Moser-Trudinger type inequality for the complex Monge-Ampère equations

Bin Zhou

Peking University

Harbin, May 4, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

- I. The classical Sobolev and Moser-Trudinger inequality
- II. The Moser-Trudinger inequality of the complex Monge-Ampère equation
- III. Applications to the regularity of the complex Monge-Ampère equation
- IV. Futher question: The manifold case

(joint work with Jiaxiang Wang and Xu-jia Wang)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Part I. The classical Sobolev and Moser-Trudinger inequality

The classical Sobolev inequalities

Let Ω be a bounded domain in \mathbb{R}^n and $W_0^{1,p}(\Omega)$ Sobolev space. Then

When p < n: for all $1 < q \le n^* := \frac{np}{n-p}$, there is constant C > 0, such that

$$\|u\|_{L^{q}(\Omega)} \leq C \|u\|_{W_{0}^{1,p}(\Omega)}, \ u \in W_{0}^{1,p}(\Omega).$$

Moreover, the embedding map $W_0^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact when $q < n^*$.

Remark. Poincare inequality

$$\|u\|_{L^{p}(\Omega)} \leq C \|u\|_{W^{1,p}_{0}(\Omega)}, \ u \in W^{1,p}_{0}(\Omega).$$

(日) (日) (日) (日) (日) (日) (日)

The classical Sobolev inequalities

Let Ω be a bounded domain in \mathbb{R}^n and $W_0^{1,p}(\Omega)$ Sobolev space. Then

When p < n: for all $1 < q \le n^* := \frac{np}{n-p}$, there is constant C > 0, such that

$$\|u\|_{L^{q}(\Omega)} \leq C \|u\|_{W^{1,p}_{0}(\Omega)}, \ u \in W^{1,p}_{0}(\Omega).$$

Moreover, the embedding map $W_0^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact when $q < n^*$.

Remark. Poincare inequality

$$\|u\|_{L^p(\Omega)} \le C \|u\|_{W^{1,p}_0(\Omega)}, \ u \in W^{1,p}_0(\Omega).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The classical Sobolev inequalities

Let Ω be a bounded domain in \mathbb{R}^n and $W_0^{1,p}(\Omega)$ Sobolev space. Then

When p < n: for all $1 < q \le n^* := \frac{np}{n-p}$, there is constant C > 0, such that

$$\|u\|_{L^{q}(\Omega)} \leq C \|u\|_{W^{1,p}_{0}(\Omega)}, \ u \in W^{1,p}_{0}(\Omega).$$

Moreover, the embedding map $W_0^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact when $q < n^*$.

Remark. Poincare inequality

$$\|u\|_{L^p(\Omega)}\leq C\|u\|_{W^{1,p}_0(\Omega)},\;u\in W^{1,p}_0(\Omega).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The classical Moser-Trudinger inequality

When p = n:

$$\int_{\Omega} e^{\alpha \left(\frac{|u|}{\|u\|_{W_0^{1,n}(\Omega)}}\right)^{\beta}} \leq C, \ u \in W_0^{1,n}(\Omega)$$

for $0 < \alpha \le \alpha_0$, $1 \le \beta \le \beta_0$, where

$$\alpha_0 = n\omega_{n-1}^{\frac{1}{n-1}}, \quad \beta_0 = \frac{n}{n-1}.$$

Remark. Moser's proof used Schwarz symmetrization. Other proof by blow-up.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The classical Moser-Trudinger inequality

When p = n:

$$\int_{\Omega} e^{\alpha \left(\frac{|u|}{\|u\|_{W_0^{1,n}(\Omega)}}\right)^{\beta}} \leq C, \ u \in W_0^{1,n}(\Omega)$$

for 0 < $\alpha \le \alpha_0$, 1 $\le \beta \le \beta_0$, where

$$\alpha_0 = n\omega_{n-1}^{\frac{1}{n-1}}, \quad \beta_0 = \frac{n}{n-1}.$$

Remark. Moser's proof used Schwarz symmetrization. Other proof by blow-up.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The classical Moser-Trudinger inequality

When p = n:

$$\int_{\Omega} e^{\alpha \left(\frac{|u|}{\|u\|_{W_0^{1,n}(\Omega)}}\right)^{\beta}} \leq C, \ u \in W_0^{1,n}(\Omega)$$

for 0 < $\alpha \le \alpha_0$, 1 $\le \beta \le \beta_0$, where

$$\alpha_0 = n\omega_{n-1}^{\frac{1}{n-1}}, \quad \beta_0 = \frac{n}{n-1}.$$

Remark. Moser's proof used Schwarz symmetrization. Other proof by blow-up.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

When p > n,

$$\|u\|_{\mathcal{C}^{\alpha}(\Omega)} \leq C \|u\|_{W^{1,p}_0(\Omega)}, \ \alpha < \left[\frac{n}{p}\right] + 1 - \frac{n}{p}.$$

_

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Generalizations to nonlinear equations

- k-Hessian equations.
- complex k-Hessian equations(including complex Monge-Ampère).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The real Hessian operators

Let Ω be a bounded smooth domain in \mathbb{R}^n and $u \in C^2(\Omega)$. • The *k*-Hessian operator is

$$S_k[u] = \sigma_k(\lambda(D^2u)), \ 1 \le k \le n$$

where $\lambda(D^2 u) = (\lambda_1, ..., \lambda_n)$ are the eigenvalues of $D^2 u$, and

$$\sigma_k(\lambda) = \sum_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k}.$$

(日) (日) (日) (日) (日) (日) (日)

• $S_1[u] = \triangle u; S_n[u] = \det D^2 u.$

The real Hessian operators

Let Ω be a bounded smooth domain in \mathbb{R}^n and $u \in C^2(\Omega)$.

The k-Hessian operator is

$$S_k[u] = \sigma_k(\lambda(D^2u)), \ 1 \le k \le n$$

where $\lambda(D^2 u) = (\lambda_1, ..., \lambda_n)$ are the eigenvalues of $D^2 u$, and

$$\sigma_k(\lambda) = \sum_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k}.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• $S_1[u] = \triangle u; S_n[u] = \det D^2 u.$

Admissible functions

A smooth function *u* is *k*-admissible(*k*-convex, *k*-subharmonic) if $S_j[u] \ge 0$ for all $1 \le j \le k$, i.e., $\lambda(D^2u) \in \overline{\Gamma}_k$ where

$$\Gamma_k = \{\lambda \in \mathbb{R}^n \mid \sigma_i(\lambda) > 0, \ 1 \le i \le k\}.$$

- when k = 1, subharmonic functions.
- when k = n, convex functions.

Let $\Phi^k(\Omega)$ be the set of all smooth *k*-admissible functions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Admissible functions

A smooth function *u* is *k*-admissible(*k*-convex, *k*-subharmonic) if $S_j[u] \ge 0$ for all $1 \le j \le k$, i.e., $\lambda(D^2u) \in \overline{\Gamma}_k$ where

$$\Gamma_k = \{\lambda \in \mathbb{R}^n \mid \sigma_i(\lambda) > 0, \ 1 \le i \le k\}.$$

- when k = 1, subharmonic functions.
- when k = n, convex functions.

Let $\Phi^k(\Omega)$ be the set of all smooth *k*-admissible functions.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Admissible functions

A smooth function *u* is *k*-admissible(*k*-convex, *k*-subharmonic) if $S_j[u] \ge 0$ for all $1 \le j \le k$, i.e., $\lambda(D^2u) \in \overline{\Gamma}_k$ where

$$\Gamma_k = \{\lambda \in \mathbb{R}^n \mid \sigma_i(\lambda) > 0, \ 1 \le i \le k\}.$$

- when k = 1, subharmonic functions.
- when k = n, convex functions.

Let $\Phi^k(\Omega)$ be the set of all smooth *k*-admissible functions.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Remark.

The *k*-admissibility can be extended to U. S. C. functions (denote by $\overline{\Phi}^k(\Omega)$) and

$$\overline{\Phi}^k(\Omega) \subset \textit{W}^{1,q}_{\it loc}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for
$$q < rac{nk}{n-k}.$$
 When $k \leq rac{n}{2},$ $\overline{\Phi}^k(\Omega) \subset L^p_{\mathit{loc}}, p < rac{nk}{n-2k}.$

The exponent is optimal.

A theory of geometric inequalities for real Hessian integrals (Sobolev inequility, the isoperimetric inequalities for quermassintegrals, etc.) and the equation

$$S_k[u] = (-u)^p$$

was developed by K. S. Chou, X. J. Wang and N. Trudinger.

Let $\Phi_0^k(\Omega)$ be the subspace of functions in $\Phi^k(\Omega)$ vanishing on $\partial\Omega$. Assume that $\partial\Omega$ is (k-1)-convex.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A theory of geometric inequalities for real Hessian integrals (Sobolev inequility, the isoperimetric inequalities for quermassintegrals, etc.) and the equation

$$S_k[u] = (-u)^p$$

was developed by K. S. Chou, X. J. Wang and N. Trudinger.

Let $\Phi_0^k(\Omega)$ be the subspace of functions in $\Phi^k(\Omega)$ vanishing on $\partial\Omega$. Assume that $\partial\Omega$ is (k-1)-convex.

A theory of geometric inequalities for real Hessian integrals (Sobolev inequility, the isoperimetric inequalities for quermassintegrals, etc.) and the equation

$$S_k[u] = (-u)^p$$

was developed by K. S. Chou, X. J. Wang and N. Trudinger.

Let $\Phi_0^k(\Omega)$ be the subspace of functions in $\Phi^k(\Omega)$ vanishing on $\partial\Omega$. Assume that $\partial\Omega$ is (k-1)-convex.

(日) (日) (日) (日) (日) (日) (日)

The Hessian integrals(energies)

 $I_k(u)=\int_{\Omega}(-u)S_k[u]\,dx.$

$$I_0 = \int_{\Omega} -u;$$

$$I_1 = \int_{\Omega} |Du|^2;$$

$$I_n = \int_{\Omega} (-u) \det D^2 u.$$

Denote

Denote

$$||u||_{\Phi_0^k(\Omega)} = [I_k(u)]^{\frac{1}{k+1}}.$$

One can easily verify that $\|\cdot\|_{\Phi_{0}^{k}(\Omega)}$ is a norm in $\Phi_{0}^{k}(\Omega)$.

・ロト・四ト・モート ヨー うへの

The Hessian integrals(energies)

Denote

$$I_k(u) = \int_{\Omega} (-u) S_k[u] \, dx.$$

$$I_0 = \int_{\Omega} -u;$$

$$I_1 = \int_{\Omega} |Du|^2;$$

$$I_n = \int_{\Omega} (-u) \det D^2 u.$$

Denote

$$||u||_{\Phi_0^k(\Omega)} = [I_k(u)]^{\frac{1}{k+1}}.$$

One can easily verify that $\|\cdot\|_{\Phi_{\alpha}^{k}(\Omega)}$ is a norm in $\Phi_{0}^{k}(\Omega)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Hessian integrals(energies)

Denote

$$I_k(u) = \int_{\Omega} (-u) S_k[u] \, dx.$$

$$I_0 = \int_{\Omega} -u;$$

$$I_1 = \int_{\Omega} |Du|^2;$$

$$I_n = \int_{\Omega} (-u) \det D^2 u.$$

Denote

$$\|u\|_{\Phi_0^k(\Omega)} = [I_k(u)]^{\frac{1}{k+1}}.$$

One can easily verify that $\|\cdot\|_{\Phi_0^k(\Omega)}$ is a norm in $\Phi_0^k(\Omega)$.

The Hessian Sobolev inequality

Theorem(X. J. Wang, 1994). $u \in \Phi_0^k(\Omega)$. • If $1 \le k < \frac{n}{2}$, $\|u\|_{L^{p+1}(\Omega)} \le C \|u\|_{\Phi_0^k(\Omega)}, \forall 1 \le p+1 \le \gamma(n,k)$, where $\gamma(n,k) = \frac{n(k+1)}{n-2k}$, C depends on p, k, n and Ω . • If $k = \frac{n}{2}$, $\|u\|_{L^p(\Omega)} \le C \|u\|_{\Phi_0^k(\Omega)}, \forall p < \infty$,

where *C* depends on *p*, *n* and Ω .

► If
$$\frac{n}{2} < k \le n$$
, $\|u\|_{L^{\infty}(\Omega)} \le C \|u\|_{\Phi_0^k(\Omega)}$

where *C* depends on *k*, *n* and Ω .

Moser-Trudinger type inequality

Theorem(G. J. Tian-X. J. Wang, 2010). Let $k = \frac{n}{2}$.

$$\int_{\Omega} e^{\alpha \left(\frac{-u}{\|u\|_{\Phi_0^k(\Omega)}}\right)^{\beta}} \leq \mathcal{C}, \ u \in \Phi_0^k(\Omega)$$

for 0 < $\alpha \le \alpha_0$, 1 $\le \beta \le \beta_0$, where

$$\alpha_0 = n \left[\frac{\omega_{n-1}}{k} \left(\begin{array}{c} n-1\\ k-1 \end{array} \right) \right]^{\frac{2}{n}}, \ \beta_0 = \frac{n+2}{n}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

Poincare type inequalities

Theorem(Trudinger-Wang, 1998). For $0 \le l < k \le n$, there exists C > 0, such that

$$\|u\|_{\Phi_0^l(\Omega)}\leq C\|u\|_{\Phi_0^k(\Omega)},\ u\in \Phi_0^k(\Omega).$$

The best constant C is attained by the solution of the Dirichlet problem

$$egin{pmatrix} rac{S_k[u]}{S_l[u]} = 1, & \Omega, \ u = 0, & \partial \Omega \end{cases}$$

Remark. In particular, l = 0, k = 1

$$\|\boldsymbol{u}\|_{L^1(\Omega)} \leq \boldsymbol{C} \|\nabla \boldsymbol{u}\|_{L^2(\Omega)}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Poincare type inequalities

Theorem(Trudinger-Wang, 1998). For $0 \le l < k \le n$, there exists C > 0, such that

$$\|u\|_{\Phi_0^l(\Omega)}\leq C\|u\|_{\Phi_0^k(\Omega)},\ u\in \Phi_0^k(\Omega).$$

The best constant C is attained by the solution of the Dirichlet problem

$$egin{pmatrix} rac{S_k[u]}{S_l[u]} = 1, & \Omega, \ u = 0, & \partial \Omega \end{cases}$$

Remark. In particular, l = 0, k = 1

$$\|u\|_{L^1(\Omega)} \leq C \|\nabla u\|_{L^2(\Omega)}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark

- All these results were proved by using gradient flow.
- The Schwarz symmetrization fails. Actually, K.S. Chou gave an example that Hessian integral may not diminish after symmetrization.

Remark

- All these results were proved by using gradient flow.
- The Schwarz symmetrization fails. Actually, K.S. Chou gave an example that Hessian integral may not diminish after symmetrization.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Part II. The Moser-Trudinger inequality of the complex Monge-Ampère equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let Ω be a bounded domain in \mathbb{C}^n , $u \in C^2(\Omega)$.

- ► Let $H_k[u]$ be the complex *k*-Hessian. $H_1[u] = \triangle u$; $H_n[u] = \det u_{ij}$.
- A function *u* is *k*-plurisubharmonic if $H_j[u] \ge 0$ for all $1 \le j \le k$.
- Denote by $\mathcal{PSH}^k(\Omega)$ be the set of *k*-plurisubharmonic in $C^2(\Omega)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let Ω be a bounded domain in \mathbb{C}^n , $u \in C^2(\Omega)$.

- ► Let $H_k[u]$ be the complex *k*-Hessian. $H_1[u] = \triangle u$; $H_n[u] = \det u_{ij}$.
- ► A function *u* is *k*-plurisubharmonic if $H_j[u] \ge 0$ for all $1 \le j \le k$.
- Denote by $\mathcal{PSH}^k(\Omega)$ be the set of *k*-plurisubharmonic in $C^2(\Omega)$.

(ロ) (同) (三) (三) (三) (○) (○)

Let Ω be a bounded domain in \mathbb{C}^n , $u \in C^2(\Omega)$.

- ► Let $H_k[u]$ be the complex *k*-Hessian. $H_1[u] = \triangle u$; $H_n[u] = \det u_{i\bar{i}}$.
- A function *u* is *k*-plurisubharmonic if $H_j[u] \ge 0$ for all $1 \le j \le k$.
- Denote by $\mathcal{PSH}^k(\Omega)$ be the set of *k*-plurisubharmonic in $C^2(\Omega)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let Ω be a bounded domain in \mathbb{C}^n , $u \in C^2(\Omega)$.

- ► Let $H_k[u]$ be the complex *k*-Hessian. $H_1[u] = \triangle u$; $H_n[u] = \det u_{ij}$.
- A function *u* is *k*-plurisubharmonic if $H_j[u] \ge 0$ for all $1 \le j \le k$.
- Denote by *PSH^k*(Ω) be the set of *k*-plurisubharmonic in C²(Ω).

Remark

The *k*-plurisubharmonicity can also be extended to U. S. C. functions(denote by $\overline{\mathcal{PSH}}^k(\Omega)$), and Blocki showed

$$\overline{\mathcal{PSH}}^k(\Omega)\subset L^p_{\mathit{loc}}, \;\; \mathit{p}<rac{n}{n-k}.$$

He also conjectured it for $p < \frac{nk}{n-k}$.

complex Hessian Integral

- Let $\mathcal{PSH}_0^k(\Omega)$ the subset of functions in $\mathcal{PSH}^k(\Omega)$ which vanish on $\partial\Omega$.
- Denote the complex Hessian energy

$$I_k(u) = \int_{\Omega} (-u) H_k[u]$$

In particular, when k = 0, we define $I_0(u) = -\int_{\Omega} u$.

► For simplicity, we denote by

$$\|\cdot\| = \|\cdot\|_{\mathcal{PSH}_{0}^{k}(\Omega)} := [I_{k}(u)]^{\frac{1}{k+1}}.$$

(日) (日) (日) (日) (日) (日) (日)

complex Hessian Integral

- Let $\mathcal{PSH}_0^k(\Omega)$ the subset of functions in $\mathcal{PSH}^k(\Omega)$ which vanish on $\partial\Omega$.
- Denote the complex Hessian energy

$$I_k(u) = \int_{\Omega} (-u) H_k[u]$$

In particular, when k = 0, we define $I_0(u) = -\int_{\Omega} u$.

► For simplicity, we denote by

$$\|\cdot\| = \|\cdot\|_{\mathcal{PSH}_{0}^{k}(\Omega)} := [I_{k}(u)]^{\frac{1}{k+1}}.$$

complex Hessian Integral

- Let $\mathcal{PSH}_0^k(\Omega)$ the subset of functions in $\mathcal{PSH}^k(\Omega)$ which vanish on $\partial\Omega$.
- Denote the complex Hessian energy

$$I_k(u) = \int_{\Omega} (-u) H_k[u]$$

In particular, when k = 0, we define $I_0(u) = -\int_{\Omega} u$.

For simplicity, we denote by

$$\|\cdot\|=\|\cdot\|_{\mathcal{PSH}_0^k(\Omega)}:=[I_k(u)]^{\frac{1}{k+1}}.$$

complex Hessian Integral

- Let $\mathcal{PSH}_0^k(\Omega)$ the subset of functions in $\mathcal{PSH}^k(\Omega)$ which vanish on $\partial\Omega$.
- Denote the complex Hessian energy

$$I_k(u) = \int_{\Omega} (-u) H_k[u]$$

In particular, when k = 0, we define $I_0(u) = -\int_{\Omega} u$.

For simplicity, we denote by

$$\|\cdot\|=\|\cdot\|_{\mathcal{PSH}_0^k(\Omega)}:=[I_k(u)]^{\frac{1}{k+1}}.$$

Assume Ω is strong *k*-pseudoconvex.

Theorem(Z. L. Hou, 2008). For $0 \le l < k \le n$, there exists C > 0, such that

 $\|u\|_{\mathcal{PSH}_0^l(\Omega)} \leq C \|u\|_{\mathcal{PSH}_0^k(\Omega)}, \ u \in \mathcal{PSH}_0^k(\Omega).$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Sobolev type inequality

Theorem(Zhou, 2013). Let $u \in \mathcal{PSH}_0^k(\Omega)$, 1 < k < n. Then for all

$$0 \leq p+1 \leq \tilde{\gamma}(k,n) = \frac{n(k+1)}{n-2},$$

we have

$$\|u\|_{L^{p+1}(\Omega)} \leq C \|u\|_{\mathcal{PSH}_0^k(\Omega)},$$

where *C* depends on *n*, *k*, *p* and Ω . Moreover, the embedding map

$$\mathcal{PSH}_0^k(\Omega) \hookrightarrow L^{p+1}(\Omega)$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

is compact when $p < \tilde{\gamma}(k, n)$.

For real *k*-Hessian equation $(k < \frac{n}{2}), \gamma(k, n) = \frac{n(k+1)}{n-2k}$.

Sobolev type inequality

Theorem(Zhou, 2013). Let $u \in \mathcal{PSH}_0^k(\Omega)$, 1 < k < n. Then for all

$$0 \leq p+1 \leq \tilde{\gamma}(k,n) = \frac{n(k+1)}{n-2},$$

we have

$$\|u\|_{L^{p+1}(\Omega)} \leq C \|u\|_{\mathcal{PSH}_0^k(\Omega)},$$

where *C* depends on *n*, *k*, *p* and Ω . Moreover, the embedding map

$$\mathcal{PSH}_0^k(\Omega) \hookrightarrow L^{p+1}(\Omega)$$

A D F A 同 F A E F A E F A Q A

is compact when $p < \tilde{\gamma}(k, n)$.

For real k-Hessian equation $(k < \frac{n}{2}), \gamma(k, n) = \frac{n(k+1)}{n-2k}$.

Radially symmetric functions

Let $\Omega = B_R$ and u = u(r) is radially symmetric, where r = |z|. Assume u(R) = 0. Then

$$u_{i\bar{j}} = u_r \delta_{ij} + u_{rr} \bar{z}_i z_j,$$

$$H_k[u] = \frac{\binom{n-1}{k-1}}{k} \cdot (u_r^k r^n)_r r^{1-n},$$

$$I_{k}[u] = \frac{\omega_{2n-1}\binom{n-1}{k-1}}{2k(k+1)} \cdot \int_{0}^{R} u_{r}^{k+1} r^{n-1} dr.$$

Let $\mathcal{R} = \{ u \in C^1([0, R]) : u(R) = 0 \}$. Then for all $0 \le p + 1 \le \frac{n(k+1)}{n-k}$,

$$\left(\int_0^R |u|^{1+p} r^{n-1} dr\right)^{\frac{1}{1+p}} \leq C \left(\int_0^R u_r^{k+1} r^{n-1} dr\right)^{\frac{1}{1+k}}, \ u \in \mathcal{R}.$$

Radially symmetric functions

Let $\Omega = B_R$ and u = u(r) is radially symmetric, where r = |z|. Assume u(R) = 0. Then

$$u_{i\bar{j}} = u_r \delta_{ij} + u_{rr} \bar{z}_i z_j,$$

$$H_k[u] = \frac{\binom{n-1}{k-1}}{k} \cdot (u_r^k r^n)_r r^{1-n},$$

$$I_{k}[u] = \frac{\omega_{2n-1}\binom{n-1}{k-1}}{2k(k+1)} \cdot \int_{0}^{R} u_{r}^{k+1} r^{n-1} dr.$$

Let $\mathcal{R} = \{ u \in C^1([0, R]) : u(R) = 0 \}$. Then for all $0 \le p + 1 \le \frac{n(k+1)}{n-k}$,

$$\left(\int_0^R |u|^{1+\rho} r^{n-1} dr\right)^{\frac{1}{1+\rho}} \leq C \left(\int_0^R u_r^{k+1} r^{n-1} dr\right)^{\frac{1}{1+k}}, \ u \in \mathcal{R}.$$

Critical exponent

Consider the equation

$$\begin{cases} H_k[u] = (-u)^p & \text{ in } B_R, \\ u = 0 & \text{ on } \partial B_R. \end{cases}$$

Theorem(C. Li, 2013).

(i) When $p + 1 \ge \frac{n(k+1)}{n-k}$, the above equation has no nontrivial nonpositive solution in $C^2(\bar{B}_R) \cap C^4(B_R)$;

(ii) When $1 and <math>p \neq k$, the above equation has a negative solution in $C^2(\overline{B}_R)$, which is radially symmetric.

Critical exponent

Consider the equation

$$\begin{cases} H_k[u] = (-u)^p & \text{ in } B_R, \\ u = 0 & \text{ on } \partial B_R. \end{cases}$$

Theorem(C. Li, 2013).

(i) When $p + 1 \ge \frac{n(k+1)}{n-k}$, the above equation has no nontrivial nonpositive solution in $C^2(\bar{B}_R) \cap C^4(B_R)$;

(ii) When $1 and <math>p \neq k$, the above equation has a negative solution in $C^2(\overline{B}_R)$, which is radially symmetric.

Now we focus on the complex Monge-Ampère equation(k = n).

The classical case(In complex dim 1): Suppose $\Omega \subset \mathbb{R}^2$. Then

Moser-Trudinger inequality(M-T):

$$\int_{\Omega} e^{4\pi \frac{-u}{\|\nabla u\|_{L^2(\Omega)}}} dx \leq C$$

for *u* with vanishing boundary value.

Brezis-Merle inequality(B-M):

$$\int_{\Omega} e^{(4\pi-\delta)\frac{-u}{\|\bigtriangleup u\|_{L^1(\Omega)}}} \, dx \leq \frac{4\pi^2}{\delta} (\textit{diam}(\Omega))^2$$

<ロ> <0</p>

Now we focus on the complex Monge-Ampère equation(k = n). <u>The classical case(In complex dim 1)</u>: Suppose $\Omega \subset \mathbb{R}^2$. Then

Moser-Trudinger inequality(M-T):

$$\int_{\Omega} e^{4\pi \frac{-u}{\|\nabla u\|_{L^2(\Omega)}}} dx \leq C$$

for *u* with vanishing boundary value.

Brezis-Merle inequality(B-M):

$$\int_{\Omega} e^{(4\pi-\delta)\frac{-u}{\|\bigtriangleup u\|_{L^1(\Omega)}}} \, dx \leq \frac{4\pi^2}{\delta} (\textit{diam}(\Omega))^2$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Now we focus on the complex Monge-Ampère equation(k = n). <u>The classical case(In complex dim 1)</u>: Suppose $\Omega \subset \mathbb{R}^2$. Then

Moser-Trudinger inequality(M-T):

$$\int_{\Omega} e^{4\pi \frac{-u}{\|\nabla u\|_{L^2(\Omega)}}} \, dx \leq C$$

for *u* with vanishing boundary value.

Brezis-Merle inequality(B-M):

$$\int_{\Omega} e^{(4\pi-\delta)\frac{-u}{\|\bigtriangleup u\|_{L^1(\Omega)}}} \, dx \leq \frac{4\pi^2}{\delta} (\textit{diam}(\Omega))^2$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

In general dimension: Let $\Omega \in \mathbb{C}^n$ and $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$.

complex Monge-Ampere integral(energy):

$$\mathcal{E}(u) = \frac{1}{n+1} \int_{\Omega} (-u) (dd^{c}u)^{n}$$
$$= \frac{n!}{(n+1)\pi^{n}} \int_{\Omega} (-u) \det(u_{i\bar{j}})$$

complex Monge-Ampere mass:

$$\mathcal{M}(u) = \int_{\Omega} (dd^{c}u)^{n}$$
$$= n! \int_{\Omega} \det(u_{i\bar{j}})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

In general dimension: Let $\Omega \in \mathbb{C}^n$ and $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$.

complex Monge-Ampere integral(energy):

$$\mathcal{E}(u) = \frac{1}{n+1} \int_{\Omega} (-u) (dd^{c}u)^{n}$$
$$= \frac{n!}{(n+1)\pi^{n}} \int_{\Omega} (-u) \det(u_{i\bar{j}})$$

complex Monge-Ampere mass:

$$\mathcal{M}(u) = \int_{\Omega} (dd^{c}u)^{n}$$
$$= n! \int_{\Omega} \det(u_{i\bar{j}})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In general dimension: Let $\Omega \in \mathbb{C}^n$ and $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$.

complex Monge-Ampere integral(energy):

$$\mathcal{E}(u) = \frac{1}{n+1} \int_{\Omega} (-u) (dd^{c}u)^{n}$$
$$= \frac{n!}{(n+1)\pi^{n}} \int_{\Omega} (-u) \det(u_{i\bar{j}})$$

complex Monge-Ampere mass:

$$\mathcal{M}(u) = \int_{\Omega} (dd^c u)^n \ = n! \int_{\Omega} \det(u_{i\bar{j}})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Aubin's conjecture

There exists C > 0, such that

$$\int_{\Omega} e^{n\left(\frac{-u}{\varepsilon(u)^{1/(n+1)}}\right)^{\frac{n+1}{n}}} \leq C$$

for $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$, or

$$\int_{\Omega} e^{n(-u)^{\frac{n+1}{n}}} \leq C$$

for $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$ with $\mathcal{E}(u) = 1$.

Remark: It is equivalent to

$$\int_{\Omega} e^{-(n+1)u} \leq e^{\frac{n!}{(n+1)^n}\mathcal{E}(u)+C_n}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Aubin's conjecture

There exists C > 0, such that

$$\int_{\Omega} e^{n\left(\frac{-u}{\mathcal{E}(u)^{1/(n+1)}}\right)^{\frac{n+1}{n}}} \leq C$$

for $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$, or

$$\int_{\Omega} e^{n(-u)^{\frac{n+1}{n}}} \leq C$$

for $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$ with $\mathcal{E}(u) = 1$.

Remark: It is equivalent to

$$\int_{\Omega} e^{-(n+1)u} \leq e^{\frac{n!}{(n+1)^n}\mathcal{E}(u)+C_n}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Aubin's conjecture

There exists C > 0, such that

$$\int_{\Omega} e^{n\left(\frac{-u}{\mathcal{E}(u)^{1/(n+1)}}\right)^{\frac{n+1}{n}}} \leq C$$

for $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$, or

$$\int_{\Omega} e^{n(-u)^{\frac{n+1}{n}}} \leq C$$

for $u \in PSH(\Omega) \cap C_0^2(\overline{\Omega})$ with $\mathcal{E}(u) = 1$.

Remark: It is equivalent to

$$\int_{\Omega} \boldsymbol{e}^{-(n+1)u} \leq \boldsymbol{e}^{\frac{n!}{(n+1)^n}\mathcal{E}(u)+C_n}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Quasi Moser-Trudinger inequality

Theorem(Berman-Berndtsson 2011). For any $\delta > 0$,

$$\int_{\Omega} e^{-(n+1-\delta)u} \leq C\delta^{-(n-1)} e^{n!(n+1-\delta)\mathcal{E}(u)}$$

for
$$u \in PSH(\Omega) \cap C_0^2(\Omega)$$
.

It is equivalent to

$$\int_{\Omega} e^{(1-\delta)n\left(\frac{-u}{\varepsilon(u)^{1/(n+1)}}\right)^{\frac{n+1}{n}}} \leq C$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Quasi Moser-Trudinger inequality

Theorem(Berman-Berndtsson 2011). For any $\delta > 0$,

$$\int_{\Omega} oldsymbol{e}^{-(n+1-\delta)u} \leq C \delta^{-(n-1)} oldsymbol{e}^{n!(n+1-\delta)\mathcal{E}(u)}$$

for $u \in PSH(\Omega) \cap C_0^2(\Omega)$.

It is equivalent to

$$\int_{\Omega} e^{(1-\delta)n\left(\frac{-u}{\varepsilon(u)^{1/(n+1)}}\right)^{\frac{n+1}{n}}} \leq C$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Optimal constant

- The optimal constant is open.
- ► The optimal constant holds for S^1 -invariant functions. ($f(e^{i\theta}z_1, \cdots, e^{i\theta}z_n) = f(z_1, \cdots, z_n)$)
- The Schwarz symmetrization works for S¹-invariant functions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Remark

The proof also gives a Brezis-Merle type inequality

$$\int_{\Omega} e^{-nu} \leq A(1-\mathcal{M}(u))^{-1}, \ \mathcal{M}(u) < 1.$$

It implies the following Quasi Brezis-Merle inequality

$$\int_{\Omega} e^{-(n-\delta)u} \le A\delta^{-(n-1)}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

for $u \in PSH(\Omega) \cap C_0^2(\Omega)$ with $\mathcal{M}(u) = 1$.

 A different proof is given by Ahag-Cegrell-Kołodziej-Pham-Zeriahi.

Remark

The proof also gives a Brezis-Merle type inequality

$$\int_{\Omega} e^{-nu} \leq A(1-\mathcal{M}(u))^{-1}, \ \mathcal{M}(u) < 1.$$

It implies the following Quasi Brezis-Merle inequality

$$\int_{\Omega} \boldsymbol{e}^{-(n-\delta)u} \leq \boldsymbol{A}\delta^{-(n-1)}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $u \in PSH(\Omega) \cap C_0^2(\Omega)$ with $\mathcal{M}(u) = 1$.

 A different proof is given by Ahag-Cegrell-Kołodziej-Pham-Zeriahi.

Remark

The proof also gives a Brezis-Merle type inequality

$$\int_{\Omega} e^{-nu} \leq A(1-\mathcal{M}(u))^{-1}, \ \mathcal{M}(u) < 1.$$

It implies the following Quasi Brezis-Merle inequality

$$\int_{\Omega} e^{-(n-\delta)u} \leq A \delta^{-(n-1)}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

for $u \in PSH(\Omega) \cap C_0^2(\Omega)$ with $\mathcal{M}(u) = 1$.

 A different proof is given by Ahag-Cegrell-Kołodziej-Pham-Zeriahi.

٠

Compare with Tian's α -invariant

Let (M, ω_g) be a Kähler manifold. Define

 $P(M,g) = \{ \phi \in C^2(M,\mathbb{R}) \mid \omega_\phi := \omega_g + \sqrt{-1}\partial\bar{\partial}\phi > 0, \sup_M \phi = 0 \}.$

Theorem (Tian, 87')

There exists $\alpha > 0$ and C > 0 depending on (M, ω_g) such that

$$\int_{M} e^{-\alpha \phi} \omega_{g}^{n} \leq C, \ \forall \phi \in P(M,g).$$
(1)

(日) (日) (日) (日) (日) (日) (日)

▶ In a fixed Kähler class, $\int_M \omega_{\phi}^n = [\omega_g]^n$ is a constant.

Compare with Tian's α -invariant

Let (M, ω_g) be a Kähler manifold. Define $P(M, g) = \{ \phi \in C^2(M, \mathbb{R}) \mid \omega_\phi := \omega_g + \sqrt{-1} \partial \bar{\partial} \phi > 0, \sup_M \phi = 0 \}.$

Theorem (Tian, 87')

There exists $\alpha > 0$ and C > 0 depending on (M, ω_q) such that

$$\int_{M} e^{-\alpha \phi} \omega_{g}^{n} \leq C, \ \forall \phi \in P(M,g).$$
(1)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

▶ In a fixed Kähler class, $\int_M \omega_{\phi}^n = [\omega_g]^n$ is a constant.

Compare with Tian's α -invariant

Let (M, ω_g) be a Kähler manifold. Define

$$P(M,g) = \{ \phi \in C^2(M,\mathbb{R}) \mid \omega_\phi := \omega_g + \sqrt{-1} \partial \bar{\partial} \phi > 0, \sup_M \phi = 0 \}.$$

Theorem (Tian, 87')

There exists $\alpha > 0$ and C > 0 depending on (M, ω_g) such that

$$\int_{M} e^{-\alpha \phi} \omega_{g}^{n} \leq C, \ \forall \phi \in P(M,g).$$
(1)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

▶ In a fixed Kähler class, $\int_M \omega_\phi^n = [\omega_g]^n$ is a constant.

A PDE proof of the weak Moser-Trudinger inequality

Theorem

Let Ω be a hyperconvex domain. There exist $\alpha > 0$, and a constant C > 0 depending on n, α , and diam(Ω), such that

$$\int_{\Omega} \boldsymbol{e}^{\alpha \frac{-u}{\|\boldsymbol{u}\|_{\mathcal{PSH}_{0}(\Omega)}}} \leq \boldsymbol{\mathcal{C}}, \quad \boldsymbol{u} \in \mathcal{PSH}_{0}(\Omega) \cap \boldsymbol{\mathcal{C}}^{2}(\bar{\Omega}), \; \boldsymbol{u} \not\equiv \boldsymbol{0}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▶ We use the gradient flow method.

• The constant *C* depends on the $diam(\Omega)$.

A PDE proof of the weak Moser-Trudinger inequality

Theorem

Let Ω be a hyperconvex domain. There exist $\alpha > 0$, and a constant C > 0 depending on n, α , and diam(Ω), such that

$$\int_{\Omega} \boldsymbol{e}^{\alpha \frac{-u}{\|\boldsymbol{u}\|_{\mathcal{PSH}_0(\Omega)}}} \leq \boldsymbol{\mathcal{C}}, \quad \boldsymbol{u} \in \mathcal{PSH}_0(\Omega) \cap \boldsymbol{\mathcal{C}}^2(\bar{\Omega}), \; \boldsymbol{u} \not\equiv \boldsymbol{0}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- We use the gradient flow method.
- The constant *C* depends on the $diam(\Omega)$.

The Sobolev inequality

Theorem Let $u \in \mathcal{PSH}_0(\Omega)$. Then for all p > 0, $\|u\|_{L^p(\Omega)} \leq C \|u\|_{\mathcal{PSH}_0(\Omega)}, \ u \in \mathcal{PSH}_0(\Omega) \cap C^2(\overline{\Omega})$ where C depends on n, p and Ω .

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Denote $T_{p,\Omega} =: \inf_{u \in \mathcal{PSH}_0(\Omega)} \frac{\mathcal{E}(u)}{\|u\|_{L^{p+1}(\Omega)}^{n+1}}.$

It suffices to prove

$$T_{p,\Omega} \geq \lambda$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

for some small constant $\lambda > 0$.

Proof of Sobolev inequality

Step 1: Assume the Sobolev inequality

$$\|u\|_{L^p(B)}\leq C_0\|u\|_{\mathcal{PSH}_0(B)},\; u\in\mathcal{PSH}_0(B)\cap C^\infty(ar{B})$$

holds for p > 0 on any ball $B \subset \mathbb{C}^{n-1}$. Then the following inequality

$$\left(\int_{\Omega}|u|^{p}\right)^{\frac{1}{p}}\leq \boldsymbol{C}\cdot\boldsymbol{C}_{0}\left(\int_{\Omega}(\boldsymbol{dd}^{c}u)^{n}\right)^{\frac{1}{n}},\ u\in\mathcal{PSH}_{0}(\Omega)\cap\boldsymbol{C}^{\infty}(\bar{\Omega}).$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

holds on any ball $\Omega \subset \mathbb{C}^n$ with the same radius as *B*. Here *C* depends on the radius and is independent of *p*.

A relation between MA energy and MA mass

Assume the balls are all centered at the origin.

Write $z = (w, \xi) \in \mathbb{C}^{n-1} \times \mathbb{C}$. Let *D* be the disk in \mathbb{C} with the same radius as *B*. For any $\xi = t + \sqrt{-1}s \in D$, denote $D_{\xi} := \{w \in \mathbb{C}^{n-1} \mid |w|^2 \le 1 - |\xi|^2\}.$

For $u(z) \in \mathcal{PSH}_0(\Omega) \cap C_0^{\infty}(\overline{\Omega})$, Then denote

$$v(\xi) = \int_{D_{\xi}} (-u) (d_w d_w^c u)^{n-1}.$$

Then it holds

$$\int_D |- riangle_{\xi} v(\xi)| \, dt \, ds \leq 2 \int_\Omega (dd^c u)^n.$$

A relation between MA energy and MA mass

Assume the balls are all centered at the origin.

Write $z = (w, \xi) \in \mathbb{C}^{n-1} \times \mathbb{C}$. Let *D* be the disk in \mathbb{C} with the same radius as *B*. For any $\xi = t + \sqrt{-1}s \in D$, denote $D_{\xi} := \{w \in \mathbb{C}^{n-1} \mid |w|^2 \le 1 - |\xi|^2\}.$

For $u(z) \in \mathcal{PSH}_0(\Omega) \cap C_0^{\infty}(\overline{\Omega})$, Then denote

$$v(\xi) = \int_{D_{\xi}} (-u) (d_w d_w^c u)^{n-1}.$$

Then it holds

$$\int_D |- riangle_{\xi} v(\xi)| \, dt \, ds \leq 2 \int_\Omega (dd^c u)^n.$$

A relation between MA energy and MA mass

Assume the balls are all centered at the origin.

Write $z = (w, \xi) \in \mathbb{C}^{n-1} \times \mathbb{C}$. Let *D* be the disk in \mathbb{C} with the same radius as *B*. For any $\xi = t + \sqrt{-1}s \in D$, denote $D_{\xi} := \{w \in \mathbb{C}^{n-1} \mid |w|^2 \le 1 - |\xi|^2\}.$

For $u(z) \in \mathcal{PSH}_0(\Omega) \cap C_0^{\infty}(\overline{\Omega})$, Then denote

$$\mathbf{v}(\xi) = \int_{D_{\xi}} (-u) (\mathbf{d}_{\mathbf{w}} \mathbf{d}_{\mathbf{w}}^{c} u)^{n-1}.$$

Then it holds

$$\int_D |- riangle_{\xi} v(\xi)| \, dt \, ds \leq 2 \int_\Omega (dd^c u)^n.$$

A relation between MA energy and MA mass

Assume the balls are all centered at the origin.

Write $z = (w, \xi) \in \mathbb{C}^{n-1} \times \mathbb{C}$. Let *D* be the disk in \mathbb{C} with the same radius as *B*. For any $\xi = t + \sqrt{-1}s \in D$, denote $D_{\xi} := \{w \in \mathbb{C}^{n-1} \mid |w|^2 \le 1 - |\xi|^2\}.$

For $u(z) \in \mathcal{PSH}_0(\Omega) \cap C_0^{\infty}(\overline{\Omega})$, Then denote

$$\mathbf{v}(\xi) = \int_{D_{\xi}} (-u) (\mathbf{d}_{\mathbf{w}} \mathbf{d}_{\mathbf{w}}^{c} u)^{n-1}.$$

Then it holds

$$\int_D |- riangle_{\xi} v(\xi)| \, dt \, ds \leq 2 \int_\Omega (dd^c u)^n.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

By the Sobolev inequality in dimension n-1,

$$\begin{split} \left(\int_{\Omega}|u|^{p}\right)^{\frac{1}{p}} &= \left(\int_{|\xi|^{2}\leq 1}\int_{D_{\xi}}|u|^{p}\,d\mu_{w}\,d\mu_{\xi}\right)^{\frac{1}{p}} \\ &\leq C_{0}\left(\int_{|\xi|^{2}\leq 1}\left(\int_{B}(-u)\det(u_{w^{i}\bar{w}^{j}})\right)^{\frac{p}{n}}d\mu_{\xi}\right)^{\frac{1}{p}} \\ &= C_{0}\left(\int_{|\xi|^{2}\leq 1}[v(\xi)]^{\frac{p}{n}}\,d\mu_{\xi}\right)^{\frac{1}{p}} \\ &\leq C\cdot C_{0}\left(\int_{|\xi|^{2}\leq 1}|-\Delta_{\xi}v(\xi)|\right)^{\frac{1}{n}}\leq C\cdot C_{0}\left(\int_{\Omega}(dd^{c}u)^{n}\right)^{\frac{1}{p}} \end{split}$$

The Brezis-Merle inequality in real dimension 2 is used in the last inequality.

Step 2: We show the Sobolev inequality holds for any smooth pseudo-convex domain $\Omega \subset \mathbb{C}^n$ under the assumption

$$\left(\int_{\Omega}|u|^{p}\right)^{\frac{1}{p}}\leq C\left(\int_{\Omega}(dd^{c}u)^{n}\right)^{\frac{1}{n}},\ u\in\mathcal{PSH}_{0}(\Omega)\cap C^{2}(\bar{\Omega})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

holds.

We denote

$$f(t) = \left\{ egin{array}{cc} |t|^p & |t| \leq M, \ e^{-M}t^{-2} & |t| \geq M + e^{-M}, \end{array}
ight.$$

where M > 1 is a large constant. Denote

$$J(u) = \int_{\Omega} (-u) \det(u_{i\overline{j}}) \, dV - \lambda \Big[(p+1) \int_{\Omega} F[u] \Big]^{rac{p+1}{p+1}}$$

Here $F(t) = \int_0^t f(s) ds$.

If the Sobolev inequality is not true, then for a small $\lambda > 0$ and large *M*, we have

$$\inf_{u\in\mathcal{PSH}_0(\Omega)\cap C^2(\bar{\Omega})}J(u)<-1.$$

・ロト・(四ト・(日下・(日下・))への)

Introduce a descent gradient flow for the functional J.

$$\begin{cases} u_t - \log \det(u_{ij}) = -\log \lambda \beta(u) f(u) & \text{in } Q = \Omega \times (0, \infty), \\ u(x, 0) = w_{\epsilon}, & \text{and} & u = 0 & \text{on } \partial \Omega \times (0, \infty), \end{cases}$$

where w_{ϵ} is chosen such that

$$J(w_{\epsilon}) \leq \inf_{u \in \mathcal{PSH}_{0}(\Omega) \cap \mathcal{C}^{2}(\bar{\Omega})} J(u) + \epsilon < -1,$$

and

$$\beta(u) = \left[(p+1) \int_{\Omega} F(u) \right]^{\frac{n-p}{p+1}}.$$

The solution to the flow converges to $u = u_{\epsilon}$, which solves

$$det(u_{i\bar{j}}) = \lambda \beta(u) f(u) \qquad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \partial \Omega.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduce a descent gradient flow for the functional J.

$$\begin{cases} u_t - \log \det(u_{ij}) = -\log \lambda \beta(u) f(u) & \text{in } Q = \Omega \times (0, \infty), \\ u(x, 0) = w_{\epsilon}, & \text{and} & u = 0 & \text{on } \partial \Omega \times (0, \infty), \end{cases}$$

where w_{ϵ} is chosen such that

$$J(w_{\epsilon}) \leq \inf_{u \in \mathcal{PSH}_{0}(\Omega) \cap \mathcal{C}^{2}(\bar{\Omega})} J(u) + \epsilon < -1,$$

and

$$\beta(u) = \left[(p+1) \int_{\Omega} F(u) \right]^{\frac{n-p}{p+1}}.$$

The solution to the flow converges to $u = u_{\epsilon}$, which solves

$$\det(u_{i\bar{j}}) = \lambda\beta(u)f(u) \qquad \text{ in } \Omega,$$
$$u = 0 \qquad \text{ on } \partial\Omega.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Claim: We have

$$f(u) = (1 + o(1))|u|^{p},$$

$$\beta(u) = (1 + o(1)) \left[\int_{\Omega} |u|^{p+1} \right]^{(n-p)/(p+1)} \approx ||u||_{L^{p+1}}^{n-p}$$

when *M* goes to infinity.

We have

$$\|u\|_{L^{p+1}} \leq C \left(\int_{\Omega} (dd^{c}u)^{n} \right)^{\frac{1}{n}} = C \left(\int_{\Omega} \lambda \beta(u) f(u) \right)^{\frac{1}{n}} \leq C \lambda^{\frac{1}{n}} \beta^{\frac{1}{n}} \|u\|_{L^{p+1}}^{\frac{p}{n}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We get $\lambda \ge C$. This is a contradiction to that λ is small.

Claim: We have

$$f(u) = (1 + o(1))|u|^{p},$$

$$\beta(u) = (1 + o(1)) \left[\int_{\Omega} |u|^{p+1} \right]^{(n-p)/(p+1)} \approx ||u||_{L^{p+1}}^{n-p}$$

when *M* goes to infinity.

We have

$$\|u\|_{L^{p+1}} \leq C\left(\int_{\Omega} (dd^{c}u)^{n}\right)^{\frac{1}{n}} = C\left(\int_{\Omega} \lambda\beta(u)f(u)\right)^{\frac{1}{n}} \leq C\lambda^{\frac{1}{n}}\beta^{\frac{1}{n}}\|u\|_{L^{p+1}}^{\frac{p}{n}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We get $\lambda \ge C$. This is a contradiction to that λ is small.

Step 3: For any pseudoconvex domains Ω_1 , Ω_2 with $\Omega_1 \subset \Omega_2 \subset \mathbb{C}^n$, We have

$$T_{p,\Omega_1} \geq T_{p,\Omega_2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Similar to the Hessian equation.

Step 4: Induction arguments:

 By the Sobolev inequality in real dimension 2, i.e., complex dimension 1,

$$\left(\int_{\Omega}|u|^{p}\right)^{\frac{1}{p}}\leq C\left(\int_{\Omega}(\textit{dd}^{c}u)^{n}\right)^{\frac{1}{n}},\ u\in\mathcal{PSH}_{0}(\Omega)\cap\textit{C}^{2}(\bar{\Omega})$$

holds for any ball in \mathbb{C}^2 .

- By Step 1, we have Sobolev inequality for any ball in C^2 .
- By Step 2, the Sobolev inequality for any hyperconvex domain Ω ⊂ C² follows.
- all dimensions.

Let $C_{n,p+1}$ be the Sobolev constant in dimension *n*, i.e.,

 $\|u\|_{L^p(\Omega)} \leq C_{n,p} \cdot \|u\|_{\mathcal{PSH}_0(\Omega)}.$

Equivalently, it holds

$$\int_{\Omega} \left(rac{|u|}{\|u\|_{\mathcal{PSH}_0(\Omega)}}
ight)^{
ho} \, d\mu \leq C^{
ho}_{n,
ho+1}.$$

By checking the proof of Sobolev inequality, we have $C_{n,p} \leq C \cdot C_{n-1,p}$ for some constant indpendent of *p*.

Hence, by the Moser-Trudinger inequality when n = 1 (real dimension 2), there exists $\alpha > 0$,

$$\int_{\Omega} e^{\alpha \frac{-u}{\|u\|_{\mathcal{PSH}_0(\Omega)}}} d\mu = \int_{\Omega} \sum_{j=1}^{\infty} \frac{1}{j!} \left(\alpha \frac{-u}{\|u\|_{\mathcal{PSH}_0(\Omega)}} \right)^j d\mu \leq C.$$

(日) (日) (日) (日) (日) (日) (日)

Let $C_{n,p+1}$ be the Sobolev constant in dimension *n*, i.e.,

$$\|u\|_{L^p(\Omega)} \leq C_{n,p} \cdot \|u\|_{\mathcal{PSH}_0(\Omega)}.$$

Equivalently, it holds

$$\int_{\Omega} \left(rac{|m{u}|}{\|m{u}\|_{\mathcal{PSH}_0(\Omega)}}
ight)^{m{
ho}} \, m{d} \mu \leq m{C}^{m{
ho}}_{n,m{
ho}+1}.$$

By checking the proof of Sobolev inequality, we have $C_{n,p} \leq C \cdot C_{n-1,p}$ for some constant indpendent of *p*.

Hence, by the Moser-Trudinger inequality when n = 1 (real dimension 2), there exists $\alpha > 0$,

$$\int_{\Omega} e^{\alpha \frac{-u}{\|u\|_{\mathcal{PSH}_0(\Omega)}}} d\mu = \int_{\Omega} \sum_{j=1}^{\infty} \frac{1}{j!} \left(\alpha \frac{-u}{\|u\|_{\mathcal{PSH}_0(\Omega)}} \right)^j d\mu \leq C.$$

(日) (日) (日) (日) (日) (日) (日)

Let $C_{n,p+1}$ be the Sobolev constant in dimension *n*, i.e.,

$$\|u\|_{L^p(\Omega)} \leq C_{n,p} \cdot \|u\|_{\mathcal{PSH}_0(\Omega)}.$$

Equivalently, it holds

$$\int_\Omega \left(rac{|u|}{\|u\|_{\mathcal{PSH}_0(\Omega)}}
ight)^{oldsymbol{
ho}} \, d\mu \leq C^{oldsymbol{
ho}}_{n,oldsymbol{
ho}+1}.$$

By checking the proof of Sobolev inequality, we have $C_{n,p} \leq C \cdot C_{n-1,p}$ for some constant indpendent of *p*.

Hence, by the Moser-Trudinger inequality when n = 1 (real dimension 2), there exists $\alpha > 0$,

$$\int_{\Omega} e^{\alpha \frac{-u}{\|u\|_{\mathcal{PSH}_0(\Omega)}}} d\mu = \int_{\Omega} \sum_{j=1}^{\infty} \frac{1}{j!} \left(\alpha \frac{-u}{\|u\|_{\mathcal{PSH}_0(\Omega)}} \right)^j d\mu \leq C.$$

(日) (日) (日) (日) (日) (日) (日)

Let $C_{n,p+1}$ be the Sobolev constant in dimension *n*, i.e.,

$$\|u\|_{L^p(\Omega)} \leq C_{n,p} \cdot \|u\|_{\mathcal{PSH}_0(\Omega)}.$$

Equivalently, it holds

$$\int_\Omega \left(rac{|u|}{\|u\|_{\mathcal{PSH}_0(\Omega)}}
ight)^{oldsymbol{
ho}} \, d\mu \leq C^{oldsymbol{
ho}}_{n,oldsymbol{
ho}+1}.$$

By checking the proof of Sobolev inequality, we have $C_{n,p} \leq C \cdot C_{n-1,p}$ for some constant indpendent of *p*.

Hence, by the Moser-Trudinger inequality when n = 1 (real dimension 2), there exists $\alpha > 0$,

$$\int_{\Omega} e^{\alpha \frac{-u}{\|u\|_{\mathcal{PSH}_0(\Omega)}}} d\mu = \int_{\Omega} \sum_{j=1}^{\infty} \frac{1}{j!} \left(\alpha \frac{-u}{\|u\|_{\mathcal{PSH}_0(\Omega)}} \right)^j d\mu \leq C.$$

About Brezis-Merle type inequality

The proof above also implies a PDE proof to Brezis-Merle type inequality:

Suppose Ω is a hyper-convex domain. There exists a constant $\alpha > {\rm 0}$ such that

$$\int_{\Omega} e^{\alpha(-u)} \leq C, \quad \mathcal{M}(u) = 1.$$

(ロ) (同) (三) (三) (三) (○) (○)

Part III. Applications in regularity of the complex Monge-Ampère equation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\begin{cases} \det(u_{i\bar{j}}) = (dd^c u)^n = f & \text{in } \Omega, \\ u = \varphi & \text{on } \partial\Omega. \end{cases}$$
(2)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Caffarelli-Kohn-Nirenberg-Spruck: smooth data on f, φ, Ω .

f ∈ L²(Ω): L[∞]-estimate by Cheng-Yau, Cegrell-Persson, Bedford, Blocki, etc.

Question: Assume $f \in L^p$, p > 1?

$$\begin{cases} \det(u_{i\bar{j}}) = (dd^c u)^n = f & \text{in } \Omega, \\ u = \varphi & \text{on } \partial\Omega. \end{cases}$$
(2)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Caffarelli-Kohn-Nirenberg-Spruck: smooth data on f, φ, Ω .

f ∈ L²(Ω): L[∞]-estimate by Cheng-Yau, Cegrell-Persson, Bedford, Blocki, etc.

Question: Assume $f \in L^p$, p > 1?

.

$$\begin{cases} \det(u_{i\bar{j}}) = (dd^c u)^n = f & \text{in } \Omega, \\ u = \varphi & \text{on } \partial\Omega. \end{cases}$$
(2)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Caffarelli-Kohn-Nirenberg-Spruck: smooth data on f, φ, Ω .
- *f* ∈ L²(Ω): L[∞]-estimate by Cheng-Yau, Cegrell-Persson, Bedford, Blocki, etc.

Question: Assume $f \in L^p$, p > 1?

$$\begin{cases} \det(u_{i\bar{j}}) = (dd^c u)^n = f & \text{in } \Omega, \\ u = \varphi & \text{on } \partial\Omega. \end{cases}$$
(2)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Caffarelli-Kohn-Nirenberg-Spruck: smooth data on f, φ, Ω .
- *f* ∈ L²(Ω): L[∞]-estimate by Cheng-Yau, Cegrell-Persson, Bedford, Blocki, etc.

Question: Assume $f \in L^p$, p > 1?

Theorem (Kolodziej)

Suppose $f \in L^{p}(\Omega)$, p > 1 and $\varphi \in L^{\infty}(\Omega)$. Let $u \in C^{2}(\Omega) \cap C^{0}(\overline{\Omega})$ be a plurisubharmonic solution to (2). Then there is a constant C > 0 depending on n, p and Ω such that

$$|\inf_{\Omega} u| \le |\inf_{\Omega} \varphi| + C \|f\|_{L^{p}(\Omega)}^{\frac{1}{n}}.$$
(3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Remark

Kolodziej's proof used capacity theory(Bedford-Taylor)

$$\textit{cap}(K,\Omega) := \sup\left\{\int_{K}(\textit{dd}^{c}u)^{n}: \ u \in \textit{PSH}(\Omega), \ -1 \leq u < 0
ight\}$$

٠

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

► The L[∞]-estimate holds when L¹ log L^{n+ϵ}(Lorenz-Zygmumd space)

$$L^1(\log L)^q(\Omega) := \left\{ f \mid \int_{\Omega} |f|(\log(e+|f|))^q \, dx < \infty
ight\}.$$

Remark

Kolodziej's proof used capacity theory(Bedford-Taylor)

$$\textit{cap}(K,\Omega) := \sup\left\{\int_{K}(\textit{dd}^{c}u)^{n}: \ u \in \textit{PSH}(\Omega), \ -1 \leq u < 0
ight\}$$

٠

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► The L[∞]-estimate holds when L¹ log L^{n+ϵ}(Lorenz-Zygmumd space)

$$L^1(\log L)^q(\Omega) := \left\{ f \mid \int_{\Omega} |f|(\log(e+|f|))^q \, dx < \infty
ight\}.$$

Question(Blocki-Kolodziej): Find a PDE proof for the L^{∞} estimate.

References:

Dinew-Guedj-Zeriahi, Open problems in pluripotential theory, 2016.

AIM problem lists, available at http://aimath.org/pastworkshops/mongeampereproblems.pdf.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We establish a PDE approach based on the Sobolev type inequality

- (1). L^{∞} -estimate
- (2). Stability theorem
- (3). Hölder regularity

Question(Blocki-Kolodziej): Find a PDE proof for the L^{∞} estimate.

References:

Dinew-Guedj-Zeriahi, Open problems in pluripotential theory, 2016.

AIM problem lists, available at http://aimath.org/pastworkshops/mongeampereproblems.pdf.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We establish a PDE approach based on the Sobolev type inequality

- (1). L^{∞} -estimate
- (2). Stability theorem
- (3). Hölder regularity

Question(Blocki-Kolodziej): Find a PDE proof for the L^{∞} estimate.

References:

Dinew-Guedj-Zeriahi, Open problems in pluripotential theory, 2016.

AIM problem lists, available at http://aimath.org/pastworkshops/mongeampereproblems.pdf.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We establish a PDE approach based on the Sobolev type inequality

- (1). L^{∞} -estimate
- (2). Stability theorem
- (3). Hölder regularity

(1). L^{∞} -estimate

Linear elliptic equation: De Giorgi, Moser, Stampaccia, etc.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ▶ *p*-Laplacian: Boccardo-Murat-Puel.
- ▶ real Hessian equation($\sigma_k[\lambda(D^2u)] = f$): Chou-Wang.

Linear elliptic equation: De Giorgi, Moser, Stampaccia, etc.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ *p*-Laplacian: Boccardo-Murat-Puel.
- ▶ real Hessian equation($\sigma_k[\lambda(D^2u)] = f$): Chou-Wang.

Linear elliptic equation: De Giorgi, Moser, Stampaccia, etc.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- p-Laplacian: Boccardo-Murat-Puel.
- ▶ real Hessian equation($\sigma_k[\lambda(D^2u)] = f$): Chou-Wang.

Linear elliptic equation: De Giorgi, Moser, Stampaccia, etc.

- *p*-Laplacian: Boccardo-Murat-Puel.
- ▶ real Hessian equation($\sigma_k[\lambda(D^2 u)] = f$): Chou-Wang.

► By quasi M-T,

 $\|u\|_{L^{p+1}(\Omega)} \leq C[\mathcal{E}(u)]^{\frac{1}{p+1}}, \ u \in \mathcal{PSH}_0(\Omega) \cap C_0^2(\Omega).$

Key: The constant *C* depends on $diam(\Omega)$.

• Assume
$$||f||_{L^p(\Omega)} = 1$$
.

Replacing the boundary function by inf_Ω φ, it suffices to prove the estimate for φ = 0 by the comparison principle.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

By quasi M-T,

 $\|u\|_{L^{p+1}(\Omega)} \leq C[\mathcal{E}(u)]^{\frac{1}{p+1}}, \ u \in \mathcal{PSH}_0(\Omega) \cap C_0^2(\Omega).$

Key: The constant *C* depends on $diam(\Omega)$.

• Assume
$$||f||_{L^p(\Omega)} = 1$$
.

Replacing the boundary function by inf_Ω φ, it suffices to prove the estimate for φ = 0 by the comparison principle.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

By quasi M-T,

 $\|u\|_{L^{p+1}(\Omega)} \leq C[\mathcal{E}(u)]^{\frac{1}{n+1}}, \ u \in \mathcal{PSH}_0(\Omega) \cap C_0^2(\Omega).$

Key: The constant *C* depends on $diam(\Omega)$.

- Assume $||f||_{L^p(\Omega)} = 1$.
- Replacing the boundary function by inf_Ω φ, it suffices to prove the estimate for φ = 0 by the comparison principle.

By quasi M-T,

 $\|u\|_{L^{p+1}(\Omega)} \leq C[\mathcal{E}(u)]^{\frac{1}{n+1}}, \ u \in \mathcal{PSH}_0(\Omega) \cap C_0^2(\Omega).$

Key: The constant *C* depends on $diam(\Omega)$.

• Assume
$$||f||_{L^p(\Omega)} = 1$$
.

Replacing the boundary function by inf_Ω φ, it suffices to prove the estimate for φ = 0 by the comparison principle.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof of the L^{∞} -estimate

Claim: For any s > 0, let $\Omega_s = \{u \in \Omega \mid u < -s\}$,

$$|\Omega_s| \le C \frac{1}{s} |\Omega|^{1+\delta}, \tag{4}$$

where $\delta = \frac{1}{np^*} - \frac{1}{\beta}(1 + \frac{1}{np^*}) > 0$ when choosing $\beta > 1 + p^*k$.

Proof of the claim

$$\begin{split} \mathcal{E}(u) &= \frac{n!}{(n+1)\pi^n} \int_{\Omega} (-u)f \\ &\leq \frac{n!}{(n+1)\pi^n} \|f\|_{L^p(\Omega)} \|u\|_{L^{p^*}(\Omega)} \\ &\leq C |\Omega|^{\frac{1}{p^*}(1-\frac{1}{\beta})} \|u\|_{L^{\beta p^*}(\Omega)} \\ &\leq C |\Omega|^{\frac{1}{p^*}(1-\frac{1}{\beta})} [\mathcal{E}(u)]^{\frac{1}{n+1}}, \end{split}$$

where p^* is conjugate to p and $\beta > 1$. It follows that

$$[\mathcal{E}(\boldsymbol{u})]^{\frac{1}{n+1}} \leq \boldsymbol{C}|\Omega|^{\frac{1}{np^*}(1-\frac{1}{\beta})}.$$

Using Sobolev inequality again, we have

$$\|u\|_{L^1(\Omega)} \leq |\Omega|^{1-\frac{1}{\beta}} \|u\|_{L^{\beta}(\Omega)} \leq C |\Omega|^{1+\delta}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof of the claim

$$\begin{split} \mathcal{E}(u) &= \frac{n!}{(n+1)\pi^n} \int_{\Omega} (-u)f \\ &\leq \frac{n!}{(n+1)\pi^n} \|f\|_{L^p(\Omega)} \|u\|_{L^{p^*}(\Omega)} \\ &\leq C |\Omega|^{\frac{1}{p^*}(1-\frac{1}{\beta})} \|u\|_{L^{\beta p^*}(\Omega)} \\ &\leq C |\Omega|^{\frac{1}{p^*}(1-\frac{1}{\beta})} [\mathcal{E}(u)]^{\frac{1}{n+1}}, \end{split}$$

where p^* is conjugate to p and $\beta > 1$. It follows that

$$[\mathcal{E}(u)]^{\frac{1}{n+1}} \leq C |\Omega|^{\frac{1}{np^*}(1-\frac{1}{\beta})}.$$

Using Sobolev inequality again, we have

$$\|u\|_{L^1(\Omega)} \leq |\Omega|^{1-rac{1}{eta}} \|u\|_{L^{eta}(\Omega)} \leq C |\Omega|^{1+\delta}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Choose s_0 sufficiently large such that for $\Omega_0 = \Omega_{s_0}$, $|\Omega_0| \leq \frac{1}{2} |\Omega|$.

For any $k \in \mathbb{Z}_+$, define

$$s_k = s_0 + \sum_{j=1}^k 2^{-\delta j}, \quad \Omega_k := \Omega_{s_k}, \quad u^k = u + s_k.$$

Then *u^k* satisfies

$$\left\{ egin{array}{l} \det(u_{ij}) = f & ext{ in } \Omega_k, \ u = 0 & ext{ on } \partial \Omega_k. \end{array}
ight.$$

Then

$$\|u\|_{L^1(\Omega_k)} \leq C |\Omega_k|^{1+\delta}.$$

Hence the constants depend on the diameters of the domains, are uniform for k.

Choose s_0 sufficiently large such that for $\Omega_0 = \Omega_{s_0}$, $|\Omega_0| \le \frac{1}{2} |\Omega|$. For any $k \in \mathbb{Z}_+$, define

$$s_k = s_0 + \sum_{j=1}^k 2^{-\delta j}, \quad \Omega_k := \Omega_{s_k}, \quad u^k = u + s_k.$$

Then *u^k* satisfies

$$\begin{cases} \det(u_{ij}) = f & \text{ in } \Omega_k, \\ u = 0 & \text{ on } \partial \Omega_k. \end{cases}$$

Then

$$\|u\|_{L^1(\Omega_k)} \leq C |\Omega_k|^{1+\delta}.$$

Hence the constants depend on the diameters of the domains, are uniform for k.

Choose s_0 sufficiently large such that for $\Omega_0 = \Omega_{s_0}$, $|\Omega_0| \le \frac{1}{2} |\Omega|$. For any $k \in \mathbb{Z}_+$, define

$$s_k = s_0 + \sum_{j=1}^k 2^{-\delta j}, \quad \Omega_k := \Omega_{s_k}, \quad u^k = u + s_k.$$

Then *u^k* satisfies

$$\left\{ egin{array}{ll} \det(u_{i\overline{j}}) = f & ext{ in } \Omega_k, \ u = 0 & ext{ on } \partial\Omega_k. \end{array}
ight.$$

Then

$$\|u\|_{L^1(\Omega_k)} \leq C |\Omega_k|^{1+\delta}.$$

Hence the constants depend on the diameters of the domains, are uniform for k.

Choose s_0 sufficiently large such that for $\Omega_0 = \Omega_{s_0}$, $|\Omega_0| \le \frac{1}{2} |\Omega|$. For any $k \in \mathbb{Z}_+$, define

$$s_k = s_0 + \sum_{j=1}^k 2^{-\delta j}, \quad \Omega_k := \Omega_{s_k}, \quad u^k = u + s_k.$$

Then *u^k* satisfies

$$\left\{ egin{array}{ll} \det(u_{i\overline{j}}) = f & ext{ in } \Omega_k, \ u = 0 & ext{ on } \partial\Omega_k. \end{array}
ight.$$

Then

$$\|u\|_{L^1(\Omega_k)} \leq C |\Omega_k|^{1+\delta}.$$

Hence the constants depend on the diameters of the domains, are uniform for k.

We claim that $|\Omega_{k+1}| \le \frac{1}{2} |\Omega_k|$ for any *k*. (proof: By induction, we assume the inequality holds for $k \le I$.

$$\begin{split} \begin{split} |\Omega_{l+1}| &\leq \quad C 2^{\delta(l+1)} |\Omega_l|^{1+\delta} \leq C 2^{\delta(l+1)} \left(\frac{|\Omega_0|}{2^l} \right)^{\delta} \cdot |\Omega_l| \\ &\leq \quad C \frac{1}{s_0^{\delta}} |\Omega|^{\delta(1+\delta)} |\Omega_l| \leq \frac{1}{2} |\Omega_l| \end{split}$$

provided s_0 is sufficiently large.) This implies that the set

$$\{u\in\Omega\mid u<-s_0-\sum_{j=1}^\infty(\frac{1}{2^\delta})^j\}$$

has measure zero. Hence,

$$|\inf_{\Omega} u| \leq s_0 + \sum_{j=1}^{\infty} (\frac{1}{2^{\delta}})^j = s_0 + \frac{1}{2^{\delta} - 1} \leq C.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We claim that $|\Omega_{k+1}| \le \frac{1}{2} |\Omega_k|$ for any *k*. (proof: By induction, we assume the inequality holds for $k \le I$.

$$egin{array}{rcl} |\Omega_{l+1}| &\leq & oldsymbol{C2} \delta^{\delta(l+1)} |\Omega_l|^{1+\delta} \leq oldsymbol{C2} \delta^{\delta(l+1)} \left(rac{|\Omega_0|}{2^l}
ight)^{\delta} \cdot |\Omega_l| \ &\leq & oldsymbol{C1} rac{1}{s_0^{\delta}} |\Omega|^{\delta(1+\delta)} |\Omega_l| \leq rac{1}{2} |\Omega_l| \end{array}$$

provided s_0 is sufficiently large.) This implies that the set

$$\{u\in\Omega\mid u<-s_0-\sum_{j=1}^\infty(rac{1}{2^\delta})^j\}$$

has measure zero. Hence,

$$|\inf_{\Omega} u| \leq s_0 + \sum_{j=1}^{\infty} (\frac{1}{2^{\delta}})^j = s_0 + \frac{1}{2^{\delta} - 1} \leq C.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(2). The stability theorem

Theorem

Assume $\psi \in C^0(\partial \Omega)$. Let $v \in L^{\infty}(\Omega)$ be a PSH solution to

$$\begin{cases} (dd^{c}v)^{n} = g\mu & \text{ in }\Omega, \\ v = \psi & \text{ on }\partial\Omega. \end{cases}$$
(5)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Then there exists a constant *C* depending on $||f||_{L^p(\Omega)}$, $||g||_{L^p(\Omega)}$ and *n*, and the upper bound of the diameter of Ω , such that

$$\|\boldsymbol{u}-\boldsymbol{v}\|_{L^{\infty}(\Omega)} \leq C\left\{\|\boldsymbol{f}-\boldsymbol{g}\|_{L^{1}(\Omega)}^{\frac{1}{n}\frac{\delta}{1+\delta}} + \|\varphi-\psi\|_{L^{\infty}(\partial\Omega)}^{\frac{\delta}{1+\delta}}\right\}$$

where δ is defined as before.

(3). Hölder regularity

Theorem (Guedj-Kolodziej-Zeriahi 08')

Suppose Ω is strictly pseudo-convex. Assume $0 \le f \in L^p(\Omega)$, p > 1 and $\varphi \in C^{0,2\alpha}(\partial \Omega)$. Let \hat{u} be the solution to the Dirichlet problem with $(dd^c \hat{u})^n = 0$ and boundary data φ , if $\triangle \hat{u}$ has finite mass in Ω , then

$$u \in C^{0,\alpha'}, \text{ for all } \alpha' < \min(\alpha, \frac{2}{p^*n+1}).$$

Remark:

- The Hölder continuity was first proved by Bedford-Taylor under the assumption that f¹/_n ∈ C^α(Ω) and φ ∈ C^{2α}(∂Ω).
- The technical condition of \hat{u} is satisfied when $\varphi \in C^{1,1}(\partial \Omega)$.

(日) (日) (日) (日) (日) (日) (日)

► We give a PDE proof without using capacity theory.

Theorem (Guedj-Kolodziej-Zeriahi 08')

Suppose Ω is strictly pseudo-convex. Assume $0 \le f \in L^p(\Omega)$, p > 1 and $\varphi \in C^{0,2\alpha}(\partial \Omega)$. Let \hat{u} be the solution to the Dirichlet problem with $(dd^c \hat{u})^n = 0$ and boundary data φ , if $\Delta \hat{u}$ has finite mass in Ω , then

$$u \in C^{0,\alpha'}, \text{ for all } \alpha' < \min(\alpha, \frac{2}{p^*n+1}).$$

Remark:

The Hölder continuity was first proved by Bedford-Taylor under the assumption that f¹/_n ∈ C^α(Ω) and φ ∈ C^{2α}(∂Ω).

• The technical condition of \hat{u} is satisfied when $\varphi \in C^{1,1}(\partial \Omega)$.

▶ We give a PDE proof without using capacity theory.

Theorem (Guedj-Kolodziej-Zeriahi 08')

Suppose Ω is strictly pseudo-convex. Assume $0 \le f \in L^p(\Omega)$, p > 1 and $\varphi \in C^{0,2\alpha}(\partial \Omega)$. Let \hat{u} be the solution to the Dirichlet problem with $(dd^c \hat{u})^n = 0$ and boundary data φ , if $\triangle \hat{u}$ has finite mass in Ω , then

$$u \in C^{0,\alpha'}, \text{ for all } \alpha' < \min(\alpha, \frac{2}{p^*n+1}).$$

Remark:

- The Hölder continuity was first proved by Bedford-Taylor under the assumption that f¹/_n ∈ C^α(Ω) and φ ∈ C^{2α}(∂Ω).
- The technical condition of \hat{u} is satisfied when $\varphi \in C^{1,1}(\partial \Omega)$.

▶ We give a PDE proof without using capacity theory.

Theorem (Guedj-Kolodziej-Zeriahi 08')

Suppose Ω is strictly pseudo-convex. Assume $0 \le f \in L^p(\Omega)$, p > 1 and $\varphi \in C^{0,2\alpha}(\partial \Omega)$. Let \hat{u} be the solution to the Dirichlet problem with $(dd^c \hat{u})^n = 0$ and boundary data φ , if $\triangle \hat{u}$ has finite mass in Ω , then

$$u \in C^{0,\alpha'}, \text{ for all } \alpha' < \min(\alpha, \frac{2}{p^*n+1}).$$

Remark:

- The Hölder continuity was first proved by Bedford-Taylor under the assumption that f¹/_n ∈ C^α(Ω) and φ ∈ C^{2α}(∂Ω).
- The technical condition of \hat{u} is satisfied when $\varphi \in C^{1,1}(\partial \Omega)$.
- We give a PDE proof without using capacity theory.

Part IV. Futher question: The manifold case

Manifold case

Assume (M, ω_g) is a Kähler manifold.

Question. Are there Sobolev and Moser-Trudinger typed inequalities for Kahler potentials $\phi \in [\omega_g]$ in terms of the Monge-Ampère energy

$$\mathcal{E}(\phi) = -\frac{1}{(n+1)!} \sum_{i} \int_{M} \phi \omega_{\phi}^{i} \wedge \omega_{g}^{n-i}?$$

On the two-sphere the inequality was first shown by Moser with sharp constant. Subsequently, the general Riemann surface case was settled by Fontana with the same sharp constant.

Manifold case

Assume (M, ω_g) is a Kähler manifold.

Question. Are there Sobolev and Moser-Trudinger typed inequalities for Kahler potentials $\phi \in [\omega_g]$ in terms of the Monge-Ampère energy

$$\mathcal{E}(\phi) = -\frac{1}{(n+1)!} \sum_{i} \int_{M} \phi \omega_{\phi}^{i} \wedge \omega_{g}^{n-i}?$$

On the two-sphere the inequality was first shown by Moser with sharp constant. Subsequently, the general Riemann surface case was settled by Fontana with the same sharp constant.

Manifold case

Assume (M, ω_g) is a Kähler manifold.

Question. Are there Sobolev and Moser-Trudinger typed inequalities for Kahler potentials $\phi \in [\omega_g]$ in terms of the Monge-Ampère energy

$$\mathcal{E}(\phi) = -\frac{1}{(n+1)!} \sum_{i} \int_{M} \phi \omega_{\phi}^{i} \wedge \omega_{g}^{n-i}?$$

On the two-sphere the inequality was first shown by Moser with sharp constant. Subsequently, the general Riemann surface case was settled by Fontana with the same sharp constant.

On general Kähler manifold

Theorem(Berman-Berndtsson). Assume $[\omega_g]$ is an integral class. Then there exsit c, C > 0, such that

$$\int_{M} e^{c\left(\frac{-\phi}{\varepsilon^{1/(n+1)(\phi)}}\right)^{\frac{n+1}{n}}} \leq C$$

for $\phi \in [\omega_g]$.

- When [ω_g] ∈ H²(M, Z)(integral class), the metric can be identified with the curvature of a metric on an ample line bundle L → M.
- The proof used convexity properties of certain functionals along geodesics.

On general Kähler manifold

Theorem(Berman-Berndtsson). Assume $[\omega_g]$ is an integral class. Then there exsit c, C > 0, such that

$$\int_{M} e^{c\left(\frac{-\phi}{\varepsilon^{1/(n+1)(\phi)}}\right)^{\frac{n+1}{n}}} \leq C$$

for $\phi \in [\omega_g]$.

- When [ω_g] ∈ H²(M, ℤ)(integral class), the metric can be identified with the curvature of a metric on an ample line bundle L → M.
- The proof used convexity properties of certain functionals along geodesics.

On general Kähler manifold

Theorem(Berman-Berndtsson). Assume $[\omega_g]$ is an integral class. Then there exsit c, C > 0, such that

$$\int_{M} e^{c\left(\frac{-\phi}{\varepsilon^{1/(n+1)(\phi)}}\right)^{\frac{n+1}{n}}} \leq C$$

for $\phi \in [\omega_g]$.

- When [ω_g] ∈ H²(M, ℤ)(integral class), the metric can be identified with the curvature of a metric on an ample line bundle L → M.
- The proof used convexity properties of certain functionals along geodesics.

Thank you for your attention!