Symmetric minimal surfaces in S^3 as global constrained Willmore minimizer in S^n

Peng Wang

Fujian Normal University

几何分析与非线性偏微分方程研讨会, HIT, May 3, 2019 Introduction

- 2 Minimal surface in S^n and its spectrum properties
 - Minimal surfaces in S^n and first eigenvalue problem
 - Clifford torus
 - Lawson's minimal surfaces $\xi_{m,k}$

- 3 On Willmore conjecture for higher genus surfaces
 - Symmetric minimal surfaces as constrained Willmore minimizer
 - Li-Yau's conformal area and related results
 - Idea of proof

 \bullet For a closed surface $y:M\to S^n$, the Willmore energy is defined by

$$W(y) := \int_{M} (|\vec{H}|^2 + 1) dM.$$

- Willmore conjecture (1965): If $M^2=T^2$, then $W(y)\geqslant 2\pi^2$, "=" \Leftrightarrow iff f is conformally congruent to the Clifford torus.
- Kusner-Willmore conjecture (1989): If $genus(M^2) = m \geqslant 1$, then $W(y) \geqslant Area(\xi_{m,1})$, with equality iff y is conformally congruent to $\xi_{m,1}$.
 - Here $\xi_{m,1}$ is one of simplest Lawson embedded minimal surface with genus m and $Area(\xi_{m,1}) < 8\pi$.
- $\xi_{1,1}$ =Clifford torus.

 \bullet For a closed surface $y:M\to S^n$, the Willmore energy is defined by

$$W(y) := \int_{M} (|\vec{H}|^2 + 1) dM.$$

- Willmore conjecture (1965): If $M^2=T^2$, then $W(y)\geqslant 2\pi^2$, "=" \Leftrightarrow iff f is conformally congruent to the Clifford torus.
- Kusner-Willmore conjecture (1989): If $genus(M^2) = m \geqslant 1$, then $W(y) \geqslant Area(\xi_{m,1})$, with equality iff y is conformally congruent to $\xi_{m,1}$.
 - Here $\xi_{m,1}$ is one of simplest Lawson embedded minimal surface with genus m and $Area(\xi_{m,1}) < 8\pi$.
- $\xi_{1,1}$ =Clifford torus.

 \bullet For a closed surface $y:M\to S^n$, the Willmore energy is defined by

$$W(y) := \int_{M} (|\vec{H}|^2 + 1) dM.$$

- Willmore conjecture (1965): If $M^2=T^2$, then $W(y)\geqslant 2\pi^2$, "=" \Leftrightarrow iff f is conformally congruent to the Clifford torus.
- Kusner-Willmore conjecture (1989): If $genus(M^2)=m\geqslant 1$, then $W(y)\geqslant Area(\xi_{m,1})$, with equality iff y is conformally congruent to $\xi_{m,1}$.

Here $\xi_{m,1}$ is one of simplest Lawson embedded minimal surface with genus m and $Area(\xi_{m,1}) < 8\pi$.

• $\xi_{1,1}$ =Clifford torus.

 \bullet For a closed surface $y:M\to S^n$, the Willmore energy is defined by

$$W(y) := \int_{M} (|\vec{H}|^2 + 1) dM.$$

- Willmore conjecture (1965): If $M^2=T^2$, then $W(y)\geqslant 2\pi^2$, "=" \Leftrightarrow iff f is conformally congruent to the Clifford torus.
- Kusner-Willmore conjecture (1989): If $genus(M^2)=m\geqslant 1$, then $W(y)\geqslant Area(\xi_{m,1})$, with equality iff y is conformally congruent to $\xi_{m,1}$.

Here $\xi_{m,1}$ is one of simplest Lawson embedded minimal surface with genus m and $Area(\xi_{m,1}) < 8\pi$.

• $\xi_{1,1}$ =Clifford torus.

Willmore conjecture in S^n

• Theorem (Marques & Neves, 2012) If $genus(M^2)\geqslant 1$ and n=3, then $W(y)\geqslant 2\pi^2$, with equality iff y is conformally congruent to the Clifford torus.

Let $T^2(a,b)=\mathbb{R}^2/\Lambda$, with $\Lambda=2\pi\mathbb{Z}+2\pi(a+bi)\mathbb{Z}$, $a^2+b^2\geqslant 1$ and $0\leqslant a\leqslant 1/2,\ 0< b$.

- Theorem (Li-Yau, 1982) If y is a conformal immersion from $T^2(a,b)$ to S^n with $b\leqslant 1$, then $W(y)\geqslant 2\pi^2$.
- Theorem (Montiel-Ros, 1986) If y is a conformal immersion from $T^2(a,b)$ to S^n with $(a-1/2)^2+(b-1)^2\leqslant 1/4$, then $W(y)\geqslant 2\pi^2$

Willmore conjecture in S^n

• Theorem (Marques & Neves, 2012) If $genus(M^2)\geqslant 1$ and n=3, then $W(y)\geqslant 2\pi^2$, with equality iff y is conformally congruent to the Clifford torus.

Let $T^2(a,b)=\mathbb{R}^2/\Lambda$, with $\Lambda=2\pi\mathbb{Z}+2\pi(a+bi)\mathbb{Z}$, $a^2+b^2\geqslant 1$ and $0\leqslant a\leqslant 1/2,\ 0< b$.

- Theorem (Li-Yau, 1982) If y is a conformal immersion from $T^2(a,b)$ to S^n with $b\leqslant 1$, then $W(y)\geqslant 2\pi^2.$
- Theorem (Montiel-Ros, 1986) If y is a conformal immersion from $T^2(a,b)$ to S^n with $(a-1/2)^2+(b-1)^2\leqslant 1/4$, then $W(y)\geqslant 2\pi^2$

Willmore conjecture in S^n

• Theorem (Marques & Neves, 2012) If $genus(M^2)\geqslant 1$ and n=3, then $W(y)\geqslant 2\pi^2$, with equality iff y is conformally congruent to the Clifford torus.

Let $T^2(a,b)=\mathbb{R}^2/\Lambda$, with $\Lambda=2\pi\mathbb{Z}+2\pi(a+bi)\mathbb{Z}$, $a^2+b^2\geqslant 1$ and $0\leqslant a\leqslant 1/2,\ 0< b$.

- Theorem (Li-Yau, 1982) If y is a conformal immersion from $T^2(a,b)$ to S^n with $b\leqslant 1$, then $W(y)\geqslant 2\pi^2.$
- Theorem (Montiel-Ros, 1986) If y is a conformal immersion from $T^2(a,b)$ to S^n with $(a-1/2)^2+(b-1)^2\leqslant 1/4$, then $W(y)\geqslant 2\pi^2$.

• Li-Yau and Montiel-Ros's proof on Willmore conjecture for tori in S^n with given conformal structures.

Minimal surfaces in S^n and first eigenvalue of Laplacian

• Let M be a closed Riemann surface with a conformal metric. The eigenvalues of Δ_M are discrete and are tending to $+\infty$:

$$Spec(\Delta_M) = \{0, \lambda_1, \cdots, \}$$
 and $0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots$ λ_1 the first (non-zero) eigenvalue of Δ_M .

 λ_1 the first (non-zero) eigenvalue of Δ_M .

ullet The surface $y:M o S^n$ is minimal if and only if

$$\Delta_M y = -2y,$$

i.e., the coordinate functions $y_j, j=1,\cdots,n+1$, are eigenfunctions of Δ_M with eigenvalue $\lambda=2$.

• y is called immersed by the first eigenfunctions (of the Laplacian) if $\{y_j\}$ are eigenfunctions of λ_1 , i.e., $\lambda_1=2$.

Minimal surfaces in S^n and first eigenvalue of Laplacian

• Let M be a closed Riemann surface with a conformal metric. The eigenvalues of Δ_M are discrete and are tending to $+\infty$: $Spec(\Delta_M) = \{0, \lambda_1, \cdots, \} \text{ and } 0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots$

$$Spec(\Delta_M) = \{0, \lambda_1, \cdots, \}$$
 and $0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots$
 λ_1 the first (non-zero) eigenvalue of Δ_M .

ullet The surface $y:M o S^n$ is minimal if and only if

$$\Delta_M y = -2y,$$

i.e., the coordinate functions $y_j, j=1,\cdots,n+1$, are eigenfunctions of Δ_M with eigenvalue $\lambda=2$.

• y is called immersed by the first eigenfunctions (of the Laplacian) if $\{y_j\}$ are eigenfunctions of λ_1 , i.e., $\lambda_1=2$.

Minimal surfaces in S^n and first eigenvalue of Laplacian

• Let M be a closed Riemann surface with a conformal metric. The eigenvalues of Δ_M are discrete and are tending to $+\infty$: $Spec(\Delta_M) = \{0, \lambda_1, \cdots, \} \text{ and } 0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots$ λ_1 the first (non-zero) eigenvalue of Δ_M .

ullet The surface $y:M o S^n$ is minimal if and only if

$$\Delta_M y = -2y,$$

i.e., the coordinate functions $y_j, j=1,\cdots,n+1$, are eigenfunctions of Δ_M with eigenvalue $\lambda=2$.

• y is called immersed by the first eigenfunctions (of the Laplacian) if $\{y_j\}$ are eigenfunctions of λ_1 , i.e., $\lambda_1=2$.

- $Index(T^2) = 5$ in S^3 .
- $Index(T^2) = 1 + (n+1) = n+2$ in S^n .

- $Index(T^2) = 5$ in S^3 .
- $Index(T^2) = 1 + (n+1) = n+2$ in S^n .

- $Index(T^2) = 5$ in S^3 .
- $Index(T^2) = 1 + (n+1) = n+2$ in S^n .

- $Index(T^2) = 5$ in S^3 .
- $Index(T^2) = 1 + (n+1) = n+2$ in S^n .

- $y = \frac{1}{\sqrt{2}}(\cos u, \sin u, \cos v, \sin v)$,
- \bullet Ay =

 $\left(\cos\frac{u+v}{2}\cos\frac{u-v}{2},\sin\frac{u+v}{2}\sin\frac{u-v}{2},\cos\frac{u+v}{2}\sin\frac{u-v}{2},\sin\frac{u+v}{2}\cos\frac{u-v}{2}\right)$

- $y = \frac{1}{\sqrt{2}}(\cos u, \sin u, \cos v, \sin v)$,
- Ay =

 $\left(\cos \tfrac{u+v}{2}\cos \tfrac{u-v}{2}, \sin \tfrac{u+v}{2}\sin \tfrac{u-v}{2}, \cos \tfrac{u+v}{2}\sin \tfrac{u-v}{2}, \sin \tfrac{u+v}{2}\cos \tfrac{u-v}{2}\right).$

Lawson's minimal surfaces $\xi_{m,k}$

• Lawson's minimal surfaces $\xi_{m,k}$: By reflections w.r.t. geodesics for a solution of Plateau problem.

Lawson $\xi_{2,2}$ minimal surfaces (By Nick Schmitt) https://www.math.uni-tuebingen.de/user/nick/lawson22/

Left: Standard view, cut away by a geodesic 2-sphere.

Right: One of the 9 isometric Plateau solutions which compose the surface. The Plateau solution is the minimal surface bounded by four edges of a geodesic tetrahedron which tiles S^3 .

Lawson $\xi_{2,2}$ minimal surface (By Nick Schmitt) https://www.math.uni-tuebingen.de/user/nick/lawson22/

Lawson $\xi_{q,1}$ minimal surfaces (By Nick Schmitt) https://www.math.uni-tuebingen.de/user/nick/lawson/lawson.html

Lawson's minimal surfaces $\xi_{m,k}$

- Karcher-Pinkall-Sterling's examples: By reflections w.r.t. great spheres for a solution of Plateau problem.
- Karcher-Pinkall-Sterling, Choe-Soret: The Lawson minimal surfaces $\xi_{m,k}$ are also symmetric w.r.t. some reflections.

Lawson's minimal surfaces $\xi_{m,k}$

- Karcher-Pinkall-Sterling's examples: By reflections w.r.t. great spheres for a solution of Plateau problem.
- Karcher-Pinkall-Sterling, Choe-Soret: The Lawson minimal surfaces $\xi_{m,k}$ are also symmetric w.r.t. some reflections.

Main result

• Theorem (Kusner-W, 2018). Let $\phi:M\to S^3$ be one of the conformal embedded minimal surfaces constructed by Lawson and by Karcher–Pinkall–Sterling. Then for any branched conformal immersion $\tilde{\phi}:M\to S^n,\ n\geqslant 3$,

$$W(\tilde{\phi}) \geqslant W(\phi) = A(\phi).$$

Moreover, " = " $\iff \tilde{\phi}$ is conformally equivalent to $\phi.$

Li-Yau's conformal area

Let $\phi:M^2\to S^n$ be a conformal branched immersion. $Conf(S^n)$ is the conformal group of S^n .

• The conformal area of ϕ

$$A_C(n,\phi) := \sup_{\mathbb{T} \in Conf(S^n)} A(\mathbb{T} \circ \phi).$$

Here $A(\mathbb{T} \circ \phi)$ denotes the area of $\mathbb{T} \circ \phi$.

• The n-conformal area of M

$$A_C(n,M) := \inf_{\phi} A_C(n,\phi),$$

• The conformal area of M is

$$A_C(M) := \inf_{n \geqslant 2} A_C(n, M) = \lim_{n \to \infty} A_C(n, M)$$

Li-Yau's conformal area

Let $\phi:M^2\to S^n$ be a conformal branched immersion. $Conf(S^n)$ is the conformal group of S^n .

• The conformal area of ϕ

$$A_C(n,\phi) := \sup_{\mathbb{T} \in Conf(S^n)} A(\mathbb{T} \circ \phi).$$

Here $A(\mathbb{T} \circ \phi)$ denotes the area of $\mathbb{T} \circ \phi$.

• The n-conformal area of M

$$A_C(n, M) := \inf_{\phi} A_C(n, \phi),$$

where ϕ runs over all conformal branched immersions.

• The conformal area of M is

$$A_C(M):=\inf_{n\geqslant 2}A_C(n,M)=\lim_{n\to\infty}A_C(n,M)$$

Li-Yau's conformal area

Let $\phi:M^2\to S^n$ be a conformal branched immersion. $Conf(S^n)$ is the conformal group of $S^n.$

ullet The conformal area of ϕ

$$A_C(n,\phi) := \sup_{\mathbb{T} \in Conf(S^n)} A(\mathbb{T} \circ \phi).$$

Here $A(\mathbb{T} \circ \phi)$ denotes the area of $\mathbb{T} \circ \phi$.

• The n-conformal area of M

$$A_C(n, M) := \inf_{\phi} A_C(n, \phi),$$

where ϕ runs over all conformal branched immersions.

ullet The conformal area of M is

$$A_C(M) := \inf_{n \geqslant 2} A_C(n, M) = \lim_{n \to \infty} A_C(n, M).$$

Theorem (Li-Yau,1982) Let $\phi:M\to S^n$ be a branched conformal immersion from a closed Riemann surface. Then

1 The n-conformal area satisfies

$$A_C(n, M) \geqslant \frac{1}{2}\lambda_1(M)A(M).$$
 (2.1)

Here A(M) is the area of M and $\lambda_1(M)$ is the first (non-zero) eigenvalue of the Laplacian of the metric ds^2 .

- ② " = " \Leftrightarrow \exists a minimal immersion $\psi: M \to S^{\tilde{n}}$ immersed by the first eigenfunctions, & $A_C(M) = A_C(n,M) = A(\psi)$.
- \odot The Willmore energy of ϕ

$$W(\phi) = \int_{M} (H^{2} + 1)dM \geqslant A_{C}(n, M) \geqslant A_{C}(M).$$
 (2.2)

"=" $\Leftrightarrow \phi$ is conformally congruent to a minimal immersion in S^n .

Theorem (Li-Yau,1982) Let $\phi:M\to S^n$ be a branched conformal immersion from a closed Riemann surface. Then

1 The n-conformal area satisfies

$$A_C(n,M) \geqslant \frac{1}{2}\lambda_1(M)A(M). \tag{2.1}$$

Here A(M) is the area of M and $\lambda_1(M)$ is the first (non-zero) eigenvalue of the Laplacian of the metric ds^2 .

- ② "=" $\Leftrightarrow \exists$ a minimal immersion $\psi: M \to S^{\tilde{n}}$ immersed by the first eigenfunctions, & $A_C(M) = A_C(n,M) = A(\psi)$.
- **1** The Willmore energy of ϕ

$$W(\phi) = \int_{M} (H^{2} + 1)dM \geqslant A_{C}(n, M) \geqslant A_{C}(M).$$
 (2.2)

"=" $\Leftrightarrow \phi$ is conformally congruent to a minimal immersion in S^n .

Theorem (Li-Yau,1982) Let $\phi:M\to S^n$ be a branched conformal immersion from a closed Riemann surface. Then

1 The n-conformal area satisfies

$$A_C(n,M) \geqslant \frac{1}{2}\lambda_1(M)A(M). \tag{2.1}$$

Here A(M) is the area of M and $\lambda_1(M)$ is the first (non-zero) eigenvalue of the Laplacian of the metric ds^2 .

- ② "=" \Leftrightarrow \exists a minimal immersion $\psi:M\to S^{\tilde{n}}$ immersed by the first eigenfunctions, & $A_C(M)=A_C(n,M)=A(\psi)$.
- **3** The Willmore energy of ϕ

$$W(\phi) = \int_{M} (H^{2} + 1)dM \geqslant A_{C}(n, M) \geqslant A_{C}(M).$$
 (2.2)

"=" $\Leftrightarrow \phi$ is conformally congruent to a minimal immersion in S^n .

• Theorem (Montiel & Ros, 1986; Hirsch & Mäder-Baumdicker, 2017): Let $\phi:M\to S^n$ be a minimal surface such that $A_C(n,M)=A(\phi).$ If there exists another conformal minimal immersion $\hat{\phi}:M\to S^{\tilde{n}}$ which is immersed by the first eigenfunctions. Then ϕ is isometric to $\hat{\phi}$. In particular, ϕ is also immersed by the first eigenfunctions.

Idea of proof-1

- Theorem (Choe & Soret, 2009): Let $\phi: M \to S^3$ be one of the embedded minimal surfaces constructed by Lawson and by Karcher–Pinkall–Sterling. Then $\lambda_1(\phi)=2$.
- Theorem (Kusner-W, 2018): Let $\phi:M\to S^3$ be one of the embedded minimal surfaces constructed by Lawson and by Karcher-Pinkall-Sterling. Then $\dim E_{\lambda_1(\phi)}=4$.

Idea of proof-1

- Theorem (Choe & Soret, 2009): Let $\phi: M \to S^3$ be one of the embedded minimal surfaces constructed by Lawson and by Karcher–Pinkall–Sterling. Then $\lambda_1(\phi)=2$.
- Theorem (Kusner-W, 2018): Let $\phi:M\to S^3$ be one of the embedded minimal surfaces constructed by Lawson and by Karcher-Pinkall-Sterling. Then $\dim E_{\lambda_1(\phi)}=4$.

Idea of proof-2

- Let G be the finite group generated by reflections of ϕ among the symmetric hyper-spheres γ_j .
- If f is the first eigenfunction of ϕ , then f is G-symmetric, i.e.

$$\gamma_j \circ f = f.$$

• If f is G-symmetric and orthogonal to the coordinate functions ϕ_j , then $f \equiv 0$.

Idea of proof-2

- Let G be the finite group generated by reflections of ϕ among the symmetric hyper-spheres γ_i .
- If f is the first eigenfunction of ϕ , then f is G-symmetric, i.e.

$$\gamma_j \circ f = f.$$

• If f is G-symmetric and orthogonal to the coordinate functions ϕ_j , then $f \equiv 0$.

Idea of proof-2

- Let G be the finite group generated by reflections of ϕ among the symmetric hyper-spheres γ_i .
- If f is the first eigenfunction of ϕ , then f is G-symmetric, i.e.

$$\gamma_j \circ f = f.$$

• If f is G-symmetric and orthogonal to the coordinate functions ϕ_j , then $f\equiv 0$.

The tori case

- Theorem (Montiel-Ros, 1986). Let $\phi: T^2(a,b) \to S^n$, $n \geqslant 5$, be a branched conformal immersion with $(a-\frac{1}{2})^2+(b-1)^2\leqslant \frac{1}{4}$. Then $W(\phi)\geqslant 2\pi^2$.
- Theorem (Bryant, 2015). If $(a-\frac{1}{2})^2+b^2\leqslant \frac{9}{4}$, then

$$A_C(T^2(a,b)) = \frac{4\pi^2}{b^2 + a^2 - a + 1}.$$

• Theorem (Kusner-W, 2018). In the above case, $W(\phi)=2\pi^2$ if and only if ϕ is conformally equivalent to the Clifford torus in S^3 .

The tori case

- Theorem (Montiel-Ros, 1986). Let $\phi: T^2(a,b) \to S^n$, $n \geqslant 5$, be a branched conformal immersion with $(a-\frac{1}{2})^2+(b-1)^2\leqslant \frac{1}{4}$. Then $W(\phi)\geqslant 2\pi^2$.
- Theorem (Bryant, 2015). If $(a-\frac{1}{2})^2+b^2\leqslant \frac{9}{4}$, then

$$A_C(T^2(a,b)) = \frac{4\pi^2}{b^2 + a^2 - a + 1}.$$

• Theorem (Kusner-W, 2018). In the above case, $W(\phi)=2\pi^2$ if and only if ϕ is conformally equivalent to the Clifford torus in S^3 .

The tori case

- Theorem (Montiel-Ros, 1986). Let $\phi: T^2(a,b) \to S^n$, $n \geqslant 5$, be a branched conformal immersion with $(a-\frac{1}{2})^2+(b-1)^2\leqslant \frac{1}{4}$. Then $W(\phi)\geqslant 2\pi^2$.
- Theorem (Bryant, 2015). If $(a-\frac{1}{2})^2+b^2\leqslant \frac{9}{4}$, then

$$A_C(T^2(a,b)) = \frac{4\pi^2}{b^2 + a^2 - a + 1}.$$

• Theorem (Kusner-W, 2018). In the above case, $W(\phi)=2\pi^2$ if and only if ϕ is conformally equivalent to the Clifford torus in S^3 .

Let $T^2=\mathbb{C}/\Lambda$ with Λ generated by 1 and $\tau=a+ib$, with $0\leqslant a\leqslant 1/2$, $b\geqslant \sqrt{1-a^2}$. Then

$$f_{\tau}(u,v) = \left(r_1 e^{i\frac{2\pi v}{b}}, \ r_2 e^{i2\pi (u - \frac{va}{b})}, \ r_3 e^{i2\pi (u - \frac{v(1-a)}{b})} \right). \tag{3.1}$$

with
$$r_1 = \sqrt{\frac{b^2 + a^2 - a}{b^2 + a^2 - a + 1}}$$
, $r_2 = \sqrt{\frac{1 - a}{b^2 + a^2 - a + 1}}$, $r_3 = \sqrt{\frac{a}{b^2 + a^2 - a + 1}}$.

- Brendle, S. Minimal surfaces in S^3 : a survey of recent results. Bull. Math. Sci. 3, no. 1 (2013) 133-171.

- Brendle, S. *Minimal surfaces in* S^3 : a survey of recent results. Bull. Math. Sci. 3, no. 1 (2013) 133-171.
- Choe, J. and Soret, M. First Eigenvalue of Symmetric Minimal Surfaces in S^3 . Indiana U. Math. J. 59 (2009) no. 1, 269-281.
- El Soufi, A. & Ilias, S. Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific J. Math. 195, no. 1 (2000) 91-99.
- Karcher, H., Pinkall, U., Sterling, I. *New minimal surfaces in* S^3 , J. Differential Geom. 28 (1988). no. 2. 169-185.
- Lawson, H. B. Jr. *Complete minimal surfaces in* S^3 , Ann. of Math. (2) 92 1970 335 374.
- Li, P. & Yau, S.T. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, no. 2 (1982) 269-291.

- Brendle, S. *Minimal surfaces in* S^3 : a survey of recent results. Bull. Math. Sci. 3, no. 1 (2013) 133-171.
- Choe, J. and Soret, M. First Eigenvalue of Symmetric Minimal Surfaces in S^3 . Indiana U. Math. J. 59 (2009) no. 1, 269-281.
- El Soufi, A. & Ilias, S. *Riemannian manifolds admitting isometric immersions by their first eigenfunctions.* Pacific J. Math. 195, no. 1 (2000) 91-99.
- Karcher, H., Pinkall, U., Sterling, I. *New minimal surfaces in* S^3 , J. Differential Geom. 28 (1988), no. 2, 169-185.
- Lawson, H. B. Jr. *Complete minimal surfaces in* S^3 , Ann. of Math. (2) 92 1970 335 374.
- Li, P. & Yau, S.T. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, no. 2 (1982) 269-291.

- Brendle, S. Minimal surfaces in S^3 : a survey of recent results. Bull. Math. Sci. 3, no. 1 (2013) 133-171.
- Choe, J. and Soret, M. First Eigenvalue of Symmetric Minimal Surfaces in S^3 . Indiana U. Math. J. 59 (2009) no. 1, 269-281.
- El Soufi, A. & Ilias, S. Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific J. Math. 195, no. 1 (2000) 91-99.
- Karcher, H., Pinkall, U., Sterling, I. *New minimal surfaces in* S^3 , J. Differential Geom. 28 (1988), no. 2, 169-185.
- Lawson, H. B. Jr. *Complete minimal surfaces in* S^3 , Ann. of Math. (2) 92 1970 335 374.
- Li, P. & Yau, S.T. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, no. 2 (1982) 269-291.

- Brendle, S. *Minimal surfaces in* S^3 : a survey of recent results. Bull. Math. Sci. 3, no. 1 (2013) 133-171.
- Choe, J. and Soret, M. First Eigenvalue of Symmetric Minimal Surfaces in S^3 . Indiana U. Math. J. 59 (2009) no. 1, 269-281.
- El Soufi, A. & Ilias, S. Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific J. Math. 195, no. 1 (2000) 91-99.
- Karcher, H., Pinkall, U., Sterling, I. *New minimal surfaces in* S^3 , J. Differential Geom. 28 (1988), no. 2, 169-185.
- Lawson, H. B. Jr. *Complete minimal surfaces in* S^3 , Ann. of Math. (2) 92 1970 335 374.
- Li, P. & Yau, S.T. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, no. 2 (1982) 269-291.

- Brendle, S. *Minimal surfaces in* S^3 : a survey of recent results. Bull. Math. Sci. 3, no. 1 (2013) 133-171.
- Choe, J. and Soret, M. First Eigenvalue of Symmetric Minimal Surfaces in S^3 . Indiana U. Math. J. 59 (2009) no. 1, 269-281.
- El Soufi, A. & Ilias, S. Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific J. Math. 195, no. 1 (2000) 91-99.
- Karcher, H., Pinkall, U., Sterling, I. *New minimal surfaces in* S^3 , J. Differential Geom. 28 (1988), no. 2, 169-185.
- Lawson, H. B. Jr. Complete minimal surfaces in S^3 , Ann. of Math. (2) 92 1970 335 374.
- Li, P. & Yau, S.T. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69, no. 2 (1982) 269-291.

- Marques, F. & Neves, A. Min-Max theory and the Willmore conjecture. Ann. of Math. 179, no. 2 (2014) 683-782.

- Marques, F. & Neves, A. *Min-Max theory and the Willmore conjecture*. Ann. of Math. 179, no. 2 (2014) 683-782.
- Marques, F. & Neves, A. *The Willmore conjecture*. Jahresb. Deutsch. Math.-Ver. 116, no. 4 (2014) 201-222.
- Montiel, S. & Ros, A. *Minimal immersions of surfaces by the first eigenfunctions and conformal area*. Invent. Math. 83, no. 1 (1986) 153-166.
- Ros, A. The Willmore conjecture in the real projective space. Math. Res. Lett. 6, no. 5-6 (1999) 487-493.
- Urbano, F. *Minimal surfaces with low index in the three-dimensional sphere*. Proc. Amer. Math. Soc. 108, no. 4 (1990) 989-992.

- Marques, F. & Neves, A. *Min-Max theory and the Willmore conjecture*. Ann. of Math. 179, no. 2 (2014) 683-782.
- Marques, F. & Neves, A. *The Willmore conjecture*. Jahresb. Deutsch. Math.-Ver. 116, no. 4 (2014) 201-222.
- Montiel, S. & Ros, A. *Minimal immersions of surfaces by the first eigenfunctions and conformal area*. Invent. Math. 83, no. 1 (1986) 153-166.
- Ros, A. The Willmore conjecture in the real projective space. Math. Res. Lett. 6, no. 5-6 (1999) 487-493.
- Urbano, F. Minimal surfaces with low index in the three-dimensional sphere. Proc. Amer. Math. Soc. 108, no. 4 (1990) 989-992.

- Marques, F. & Neves, A. *Min-Max theory and the Willmore conjecture*. Ann. of Math. 179, no. 2 (2014) 683-782.
- Marques, F. & Neves, A. *The Willmore conjecture*. Jahresb. Deutsch. Math.-Ver. 116, no. 4 (2014) 201-222.
- Montiel, S. & Ros, A. *Minimal immersions of surfaces by the first eigenfunctions and conformal area.* Invent. Math. 83, no. 1 (1986) 153-166.
- Ros, A. The Willmore conjecture in the real projective space. Math. Res. Lett. 6, no. 5-6 (1999) 487-493.
 - Urbano, F. *Minimal surfaces with low index in the three-dimensional sphere*. Proc Amer. Math. Soc. 108, no. 4 (1990) 989-992.

- Marques, F. & Neves, A. *Min-Max theory and the Willmore conjecture*. Ann. of Math. 179, no. 2 (2014) 683-782.
- Marques, F. & Neves, A. *The Willmore conjecture*. Jahresb. Deutsch. Math.-Ver. 116, no. 4 (2014) 201-222.
- Montiel, S. & Ros, A. *Minimal immersions of surfaces by the first eigenfunctions and conformal area*. Invent. Math. 83, no. 1 (1986) 153-166.
- Ros, A. The Willmore conjecture in the real projective space. Math. Res. Lett. 6, no. 5-6 (1999) 487-493.
- Urbano, F. *Minimal surfaces with low index in the three-dimensional sphere*. Proc. Amer. Math. Soc. 108, no. 4 (1990) 989-992.

Thank you for your attention!