )
~ 0 € P e = R, J+ € P c

The remaining of the proof follows step 3 with necessary modifications as in the first part. ]

1
a

Remark 3.12. Theorems and B0 admit analogous characterizations for BS, (T4) too. For

pP,co
example, a distribution x on T§ belongs to BS,. (Tg) iff

lim 19+l -0
e—0 gx

This easily follows from Theorem [3.11] for ¢ = co. The same remark applies to the characterizations
by the Poisson, heat semigroups and differences in the next two sections.

3.3. THE CHARACTERIZATIONS BY POISSON AND HEAT SEMIGROUPS

We now concretize the general characterization in the previous section to the case of Poisson
and heat kernels. We begin with the Poisson case. Recall that P denotes the Poisson kernel of R?
and

P.(z) =P.xx = Z e~ 2l (m)u™
mezd
So for any positive integer k, the kth derivation relative to € is given by

8k 5 k _—2me|lm|o m
oo Pel) = > (=2n|m])Fe ez (m)U™

meZzd

The inverse of the kth derivation is the kth integration Z* defined for = with Z(0) = 0 by

/ / . / f’al(x)del - de_1dey,
€ Ek 15p)

Z (2n|m|) " Fe 2mEmIZ(m) U™
meZAN{0}

If ﬁa(x)

In order to simplify the presentation, for any k € Z, we define
k
G
It is worth to point out that all concrete characterizations in this section in terms of integra-
tion operators are new even in the classical case. Also, compare the following theorem with [74]

Section 2.6.4], in which k is assumed to be a positive integer in the Poisson characterization, and
a nonnegative integer in the heat characterization.

Tk for k>0 and JF=7-% for k<O0.

Theorem 3.13. Let 1 < p,q < o0, @ € R and k € Z such that k > «. Then for any distribution
x on T4, we have

o [ 5 oo &)
||x||B§,q ~ (|x(0)|q +/ gq(k—a)H'jEk Pa(x)Hq E) .
0

Pe
Proof. Recall that P = P;. Thanks to ﬁ(&) = ¢~ 27l we introduce the function ¢ (§) = (—sgn(k)2x|¢|)Fe27I¢l
Then
leg) = F Tl e I = F T PL6).
It follows that for x B;iq('ﬂ‘g),

Yexz=c"TFP.xx=c"T"P.(2).
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Thus by Theorem [B1T] it remains to check that ¢ satisfies (B4 for some o < o < . It is clear
that the last condition there is \Leriﬁed for any ayg. For the second one, choosing k = a1 > «a, we
have I_,, h = (—sgn(k)2m)* hP. So

177 Teean k)|, < )" [F )], ([P, < 00
The theorem is thus proved. O

There exists an analogous characterization in terms of the heat kernel. Let W. be the heat
semigroup of R%:
1 5|
W(s) = —— e~ i
(4me)z
As usual, let WE be the periodization of W.. Given a distribution x on Tg let
We(z) = Wesa= Y WHEMT(m)U™,

meZd

where W = W;. Recall that
W(e) = e 'mIer,
Theorem 3.14. Let 1 < p,q < oo, a € R and k € Z such that k > 5. Then for any distribution

d
x on Ty,

N 1 N ~ deN 3
||x||Bqu;\¢(|x(0)|q+/ €q<kﬁ>HJEkwE(x)||q_€) .
0

P e

Proof. This proof is similar to and simpler than the previous one. This time, the function ¢ is
defined by (&) = (—sgn(k)4r2|¢[2)ke=47"1€" Clearly, it satisfies () for 2k = a; > a and any
ap < . Thus Theorem BIT] holds for this choice of ¢. Note that a simple change of variables
shows that the integral in (3I4) is equal to

1 1
_1 _aq qdea
(W )

D(VEE) =" TEWL(€),

we obtain the desired assertion. O

Then using the identity

Now we wish to formulate Theorems [B.13] and B.14] directly in terms of the circular Poisson and
heat semigroups of T¢. Recall that PP, denote the circular Poisson kernel of T¢ introduced by (6]
and the Poisson integral of a distribution x on T¢ is defined by

P.(z) = Z Z(m)yrlm™u™, 0<r<1.
mezZd
Accordingly, we introduce the circular heat kernel W of T¢:
(3.17) W.(2) = Z plmlPzm 2 eTd 0<r<1.
meZzd
Then for z € S'(T¢) we put
W, (z) = Z f(m)rlm‘QUm, 0<r<l.

meZd

As before, J* denotes the kth derivation g—; if k > 0 and the (—k)th integration Z. * if k < 0:
TFBe(x) = Y CoiZ(m)r™=Fum,

mezd
where
1
Cop=|m|---(Iml—k+1) if k>0 and Cpi= if k<0.
(Im| +1)---(lm| = k)
JFW,.(x) is defined similarly. Since |m/| is not necessarily an integer, the coefficient C,,  may not
vanish for |m| < k and k& > 2. In this case, the corresponding term in JF P,(x) above cause a

certain problem of integrability since r(I™!=%)4 is integrable on (0, 1) only when (|m| — k)g > —1.
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This explains why we will remove all these terms from J* P,.(x) in the following theorem. However,
this difficulty does not occur for the heat semigroup.

The following is new even in the classical case, that is, in the case of § = 0.

Theorem 3.15. Let 1 <p,g< oo, « € R and k € Z. Let x be a distribution on Tg,
(i) If k > «, then

1 (k=a) || 7k a_dr_\
Jellog, ~ (s [2(m) + [ (=)= 7B 12)
where xj, = T — Z (m)U™.
Im|<k
(i) Ifk> g, then

)%

Proof. We consider only the case of the Poisson kernel. Fix z € By q(Tg) with Z(0) = 0. We first
claim that for any 0 < g9 < 1,

([ ez ) = ([ e ol €)'

TEPa)= Y (~sen(k)2aim|)Fe B (m) U™,

1
lallzg, ~ (max @i+ [ (1= e 7Ew @) 1
0

[*<k

Indeed, since

meZaI\{0}
we have
o d . o d
(/ et 75 P, Hq 6) > sup (27T|m|)k|m(m)|(/ gi(k—a) g—2me|mlq E)
0 meZa\{0} 0 €
Z sup  |m|%[@(m)].
meZ4\{0}

On the other hand, by triangular inequality,

1 - d % R 1 d
(/ 5q(k7a)||\75k Pa(x)HZ ?E) < Z (27T|m|)k|x(m)|(/ a(k—a) ,—2me|mlq ;)
€0

meZ4\{0} €0

S osup  m[*@E(m)] Y [m[F el
meZ\{0} mezd
S s [mlfEm)).
meZ4\{0}
We then deduce the claim.
Similarly, we can show that for any 0 < rg < 1,

1 dr \3 ! dr \3
_ p\alk=a) || 7k a 7 _oalk—a) || 7k q q
(/0 (1= p)at=o)]|| 77 Pr(xk)le_r) ~ (/ (1 — pyath=a) | 7/ Pr(xk)le_r) .

To

Now we use the relation r = e=27. If gy > 0 is sufficiently small, then
1—r=e for €€ (0, eo).

So

€0 1
([ etoepaal; )" = (s o+ [ 0 =nr=olie )
0

0<|m|<k 0 )

Q=

Combining this with Theorem BI3] we get the desired assertion. O
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3.4. THE CHARACTERIZATION BY DIFFERENCES

In this section we show the quantum analogue of the classical characterization of Besov spaces by
differences. Recall that wf(z,¢) is the Lj-modulus of smoothness of z introduced in Definition T8
The result of this section is the following:

Theorem 3.16. Let1 < p,q < oo and 0 < a < n withn € N. Then for any distribution x on Tg,

~ ! —qo, n de %
(3.18) e, ~ (|x(0)|q+/0 s (@) =)

Proof. We will derive the result from Theorem BI1l or more precisely, from its proof. Since o > 0,
we take ap = 0 and «; = n in that theorem. Recall that d,(¢) = €2™¢ — 1. Then the last
condition of B4l with ¢ = d! is satisfied uniformly in u since

||f71(d3(2j')%0)||1 = ||A7211'u]:71(‘?)||1 < ZHH}-?I(‘P)Hr

We will use a variant of the second one (which is not necessarily verified). To this end, let us come
back to (B8) and rewrite it as follows:

P (el (€) = 2" % RO (277 u - )T ()
= 2" (€)plU R (),
where 7 and p are now defined by
9O = (LA and p(E) = (- "6(6)

The second condition of (B4 becomes the requirement that

sup H}'*l(n)Hl < 00.
u€R?,|u|<1
The crucial point here is that ¥(§) = d?(£) = (u-&)"((u - &), where ( is an analytic function on R.
This shows that the above supremum is finite.

However, the first condition of ([B), the Tauberian condition is not verified for a single d?. We
will return back to this point later. For the moment, we just observe that the Tauberian condition
has not been used in steps 1 and 2 of the proof of Theorem [3.9 Reexamining those two steps with
1 = dI, we see that all estimates there can be made independent of u. For instance, (315 now
becomes (with a1 = n)

AL, By x|, S 20Tk (200 5wz,

Eu ~

where the new function p is defined as above. Thus taking the supremum over all u with |u| <1,
we get
2w (z,e) S 2K =) (205w ]|,).

Therefore, by Lemma [3.4] we obtain

! de\ 1
e 1M (x, e q—) < ||z .
(] eup@erS)" s ol
The reverse inequality requires necessarily a Tauberian-type condition. Although a single d;
does not satisfy it, a finite family of d]!’s does satisfy this condition, which we precise below. Choose
a %—net {ve}1<e<z, of the unit sphere of R?. Let u, = 4~ v, and

Q= {e:l < el <2, %_Ud <o),

Then the union of the €/’s is equal to {€ : 27! < |¢] < 2} and [d,| > 0 on €. So the family
{d}, }1<e<r satisfies the following Tauberian-type condition:

L
D ldp,| >0 on {&:271 < ¢ <2}
=1
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Now we reexamine step 3 of the proof of Theorem To adapt it to the present setting, by an
appropriate partition of unity, we decompose ¢ into a sum of infinitely differentiable functions,
@ =1+ -+ @ such that supp py C Q. Accordingly, for every j > 0, let

L
D =3P
(=1

Then we write the corresponding (BI6) with (¢¢,d;,) in place of (¢, 1) for every £ € {1,---, L}.
Arguing as in step 3 of the proof of Theorem B9, we get

N de\ 7
el < (150 |q+z / o [CARTSES

Since (dy,)_ *x = AL, x, we deduce

~ o de\ 7
lell5, . < (RO + /0 e sup [z, |t Z)

1</<L
< (O + [ e )

Thus the theorem is proved. |

As a byproduct, the preceding theorem implies that the right-hand side of (3I8)) does not depend
on n with n > «a, up to equivalence. This fact admits a direct simple proof and is an immediate
consequence of the following analogue of Marchaud’s classical inequality which is of interest in its
own right.

Proposition 3.17. For any positive integers n and N with n < N and for any € > 0, we have

oo , N
n—N, N n n w (x,&) d(s
2" W, (z,8) Swy(w,e) Se /E PT7

Proof. The argument below is standard. Using the identity AY = AN=" A" we get
AT @], <2V [|Ad@)

I,

whence the lower estimate. The upper one is less obvious. By elementary calculations, for any
u € R?, we have

n

o (2 o1 (1) S

j=0
In terms of Fourier multipliers, this means
n j—1
AR, =2"A7+ > ( Z ) 3 TLALt
j=0 i=0
It then follows that
wy (z,€) <

Iterating this inequality yields

|3

wg“ (z,€) +27"wy (x, 2¢).

J—1
n .
wy (z,€) < 5 Z wﬁ“(x, 2e)+ 27‘]710.);1(!%, 27¢),
j=1
from which we deduce the desired inequality for N = n+1 as J — co. Another iteration argument
then yields the general case. O

In view of Definition and Theorem B8 we introduce the following quantum analogue of
the classical Ly-Zygmund class of order o. The case where 0 < o < 1 and p = oo was already
studied by Weaver [79)].
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Definition 3.18. Let 1 < p < oo, @ > 0 and n be the smallest integer greater than «. The
Ly-Zygmund class of order o, Ay (T), is defined to be the space of all distributions z such that
wy ()

sup ——
e>0 €

< 00,

equipped with the norm
~ wy ()
]| = [Z(0)] + sup ———.
e>0 €
The little L,-Zygmund class of order a, A2 ,(T§), is the subspace of AZ(T§) consisting of all
elements z such that

tim 20 _
e—0 g«
Remark 3.19. Theorem shows that Bgm('ﬂ‘g) = Ag('ﬂ‘g) and By . (Td) = Ag"o(’]l‘g) with

equivalent norms. Consequently, the integer n in the above definition can be any integer greater
than «. On the other hand, by the reduction Theorem B.7 if « is not an integer and if % is the
biggest integer less than «, then

AX(T)) = {z € S(T§) : 0¥z € Lipt ¥(T§), j=1,---,d.}.
A similar equality holds for the little L,-Zygmund and Lipschitz classes of order a.

3.5. LiMITS OF BESOV NORMS

In this section we consider the behavior of the right-hand side of [BI8) as o — n. The study of
this behavior is the subject of several recent publications in the classical setting; see, for instance,
[4, 5, (38, [411 [75]. Tt originated from [I4] in which Bourgain, Brézis and Mironescu proved that for
any 1 < p < oo and any f € C5°(R?)

iy (1= o) [ O )" = 6l w0

a—1 |S — t|ap+d

It is well known that

)~ O 1) < ([ yae
(/Rded |s — t|ortd det) N( 0 uedel’lﬁ‘SEHAupr s) '

The right-hand side is the norm of f in the Besov space B} ,(R?). Higher order extensions have
been obtained in [38| [75].

The main result of the present section is the following quantum extension of these results. Let

1 1
deN g
(/0 £*aqw’;(x,£)q§) .
Theorem 3.20. Let 1 < p <00, 1 < g < oo and 0 < o < k with k an integer. Then for
x € WHTY),

(3.19) [l pae

. 1 1
Tim (k — 0)# lell s ~ a7 feluw
with relevant constants depending only on d and k.

Proof. The proof is easy by using the results of section 24l Let x € Wf('ﬂ‘g) with Z(0) = 0. Let A
denote the limit in Lemma 2211 Then

whence

1
d
limsup(k — a)/ e Mw,(x,e)?
0

a—k
Conversely, for any n > 0, choose ¢ € (0, 1) such that

wh(z,¢€)

8k >A—mn, Ve<o.
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Then

which implies

1
d A—n)t
lim inf(k —a)/ E*O‘qw’;(x,s)q—g > A =n)
a—k 0 £ q
Therefore,
1 k
d 1 wr(z,e
lim (k — a)/ s_o‘qw];(x,s)q—s = = lim #
a—k 0 € q =0 €
So Theorem 220 implies the desired assertion. g

Remark 3.21. We will determine later the behavior of ||z[| s« when o — 0; see Corollary
below.

3.6. THE LINK WITH THE CLASSICAL BESOV SPACES

Like for the Sobolev spaces on T4, there exists a strong link between By q('ﬂ‘g) and the classical
vector-valued Besov spaces on T?. Let us give a precise definition of the latter spaces. We maintain
the assumption and notation on ¢ in section 3l In particular, f — @y * f is the Fourier multiplier
on T? associated to p(27F.):

Grxf= D e m)f(m)z"
meZd
for any f € S’(T%; X). Here X is a Banach space.

Definition 3.22. Let 1 < p,q < oo and a € R. Define
By (T4 X) = {f € 8'(T% X) : [| £l B2, < o0},
where

1
#1155, = (IFO)% + 322G+ £I2 )"

k>0

These vector-valued Besov spaces have been largely studied in literature. Note that almost all
publications concern only the case of R?, but the periodic theory is parallel (see, for instance,
[24, [71]; see also [3] for the vector-valued case). By, (R% X) is defined in the same way with

~

the necessary modifications among them the main difference concerns the term || f(0)||x above
which is replaced by ||q5 x f H L where ¢ is the function whose Fourier transform is equal to
p

1 - Zkzo p(27F).

All results proved in the previous sections remain valid in the present vector-valued setting
with essentially the same proofs for any Banach space X, except Theorem [3.8 whose vector-valued
version holds only if X is isomorphic to a Hilbert space. On the other hand, the duality assertion
in Proposition should be slightly modified by requiring that X* have the Radon-Nikodym
property.

Let us state the vector-valued analogue of Theorem B.15l As said before, it is new even in the
scalar case. The circular Poisson and heat semigroups are extended to the present case too. For
any f € §'(T% X),

P.(f)(z) = Z r"”'f(m)zm and W,.(f)(z) = Z r"n|2f(m)zm, zeT4 0<r<1.

meZd meZd

R4; X))

The operator jrk has the same meaning as before, for instance, in the Poisson case, we have
jrk Pf’(f) = Z C7n,kf(m)7"m|7kzm ;
mezZd

where

1
Cone =|m|-(jm|—k+1) if k>0 and Chp= if k< 0.
(Im|+1)---(Im| — k)

Theorem 3.23. Let 1 <p,g< oo, a € R and k € Z. Let X be a Banach space.
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(i) If k> «, then for any f € By (T4 X),

! 1
i dr \q
~ 1l _ p\(k=a)q|| 7k q .
e, = (\iTEka(m)HX +/0 (A=) * N TE B () ey 75 )
where fk = f — Z f(m)z’m.
lm|<k
(ii) If k > &, then for any f € BY (T4 X),

1 1
" a dr \q
~ q _ ) (E=%)q|| 7k a )
155, ~ (5o Wl + [ (1= DT DLy 727)

The following transference result from Tg to T? is clear. It can be used to prove a majority of the
preceding results on T4, under the hypothesis that the corresponding results in the vector-valued
case on T? are known.

Proposition 3.24. Let 1 < p,q < oc and a € R. The map x — T in Corollary[L.Q is an isometric
embedding from ng('ﬂ‘g) into ng('ﬂ‘d; L,(T%)) with 1-complemented range.

Remark 3.25. As a subspace of ég‘(Lp(Tg)) (see the proof of Proposition for the definition
of this space), By q(Tg) can be equipped with a natural operator space structure in Pisier’s sense
[54]. Moreover, in the spirit of the preceding vector-valued case, we can also introduce the vector-
valued quantum Besov spaces. Given an operator space £, B q(Tg; E) is defined exactly as in the
scalar case; it is a subspace of £5(L,(T§; E)). Then all results of this chapter are extended to this
vector-valued case, except the duality in Proposition and Theorem

Chapter 4. Triebel-Lizorkin spaces

This chapter is devoted to the study of Triebel-Lizorkin spaces. These spaces are much subtler
than Besov spaces even in the classical setting. Like Besov spaces, the classical Triebel-Lizorkin
spaces szfq(]Rd) have three parameters, p,¢q and a. The difference is that the ¢;-norm is now

taken before the Ly-norm. Namely, f € Fgy(RY) iff [|(Xy20 257 * £17) |, is finite. Besides
the usual subtlety just mentioned, more difficulties appear in the noncommutative setting. For
instance, a first elementary one concerns the choice of the internal £;-norm. It is a well-known fact
in the noncommutative integration that the simple replacement of the usual absolute value by the
modulus of operators does not give a norm except for ¢ = 2. Alternately, one could use Pisier’s
definition of £,-valued noncommutative L,-spaces in the category of operator spaces. However, we
will not study the latter choice and will confine ourselves only to the case ¢ = 2, by considering the
column and row norms (and their mixture) for the internal £2-norms. This choice is dictated by the
theory of noncommutative Hardy spaces. In fact, we will show that the so-defined Triebel-Lizorkin
spaces on Tg are isomorphic to the Hardy spaces developed in [I7].

Another difficulty is linked with the frequent use of maximal functions in the commutative case.
These functions play a crucial role in the classical theory. However, the pointwise analogue of
maximal functions is no longer available in the present setting, which makes our study harder than
the classical case. We have already encountered this difficulty in the study of Besov spaces. It is
much more substantial now. Instead, our development will rely heavily on the theory of Hardy
spaces developed in [81] through a Fourier multiplier theorem that is proved in the first section. It
is this multiplier theorem which clears the obstacles on our route. After the definitions and basic
properties, we prove some characterizations of the quantum Triebel-Lizorkin spaces. Like in the
Besov case, they are better than the classical ones even in the commutative case. We conclude the
chapter with a short section on the operator-valued Triebel-Lizorkin spaces on T? (or R?). These
spaces are interesting in view of the theory of operator-valued Hardy spaces.

Throughout this chapter, we will use the notation introduced in the previous one. In particular,
¢ is a function satisfying @), ¥ = ¢(27%.) and @, = ¢*).

4.1. A MULTIPLIER THEOREM

The following multiplier result will play a crucial role in this chapter.
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Theorem 4.1. Let 0 € R with o > £. Assume that (¢;);>0 and (p;);>0 are two sequences of

continuous functions on R\ {0} such that
supp(d;p;) C {€: 2771 < J¢] < 2771}, V) >0,
(4.1) sup |95 ( (27°Fk.) <p||Hu (Re) < OO
—2<k<2
(i) Let 1 < p < oo. Then for any distribution x on T§,
2ja| L ~ +k 27
(322202185 5 s+ 2) |, gy S sup 052 Yol g [1(D_ 27125 = )
720 _$ s 320
where the constant depends only on p,o,d and .

(ii) Assume, in addition, that p; = p(277-) for some Schwartz function with supp(p) = {£ :271 <
|€] < 2}. Then the above inequality also holds for p = 1 with relevant constant depending
additionally on p.

The remainder of this section is devoted to the proof of the above theorem. As one can guess,
the proof is based on the Calderén-Zygmund theory. We require several lemmas. The first one is
an elementary inequality.

Lemma 4.2. Assume that f : R* — ¢y and g : R — C satisfy
f e HY(R% ;) and / (1+ |52)°1F 2 (g)(5)|ds < oo
Rd
Then fg € HZ(R%; (3) and
1780 g oy < WLy oy [ 1271 )t
Proof. The norm || - || below is that of f5. By the Cauchy-Schwarz inequality, for s € RY, we have
IF @) = 177 = F @@ < |77 )], / IFH s =D |77 () (1) e
It then follows that
ol e = [+ 18P [ o) s

< |7 ||/ (1+]sP%) /||]-" ()5 — )] [F 1 o) ()| dt ds
<7 @l [, [0 ls= B |F e - 0lPds @+ 1P ol
<1 g [ (0 120717 ) 01)

Thus the assertion is proved. O

The following lemma is a well-known result in harmonic analysis, which asserts that every
Hoérmander multiplier is a Calderén-Zygmund operator. Note that the usual Hérmander condition
is expressed in terms of partial derivatives up to order [ ] + 1, while the condition below, in terms
of the potential Sobolev space HS (R), is not commonly used (it is explicitly stated on page 263 of
[68]). Combined with the previous lemma, the standard argument as described in [25], p. 211-214],
[68, p. 245-247] or [T2, p. 161-165] can be easily adapted to the present setting.

Lemma 4.3. Let ¢ = (¢;);>0 be a sequence of continuous functions on R?\ {0}, viewed as a
function from R? to £y. Assume that

(4.2) sup [[$(2" )0 g ey < 0

Let k = (kj)j>0 with kj = F~*(¢;). Then k is a Calderén-Zygmund kernel with values in {2, more
precisely,

° ||/k\||LaQ(]Rd;E2) S i‘ég ||¢(2k')90HHg(Rd;e2);
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°SUP/ k(s — 1) = k(s)llezds < sup [[6(2") 0| o ga,p,) -
teRd J|s|>2|t| ” ( ) ()” 2 ]CEZH ( ) ||H2(Rd,£2)

The relevant constants depend only on ¢, o and d.

The above kernel k defines a Calderén-Zygmund operator on R?. But we will consider only the
periodic case, so we need to periodize k:

k(s) = > k(s+m).
meZ
By a slight abuse of notation, we use Ej to denote the Calderén-Zygmund operator on T? associated
to k; too:
k(N = [ ks =0rwa,
where we have identified T with I = [0, 1). Ej is the Fourier multiplier on T with symbol ¢;:
frydixf.
We have k = E}Zd' If ¢ satisfies (£2), then Lemma 3] implies

HEHzm(Zd;zg) < 0,

Sup/ k(s — t) — k(s)]|e,ds < oo.
teld J{sel:|s|>2|t|}

(4.3)

Now let M be a von Neumann algebra equipped with a normal faithful tracial state 7, and
let N = Loo(T4)®M, equipped with the tensor trace. The following lemma should be known to
experts; it is closely related to similar results of [29] 46} [51], notably to [35, Lemma 2.3]. Note that
the sole difference between the following condition (@4]) and [2)) is that the supremum in (@2
runs over all integers while the one below is restricted to nonnegative integers.

Lemma 4.4. Let ¢ = (¢;)j>0 be a sequence of continuous functions on R?\ {0} such that

(4.4) 6llng = sup 162" )| 115 ey < 00

Then for 1 < p < oo and any finite sequence (f;) C Ly(N),

(195 # 5221 < Nellng ([ 1612) 2], -

Ji=0 =0

The relevant constant depends only on p, ¢, 0 and d.

Proof. The argument below is standard. First, note that the Fourier multiplier on T¢ with symbol
¢; does not depend on the values of ¢; in the open unit ball of R?. So letting 1 be an infinitely
differentiable function on R? such that 7(¢) = 0 for [{] < 1 and n(¢) = 1 for [¢] > 1, we see that
¢; and n¢; induce the same Fourier multiplier on T? (restricted to distributions with vanishing
Fourier coefficients at the origin). On the other hand, it is easy to see that (£4) implies that the
sequence (n¢;);>o satisfies [2) with (1¢;);>0 in place of ¢. Thus replacing ¢; by n¢; if necessary,
we will assume that ¢ satisfies the stronger condition (2.

We will use the Calderén-Zygmund theory and consider k as a diagonal matrix with diagonal
entries (EJ) j>1. The Calderén-Zygmund operator associated to K is thus the convolution operator:

Em@zéﬂ&ﬂmw

for any finite sequence f = (f;) (viewed as a column matrix). Then the assertion to prove amounts
to the boundedness of k on L, (N; £5).

We first show that k is bounded from Lo (N;€5) into BMOS(T?, B(f3)®@M). Let f be a finite
sequence in Lo, (N;/5), and let @ be a cube of I¢ whose center is denoted by c¢. We decompose f
as f =g+ h with g = f]l@7 where @ = 2@, the cube with center ¢ and twice the side length of Q.
Setting

a:/ k(e —1)f (),
G
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we have
K((e) = a = Ka)(s) + [ (s = 1) ~kle = D)he)ar
Thus .
o /Q K()(s) - alds < 2(A+ B),
where

IQI/ K(g)(s)Pds.
IQI/‘/W k(e —1)) (t)dtrds.

The first term A is easy to estimate. Indeed, by (@3] and the Plancherel formula,

|@|A</ Ko)(s)2ds = 3 [km

mezd

-y g(m)*mm)*f(m)]@(m) <3 ||f<m>||23@2>|§<m>|2

meZd mezd

[k oney [ o
< Ml sy [ 19050 s S @I vy

IN

whence
1Al 5enyam S IFIT o vies) -
To estimate B, let h = (h;). Then by (@3], for any s € Q@ we have

2
_ —k _ B — kale — )
‘/Hd s—t) —k(c—1t)) dt‘ Z‘/ﬂd (s —t) —kj(c—1)) J(t)dt‘
<Z/ (s —t) —kj(c— )] |hy(t)|2dt
1N\Q
k(s —t) —k(c— )oY | (t)[2dt
<o x

S v [ K =) =Ko = Dl

Thus
1Bl < |Q| / H /]Id —t)—k(e—1)) dtHB(Zz)@M ds
@l / H ’ /ﬂd 1) —ke—1)h (t)dt’ HB(EQ)@M ds

SIAIE ey -

Therefore, k is bounded from Leo (N £5) into BMO*(T?, B(f2)@M).
We next show that k is bounded from Lo, (N £5) into BMO” (T4, B(£5)@M). Let f,Q and a be
as above. Now we have to estimate

HI%I/Q |[k(f)(s) - a]*|2dSHB(e2)®M '

We will use the same decomoposition f = g + h. Then

|Q|/‘ ) —al |ds<2(A'+B)
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where

A’=|712| / [[K(9)(s)]
|Q|/ ’A:i N —k(c—t)) (t)rdt’gds.

The estimate of B’ can be reduced to that of B before. Indeed,

2

1B s < g | || [, [ =0~ Ke—tpme) el as
B |712|/Q {/ﬂd (k(s — 1) —k(c — t))h(t)dt} * BleyaM

2
_ I%QI/Q /Hd(E(s—t)—E(c—t))h(t)dtHQB(b)@Mds

SIAIE Lovieg) -

However, A" needs a different argument. Setting g = (g;), we have
1 o T * %
1A' 5esyam = Sup{@/QT[Z ki(g:)(s)k;(g;)(s)"a}a;] dS},
]

where the supremum runs over all a = (a;) in the unit ball of ¢5(Lo(M)). Considering a; as a
constant function on I, we can write

ai[(vi(gi) = ki(aigi)-

T k~115k~J aaldS— ki(aig:)(
RIS JADICCAIEI e

So by the Plancherel formula,

JADICCAIC AR B D STICAI0 AR
= 3 I el

meZd 2

Thus

On the other hand, by the Cauchy-Schwarz inequality, (£3)) and the Plancherel formula once more,

we have
SIS k) a g )2 < S Tkm)lZ, S r(aidim)?)

mezZd i mezZd

<Z T |G Z gi( )ﬁz(m)*af]

mez
= rloc [ aoas)dsa]
QY RICEORE
<|Q| ZT[CM 1fill7 . o @3]
SIQUIAIE ovieg) Do (lail?)
< 1QIIIZ _oxeg

Combining the above estimates, we get the desired estimate of A’

1A Besymr S IFIT o avies) -
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Thus, k is bounded from Lo (N;/5) into BMO" (T4, B(f3)@M), so is it from Leo(N;£5) into
BMO(T?, B(£2)&M).

It is clear that k is bounded from Lo(N;£5) into Ly(B(f2)@N). Hence, by interpolation via
(C2) and Lemma LR k is bounded from L, (N;£5) into L,(B(£2)®N) for any 2 < p < cc. This is
the announced assertion for 2 < p < co. The case 1 < p < 2 is obtained by duality. O

Remark 4.5. In the commutative case, i.e., M = C, it is well known that the conclusion of the
preceding lemma holds under the following weaker assumption on ¢:

(4.5) sup(/Rd(l—i—|s|2)"H]—'_1(¢(2k-)<p)(s)He ds) < o0,

k>0

Like at the beginning of the preceding proof, this assumption can be strengthened to

S“p(/Rd<1+|S|2)”||f*1(¢(2’“-)go)(s)||£ ds) < 00,

keZ

Then if we consider k = (k;);>0 as a kernel with values in {,, Lemma admits the following
{-analogue:

e ||E||Lm(Rd;éoo) < 09

e sup k(s —t) — k(s)]le.ds < o0.
teRd J|s|>2]t|

Transferring this to the periodic case, we have

e ||E||zoo(zd;zm) < 005

. sup/ k(s —t) — k(s)||¢ds < co.
{seld:|s|>2|t|}

teld

The last two properties of the kernel k are exactly what is needed for the estimates of A and B in
the proof of Lemma 4] so the conclusion holds when M = C. However, we do not know whether
Lemma 4] remains true when (@) is weakened to ([Z1).

Lemma 4.6. Let ¢ = (¢;);>0 be a sequence of continuous functions on R4\ {0} satisfying ([@J).
Then for 1 <p <2 and any f € ’H;(Td,/\/l),

~ 1
12185 5 1) 1L, oy S Nlng 151l
Jj=0
The relevant constant depends only on ¢, o and d.
Proof. Like in the proof of Lemma [£4] we can assume, without loss of _generality, that ¢ satisfies

([@2)). We use again the Calderén-Zygmund theory Now we view k = (k )j>0 as a column matrix
and the associated Calderén-Zygmund operator k as defined on L,(N):

Rﬁ@:A}w4ﬁ@w

Thus k maps functions to sequences of functions. We have to show that k is bounded from
HE(T, M) to Ly(N;€5) for 1 < p < 2. This is trivial for p = 2. So by Lemma via in-
terpolation, it suffices to consider the case p = 1. The argument below is based on the atomic
decomposition of H§(T¢, M) obtained in [I7] (see also [44]). Recall that an M®-atom is a function
a € Li(M;L§(T?)) such that

e ¢ is supported by a cube Q C T¢ ~ I
o fQ s)ds = 0;

o 7[(fgla(s)]?ds)> ] < Q| =.

Thus we need only to show that for any atom a

Ik(a)[lz, sy S 1
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Let @) be the supporting cube of a. By translation invariance of the operator E, we can assume
that @ is centered at the origin. Set @ = 2@ as before. Then

(4.6) k(@) Ly avies) < k(@) LgllLiaves) + k(@) TGz, (vies) -

The operator convexity of the square function x +— |z|> implies

[ aronas <11 ([ kds)”.

However, by the Plancherel formula,

k(a)(s)|?ds k(a)(s)|?ds = k = Emam2
[ a2 < [ Kool = 3 K > [km(m)

meZd meZd

S Dl vy RUC

meZd

Therefore, by (3])
l
||k<>Q||L1w>—T/|k 9)lds < 0] /|a )2ds)¥] < 1

This is the desired estimate of the first term of the right-hand side of (£6). For the second, since
a is of vanishing mean, for every s ¢ () we can write

k(a)(s) = /Q [K(s — t) — k(s)]a(t)dt.

Then by the Cauchy-Schwarz inequality via the operator convexity of the square function x — |z|?,
we have

K@) () < /Q [K(s — 1) — K(s)l|padt - /Q [K(s — 1) — k()1 [a(t) 2.
Thus by @3),

@ glervas =7 g s

<r // k(s — t) — k(s) || ds dt) * - // IK(s = ) = K(s) s la(t) Pds dt) |
19\Q 1\Q
slel7[( [ la)Pas)*] <1

Hence the desired assertion is proved. O

By transference, the previous lemmas imply the following. According to our convention used in
the previous chapters, the map = — ¢ *  denotes the Fourier multiplier associated to ¢ on Tg.

Lemma 4.7. Let ¢ = (¢;); satisfy ([@2).
(i) For1 < p < oo we have

~ 1 1
1D 105 2 ) 2 (1, < Nellag (D 1) 21, 25 € Lo(T5)
j=0 Jj=0

with relevant constant depending only on p, ¢, o and d.

(ii) For 1 <p <2 we have
~ 1
(185 % aP) 2|, S llng lallg . @ € H(TE)
Jj=0
with relevant constant depending only on ¢, o and d.

We are now ready to prove Theorem 11
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Proof of Theorem [[1} Let ¢; = ¢;(0U ™Y + ¢\ 4+ oU+D). By ([B2) and the support assumption
on ¢;p;, we have

®jpj =GCjpj, SO Gjkpj*T =(jkpj*aT
for any distribution = on T¢. We claim that ¢ = (¢;);>0 satisfies (Z4) in place of ¢. Indeed, given

k € Ny, by the support assumption on ¢ in @I, the sequence ((2%-)p = ((;(2%-)p)j>0 has at
most five nonzero terms of indices j such that £k — 2 < j < k+ 2. Thus

k+2

||<(2k')‘PHHg(Rd;e2)S Z HCJ'(Zk')‘PHHg(Rd)'
j=k—2

However, by Lemma [£.2]
||<J(2k)80||H2:7(Rd) /S _QS;J‘]?§2 ||¢](2J+k)<p||H20(Rd) I k - 2 S .] S k + 2)

where the relevant constant depends only on d, o and ¢. Therefore, the second condition of (T
yields the claim.

Now applying Lemma 7 (i) with ¢; instead of ¢; and x; = 29%p; x x, we prove part (i) of the
theorem.

To show part (ii), we need the characterization of H$(T¢) by discrete square functions stated in
Lemma [[LT0 with ¢ = I_,p. Let 2 be a distribution on T¢ with Z(0) = 0 such that

. 1
1> 27155 = al*)? ||, < 0.
>0
Let y = I*(x). Then the discrete square function of y associated to v is given by

spW)? =D 1y xylP =) 2%p; xaf?.

7=>0 j=>0
So y € H{(T4) and
o 1
lylles =~ [[(D_ 27155 * =) %], -
j=0

We want to apply Lemma [L1] (ii) to y but with a different multiplier in place of ¢. To that end,
let n; = 29*I_,¢; and n = (n;)j>0. We claim that 7 satisfies ({@I]) too. The support condition of
(&) is obvious for . To prove the second one, by [B2), we write

1 (27€)p(€) = €] (€)9;(27€) = 1] [p(271€) + @(€) + ¢(26)]0(€) b5 (27€).

Since I_o (¢ + ¢ + ¢() is an infinitely differentiable function with compact support,
/ L+ 1817 F 7 I—a(@™ + o+ o1))(s)|ds < oo.
Rd

Thus by Lemma [£2]

9J+k

@) g S 1652y

whence the claim.
As in the first part of the proof, we define a new sequence ¢ by setting ¢; = njp;. Then the new
sequence ( satisfies ([4) too and

(9F. (93Fk, (93+E,

ig}gHCJ(? )| g ey S sup [N S s 1652 g may -
—3<k<2 —3<k<2

On the other hand, we have

2% % pjxw = *y.
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Thus we can apply Lemma [£7] (ii) to y with this new ¢ instead of ¢, and as before, we get
e 1 ~ 1
132229165+ 35+ 2) ||, = (1D 16 <),
J=0 j>0

S ig% ||C(2k‘)@||Hg(Rd;e2) 191124

< s 165 (27l g oy 110D 2755 f2) ¥,
j=0 : >0
_3<h<2 >

Hence the proof of the theorem is complete. O

4.2. DEFINITIONS AND BASIC PROPERTIES

As said at the beginning of this chapter, we consider the Triebel-Lizorkin spaces on ’]I‘g only for
q = 2. In this case, there exist three different families of spaces according to the three choices of
the internal /5-norms.
Definition 4.8. Let 1 < p < oo and a € R.

(i) The column Triebel-Lizorkin space F*¢(T§) is defined by

Fp(Tg) = {z € §'(T§) : ||z ppe < oo},

where 1
2l e = [ZO)] + [| (D 2213w 2) ],
k>0

(ii) The row space F*"(T§) consists of all z such that z* € F¢(T§), equipped with the norm

]l mgr = [l pgoe-
(iii) The mixture space F*(T§) is defined to be
popyy [ FECE BT 1sp<e

0 FoS(TH N FES" (T if 2 < p < oo,
equipped with

HfCHF; =

it {llyllpee +llzllpprre =y +2} i 1<p<2,
max([z] g , [l pr) if 2<p <o
In the sequel, we will concentrate our study only on the column Triebel-Lizorkin spaces. All

results will admit the row and mixture analogues. The following shows that F%¢(T§) is independent
of the choice of the function .

Proposition 4.9. Let ¢ be a Schwartz function satisfying the same condition BI) as ¢. Let
U = =p(27%.). Then

e 2kar| T, 2\3
]| e == [(0)] + [|( D 225 i+ 2f*) 2]
k>0
Proof. Fix a distribution = on T¢ with 2(0) = 0. By the support assumption on ¢*) and B2, we

have (with ¢_1 = 0)
1

{Ek*m: Z Jk*cﬁkﬂ*x.

j=—1

Thus by Theorem 1]

1
||(222k0¢|,$k *m|2)5Hp < Z H(ZQQkah;/)vk * [ﬁk+j *m|2)§Hp

k>0 j=—1 k>0
1
SN2 @k 2f)? ],
k>0
Changing the role of ¢ and 1, we get the reverse inequality. O

Proposition 4.10. Let 1 < p < oo and a € R.
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F¢(Tg) is a Banach space.
Fa»C(Td) C FP<(Tg) for B < a.

i)
i) £y
(iii) Pg is dense in Fy* ¢(T4) .
(iv) Fpe(T§) = HC(Td)
(V) gmln (p,2) (TG) Fa C(Td) c Bg max(p,2) (Tg)

Proof. (i) is proved as in the case of Besov spaces; see the corresponding proof of Proposition [3.3
(ii) is obvious. To show (iii), we use the Fejér means as in the proof of Proposition[27l We need one
more property of those means, that is, they are completely contractive. So they are also contractive
on L,(B(l2)®T%), in particular, on the column subspace L,(T%; £5) too. We then deduce that Fy
is contractive on F¢(Tg) and limy o0 Fi(z) = z for every z € F&¢(T§).

(iv) has been already observed during the proof of Theorem [£1l Indeed, for any distribution z
on T4, the square function associated to ¢ defined in Lemma [[I0lis given by

= (Z|§5k *$|2)2
k>0
Thus [lzt; = el .
(v) follows from the following well-known property:
2(Ly(T§)) C Lyp(Tg; €5) C Lp(Ly(T§))

are contractive inclusions for 2 < p < oo; both inclusions are reversed for 1 < p < 2. Note that
the first inclusion is an immediate consequence of the triangular inequality of L% (’]I‘g), the second
is proved by complex interpolation. O

The following is the Triebel-Lizorkin analogue of Theorem[B7l We keep the notation introduced
before that theorem.

Theorem 4.11. Let 1 < p < oo and o € R.
(i) For any B € R, both J? and I® are isomorphisms between F;"C(Tg) and F;‘_B’C(Tg). In
particular, J* and I* are isomorphisms between F5¢(T§) and HG(Tq).
(ii) Let a € RL. If x € F&°(TY), then D% € Fy~'*"“(T4) and

1D o rare S Nl

(iii) Let B> 0. Then x € F;’C(’]I‘g) iff Diﬁx € Fﬁ‘*'@’c(’]l‘g) foralli=1,---,d. Moreover, in this
case,

d
lollgge ~ BO)] + 3 [Dfal|pose.
1=1

Proof. (i) Let € F®°(T§) with Z(0) = 0. By Theorem BT

2l g = (Y241 G af?) ¥
k>0

1
< sup 27k6||JB(2k')SDHH§(]Rd) H(Z 2%k By ) 2 ||p .
k=0 k>0

However, it is easy to see that all partial derivatives of the function 27%5.J5(2% )¢, of order less
than a fixed integer, are bounded uniformly in k. It then follows that

sup 27| J5(2" )|l g (mety < o0
k>0

Thus |J°2| pa-s.c S [Jz]|pee. So J? is bounded from F¢(Tg) to Fg=%¢(Ty), its inverse, which
p

is J=#, is bounded too. I” is handled similarly.
If 8 = o, then F9=F¢(Tgd) = F¢(T§) = H5(Tq) by Proposition B0 (iv).
(ii) This proof is similar to the previous one by replacing J? by D% and using Lemma 3.5
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(iii) One implication is contained in (ii). To show the other, we follow the proof of Theorem B.7]
(iii) and keep the notation there. Since

d
Yk = Z XiDi,s¢k,
i=1

by Theorem [F.T],

d
1
Izl pge < DD 2% 1% * @i x DY) 2|
i=1 k>0

d
1
D sup 2% (25l g ey || (D 22K PGy x DY) |-
i—1 k=20 k>0

However,

2k5||Xi(2k')<PHHg(Rd) = HWP”H;(W),
where .
w(E) = 1 x(28&)1&1°

X(28€)16117 + - - + x(28€q)[€al?  (2mi&;)P

As all partial derivatives of ¥, of order less than a fixed integer, are bounded uniformly in &, the
norm of ¢ in HY (RY) are controlled by a constant independent of k. We then deduce

d d
1
lallrge £ SIS 224G« D) || = S 1Dfa] e
i=1 k>0 i=1

The theorem is thus completely proved. O
Corollary 4.12. Let 1 < p < co and a € R. Then F2(T§) = HZ(T§) with equivalent norms.
Proof. Since J* is an isomorphism from F;(Tg) onto FS(T?), and from Hg‘('ﬂ‘g) onto Hg(’]l‘g), it
suffices to consider the case v = 0. But then H)(T§) = L,(T§) by definition, and F(T§) = 1, (T§)
by Proposition L T0l It remains to apply Lemma [[.9 to conclude Fg('ﬂ‘g) = HS(T?). O
We now discuss the duality of F¢(Tq). For this we need to define F55¢(Tg) that is excluded

from the definition at the beginning of the present section. Let £5 denote the Hilbert space of all
complex sequences a = (ag)r>o0 such that

1
lall = (D 2%**axl*)? < oo.
k>0
Thus L,(T¢; £5°°) is the column subspace of L,(B(£$)2T4).

Definition 4.13. For a € R we define F,¢(T$) as the space of all distributions z on T¢ that
admit a representation of the form

T = Z Pr * g with (vx)rk>0 € Loo(T8; £5°),
k>0
and endow it with the norm
1
|z e = [#(0)] + inf {[|( D 2253 * 2f?)?]| ),
k>0
where the infimum runs over all representations of x as above.
Proposition 4.14. Let 1 < p < o0 and a € R. Then the dual space of F;"C(Tg) coincides
isomorphically with F,*(Tg).
Proof. For simplicity, we will consider only distributions with vanishing Fourier coefficients at
m = 0. We view F*¢(T§) as an isometric subspace of Ly(T§; /5°) via z — (@) * 2)r>0. Then the
dual space of Fz‘j“('ﬂ‘g) is identified with the following quotient of the latter:

Goy ={y=>_ &r*y: (Uk)rz0 € Ly (T £57°)},
k>0
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equipped with the quotient norm
lyll =08 N Well,, crgegoey = 9= D0 e ue}
k>0
The duality bracket is given by (z,y) = 7(zy*). If p = 1, then G,y = F *¢(T¢) by definition.
It remains to show that G, = F,*(T§) for 1 < p < co. It is clear that F,“(Tj) C Gy, a
contractive inclusion. Conversely, let y € G,y and y = Y @, * yy, for some (yx)k>0 € Ly (T4; 05 %°).

Then
Ok *Y = Ok * Pr—1 * Yk—1 + Pk * Pk * Yk + Pk * Pht1 * Ykt -
Therefore, by Lemma 7]

1
||(Z22ka|(zk*y|2)% o < Z "(22_2ka|&k*&k+j*yk+j|2)%

p/
k>0 j=—1 k>0
—2k 1
SN 2725 wel?) 2, -
k>0
Thus y € F,*°(T4) and [|y| ;o < llc,- =
P

Remark 4.15. (i) The above proof shows that F79+¢(Tg) is a complemented subspace of Ly, (T§; £5°)
for 1 < p < 0.

(ii) By duality, Propositions [£9] and Theorem ETT] remain valid for p = co, except the
density of Pp. In particular, F¢(T¢) = BMO(T%).

We conclude this section with the following Fourier multiplier theorem, which is an immediate
consequence of Theorem ET] for p < oo. The case p = oo is obtained by duality. In the case of
a = 0, this result is to be compared with Lemma [[.7l where more smoothness of ¢ is assumed.

Theorem 4.16. Let ¢ be a continuous function on R?\ {0} such that

k
$up [[9(2°) ¢l gy < 00

for some o > %. Then ¢ is a bounded Fourier multiplier on F;"C(Tg) foralll <p < oo anda € R.
In particular, ¢ is a bounded Fourier multiplier on Hg('ﬂ‘g) for 1 < p < oo and on BMO®(T$).

4.3. A GENERAL CHARACTERIZATION

In this section we give a general characterization of Triebel-Lizorkin spaces on T¢ in the same
spirit as that given in section for Besov spaces.

Let ag, 1,0 € R with o > %. Let h be a Schwartz function satisfying (33)). Assume that v is
an infinitely differentiable function on R%\ {0} such that

[9] >0 on {¢:271 < ¢ <2},
(4.7) /Rd(l +1s*)7| FH(hl_a, )(s)|ds < oo,

—ka —1 k
:g§2 °[[F @25 g gy < 00

Writing ¢ = (™Y + ¢ + ¢(V)) and using Lemma @2 we have

7 0 gy < [0+ 15717 @) o).

So the third condition of (7)) is weaker than the corresponding one assumed in [74, Theorem 2.4.1].
On the other hand, consistent with Theorem B9 but contrary to [74, Theorem 2.4.1], our following
theorem does not require that oy > 0.

Theorem 4.17. Let 1 < p < o0 and a € R. Assume thalt oy < o < aq and ¢ satisfies [@T).
Then for any distribution x on Tg, we have

(4.8) el ~ O]+ [|(3 22 = 2l?) ]|

k>0
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The equivalence is understood in the sense that whenever one side is finite, so is the other, and the
two are then equivalent with constants independent of x.

Proof. Although it resembles, in form, the proof of Theorem[3.9] the proof given below is harder and
subtler than the Besov space case. The key new ingredient is Theorem Il The main differences
will already appear in the first part of the proof, which is an adaptation of step 1 of the proof of
Theorem B9 In the following, we will fix z with Z(0) = 0. By approximation, we can assume that
x is a polynomial. We will denote the right-hand side of (@8] by |[|z|] Foe

Given a positive integer K, we write, as before ‘

¢(J) _ 21/) 7) (k) _ Z ¥ (4) (J+k) + Z ¢(J) (G+F)

k=—o0
Then
(4.9) 2] pee < T+1L,
where

T=> 1D 27 * By *x|2)%||p7

<K
=" |[(D 27y * By *x|2)%||p~
k>K J

The estimate of the term I corresponds to step 1 of the proof of Theorem [30 We use again (8]
with 7 and p defined there. Then applying Theorem 1] twice, we have

I[— Z 2k(a1—a)|| 222(j+k)a|ﬁ % Pith *x|2)%”p

k<K
=y M| ( ZWIW wxpyxa?) |

k<K
s ¥ 2’“(“1‘“)\!77_ o 1130 22205 % ),

E<K+2 J

L 1
SHarellyg Do 28 el g (D215 2) ],
E<K+2 J

= avellyy Do 25 g g -
E<K+2

Being an infinitely differentiable function with compact support, I, ¢ belongs to HS (R?), that is,
Loy || ;o < 00. Next, we must estimate |[n"*) ||, uniformly in k. To that end, for s € R?,
2 2

using

F L P ) (s)|? = ‘/ F ) - 20|
< |7 ml, / F O] [F @) - 20

for k < K + 2, we have

0Dl = [ 017177 D)o s

< |7, /Rd(l +s]2)° /}R \F X @)] |[F (o) (s — 2Ft) P deds

SIFE @, [ 2P )] [ s = 240 7 ) s - 20 dsae
g2K0Hf—1(n>||1/Rd(1+|t|2>ff\f— |dt/ (1+[s1)7|F 2 ()(s)] “ds

< comne( [ A+ P10 O])
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In order to return back from 7 to i, write
0 =T a,bh+ Lo, $(h") — h).
Note that

(4.10) / (14 1) |F (T ay h (R — R (0)]dE = s < 00
Rd
since I ,alw(h(K ) — h) is an infinitely differentiable function with compact support. We then deduce
L0yl s [ 1|7 o)

The term on the right-hand side is the second condition of (7). Combining the preceding in-
equalities, we obtain

1S [ P | (e o) O]t ol e

The second term IT on the right-hand side of (&3] is easier to estimate. Using (B.IT]), Theorem E.T]
and arguing as in the preceding part for the term I, we obtain

IIS HIQOSDHHg Z 2_2ka||lfaow(2k')H90HH§ ||x||FI§’(
k>K—2

ST 2| g (@) Ho g Il
k>K—2

where H = p(271) + o+ ¢(2+). To treat the last Sobolev norm, noting that I_,, H is an infinitely
differentiable function with compact support, by Lemma 12, we have

1Tt el g < 1 Nellgg | 0 P17 U YOt S [l
Therefore,

S sup 27 [p(2%)p| e D 2707 o
k>K—2 )
(4.11) -

<c sup 2~ kaOHw 2k.) QDHHU 1200« ]| e

k>K -2
with some constant ¢ independent of K. Putting this estimate together with that of I, we finally
get

ae < ae
lellpes < Nzl
Now we show the reverse inequality by following step 3 of the proof of Theorem (recalling
that A =1 — h). By B13)) and Theorem FAT]

oo

s ~ 1
Izl e S 070 g (D 2% Ry s % 2) %,
i=0
L j ~ 1
SO 2% hyar * 4 = 2) %],

j=0

o0
N ~ 1
<lallzzs + 1 (D222 Vs 1y = al?)?
§=0
Then combining the arguments in step 3 of the proof of Theorem B3 and @II) with A(F)e) in
place of ¥, we deduce

o) T ~ o (ao—a)K
(S8R a)¥, < 2H Rlg Ep g

To remove A\(2¥~K.) from the above Sobolev norm, by triangular inequality, we have

A0 e g < @ g + A5
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By the support assumption on h and ¢, h(2F~%.)p # 0 only for k < K + 2, so the second term on
the right hand side above matters only for k = K 4+ 1 and k = K + 2. But for these two values of
k, by Lemma [£2], we have

[ T CAD I el [(ASIE]
where ¢’ depends only on h. Thus
M@ )@ )el] 4y < L+ D[R]l
Putting together all estimates so far obtained, we deduce

2(0107(1)}{
/ —ka k
2]l Fgoe < llzlpoe +c(14 ) Sup 2 1@ el g Tz Il

So if K is chosen sufficiently large, we finally obtain
«,c < «,c
lollgge < llzll g
which finishes the proof of the theorem. O

Remark 4.18. Note that we have used the infinite differentiability of ¢ only to insure (ZI0),
which holds whenever v is continuously differentiable up to order [3¢]+ 1. More generally, we need
only to assume that there exists o > 3¢ + 1 such that ¢n € HY (Rd) for any compactly supported
infinite differentiable function 1 which Vamshes in a neighborhood of the origin.

Like in the case of Besov spaces, Theorem [.17 admits the following continuous version.

Theorem 4.19. Under the assumption of the previous theorem, for any distribution x on Tg,

~ ! —2a1 2 d{‘: %
Iellege = 120)]+ |[( [ e le w2l )

Proof. This proof is very similar to that of Theorem [ZT7l The main idea is, of course, to discretize
the continuous square function:

1 [e%s} 9—J
~ de . ~ de
/ e e vz’ — &) 22“/ e xaf* —.
0 g i—1 g

=0 2

p

We can further discretize the internal integrals on the right-hand side. Indeed, by approximation
and assuming that x is a polynomial, each internal integral can be approximated uniformly by
discrete sums. Then we follow the proof of Theorem BIT] with necessary modifications as in the
preceding proof. The only difference is that when Theorem [Tl is applied, the Li-norm of the
inverse Fourier transforms of the various functions in consideration there must be replaced by the
two norms of these functions appearing in ([@7)). We omit the details. ]

4.4. CONCRETE CHARACTERIZATIONS

This section concretizes the general characterization in the previous one in terms of the Poisson
and heat kernels. We keep the notation introduced in section

The following result improves [74, Section 2.6.4] at two aspects even in the classical case: Firstly,
in addition to derivation operators, it can also use integration operators (corresponding to negative
k); secondly, [74 Section 2.6.4] requires k > d + max(c, 0) for the Poisson characterization while
we only need k > a.

Theorem 4.20. Let 1 < p < oo and a € R.
(i) Let k € Z such that k > . Then for any distribution x on Tg,

2]l e = [2( |+H(/ 2(k=0) | 7k ‘2§)%

3

P

(i) Let k € Z such that k > &. Then for any distribution x on T,

||35||F;vc%Iﬁ?(O)H—H(/1 k——)ijk )iz %)%

3

P
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The preceding theorem can be formulated directly in terms of the circular Poisson and heat
semigroups of T4. The proof of the following result is similar to that of Theorem B.I5, and is left
to the reader.

Theorem 4.21. Let 1 <p<oo, a € R and k € Z.
(i) If k > a, then for any distribution x on T,
1 1
- —a 2 dr \z
ol e~ o 0m)| + | ([ 0= r20| 7B 1 25)°
0

Im|<k 1—r
where xj, = — Z x(m)U™.
Im|<k
(i) If k> &, then for any any distribution x on T¢,
! a) 2 dr \z
el =~ max, 2]+ | ([ (@ =rt-2)| 7w o) 1)

|m|2<k 1—r

’
P

p

The proof of Theorem [{.20 Similar to the Besov case, the proof of (ii) is done by choosing a1 =
2k > «a. But (i) is much subtler. We will first prove (i) under the stronger assumption that
k > d + «, the remaining case being postponed. The proof in this case is similar to and a little
bit harder than the proof of Theorem BI3l Let again 1 (¢) = (—sgn(k)27|¢|)Fe=27¢l. As in that
proof, it remains to show that 1) satisfies the second condition of (L7) for some oy > o and o > %.
Since k > d + a, we can choose ay such that a < ay < k — d. We claim that Iy_o,h P € HJ (RY)

for every o1 € (4, k— a1 +2). Indeed, this is a variant of LemmaB5 with a = k— oy and p = hP.
The difference is that this function p is not infinitely differentiable at the origin. However, the

claim is true if o7 is an integer. Then by complex interpolation as in the proof of that lemma,

we deduce the claim in the general case. Now choose o such that % <o < % (o1 — %) and set

n =01 —20. Then n > %, and by the Cauchy-Schwarz inequality, we have

1
[ |7 o B 0)ds < ([ s (T BB () s
R4 R
—1 5
N ||]: (Ik—ath)HH;’l(Rd) ‘
Therefore, the second condition of (L7 is verified. This shows part (i) in the case k > d+ . O
To deal with the remaining case k > «, we need the following:

Lemma 4.22. Let 1 < p < oo and k,l € Z such that ¢ > k > a. Then for any distribution x on

T¢ with #(0) = 0,
A e pwr )

H(/l Ez(k_a)‘Jakﬁa( 2 da)
0

Proof. By induction, it suffices to consider the case £ = k 4+ 1. We first show the lower estimate:

1 1 1 1
2(k—a)| 7k D 2dey2 < H / 2(k+1-a)| D 2 de 2
H(/o c |‘75 Ps(x)| g) " ( 0 € |\75 Ps(m)| 8)

To that end, we use
k7€]€ ]55( — —Sgn / jk+1 P

Choose § € (0, k—a). By the Cauchy-Schwarz inequality via the operator convexity of the function
t — t2, we obtain

p

P

|75 P ()] < & Ps(z)|? o

It then follows that
1 oo o
/ 52(k_a>|jsk ﬁs(m)|2 @ i / 52(1+B)|j5k+1 136(33)|2 @ / g2(k—a—p) @
0 € 28 d Jo

g
- e, SN R

IN
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Therefore,
1 1 0o
2k—a)| 7k D 2% 2|l <« H 2(k+1—a) | 7k+1 D @
[(f ool 2), (] el ol )7
1 1
~ 2do\ 3
(/ 52(k+1—a)‘j6k+1 P(s(x)‘ _) 2 ’
0 o/ llp
as desired. _ B _
The upper estimate is harder. This time, writing P, +., = P., * P.,, we have
~ 9 ~ ~
k
(5k+1J5 +1 P5) ‘Ha = sgn(k)2" ! M1 P x gD,
= sgn(k)2" T R .« TFP.,
where ¢(¢) = —27|¢| e~ 7€l Thus
1 1
2(k+1-a) | 7k+1 P 2 dey = _ H } ktl—o 7k+1 } 2 de 2
H(/ |72 P () ) ( (5 Is P'S) o=2¢' € ) p

[N

— 2]6—‘1-1—04

: 2k—a)| T kS a2 9
(/0 € |pe * TFPe(2)] a)

1 1
2(k—a) | T kD 2@ 2
(/0 2|3 4 gE B (o) E)

Now our task is to remove ¢. from the integrand on the right-hand side in the spirit of Theorem 11
To that end, we will use a multiplier theorem analogous to Lemma L7 Let H = Lo((0, 1), %)
and define the H-valued kernel k on R? by k(s) = (¢-(s ))0 <ec1- Itis a well-known elementary fact
that this is a Calderén-Zygmund kernel, namely,

p

S 2k+lfa

p

° ||/k\HLoo(]Rd;H) < 0%

e sup k(s —t) — k(s)||pds < .
teRd J|s|>2]t|

Thus by Lemma (7] (i) (more exactly, following its proof), we obtain that the singular integral
operator associated to k is bounded on L,,(Tg; H¢) for any 1 < p < oco; consequently,

o) H(/Ol 20|34 7H B (z) 2%)% pﬁ H(/Ol 62(k—a)|j6k§€(m)|2 %)%
([ eermorge b £)’

€
1 1
~ den 2
§ H(/ E2(k7a)|jskps(m)|2 _8)2
P 0 €
Thus the lemma is proved for 1 < p < co.

The case p = 1 necessitates a separate argument like Lemma [£77 We will require a more
characterization of H§(T¢) which is a complement to Lemma [0 It is the following equivalence

proved in [81]:
Let 8 > 0. Then for a distribution 2 on T¢ with Z(0) = 0, we have

(4.13) s ~ | ( / U7P). » 2 £)*

Armed with this characterization, we can easily complete the proof of the lemma. Indeed,

3

P

whence

p

L .

(IF=2P). « (I°z) = (—sgn(k)2m) " ¥~ TP, (x) .
Thus by (£I3) with 8 =k — «,

H(/Olf”’““”lff PP £)°

It then remains to apply Lemma 7] (ii) to I®z to conclude that (ZI2]) holds for p = 1 too, so the
proof of the lemma is complete. O

~ 1% -
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End of the proof of Theorem[.20. The preceding lemma shows that the norm in the right-hand
side of the equivalence in part (i) is independent of k with k > «. As (i) has been already proved
to be true for k > d + a, we deduce the assertion in full generality. |

We end this section with a Littlewood-Paley type characterizations of Sobolev spaces. The
following is an immediate consequence of Corollary[d.121and the characterizations proved previously
in this chapter.

Proposition 4.23. Let ¢ satisfy @), k > a and 1 < p < co. Then for any distribution on T4,
[zl g =~ |2(0)|+
~ 1 ~ 1
inf {[|(30 @%b+ o2) ||, + [ (X @%@+ 20 ?) 2} #1<p<2,

k>0 >0
maX{H(Z(22@'15’“”'2)%”;7’ ||(Z(22ka|(’$k*x)*|2)%||p} if 2 < p < oo;
k>0 k>0

and
2l e = [2(0)[+

inf{H(/Ol EQ(k_a)‘jsk ﬁs(y)‘Q %) ‘p + H(/Ol EQ(k_a)‘(Jsk ﬁs(z))*|2 %)%

9
wox {| ([ ez B E) ([ el B

The above infima are taken above all decompositions x =1y + z.

=

} ifl<p<2,
P

2@)%

} if 2 <p<oo.
P

9
P

4.5. OPERATOR-VALUED TRIEBEL-LIZORKIN SPACES

Unlike Sobolev and Besov spaces, the study of vector-valued Triebel-Lizorkin spaces in the
classical setting does not allow one to handle their counterparts in quantum tori by means of
transference. Given a Banach space X, a straightforward way of defining the X-valued Triebel-
Lizorkin spaces on T4 is as follows: for 1 < p< oo, 1 <g<ooanda € R, an X-valued distribution
f on T¢ belongs to F¢',(T%; X) if

~ 1
£z, = 1FO)x + |25k * £11%) 1, pay < 00
k>0

A majority of the classical results on Triebel-Lizorkin spaces can be proved to be true in this vector-
valued setting with essentially the same methods. Contrary to the Sobolev or Besov case, the space
FﬁQ(Td; L,(T4%)) is very different from the previously studied space E 5 (T4). This explains why
the transference method is not efficient here.

However, there exists another way of defining F%, (T%; X). Let (r) be a Rademacher sequence,
that is, an independent sequence of random variables on a probability space (2, P), taking only
two values +1 with equal probability. We define Fpofrad(’]l‘d;X ) to be the space of all X-valued

distributions f on T¢ such that

1 lEe 0 = IFO) o + [ D025 G f . queray < 00

p,rad
k>0

It seems that these spaces F), 4 (T%; X) have never been studied so far in literature. They might
be worth to be investigated. If X is a Banach lattice of finite concavity, then by the Khintchine

inequality,

~ . 1
~ [1FO)x + 13 2% 180 * F1°) 2|, o,y -

k>0

[1f1l7g

p,rad
This norm resembles, in form, more the previous one || f|| Feo,- Moreover, in this case, one can also
define a similar space by replacing the internal /-norm by any ¢;,-norm.

But what we are interested in here is the noncommutative case, where X is a noncommutative
L,-space, say, X = L,,(Tg). Then by the noncommutative Khintchine inequality [40], we can show
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that for 2 < p < co (assuming f(O) =0),

I flle,.., Nmax{H(Zg%a|&k*f|2)%||p, ||(Z22ka| B * f)" ) [ }

k>0 k>0

Here || [, is the norm of L,(T% L,(T¢)). Thus the right hand-side is closely related to the norm
of F2(T§) defined in section In fact, if  — ¥ denotes the transference map introduced in
Corollary [[L2] then for 1 < p < oo, we have

||33HFa (Td) =~ ”mHF“md('H‘d :Lp(T2)) -

This shows that if one wishes to treat Triebel-Lizorkin spaces on ’]I‘g via transference, one should
first investigate the spaces ', 4(T% Ly (T§)). The latter ones are as hard to deal with as Fj&'(T§).
We would like to point out, at this stage, that the method we have developed in this chap-

ter applies as well to F“rad(Td;Lp(Tg)). In view of operator-valued Hardy spaces, we will call

Faa (T%; L,(T¢)) an operator-valued Triebel-Lizorkin space on T¢. We can define similarly its

column and row counterparts. We will give below an outline of these operator-valued Triebel-
Lizorkin spaces in the light of the development made in the previous sections. A systematic study
will be given elsewhere. In the remainder of this section, M will denote a finite von Neumann
algebra M with a faithful normal tracial state 7 and N = L. (T?)@M.

Definition 4.24. Let 1 < p < co and a € R. The column operator-valued Triebel-Lizorkin space
F2-¢(T, M) is defined to be

Fpoe(T M) = {f € S (T4 Li(M)) « || f]l e < o0},

where

~ 1
1l = 1F Oz, + (2 2218k 17)2 1, (ar -

k>0
The main ingredient for the study of these spaces is still a multiplier result like Theorem 1]
that is restated as follows:
Theorem 4.25. Assume that (¢;)>0 and (p;)>o satisfy @) with some o > 3.
(i) Let 1 < p < oco. Then for any f € S'(T%; Li(M)),

1222105 22 £ 00 S s (10527 )i g | 10 22595 5 112,

J=0 —2<k<2 320

(i) If p; = p(/2*7) for some Schwartz function p with supp(p) = {£ : 271 < |¢| < 2}. Then the
above inequality holds for p =1 too.

The proof of Theorem 1] already gives the above result. Armed with this multiplier theorem,
we can check that all results proved in the previous sections admit operator-valued analogues
with the same proofs. For instance, the dual space of F}* “(T?, M) can be described as a space
F%¢(T4, M) analogous to the one defined in Definition However, following the H;-BMO
duality developed in the theory of operator-valued Hardy spaces in [81], we can show the following
nicer characterization of the latter space in the style of Carleson measures:

Theorem 4.26. A distribution f € S'(T% Li(M)) with f(0) =0 belongs to F4(T, M) iff
sup H 0] / 22k 5 % f(s)|2dsHM < 00,
® k>log, (1(Q))
where the supremum runs over all cubes of T?, and where 1(Q) denotes the side length of Q.

The characterizations of Triebel-Lizorkin spaces given in the previous two sections can be trans-
ferred to the present setting too. Let us formulate only the analogue of Theorem 211

Theorem 4.27. Let 1 <p < oo, a € R and k € Z.
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(i) If k > «, then for any f € S'(T%; Li(M)),

)

1
)2
1—7r

17« = mas || Flm)ll, <M>+H(/ L= 2|7 B ()

Lp(N)
where fr, = f — Z f(m U
[m|<k
(ii) If k> &, then for any f € S'(T% Li(M)),
1 1
e Q(k— )| 7k W 2 dr \:z
e s, | Fom)l o+ (] 0= 7P 15) ],

Chapter 5. Interpolation

Now we study the interpolation of the various spaces introduced in the preceding three chapters.
We start with the interpolation of Besov and Sobolev spaces. Like in the classical case, the
interpolation of Besov spaces on ’]I‘g is very simple. However, the situation of (fractional) Sobolev
spaces is much more delicate. Recall that the complex interpolation problem of the classical couple
(WE(RY), WE (R?)) remains always open (see [27, p. 173]). We show in the first section some
partial results on the interpolation of W}(T§) and Hg(Tg). The main result there concerns the
Hardy-Sobolev spaces W}, (T4) and Hg; (T4), that is, when the Li-norm is replaced by the nicer
Hi-norm on T¢. The spaces W0 (T4) and Hyo(T4) are also considered. The most important
problem left unsolved in the first section is to transfer DeVore and Scherer’s theorem on the real
interpolation of (WF(R4), Wk (R?)) to the quantum setting. The main result of the second section
characterizes the K-functional of the couple (L, (T%), W; (T4)) by the L,-modulus of smoothness,
thereby extending a theorem of Johnen and Scherer to the quantum tori. This result is closely
related to the limit theorem of Besov spaces proved in section The last short section contains
some simple results on the interpolation of Triebel-Lizorkin spaces.

5.1. INTERPOLATION OF BESOV AND SOBOLEV SPACES

This section collects some results on the interpolation of Besov and Sobolev spaces. We start
with the Besov spaces.

Proposition 5.1. Let 0 < n < 1. Assume that o, a9, a1 € R and p,po,p1,q, 90, q1 € [1, 00| satisfy
the constraints given in the formulas below. We have

(1) (BOZO (Td) By (Td)) = ng(Tg)a & 7é aq, @ = (1 - 77)040 + naa;

Pp;q0 Pp:q1
1 1—n n
d _ pa d _
( pqo Plh (T )) 7,9 BP»Q(TH)a a - % + a
111 (BI?DO qo Bz;l Q1 (Tg))mq = B;q(Tg)v o = (1 - )O‘() + naq,

1 1- 1 1—
o= 77+la—=—n+£7p=q;
p Po P11 q qo q1
B . (Td), BS . (T9)), = BS (T} _ 1 1 1-n 7
(1 . 6); p1q1( 0))77_ p,q( 9, a=( —77)040-1—77041,]—?— 0 —|—p—1,

R — + a , q < 00.

q q0 q1
Proof. We will use the embedding of BY (T§) into £2(Ly(T§)). Recall that given a Banach space
X, Eg(X) denotes the weighted ¢,-direct sum of (C, X, X, --+), equipped with the norm

1
(w021, ) | = (Jal? + > 2% g | 7)
k>0
Then B ,(T§) isometrically embeds into £3(L,(T§)) via the map Z defined by Zz = (Z(0), o *
x, 1%z, -+ ). On the other hand, it is easy to check that the range of Z is 1-complemented. Indeed,
let P : £5(Ly(T§)) — BY,(T§) be defined by (with & = 0 for k < —1)

OqO

Pla,zo, w1, ) = a+ Y (Pro1+ G+ Brp1) * T
k>0
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Then by B2), PZz = x for all x € B ,(T4). On the other hand, letting y = P(a, zo, 21, - ), we
have
J+2
Pj*xyY = Z @j * (Pr-1+ @k + Pt1) *z, J 0.
k=j—2

Thus we deduce that P is bounded with norm at most 15.

Therefore, the interpolation of the Besov spaces is reduced to that of the spaces (9(Ly(Tg)),
which is well-known and is treated in [8, Section 5.6]. Let us recall the results needed here. For a
Banach space X and an interpolation couple (Xy, X1) of Banach spaces, we have

o (lg0(X), £31(X)), , = l3(X), ao# ar,a=(1-n)ag+na;
o (lgy(Xo), €3} (X1)), . =3 ((Xo, X1)ng): a=(1—n)ag+mnar,

1
q ) @’

oY « a 1 1- n n
o (lgr(Xo), L5 (X1)), = €3 (X0, X1)y), a=(1—n)ag+nau, = T 15
It is then clear that the interpolation formulas of the theorem follow from the above ones thanks
to the complementation result proved previously. O

Remark 5.2. If ¢ = oo, part (iv) holds for Calderén’s second interpolation method, namely,
1 1-—-
(Byg oo(T4). By o(T4)" = Byoo(T§), a=(L=m)ag+nar, = =—=+ L.
’ P P N

Po,0 P1,0
On the other hand, if one wishes to stay with the first complex interpolation method in the case
q = 00, one should replace Bf . (T4) by Bg, (T§):

p,co
(ngo,Cg (Tg)7 Bgll,C() (Tg))n = B;?,Cg (Tg) °

Now we consider the potential Sobolev spaces. Since J% is an isometry between Hg‘('ﬂ‘g) and
L,(T4) for all 1 < p < oo, we get immediately the following

Remark 5.3. Let 0 <n <1, a € R, 1<pg, p1 Sooand%z 1;0774—1)11. Then

(H (T4, HE (T4)), = H(T§) and (Hg, (T9), HE,(T4)), = HS(T3).

The interpolation problem of the couple (HS0(T§), Hy (Tg)) for ag # o is delicate. At the
time of this writing, we cannot, unfortunately, solve it completely. To our knowledge, it seems that
even in the commutative case, its interpolation spaces by real or complex interpolation method
have not been determined in full generality. We will prove some partial results.

Proposition 5.4. Let 0 <n <1, g # a1 ER and 1 < p,q < oo. Then

(Ho(T9), HE(TY)), , = Boy(TA), o= (1—n)ag +nou .
Proof. The assertion follows from Theorem[B:8 the reiteration theorem and Proposition511(i). O

To treat the complex interpolation, we introduce the potential Hardy-Sobolev spaces.
Definition 5.5. For o € R, define
HS, (Td) = {z € S'(T§) : J*x € H1(T§)} with ||xHH%1 = [|J2|,,, -

We define HSy(T4) similarly.
Theorem 5.6. Let ag,a1 € R and 1 < p < oco. Then

(Hisho (T3, 3 (TH)), = H3(T), = (1= oo+ 2.

We require the following result which extends Lemma [[7(ii):

Lemma 5.7. Let ¢ be a Mikhlin multiplier in the sense of Definition [.D. Then ¢ is a Fourier
multiplier on both H1(T%) and BMO(T$) with norms magorized by cq||||m-

Proof. This is an immediate consequence of Lemma 7] (the sequence (¢;) there becomes now the
single function ¢). Indeed, by that Lemma, ¢ is a bounded Fourier multiplier on H;(T%), so by
duality, it is bounded on BMO(T¢) too. O
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We will use Bessel potentials of complex order. For z € C, define J.(£) = (1+ [£]?)% and JZ to
be the associated Fourier multiplier.

Lemma 5.8. Lett € R. Then J is bounded on both H1(T%) and BMO(T%) with norms majorized
by ca(1+ [t])?.

Proof. One easily checks that Ji; is a Mikhlin multiplier and || Jit|[m < ca(1 + [t[)?. Thus, the
assertion follows from the previous lemma. O

Proof of Theorem[5.0l Let z € Hg‘(’]l‘g) with norm less than 1, that is, J%z € L,(T$) and || J%z||, <
1. By Lemma[L.9] and the definition of complex interpolation, there exists a continuous function
f from the strip S = {z € C : 0 < Re(z) < 1} to H1(T¢), analytic in the interior, such that
f(l_lj) = J%,

sup || f (it <c¢ and sup|/f(1+it <ec.

up 760 701+,

Define (with n = %)

F(z) = e j-(=2av=ze1 g5y e g,
Then for any ¢ € R, by the preceding lemma,

e PA T

BMO

/
g0 < ¢
A similar estimate holds for the other extreme point Hj" (T4). Therefore,

x=F(n) € (Hiio(Ts), Hy} (11“‘;))77 with norm < ¢.

We have thus proved
H(T) © (Hi%io(T), HE: (T),

Since the dual space of Hi(T¢) is BMO(TY), we have
H3 (T§)" = Hpio (T§) -

Thus dualizing the above inclusion (for appropriate «; and p), we get

(HER10(T§) » Hpypo (T§)")" € Hy (T5),
where (- -)" denotes Calderdén’s second complex interpolation method. However, by [7]

(Hiio(T9) . Hevrt, (11“‘;)*)17 C (Hiio(Tg) , Hopin(Td)*)" isometrically.

Since

H{(T§) € Hgb(Tj)* isometrically,
we finally deduce

(Hino(T9) » Hyy, (T§)), < Hy (Tg)

which concludes the proof of the theorem. O

Corollary 5.9. Let 0 <n <1, apg, a1 € R and 1 < pg,p1 < co. Then

1—
T4,
Po P
Proof. The preceding proof works equally for this corollary. Alternately, in the case pg # p1, the
corollary immediately follows from the previous theorem by reiteration. Indeed, if pg # p1, then
for any «g, a1 € R there exist [y, 51 € R such that

1 1 1 1
(1——)Bo+—PBi=ap and (1——)By+—P1=a1.
Po Po D1 P1

Thus the previous theorem implies

(Hiio(T8), Hy, (T9)) . = Hy? (1), j=0,1.

« « « 1
(HZDOD(Tg)? ];IP11 (Tz))n = H;D (Tg) y Q= (1 - 77)0‘0 +naa, 5 =

The corollary then follows from the reiteration theorem. |

It is likely that the above corollary still holds for all 1 < pg,p; < oo:
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Conjecture 5.10. Let ap,; € Rand 1 < p < co. Then
le% o 1 (0%
(HS(T§), HY*(T§)), = Hp(T§), a=(1- ];)ozo + ;1 :
P

By duality and Wolff’s reiteration theorem [80], the conjecture is reduced to showing that for
any 0 <n<land 1< py< o0,

« a a 1 1 -1 n
(Hpgg (Tg)v Hl 1(Tg))n = Hp (Tg)v = (1 - 77)040 + naa, ]_9 = Do + I .

Since Hj! (T§) C H{"*(T§), Theorem B8 implies
H (T3) € (Hge (1), HY(TH)),
So the conjecture is equivalent to the validity of the converse inclusion.
Remark 5.11. The proof of Theorem (.6 shows that for ag, 1 € R and 0 <75 < 1,
(Ht (T§), Hy) (T§)), = Hiy, (T3), o= (1—n)ag+na .
We do not know if this equality remains true for the couple (Hf‘O (Td), HM (Tg)).

We conclude this section with a discussion on the interpolation of (W[ (Tg), W} (T4)). Here, the
most interesting case is, of course, that where py = co and p; = 1. Recall that in the commutative
case, the K-functional of (WE (T?), W§(T%)) is determined by DeVore and Scherer [21]; however,
determining the complex interpolation spaces of this couple is a longstanding open problem.

Note that if 1 < po,p1 < oo, (W[ (T§), W} (T4)) reduces to (HE (T4), HY (T§)) by virtue
of Theorem So in this case, the interpolation problem is solved by the preceding results on
potential Sobolev spaces. This reduction is, unfortunately, impossible when one of py and p; is
equal to 1 or co. However, in the spirit of potential Hardy-Sobolev spaces, it remains valid if we
work with the Hardy-Sobolev spaces Wy o (T4) and W} (T4) instead of WE (T4) and W (T4),
respectively. Here, the Hardy-Sobolev spaces are defined as they should be.

Using Lemma 57 we see that the proof of Theorem remains valid for the Hardy-Sobolev
spaces too. Thus we have the following:

Lemma 5.12. For any k € N, W\ o(T4) = HE\o(T§) and W (T3) = Hy, (T§).
Theorem 5.13. Let k € N and 1 < p < oco. Then for X = W} (T§) or X = W(T3),
(Wnio (T8) X)% =W, (T§) = (Whuo(T§), X)% -

Consequently, for any 0 <n <1 and 1 < py < o0,

1 1—-n n
(W (), WE(T), = W) = (Wi (o), whrd), . ==+,

Proof. The first part for X = W?Iftl(Tg) follows immediately from Remark 5.3 Theorem and
Lemma [512l Then by the reiteration theorem, for any 1 < p < oo and 0 < n < 1, we get

(Whio (Td), WE(TS)), = WH(Td) and (WE(TS), Wh, (T4)), = Wh(TS),
where % =114 7 and 1= 1_T’7 + 2. On the other hand, by the continuous inclusion H1(T§) C
L1(T¢), we have
WE(T) = (WECTR), Wh, (TD), © (WE(TE), WE(TY), € WE(TS),
the last inclusion above being trivial. Thus
(WE(TS), WE(TS)), = Wh(TY).
Therefore, by Wolff’s reiteration theorem [80], we deduce the first part for X = W{(T4). The

second part follows from the first by the reiteration theorem. O

Remark 5.14. The second part of the previous theorem had been proved by Marius Junge by a
different method; he reduced it to the corresponding problem on H; too.

The main problem left open at this stage is the following:

Problem 5.15. Does the second part of the previous theorem hold for pg = co?
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5.2. THE K-FUNCTIONAL OF (L, WF)

In this section we characterize the K-functional of the couple (L,(T%), Wi (T4)) for any 1 < p <
oo and k € N. First, recall the definition of the K-functional. For an interpolation couple (Xo, X7)
of Banach spaces, we define

K(x,g; Xo,Xl) = inf{HCCQHXO +€||!E0||X1 rx=x9+ 21,20 € Xo, T1 € Xl}

fore > 0 and 2 € Xo+X1. Since WF(T§) C L, (T§) contractively, K (x,e; Ly(Tg), W (T§)) = |||,
for € > 1; so only the case ¢ < 1 is nontrivial. The following result is the quantum analogue of
Johnen-Scherer’s theorem for Sobolev spaces on R? (see [30]; see also [6, Theorem 5.4.12]). Recall
that w?(x,) denotes the kth order modulus of L,-smoothness of 2 introduced in section 34

Theorem 5.16. Let 1 <p < oo and k € N. Then
K (z,e"; Lp(T§), WH(TF)) = e¥2(0)| + wh(z,¢), 0<e<1
with relevant constants depending only on d and k.

Proof. We will adapt the proof of [6, Theorem 5.4.12]. Denote K (x,e; L,(T§), W (T4)) simply by
K(z,¢). Tt suffices to consider the elements of L,(T4) whose Fourier coefficients vanish at m = 0.
Fix such an element . Let # = y + 2z with y € L,(T%) and z € W; (T¢) (with vanishing Fourier
coefficients at 0). Then by Theorem 220

Wh(@,) <wh(y,e) +w(z,6) S lylly +<*lzlws .

which implies
wﬁ(m,a) < K(x,e").
The converse inequality is harder. We have to produce an appropriate decomposition of z. To
this end, let I = [0, 1)¢ and define the required decomposition by

y:(—1)"/-~-/A§u(m)du1---duk and z =1z —y,

I I

where v = uy; + -+ - + ug. Then
MMSA~AM&merdm§%@w@d§%@d

To handle z, using the formula

k 4 k
Al;u = Z(_l)k_] ( j > Tj5u7

=0

we rewrite z as

2= (k. i(_l)k—j ( I; ) /H -'/HTjsu(x)dm - duy.

All terms on the right-hand side are treated in the same way. Let us consider only the first one by

setting
21 = / . -/Tsu(x)dul - dug.
I i

Write each u; in the canonical basis of R%:

d
U; = E ui,jej.
j=1

We compute 0121 explicitly, as example, in the spirit of (Z1)):

1< B
. RN R . ]
0121 - ;_1/]1 /Haui’1 (x)duq - - - dug

Integrating the partial derivative on the right-hand side with respect to w;,; yields:

1 1
0
/ ] Tau(x)duiJ = As(e1+u—ui,1e1)(x) = / As(el—i-u—ui,lel)(x)dui,l )
o Ouin 0
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where for the second equality, we have used the fact that A.(e, yu—u, e,)(2) is constant in wu; ;.
Thus

k
1
Orz1 = - E / e /Aa(e1+u*ui,1e1)(x)du1 <o dug,
i=1 71 I

To iterate this formula, we use multi-index notation. For n € N let
[K]]" = {i= (i1, ,in) : 1 <ig <k, all i/’s are distinct}.
Then for any m; € N with m; < k, we have
oz =™ Z / /Ag};l Yduy - - - dug, ,
el[k]™

where

up =eyr+u— (ugg+-- —|—ui}n1’1)e1 .
Iterating this procedure, for any m € N¢ with |m|; = k, we get

DMz =g F Z Z AZZ . AZ;@l( x)duy - - - dug

aek)ma atelir])m U

where the u,;;’s are defined by induction

g :ej—f—uij—l—(’u,.j .—|—---—|—uiznj’j)ej, 1=2,---,d.

01,7
Thus we are in a position of appealing Lemma [2.27] to conclude that
—k, k
Hszal S e Fwy(w,e),
whence
< kK
lzlws S e wp ().

Therefore, K (z,e*) < wk(z,¢). O

~“p
Remark 5.17. The preceding proof shows a little bit more: for any x € sz (T¢) with 2(0) = 0,
wy(z,e) = {|lyllp +*lzlws : 2 =y+27(0) =2(0) =0}, 0<e<l
In particular, this implies
lzlly S wp(x,e),

which is the analogue for moduli of L,-continuity of the inequality in Theorem T2 (the Poincaré
inequality). On the other hand, together with Lemma P22 the above inequality provides an
alternate proof of Theorem [2.12]

The preceding theorem, together with Theorem and the reiteration theorem, implies the
following
Corollary 5.18. Let 0 <n <1, a >0, k, ko, k1 € Nand 1 <p,q,q1 <oco. Then
(i) (Ly(Td), W’“(M)n L= BIE(TS);
(it) (Wy(T9), By, (T§)), , = Bﬁ (T§), k#a, B=1—-nk+na;

(iii) (Wp°(T§), W™ (T4)), , = B;?‘,q(Tg) , ko # ki, o= (1 —n)ko + k.

We can also consider the complex interpolation of (L,(T§), W} (Tg)). If 1 < p < oo, this is
reduced to that of (L,(T§), H¥(T3)); so by the result of the previous section, for any 0 <7 < 1,

(Lp(T4), WE(TS), = HI¥(TH).

Problem 5.19. Does the above equality hold for p = 1?7 The problem is closely related to that in
Remark 5171
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We conclude this section with a remark on the link between Theorem [B.20] and Theorem [B.16
The former can be easily deduced from the latter, by using the following elementary fact (see []]
p. 40): for any couple (Xy, X1) of Banach spaces and x € Xy N X,

. 1 1
71’1311 (n(1=m)" HmH(XO,Xl)M =q zllx,,

l p—
lin (n(1 =) |ll x,. x,),, = 7% llellx,

Here the norm of (Xg, X1)y,4 is that defined by the K-functional. Then Theorem B.20 follows from
Theorem and the first limit above. This is the approach adopted in [38] 47]. It also allows
us to determine the other extreme case o = 0 in Theorem [320, which was done by Maz’ya and
Shaposhnikova [41] in the commutative case. Let us record this result here.

Corollary 5.20. Let 1 <p < oo and 1 < q < co. Then for x € Bg’oq('ﬂ‘g) with £(0) = 0 for some
ag > 0,

. 1 -~ _1
lim otz g 07

5.3. INTERPOLATION OF TRIEBEL-LIZORKIN SPACES

This short section contains some simple results on the interpolation of Triebel-Lizorkin spaces.
They are similar to those for potential Sobolev spaces presented in section (Il It is surprising,
however, that the real interpolation spaces of F;"C(Tg) for a fixed p do not depend on the column
structure.

Proposition 5.21. Let 1 < p,q < oo and ag, a1 € R with ag # 1. Then
, d ) d _ d _
(Fgoe(Tg), Fot c(’]1‘9))777(1 = By (Tg), a=(1—-mn)ag+na.
Similar statements hold for the row and mixture Triebel-Lizorkin spaces.

Proof. The assertion is an immediate consequence of Proposition [I.I0] (v) and Proposition 511 (i).
Note, however, that Proposition 10 (v) is stated for p < oo; but by duality via Proposition E.14]
it continues to hold for p = occ. O

On the other hand, the interpolation of F;"C(Tg) for a fixed « is reduced to that of Hardy spaces
by virtue of Proposition (iv) and Lemma

Remark 5.22. Let a € Rand 1 < p < co. Then

(Fe(Tg), FI™°(T§)) s = () = (F(T§), F™“(T)), -

o=

Proposition 5.23. Let ap,a; € R and 1 < p < oo. Then
e e 1 @
(Foe(Tg), Fy°(Tg)) s = Fpe(Tg), a=(1- ];)Ozo + ?1 :
P
Proof. This proof is similar to that of Theorem .6 Let 2 be in the unit ball of F;’C(Tg). Then by
Proposition L0, J*(z) € HE(T§). Thus by Lemma [LJ, there exists a continuous function f from
the strip S = {z € C : 0 < Re(z) < 1} to H$(T%), analytic in the interior, such that f(%) =J%x)
and such that
su it . <ec su 1+it)|,. <ec
teﬂng( Nsno teg”f( )H?-Ll
Define .
F(z) =73 j-(=2a—za1 p(5) s c g
By Remark and Lemma B8 for any ¢ € R,

[P e € HF 70 i) g0 <

eaor
Similarly,

HF(l +1t)||F1a,r ~ e—ﬁ-‘r(l—%)? HJit(OtO*Otl) f(l +1t)||q_[<1: < C/.
Therefore,

]' «1,C
T = F(}—j) € (Fee(Tg), Fi™ (TZ))% ;



Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori 69

whence
Fgo(Td) € (o (TH), Fie(Tg)

1
P

The converse inclusion is obtained by duality. |

Chapter 6. Embedding

We consider the embedding problem in this chapter. We begin with Besov spaces, then pass to
Sobolev spaces. Our embedding theorem for Besov spaces is complete; however, the embedding
problem of Wi(T$) is, unfortunately, left unsolved at the time of this writing. The last section
deals with the compact embedding.

6.1. EMBEDDING OF BESOV SPACES

This section deals with the embedding of Besov spaces. We will follow the semigroup approach
developed by Varopolous [76] (see also [20, [77]). This approach can be adapted to the noncom-
mutative setting, which has been done by Junge and Mei [33]. Here we can use either the circular
Poisson or heat semigroup of T4, already considered in section We choose to work with the
latter. Recall that for z € S'(T%),

W, (z) = Y Fm)yr™ U™, 0<r<1.
mezZa

The following elementary lemma will be crucial.

Lemma 6.1. Let 1 <p <p; <oo. Then

1

(6.1) (W (@), S (1 =) 2P|y, @€ Ly(T), 0<r < 1.

Proof. Consider first the case p =1 and p; = co. Then

IWo(@)]loo < Y r™@m)] < Jzfly > rlm

mezZd meZzd
d
=l > r* > 1Szl Y (L4 k)Er”
k>0  |m|2=k k>0

d
~ (=) 2z

The general case easily follows from this special one by interpolation. Indeed, the inequality just
proved means that W, is bounded from Ly (T%) to Lo (T%) with norm controlled by (1 —7)~%. On
the other hand, W,. is a contraction on L,,(Tg) for 1 < p < co. Interpolating these two cases, we
get ([G1)) for 1 < p < p1 = co. The remaining case p; < oo is treated similarly. O

The following is the main theorem of this section.

Theorem 6.2. Assume that 1 < p < p;1 < 00,1 < ¢ < ¢ < © and a,a; € R such that

a— % =a; — z%‘ Then we have the following continuous inclusion:

BS,(T4) € B3, (T}) .

P1,91

Proof. Since Bg! (Tq) C Bg!, (T4), it suffices to consider the case ¢ = ¢1. On the other hand,

by the lifting Theorem B7] we can assume max{«, a1} < 0, so that we can take k = 0 in Theorem
3. 151 Thus, we are reduced to showing

(/01(1 —r)*anl||WT(CC)HZ1 ;ﬁ‘r)% S (/01(1 —r)’%HWr(x)HZ ;ﬁnr)%.

To this end, we write W,.(z) = W (W s(z)) and apply @) to get

W, (@)]],, S Q=R |W )],
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Thus
! _ae1 ¢ dr \a ! _ a1 ad( 11y ¢ dr \u
([a-n"#lwl;, 125)" < ([ a-n"Fa-vn & wse; 25)
1 1
B Cogy—gew a1y g 2rdr \73
— ,/0 (I—=r)y""2 (1l—r)= e » HWT(:E)le—’rQ)
! _ax q dr %
s([a-nFw @l i)
as desired. 0

Corollary 6.3. Assume that 1 <p <p; <o00,1 <qg<00 and a = d(% = p%) Then

BS (T§) C Ly, o(T§) if pr <oo and BS1(T§) C Loo(T§) if p1=o0.
Proof. Applying the previous theorem to «; = 0 and ¢ = ¢; = 1, and by Theorem 3.8 we get

d d d
By 1(Ty) C 321,1(T9) C Ly, (Tg) .

This gives the assertion in the case p; = co. For p; < oo, we fix p and choose two appropriate
values of o (which give the two corresponding values of p;); then we interpolate the resulting
embeddings as above by real interpolation; finally, using (LI)) and Proposition [5.I] we obtain the
announced embedding for p; < co. g

The preceding corollary admits a self-improvement in terms of modulus of smoothness.

Corollary 6.4. Assume that 1 <p <p; < oo, a = d(}—lj — pil) and k € N such that k > «. Then

wlgl(x,a)g/o 5*aw’;(x,5)%5, 0<e<l

Proof. Without loss of generality, assume Z(0) = 0. Then by the preceding corollary and Theo-
rem [3.16] we have

v dé
lallo 5 [ 670whiz,0) 5
0

Now let u € R? with |u| < . Noting that
wh(AL(2),6) < 28 min (w;f(m,s), w];(m,cS)) < ka];(m,min(s, 9)),

P
we obtain
< ‘ —a, k dd —a, k
HAU(‘/'E)”ZH ~ o 6 wp(xa(s)? +¢€ wp(x,f‘:)
T do S dé
S/ ) wlg(a:,(S)F—i—/ ) wg(m,(S)F
0 5
R ds
5/ 5 wh(x,5) 5
0
Taking the supremum over all u with |u| < ¢ yields the desired inequality. g

Remark 6.5. We will discuss the optimal order of the best constant of the embedding in Corol-
lary [6.3] at the end of the next section.
6.2. EMBEDDING OF SOBOLEV SPACES

This section is devoted to the embedding of Sobolev spaces. The following is our main theorem.
Recall that ngm(ﬂrg) in the second part below is the quantum analogue of the classical Zygmund
class of order o (see Remark B.19).

Theorem 6.6. Let o, a7 € R with a > a.
(i) If 1 <p<p1 <o are suchthata—%:al—pil, then
HS(Tg) C Hp! (T9)  continuously.
In particular, if additionally o = k and oy = k1 are nonnegative integers, then
Wf('ﬂ‘g) C Wfll (T4) continuously.
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(ii) If 1 < p < oo is such that p(a — a1) > d and a1 = a — %, then
HY (T¢) Bg‘c}’oo('ﬂ‘g) continuously.
In particular, if additionally o = k € N, and if either p > 1 or p=1 and k is even, then
W;(Tg) C ng,oo(’lrz) continuously.

Proof. (i) By Theorem 23 the embedding of W} (T§) is a special case of that of H®(T§). Thus we
Just deal with the potential spaces H (’]I‘g). On the other hand, by the lifting property of potential
Sobolev spaces, we can assume «1 = 0. By Theorem [3:8 and Corollary [63] we have

H(T§) C Lg,00(T§)-
Now choose 0 < < 1 and two indices sp, s; with 1 < sg,s1 < g such that

1 1-—
L 1=m m

p S0 S1

Let
1 1

a
tj Sj d ’
Then interpolating the above inclusions with s; in place of p for j = 0,1, using Remark and
D), we get
HE(T9) = (HE (T3, HE(TD)), € (Liguoe(T9): Lov e (TD),
(ii) By Theorems B8 and [6:2] we obtain
Hy (T§) C By oo (T§) C B3 o (T§) -

If k is even, WF(T$) C HF(T%). Thus the theorem is proved. O

j=0,1.

= LPLP(Tg) C Ly, (Tg)-

Remark 6.7. The case pa = d with a3 = 0 is excluded from the preceding theorem. In this case,
it is easy to see that H' (T4) C Ly(T$) for any g < oo. It is well known in the classical case that
this embedding is false for ¢ = co. Consider, for instance, the ball B = {s € R?: |s| < 1} and the
function f defined by f(s) = loglog(1 + |—i‘) Then f belongs to W(B) but is unbounded on B.

Now extending f to a 1-periodic function on R? which is infinitely differentiable in [~1, 1]?\ B,

2 2
we obtain a function in W(T?) but unbounded on T¢.

Remark 6.8. Part (i) of the preceding theorem implies W (T§) C Loo(T§) for all p > 1. In the
commutative case, representing a function as an indefinite integral of its derivatives, one easily
checks that this embedding remains true for p = 1. However, we do not know how to prove it in
the noncommutative case. A related question concerns the embedding Wi (Td) ng,m(’]l‘g) in
the case of odd k which is not covered by the same part (ii).

The quantum analogue of the Gagliardo-Nirenberg inequality can be also proved easily by in-
terpolation.

Proposition 6.9. Let k € N,1 < 7,p < 00,1 <q< 0o and 8 € N¢ with 0 < |B|; < k. If

1 1—
S [ RS S ek )
k r q P

then for every x € WE(Tg) N Ly(T§),

- n
1D S ll=llg™"( D ID™llp)" -
Im|=k
Proof. This inequality immediately follows from Theorem[.13and the well-known relation between
real and complex interpolations:

(La(T), WECTS), | © (Lo(Td), WETD), = Wi (T,

n,1
It then follows that

2l e S lllg ™ 2y -
Applying this inequality to z — Z(0) instead of x and using Theorem 2T2] we get the desired
Gagliardo-Nirenberg inequality. O
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An alternate approach to Sobolev embedding. Note that the preceding proof of Theo-
rem [6.6lis based on Theorem [6.2] which is, in its turn, proved by Varopolous’ semigroup approach.
Varopolous initially developed his method for the Sobolev embedding, which was transferred to
the noncommutative setting by Junge and Mei [33]. Our argument for the embedding of Besov
spaces has followed this route. Let us now give an alternate proof of Theorem (i) by the same
way. We state its main part as the following lemma that is of interest in its own right.

Then

Lemma 6.10. Let 1 < p < g < oo such that % = % é,

WA(TS) C Ly oo (TH).
Proof. We will use again the heat semigroup W, of T4. Recall that W, = Ws with r = 6_4”25,

where W, is the periodization of the usual heat kernel W, of RY (see section B3). It is more

convenient to work with W.. In the following, we assume z € S(T¢) and 7(0) = 0. Let A; =
Aflaj, 1 <j<d. Then

A‘lm:4772/0 Ws(x)ds and ij:47r2/0 Ws(ajx) de.

We claim that for any 1 < p < oo
(6.2) W (@2)|p S e 2 lz]l, and [We(dj2)]o0 S 3G |2],, &> 0.

~

Indeed, in order to prove the first inequality, by the transference method, it suffices to show a similar
one for the Banach space valued heat semigroup of the usual d-torus. The latter immediately follows
from the following standard estimate on the heat kernel W, of R%:

supe? / |VW_(s)| ds < oo,
e>0 R4

The second inequality of (62]) is proved in the same way as ([G)). First, for the case p = 1, we
have (recalling that z(0) = 0)

— elmlZ i~
We@2) oo <20 > |myle =™ |2 (m))|
meZ4\{0}

<omfall D0 fmylemt
meZ4\{0}

Set(1—e ) % |l SeF

Interpolating this with the first inequality for p = co, we get the second one in the general case.
Now let € > 0 and decompose Az into the following two parts:

oo EN
y:47r2/ W;(9;x)dé and z=47r2/ Ws(9;) dé.
€ 0
Then by ([@2)),
Ioll S Ll [ 63640 d5 e 4D
€
and
‘1 1
12llp < Nl L0 dé ~ e ||z
Thus for any ¢ > 0, choosing ¢ such that £ = t, we deduce
ylloo +tlizlly S ¢4 2]l = 7]l
where 77 = 1 — L. Tt then follows that

1852lg00 ~ 183l 1. 2y, Ly (T S 2l

Since

d
r = — Z Ajajili,
7j=1
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we finally get

Iz llg00 S D I18;052lla00 S Y 1052l = IVl
j=1 j=1
Thus the lemma is proved. O

Alternate proof of Theorem[G.dl (i). For 1 < p < d, choose pg, p1 such that 1 < pg < p < p; < d.
Let % = i - % for ¢ = 0,1. Then by the previous lemma,
W[:)LI (Tg) - LqrnOO(Tz)v i=0,1.
Interpolating these two inclusions by real method, we obtain
Wpl (Tg) C Lq,p(Tg)-

This is the embedding of Sobolev spaces in Theorem [6.0] (i) for k¥ = 1. The case k > 1 immediately
follows by iteration. Then using real interpolation, we deduce the embedding of potential Sobolev
spaces. U

Sobolev embedding for p = 1. Now we discuss the case p = 1 which is not covered by
Theorem The main problem concerns the following:

(63) WHTS) © L (T3).

At the time of this writing, we are unable, unfortunately, to prove it. However, Lemma [6.10
provides a weak substitute, namely,

(6.4) WH(TS) € Lo o (TH).

In the classical case, one can rather easily deduce ([63) from (G4]). Let us explain the idea coming
from [77, page 58]. It was kindly pointed out to us by Marius Junge. Let f be a nice real function
on T? with f(()) = 0. For any t € R let f; be the indicator function of the subset {f > t}. Then f
can be decomposed as an integral of the f;’s:

+oo
(6.5) Fe /_ fdt.

By triangular inequality (with ¢ = %),

+o0o
171la s/ 1ellg .

However,

[ fellg = I fellg0  VEER.
Thus by (64) for § =0,

I fellg S W fells + 1V fellx -

It comes now the crucial point which is the following

+oo
(6.6) / IV il dt < IV

— 00
In fact, the two sides are equal in view of Sard’s theorem. We then get the strong embedding (G.3])
in the case # = 0. Note that this proof yields a stronger embedding:

(6.7) Wi (T?) € L_a_,(TY.

The above decomposition of f is not smooth in the sense that f; is not derivable even though f is
nice. In his proof of Hardy’s inequality in Sobolev spaces, Bourgain [I1] discovered independently
the same decomposition but using nicer functions f; (see also [60]). Using (G.7) and the Hausdorfi-
Young inequality, Bourgain derived the following Hardy type inequality (assuming d > 3):

~

3 ('f(im)' < vz

d—1 ~
mezd 1+ |ml)

We have encountered difficulties in the attempt of extending this approach to the noncommu-
tative case. Let us formulate the corresponding open problems explicitly as follows:
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Problem 6.11. Let d > 2.
(i) Does one have the following embedding

WH(TS) € L_a (T4) or WA(TE) C L ,(T4)?

(ii) Does one have the following inequality

|Z(m)|
Z T+ |m)aT = ||ff||wll(1rg)?

a1 ~
mezd 1+ |ml)

By the previous discussion, part (i) is reduced to a decomposition for operators in Wi (T4) of the
form (@) and satisfying ([66). One could attempt to do this by transference by first considering
operator-valued functions on R?. With this in mind, the following observation, due to Marius
Junge, might be helpful.

Given an interval I = [s, t] C R and an element a € L1(T$), we have

a(]ll®a):55®a_5t®aa

where 0 denotes the distribution derivative relative to R and d5 is the Dirac measure at s. Let
|| - || denote the norm of the dual space Co(R;.Ag)*, which contains L; (R; L1 (T%)) isometrically. If
f is a (nice) linear combination of 1; ® a’s, then we have the desired decomposition of f. Indeed,
assume [ = Z?:l a1, ®e;, where o; € Ry and the 17, ® e;’s are pairwise disjoint projections of
Loo(R)®TY. Let fy = L(z,00)(f). Then
f= / fedt.
0

o0
10 < [ il
On the other hand, by writing explicitly f; for every ¢, one easily checks

széwmm.

By iteration, the above decomposition can be extended to higher dimensional case for all functions
f of the form Z?:l a;lr, ®@e;, where o; € Ry, R;’s are rectangles (with sides parallel to the axes)
and 1g, ® e;’s are pairwise disjoint projections of Lo, (R?)@TY.

The next idea would be to apply Lemma to these special functions. Then two difficulties
come up to us, even in the commutative case. The first is that these functions do not belong to
W this difficulty can be resolved quite easily by regularization. The second one, substantial, is
the density of these functions, more precisely, of suitable regularizations of them, in W.

So for any g > 1,

Uniform Besov embedding. We end this section with a discussion on the link between a

certain uniform embedding of Besov spaces and the embedding of Sobolev spaces. Let 0 < a < 1,

1§p<oowithap<dand%:l—%. Then

P
a(l —a) o

(6.8) ]I} < cap —ap) 2|0,z € Bpp(TH)

where ||z go.w is the Besov norm defined by (EIJ). In the commutative case, this inequality is
proved in [I3] for « close to 1 and in [4I] for general @. One can show that (G.8)) is essentially
equivalent to the embedding of W, (T§) into Ly(T§) (or Lg,(T)) for d > p and ¢ = & — 3. Indeed,
assume([i8). Then taking limit in both sides of ([68) as o — 1, by Theorem B20, we get

lzllg < l2lwy
for all z € W} (T§) with Z(0) = 0. Conversely, if W, (T§) C Lq(T§), then
(Lo(T), WD), © (Ly(TD), Ly(T),.,

Theorem .16 implies that

a,p

(Ly(T4). WD), C By, (TH)

a7
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with relevant constant depending only on d, here Bg‘,p('ﬂ‘g) being equipped with the norm || [|gg..
On the other hand, By a classical result of Holmstedt [28] on real interpolation of L,-spaces (which
readily extends to the noncommutative case, as observed in [37], Lemma 3.7]),

(Lol(T9). L(TD)).,, C Lop(T})
with the inclusion constant uniformly controlled by ar (1-— oz)%. We then deduce
1 1
[z]lrp S a? (1 —a)7||lz] g

This implies a variant of (G8) since L, ,(T¢) C L,(T%).

Since we have proved the embedding W} (T§) C Ly(T§) for p > 1, [@8) holds for p > 1. Let us
record this explicitly as follows:
Proposition 6.12. Let 0 < a <1, 1 <p < oo with ap < d and % =1_ 9+ Then

p
i « d
Izl S (a(l = a))7 || z € By ,(Tj)

P
By’
with relevant constant independent of c.

In the case p = 1, Problem [617] (i) is equivalent to (G.8)) for p = 1 and « close to 1.

6.3. COMPACT EMBEDDING

This section deals with the compact embedding. The case p = 2 for potential Sobolev spaces
was solved by Spera [65]:

Lemma 6.13. The embedding H3* (T%) < Hy*(T4) is compact for aq > ag > 0.
We will require the following real interpolation result on compact operators, due to Cwikel [19].

Lemma 6.14. Let (Xo, X1) and (Yo, Y1) be two interpolation couples of Banach spaces, and
let T : X; — Y, be a bounded linear operator, j = 0,1. IfT : Xo — Yy is compact, then
T : (Xo, X1)np = (Yo, Y1)np is compact too for any 0 <n <1 and1 < p < oo.

d

Theorem 6.15. Assume that1 <p<p; <oo, 1 <p*<p1,1<g< ¢y <0 anda—% =ap—

Then the embedding By ,(Tg) < Byt , (T§) is compact.

Proof. Without loss of generality, we can assume ¢ = ¢;. First consider the case p = 2. Choose t
sufficiently close to ¢ and 0 < 1 < 1 such that

Then by Proposition B.1]
Bg,q(Tz) = (33,2(11‘3)) B;t(Tg))mq .
By LemmaGI3 B ,(T§) < BS‘}Q(Tz) is compact. On the other hand, by TheoremG.2, BS',(Tq) <

B;‘ll’t('ﬂ‘g) is continuous. So by Lemma [6.14]

B, (T§) — (B5(T§), Byl y(T§)), , is compact.

However, by the proof of Proposition i1l and (I]), we have
(Bg,é(ﬂ‘g)’ Bgf,t(Tg))n,q - 531 ((LQ(TZI), Lp1 (Tg)n,q) - égl(Ls,q(Tg))a
where s is determined by
1 1-— 1 1—7n)(a—«
-~ 77+n__+( n)( 1)

s 2 p1 D1 d

Note that n tends to 1 as ¢ tends to ¢. Thus we can choose 7 so that s > p*. Then L ,(T%) C
L,+(T¢). Thus the desired assertion for p = 2 follows.

The case p # 2 but p > 1 is dealt with similarly. Let ¢ and 7 be as above. Choose r < p (r close
to p). Then

(BS 2 (T8, B (TH), . C €2 (La(Td). Lo(Td)ng) = £5 Ly o(TH)),
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where pg is determined by

1 _1-n 7

po 2
If 7 is sufficiently close to 1, then py < p that we will assume. Thus L,(T%) C Ly, (T4). It then
follows that

B (T8) C (BS,(Td), B(TA), .
The rest of the proof is almost the same as the case p = 2, so is omitted.
The remaining case p = 1 can be easily reduced to the previous one. Indeed, first embed By q(Tg)

into B2 (T§) for some ay € (v, a1) (a2 close to o) and py determined by o — % =g — p%. Then
by the previous case, the embedding B92 (T§) < By? , (T§) is compact, so we are done. |

Theorem 6.16. Let 1 <p < p; < o0 and a, a1 € R.

(i) If a — % = — pil, then Hg‘(’]l‘g) — Hp! (T¢) is compact for p* < p1. In particular, if
additionally o = k and oy = ki are nonnegative integers, then W} (Tg) < W;& (Tg) is
compact.

(i) Ifpla—a1) >d and o™ < ag = o — g, then Hg‘('ﬂ‘g) — Bg‘om('ﬂ‘g) is compact. In particular,
if additionally oo = k € N, then W}F(T§) — Bg‘;oo(Tg) is compact.

Proof. Based on the preceding theorem, this proof is similar to that of Theorem [6.6] and left to the
reader. O

Chapter 7. Fourier multiplier

This chapter deals with Fourier multipliers on Sobolev, Besov and Triebel-Lizorkin spaces on
Td. The first section concerns the Sobolev spaces. Its main result is the analogue for Wf('ﬂ‘g)
of [I7, Theorem 7.3] (see also Lemma [[3) on c.b. Fourier multipliers on L,(T4); so the space
of ¢.b. Fourier multipliers on W} (T4) is independent of §. The second section turns to Besov
spaces on which Fourier multipliers behave better. We extend some classical results to the present
setting. We show that the space of c.b. Fourier multipliers on By’ q(Tg) does not depend on 6 (nor
on g or a). We also prove that a function on Z? is a Fourier multiplier on Bf' (Tq) iff it is the
Fourier transform of an element of Blom(’]l‘d). The last section deals with Fourier multipliers on
Triebel-Lizorkin spaces.

7.1. FOURIER MULTIPLIERS ON SOBOLEV SPACES

We now investigate Fourier multipliers on Sobolev spaces. We refer to [59, 9] for the study of
Fourier multipliers on the classical Sobolev spaces. If X is a Banach space of distributions on ’]I‘g,
we denote by M(X) the space of bounded Fourier multipliers on X; if X is further equipped with
an operator space structure, M, (X) is the space of ¢.b. Fourier multipliers on X. These spaces are
endowed with their natural norms. Recall that the Sobolev spaces W;(Tg), H g('ﬂ‘g) and the Besov
By q(Tg) are equipped with their natural operator space structures as defined in Remarks 2.29 and
5. 20!

The aim of this section is to extend [I7, Theorem 7.3] (see also Lemma [[3) on c.b. Fourier
multipliers on L,,(Tg) to Sobolev spaces. Inspired by Neuwirth and Ricard’s transference theorem
[48], we will relate Fourier multipliers with Schur multipliers. Given a distribution z on Tg, we
write its matrix in the basis (U™),,cza:

2] = (@™, U™)

Here k! denotes the transpose of k = (ki,..., kq) and 0 is the following d x d-matrix deduced from
the skew symmetric matrix 6:

= (:’i(m - n)ei"é(m_")t)

m,neZd m,neZl '

0 912 913 e old

0 0 923 92d
0=—2r

0 0 0 Od_ 1.
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Now let ¢ : Z% — C and Mgy be the associated Fourier multiplier on Tg. Set ¢ = (¢m,n)
Then

(7.1) [My] = (fm-nB(m —n)em?m=)") = 8, ((a)),

m,n€eZe’

where S 5 is the Schur multiplier with symbol ¢
According to the definition of W} (T§), for any matrix a = (@mn)m,neze and £ € N§ define

D'a = ((2ri(m — n)) )

m,nezd ’
If x is a distribution on ’]I‘g, then clearly

[MyD*x] = S, (D[x]).
We introduce the space

Sk = {a = (Gmn)mmezs : D'a € Sy(£2(2%)), VL € NE,0 <[] < k}

p

and endow it with the norm

1
lallss = (> 1Dals,)”

0<|eli<k

Then S}; is a closed subspace of the £,-direct sum of L copies of S, (¢2(Z%)) with L = 2o0<e<k L
The latter direct sum is equipped with its natural operator space structure, which induces an
operator space structure on S}’,f too.

If ¥ = (Ym.n)mneza is a complex matrix, its associated Schur multiplier Sy on S,’,f is defined
by Sypa = (Vmn Gmn)mnezi- Let Map(SE) denote the space of all ¢.b. Schur multipliers on Sf,

equipped with the natural norm.
Theorem 7.1. Let 1 <p < oo and k € N. Then
Mcb(Wf(Tz)) = Mcb(S;;) with equal norms.

Consequently,
Mcb(Wf(Tz)) = Mcb(W;(’]I‘d)) with equal norms.

Proof. This proof is an adaptation of that of [I7, Theorem 7.3]. We start with an elementary
observation. Let V = diag(---,U", ) cza. For any a = (amn)mmezs € B(l2(Z9)), let © =
V(a® 1pa)V* € B(£2(Z7))T, where 1ga denotes the unit of T§. Then

m —-n mrr—n —infmtyrm—n
T = (U AmnU )m,nEZd = E am,nemm@U U = § am,nemm@e U )

m,n m,n
where (e,,.,) are the canonical matrix units of B(f2(Z%)). So,
[(E] = (ammemm)m’nezd?

a matrix with entries in B(f2(Z%)). Since V is unitary, we have

l2ll .z zymrgy = o @ Lnglle, e @ayery = lolls, @@
Similarly, for ¢ € Ng,

(7.2) HDZmHLp(B(Zz(Zd))@Tg) = HDE‘LHS,,(@(W))'

Now suppose that ¢ € Mep(W)F(TG)). For a = (amm)mneze € B(la(Z?)), define z = V(a ®
11a)V* as above. Then by (1)), for ¢ € N¢,
6

(s EM) (D) = V(Sy(D'a) © 10g)V*
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It then follows from (Z2)) that

||S¢(a)||5‘}’; = Z || IdB (£2(Z4)) ®M¢)(D CC)HL »(B( gz(zd))@)’ﬂ‘g)]
1<k

1
< ||¢||Mcb Wk(Td)) Z ||‘D xHL »(B(£2 Zd))®r]1~d)] r
1|1 <k

s =

= 1@llmey (w gy llall sy
Therefore, (b is a bounded Schur multiplier on S}’;. Considering matrices a = (Gm,n)m neze With
entries in Sp, we show in the same way that M 3 is ¢.b. on S,’,f , SO (;5 is a ¢.b. Schur multiplier on
S}’,f and )
[6lIMes (s5) < Dl (W (T -
To show the converse direction, introducing the following Folner sequence of Z<:
Zny ={-N,...,—-1,0,1,...,N}* c z4,

we define two maps Ay and By as follows:

Ay T¢ o By with 2 Py([z]),
where Py : B({l(Z%)) — B(éIQZN‘) with (am.n) = (@mn)mnezy; and

7in9~(m7n)tUmfn.

By : BUZ) 5T with ep, e

|ZN]|

Here B (Z‘QZN‘) is endowed with the normalized trace. Both Ay, By are unital, completely positive
and trace preserving, so extend to complete contractions between the corresponding L,-spaces.
Moreover,

lim ByoAn(z) =2 in Ly(T%), Vo€ L,(T%).

N —oc0

If we define SS(EIQZNI) as before for S¥ just replacing S,(¢2(Z%)) by S LU, we see that Ay
extends to a complete contraction from Wf (T4) into 5’1’; (€|2ZN l), while By a complete contraction
from S%(£57~') into Wi (T3).

Now assume that ¢ is a ¢.b. Schur multiplier on S}’;, then it is also a c.b. Schur multiplier on
S;f(éIQZNI). We want to prove that Mg is c¢.b. on WF(T§). For any = € Ly,(B(l2(Z))&Ty),

[1d ® My(x) =lim[|(Id® By) o (Id® Ay) (Id ® My()

HLP(B(b(Zd))@’]l‘g) )HLP(B £5(Z))@TY)

= hm H (Id ® BN) ° (Id ® S“) (Id ® An(z ||Lp(B £5(24))BTY)

< hmsupHId@S (Id®AN ||S (02(24); Sk(g\ZN‘))

Shmsup||5¢;|| |Id®AN

ch | Hs (£2(Z); Sk (£,7N 1))

HS¢||cb H HL,, B(t2(24))®T4)’

where in the second equality we have used the fact that
Id® An(Id ® My(z)) = 1d® S;(Id @ An(z)),
which follows from (ZII). Therefore, My is c.b. on W} (T§) and

16 Imey w2y < 1SlIma sty
The theorem is thus proved. |
Remark 7.2. Let 1 < p < o0 and a € R. Since J* is a complete isometry from Hg‘(Tg) onto
L,(T4), we have
Meb(HS (T§)) = Meb(Lp(T§)) with equal norms.
Thus, by Lemma [[3]
Meb(HS(T5)) = Meyp(HS(T?)) with equal norms.
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Note that the proof of Theorem Ed shows that W/ (T§) = HS(T4) holds completely isomorphi-
cally for 1 < p < co. Thus the above remark implies
Corollary 7.3. Let 1 <p < oo and k € N.
Mcb(Wf(Tg)) = M, (L,p(T9)) with equivalent norms.

Clearly, the above equality still holds for p =1 or p = 0o if d = 1 (the commutative case) since
then W} (T) = L,(T) for all 1 < p < oo by the (complete) isomorphism

Ly(T) 5z~ 20)+ > ( !

=~ m k
S WE(T) .

2mim)k 2(m)z" € W, (T)
meZ\{0}

However, this is no longer the case as soon as d > 2, as proved by Poornima [59] in the commutative
case for R?. Poornima’s example comes from Ornstein [50] which is still valid for our setting.
Indeed, by [50], there exists a distribution 7" on T? which is not a measure and such that 7" = 91 o,
T = Oopy and 0T = 0o for three measures pu; on T?. T induces a Fourier multiplier on
TZ, which is defined by the Fourier transform of 7" and is denoted by x + T x z. Then for any
x € Wi (T3),

T xx = Oypuo * x = po * Oz € Ly(T3),

T xx =011 *x =y * Do € Ll(T(%),

OoT xx = Oofio % T = g *x O1x € Ll(’]l‘g).
Thus T 2 € W{(T%), so the Fourier multiplier induced by T is bounded on Wi (T%). We show in
the same way that it is c.b. too. Since T is not a measure, it does not belong to M(Ly(T?)).

7.2. FOURIER MULTIPLIERS ON BESOV SPACES

It is well known that in the classical setting, Fourier multipliers behave better on Besov spaces
than on L,-spaces. We will see that this fact remains true in the quantum case. We maintain the
notation introduced in section Il In particular, ¢ is a function satisfying @) and ¢™®) (&) =
©(27%¢) for k € Ny. As usual, o) is viewed as a function on Z% too.

The following is the main result of this section. Compared with the corresponding result in
the classical case (see, for instance, Section 2.6 of [73]), our result is more precise since it gives a
characterization of Fourier multipliers on By (T§) in terms of those on L, (T§).

Theorem 7.4. Let a € R and 1 < p,q < oo. Let ¢ : Z¢ — C. Then ¢ is a Fourier multiplier on
ng(’]l‘g) iff the ¢pp'®) s are Fourier multipliers on L,(T%) uniformly in k. In this case, we have

~ (k)
H‘ZSHM(Bgﬂ(Tg)) ~ [p(0)] + 2‘;% [ets HM(LP(’]l‘g))
with relevant constants depending only on «. A similar c.b. version holds too.

Proof. Without loss of generality, we assume that ¢(0) = 0 and all elements x considered below
have vanishing Fourier coefficients at the origin. Let ¢ € M(Bg,(T§)) and x € Ly(T§). Then

Y= (Pr-1+ Pk + Prr1) xx € By, (T§) and
I9llss, < ca2"|all, with cq =941,
So
IMs@lim5, < 16lcss oy 10155, < a6l oy el
On the other hand, by B2), ¢x * My(y) = My,m () and
1MW) By, > 27118k * Mo(y)lp = 25| M0 ()] -
It then follows that
1My @)l < calléllags oI
whence

(k)
i‘é‘é [zt ||M(Lp(’]1‘g)) = CQHQSHM(B;Q(M)) :
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Conversely, for z € BS (T4),
8k * My ()]lp = |Mpp00 (Br—1 + Pk + Prs1) * @) lp
< H¢<P(k)HM(LP(Tg))H(%Zk—l + @k + Prt1) *x x| -
We then deduce
||M¢(x)||Bqu <320 iglg H@P(k) ||M(Lp('[[‘g))||xHBgﬂ )
which implies B

||M(Lp(’]1‘g)) ’

. 9olal (k)
19wczg,, czgyy < 3~ 2 sup o

Thus the assertion concerning bounded multipliers is proved.

The preceding argument can be modified to work in the c.b. case too. First note that for £ > 0,
) is a c¢.b. Fourier multiplier on L,(T¢) for all 1 < p < oo with c.b. norm 1, that is, the map
x> P *x is ¢.b. on L,y(T$). So for any z € S,[L,(T$)] (the L,(T%)-valued Schatten g-class),

H(Idsq ® M@(k))(m)HSq[Lp(Td) < ||x||S »(TH] -

Now let ¢ € Mcy(Bg,(T§)) and x € Sy[L,(T§)]. Define y as above: y = (Pr—1 + Pk + Pry1) * @

s

Then for k —2 < j < k+2,

165 *Ylls, iz, cray < 3l2ls, iz, ey -
It thus follows that
| (1ds, @ M¢)(y)HS By () = < N1@llma, (s, (ray) 19lls,1Bs, (12
k+2

< @llma, (B2, () Z 29905 * ylls, (L, (ra)
j=k—2

< Ca2ka||¢||MCb(Bg’q(’]1‘g)) %]l 5, (L, (T -

Then as before, we deduce
(k)|

S 109 w1, a9 < Call Pl oo

To show the converse inequality, assume

My (Lp(T2)) = 1

sup [| g ™|
k>0
Then for = € Sy[By,(T§)],

16k * My (@) 5,11, (1)) < [| o™
< (k-1 + Gk + Prt1) * @l 5,12, (Te) -

My (L (e | (=1 + Pre = Ph1) * @l s, (2, (ng))

Therefore,
1
||M¢(x)||sq[35yq(wg)] = (Z (QkaHSZk * M¢(x)||sq[Lp(Irg)])q) ’
k>0
1
< (3 @U@ + B+ Bern) *als,iyma)”)”
k>0
< 3.2l 2| 5, (B2 (Ta)) -
We thus get the missing converse inequality, so the theorem is proved. 0

The following is an immediate consequence of the preceding theorem.

Corollary 7.5. (i) M(Bg,(T9)) is independent of o and q, up to equivalent norms.
(i) M(B) . (T9)) = M(By). (T%)), where p’ is the conjugate index of p.

(i) M5, (T) M(Bgl (T8 for 1< po<pr <2

(iv) M(L,(T9)) € M(BS, (T3)).

Similar statements hold for the spaces Men(BS ,(T§)).
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Theorem [T4] and Lemma, imply the following:
Corollary 7.6. Mcy,(B5,(T4)) = Mcp(Bg,(T4)) with equivalent norms.

Let F(BY (T%)) be the space of all Fourier transforms of functions in BY (T%) (a commutative
Besov space), equipped with the norm || f|| = ||f||B?’m.
Corollary 7.7. M, (B{,(T4)) = F(BY .. (T%)) with equivalent norms.

Proof. Let ¢ € Mep(BY (T4)) and f be the distribution on T? such that f = ¢. By Theorem [
and Lemma [[23] we have

720 66l z, ey < o
Recall that the Fourier transform of ¢y, is ¢*) and &y, is the periodization of ¢. So
H@k”Ll(ﬂrd) = ||80k|\L1(Rd) = ||SD||L1(1Rd)~
Noting that by B.2), or * f = My, (Pr—1 + Pk + Pri1), we get
18w fllr < [|ppt™ ||M(L1(Ird))H(’5’€*1 + @+ Grrt 1 < 3llll L, gray [ o™ ||M(L1(Ird)) :
whence
17155, < 3l@leaes) sup 169" laz cray)
Conversely, assume ¢ = f with f € BY (T%). Let g € B}  (T?). Then
6k * Mg (9)llr = 1Pk * f o+ glly = |6k * f * (Pr—1 + Pk + Prt1) * glla
< 1@k * I [(Pr—1 + Bk + Prer1) * glla
<3| fllsy  Ngllmy -
Thus My(g) € BY ..(T%) and
1Moy <31 Fllme_ Ngllog _ -
which implies that ¢ is a Fourier multiplier on Bf _(T§) and
H¢||M(Bgm(qrg)) < 3||f||Bg{m .

Considering g with values in S.., we show that ¢ is c.b. too. Alternately, since M(L(T¢)) =
Mep (L1(T?)), Theorem [Tl yields M(BY . (T%)) = Mep(BY o, (T?)), which allows us to conclude the
proof too. O

We have seen previously that every bounded (c.b.) Fourier multiplier on L,(T¢) is a bounded
(c.b.) Fourier multiplier on BZ (T§). Corollary [[77] shows that the converse is false for p = 1. We
now show that it also is false for any p # 2.

Proposition 7.8. There exists a Fourier multiplier ¢ which is c.b. on Bg‘,q(ﬂl’g) for any p,q and
a but never belongs to M(L,(T%)) for any p # 2 and any 6.

Proof. The example constructed by Stein and Zygmund [{0] for a similar circumstance can be
shown to work for our setting too. Their example is a distribution on T defined as follows:

W =3 o (002 D)

for some appropriate w,, € T, where
n
D, (z) = sz, z e T.
§=0

Since ||Dyllr,(r) & logn, we see that € BY (T). Considered as a distribution on T?, u €
BY (T%) too. Thus by Corollaries 5 and [[77, ¢ = /i belongs to Mey(Bg,(Tg)) for any p,q and
a. However, Stein and Zygmund proved that ¢ is not a Fourier multiplier on L, (T) for any p # 2
if the wy,’s are appropriately chosen. Consequently, ¢ cannot be a Fourier multiplier on L, (’]I‘g) for
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any p # 2 and any 6 since L,(T) isometrically embeds into L,(T4) by an embedding that is also a
c.b. Fourier multiplier. O

We conclude this section with some comments on the vector-valued case. The proof of The-
orem [.4] works equally for vector-valued Besov spaces. Recall that for an operator space F,
By q(’]I‘g; E) denotes the E-valued Besov space on T¢ (see Remark [327).

Proposition 7.9. For any operator space F,
~ (k)
H¢||M(Bg’q(’]1‘g;E)) ~ 4(0)] + 2‘;% [ets HM(LP(’]l‘g;E))
with equivalence constants depending only on «.

If 6 = 0, we go back to the classical vector-valued case. The above proposition explains the
well-known fact mentioned at the beginning of this section that Fourier multipliers behave better
on Besov spaces than on Ly-spaces. To see this, it is more convenient to write the above right-hand
side in a different form:

H¢‘p(k)|||v|(Lp(Tg;E)) = H¢(2k')(p||M(Lp(’]1‘g;E))'
Thus if ¢ is homogeneous, the above multiplier norm is independent of k, so ¢ is a Fourier multiplier
on B q(’ﬂ‘d;E) for any p,q,a and any Banach space E. In particular, the Riesz transform is
bounded on BY (T E).
The preceding characterization of Fourier multipliers is, of course, valid for R? in place of T¢.
Let us record this here:

Proposition 7.10. Let E be a Banach space. Then for any ¢ : R¢ — C,
~ k
H¢||M(B;{q(]Rd;E)) ~ [|9YlImL, e my) + i‘i% |62 ')WHM(LP(Rd;E))v

where ¥ is defined by
W(E) = 92", ¢eR”.

k>1
7.3. FOURIER MULTIPLIERS ON TRIEBEL-LIZORKIN SPACES

As we have seen in the chapter on Triebel-Lizorkin spaces, Fourier multipliers on such spaces
are subtler than those on Sobolev and Besov spaces. Similarly to the previous two sections, our
target here is to show that the c.b. Fourier multipliers on F;’C(Tg) are independent of . By
definition, F;"C(Tg) can be viewed as a subspace of the column space L, (T%; ¢5°°), the latter is the
column subspace of L,,(B(¢$)®Tg). Thus F¢(T§) inherits the natural operator space structure of
L,(B(¢5)®&T%). Similarly, the row Triebel-Lizorkin space F;’T(’]I‘g) carries a natural operator space
structure too. Finally, the mixture space F}* (Tg) is equipped with the sum or intersection operator
space structure according to p < 2 or p > 2. Note that according to this definition, even though it
is a commutative function space, the space I}’ (T?) (corresponding to 6 = 0) is endowed with three
different operator space structures, the first two being defined by its embedding into L,(T%; ¢5°)
and L,(T4;¢5""), the third one being the mixture of these two. The resulting operator spaces are
denoted by F&¢(T?) , F"(T?) and F¢(T?), respectively. Similarly, we introduce operator space
structures on the Hardy space Hj, (T4), its row and mixture versions too.

The main result of this section is the following:

Theorem 7.11. Let 1 < p < oo and o € R. Then
Mcb(Fg’c(Tz)) = Mcb(Fﬁ“c(Td)) with equal norms,
Mcb(F;’c(Tg)) = Mcb(FZ?’c(']Td)) with equivalent norms.
Similar statements hold for the row and mixture spaces.

We will show the theorem only in the case p < co. The proof presented below can be easily
modified to work for p = oo too. Alternately, the case p = oo can be also obtained by duality
from the case p = 1. Note, however, that this duality argument yields only the first equality of the
theorem with equivalent norms for p = oco.
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We adapt the proof of Theorem [Z1] to the present situation, by introducing the space
~ 2,1
S = {a = (@mn)mneze + (327 @nwal')? € 8,(6(2) },
E>0

equipped with the norm

lallsze = [[(32 2% = al*) |,
k>0

where
PR *a= (<p(2_k(m —n)) am,")m,nEZd :

Then S-¢ is a closed subspace of the column subspace of S, ((§ ®¢5(Z?)), which introduces a natural
operator space structure on Sp+¢. Let Mcp,(S;©) denote the space of all c.b. Schur multipliers on
S,¢, equipped with the natural norm.

Lemma 7.12. Let 1 <p < oo and « € R. Then
Meb(F2¢(T3)) = Meb(S57) with equal norms.

Proof. This proof is similar to the one of Theorem [[ T} we point out the necessary changes. Keeping
the notation there, we have for @ = (am,n)mneze € Sp>° and = = V(a ®@ 1a)V* € B((2(27))@T§

H(Z22k | x2]")? HLP(B(EQ(Z"L))@'H‘g) = ||“||s;vc :
k
Suppose that ¢ € Mep, (F¢(T§)). It then follows that

HS%(G)HS,?’C = H(Zsza‘@k * (V(Sy(a) ® 194)V7)
k

23
) ||LP(B(62(Zd))@TS)
«a Y * 2y
= [ (22 |Mo (Br+ (V@@ 1e)VI) ) |, ((aazyamsy
k

<|l¢|

= |9llm,, (mgecray lallsge

Mep (F2¢(T4)) ”xHSp[F;"‘C(Tg)]

Therefore, qb is a bounded Schur multiplier on Sp¢. Considering matrices a = (@m n)m neze With
entries in B(¢3), we show in the same way that SJ> is ¢.b. on Spr¢, so (b is a ¢.b. Schur multiplier
on Sp¢ and
[@lIMe(s57) < NDlmey (mg0e (T2

To show the opposite inequality, we just note that the contractive and convergence properties
of the maps Ax and By introduced in the proof of Theorem [[-]] also hold on the corresponding
F;"C(Tg) or S,¢ spaces. To see this, we take Ay for example. Since it is c¢.b. between the
corresponding L,-spaces, it is also c.b. from L, (B(f3)®&T$) to L,,(B(ég)@B(ﬂ'zle)). Applying this
to the elements of the form

9,50 * X 0 0
2% %2 0 0
22a

Goxz 0 0

we see that Ay is completely contractive from F;’C(’]I‘g) to Sg7c(B(€|2ZN|)), the latter space being
the finite dimensional analogue of S5-°. We then argue as in the proof of Theorem [Tl to deduce
the desired opposite inequality. O

Proof of Theorem [7.11] The first part is an immediate consequence of the previous lemma. For the
second, we need the c.b. version of Theorem [LTT] (i), whose proof is already contained in section
EIl To see this, we just note that, letting M = B({2(Z%))@T¢ and N = B({2(Z%))® Lo (T?)®TY
in Lemma 6] we obtain the c.b. version of Lemma L7 and that, in the same way, the c¢.b. version
of Lemma [LT0 holds, i.e., for 2 € Sp[HE(Ty)],

[z /ls, (e ray) = 1Z(0) |5, + lls3 () ls, (£, (T2 -
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Finally, the previous lemma and the c.b. version of Theorem 1T (i) yield the desired conclusion.
O

Remark 7.13. The preceding theorem and the c.b. version of Theorem ETT] (i) show that
Mcb(Hg(Tg)) = Mcb(Hg(’]I‘d)) with equivalent norms.

In fact, using arguments similar to the proof of the preceding theorem, we can show that the above
equality holds with equal norms.
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