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@ Introduction

9 Minimal surface in S™ and its spectrum properties
@ Minimal surfaces in S™ and first eigenvalue problem
o Clifford torus

@ Lawson’s minimal surfaces &, 1.

© On Willmore conjecture for higher genus surfaces
@ Symmetric minimal surfaces as constrained Willmore minimizer
@ Li-Yau's conformal area and related results

@ |dea of proof
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Willmore functional and Willmore surfaces

@ For a closed surface y : M — S™, the Willmore energy is defined by

W(y) = /M(uﬂ? +1)dM.
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Willmore functional and Willmore surfaces

@ For a closed surface y : M — S™, the Willmore energy is defined by
W(y) = / (H? + 1)dM.
M

e Willmore conjecture (1965): If M? = T2, then W (y) > 272, “=" &

iff f is conformally congruent to the Clifford torus.
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Willmore functional and Willmore surfaces

@ For a closed surface y : M — S™, the Willmore energy is defined by
W(y) = / (H? + 1)dM.
M

@ Willmore conjecture (1965): If M?2 = T2, then Wi(y) > 22, = &
iff f is conformally congruent to the Clifford torus.

o Kusner-Willmore conjecture (1989): If genus(M?) = m > 1, then
W(y) > Area(&m,1), with equality iff y is conformally congruent to
Em,1-

Here &, 1 is one of simplest Lawson embedded minimal surface with

genus m and Area(§y,,1) < 8.
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Willmore functional and Willmore surfaces

@ For a closed surface y : M — S™, the Willmore energy is defined by
W(y) = / (H? + 1)dM.
M

@ Willmore conjecture (1965): If M?2 = T2, then Wi(y) > 22, = &
iff f is conformally congruent to the Clifford torus.

o Kusner-Willmore conjecture (1989): If genus(M?) = m > 1, then
W(y) > Area(&m,1), with equality iff y is conformally congruent to
Em,1-

Here &, 1 is one of simplest Lawson embedded minimal surface with

genus m and Area(§y,,1) < 8.

e & 1 =Clifford torus.
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Willmore conjecture in 5"

e Theorem (Marques & Neves, 2012) If genus(M?) > 1 and n = 3,
then W (y) > 272, with equality iff y is conformally congruent to the
Clifford torus.

Let T2(a,b) = R?/A, with A = 27Z + 27(a + bi)Z, a*> + b* > 1 and
0<a<1/2, 0<b.
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Willmore conjecture in 5"

e Theorem (Marques & Neves, 2012) If genus(M?) > 1 and n = 3,
then W (y) > 272, with equality iff y is conformally congruent to the
Clifford torus.

Let T2(a,b) = R?/A, with A = 27Z + 27(a + bi)Z, a*> + b* > 1 and
0<a<1/2, 0<b.

e Theorem (Li-Yau, 1982) If y is a conformal immersion from T2(a, b)
to S™ with b < 1, then W(y) > 272,
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Willmore conjecture in 5"

e Theorem (Marques & Neves, 2012) If genus(M?) > 1 and n = 3,
then W (y) > 272, with equality iff y is conformally congruent to the
Clifford torus.

Let T2(a,b) = R?/A, with A = 27Z + 27(a + bi)Z, a*> + b* > 1 and
0<a<1/2, 0<b.

e Theorem (Li-Yau, 1982) If y is a conformal immersion from T2(a, b)
to S™ with b < 1, then W(y) > 272,

@ Theorem (Montiel-Ros, 1986) If y is a conformal immersion from
T2%(a,b) to S™ with (a — 1/2)% + (b — 1) < 1/4, then W(y) > 272
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@ Li-Yau and Montiel-Ros's proof on Willmore conjecture for tori in S™

with given conformal structures.

g'f

Montiel-Ros, 1986

1 e e
Li-Yau, 1982
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Minimal surfaces in S" and first eigenvalue of Laplacian

@ Let M be a closed Riemann surface with a conformal metric. The
eigenvalues of Aj, are discrete and are tending to +oo:
Spec(Apr) = {0,A1,-+-,}and 0 < Ap < Ag < -+

A1 the first (non-zero) eigenvalue of Ayy.
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Minimal surfaces in S" and first eigenvalue of Laplacian

@ Let M be a closed Riemann surface with a conformal metric. The
eigenvalues of Aj, are discrete and are tending to +oo:
Spec(Apr) = {0,A1,-+-,}and 0 < Ap < Ag < -+

A1 the first (non-zero) eigenvalue of Ayy.

@ The surface y : M — S™ is minimal if and only if
AM?/ = _2ya

i.e., the coordinate functions y;,j = 1,--- ,n + 1, are eigenfunctions

of Aps with eigenvalue A\ = 2.
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Minimal surfaces in S" and first eigenvalue of Laplacian

@ Let M be a closed Riemann surface with a conformal metric. The
eigenvalues of Aj, are discrete and are tending to +oo:
Spec(Apr) = {0,A1,-+-,}and 0 < Ap < Ag < -+

A1 the first (non-zero) eigenvalue of Ayy.

@ The surface y : M — S™ is minimal if and only if
AMy = _2ya

i.e., the coordinate functions y;,j = 1,--- ,n + 1, are eigenfunctions
of Aps with eigenvalue A\ = 2.
@ y is called immersed by the first eigenfunctions (of the Laplacian) if

{y;} are eigenfunctions of \{, i.e., A\ = 2.
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Clifford torus

e 3 C C?=R* T? C U(2) actions on S3. The orbits of T2 with

maximal area—Clifford torus.

= ost) (oos(u) + 22,y = S (costu) + 272, 2= snfu)
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Clifford torus

e 3 C C?=R* T? C U(2) actions on S3. The orbits of T2 with

maximal area—Clifford torus.

= ost) (oos(u) + 22,y = S (costu) + 272, 2= snfu)
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Clifford torus

e 3 C C?=R* T? C U(2) actions on S3. The orbits of T2 with

maximal area—Clifford torus.

= ost) (oos(u) + 22,y = S (costu) + 272, 2= snfu)

o Index(T?) =5 in S3.
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Clifford torus

e 3 C C?=R* T? C U(2) actions on S3. The orbits of T2 with

maximal area—Clifford torus.

= ost) (oos(u) + 22,y = S (costu) + 272, 2= snfu)

o Index(T?) =5 in S3.
o Index(T?) =1+ (n+1)=n+2in S™
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Clifford torus—2
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Clifford torus—2

°oy= %(cosu, sin u, cos v, sin v),

o Ay =

u+v U=V L3y UTV (30 U—V UtV 3190 U—V 3y UtV U—v
(COS ) COS 3 ,SIn ) S1n 3 , COS ) S1n 3 , SIn ) COS 3 )
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Lawson’s minimal surfaces &,, &

@ Lawson's minimal surfaces &, ,: By reflections w.r.t. geodesics for a

solution of Plateau problem.
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Lawson 2.2 minimal surfaces (By Nick Schmitt)

https://www.math.uni-tuebingen.de/user/nick /lawson22/

Left: Standard view, cut away by a geodesic 2-sphere.
Right: One of the 9 isometric Plateau solutions which compose the
surface. The Plateau solution is the minimal surface bounded by four

edges of a geodesic tetrahedron which tiles S3.
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Lawson 2.2 minimal surface (By Nick Schmitt)

https://www.math.uni-tuebingen.de/user/nick /lawson22/
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Lawson &,4,1 minimal surfaces (By Nick Schmitt)

https://www.math.uni-tuebingen.de/user/nick/lawson /lawson.html
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Lawson’s minimal surfaces &,, &

@ Karcher-Pinkall-Sterling's examples: By reflections w.r.t. great

spheres for a solution of Plateau problem.
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Lawson’s minimal surfaces &,, &

@ Karcher-Pinkall-Sterling's examples: By reflections w.r.t. great

spheres for a solution of Plateau problem.

@ Karcher-Pinkall-Sterling, Choe-Soret: The Lawson minimal surfaces

&m,k are also symmetric w.r.t. some reflections.
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Main result

o Theorem (Kusner-W, 2018). Let ¢ : M — S3 be one of the
conformal embedded minimal surfaces constructed by Lawson and by
Karcher—Pinkall-Sterling. Then for any branched conformal

immersion quS M — S" n >3,

“ ”

Moreover, “ = — ¢is conformally equivalent to ¢.
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Li-Yau's conformal area

Let ¢ : M? — S™ be a conformal branched immersion. Conf(S™) is the

conformal group of S™.

@ The conformal area of ¢

Ao(n,¢) =  sup  A(Tod).
TeConf(S™)

Here A(T o ¢) denotes the area of T o ¢.
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Li-Yau's conformal area

Let ¢ : M? — S™ be a conformal branched immersion. Conf(S™) is the

conformal group of S™.

@ The conformal area of ¢

Ao(n,¢) =  sup  A(Tod).
TeConf(S™)

Here A(T o ¢) denotes the area of T o ¢.

@ The n—conformal area of M
AC’(”a M) = qubf AC(TL, ¢)7

where ¢ runs over all conformal branched immersions.
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Li-Yau's conformal area

Let ¢ : M? — S™ be a conformal branched immersion. Conf(S™) is the
conformal group of S™.

@ The conformal area of ¢

Ao(n,¢) =  sup  A(Tod).
TeConf(S™)

Here A(T o ¢) denotes the area of T o ¢.
@ The n—conformal area of M

A(;(n, M) = qubf AC’(na ¢)7

where ¢ runs over all conformal branched immersions.

@ The conformal area of M is
Ac(M) :=inf,>2 Ac(n, M) = lim,, o0 Ac(n, M).
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Theorem (Li-Yau,1982) Let ¢ : M — S™ be a branched conformal

immersion from a closed Riemann surface. Then
@ The n—conformal area satisfies

Ac(n, M) > %Al(M)A(M). (2.1)

Here A(M) is the area of M and A\ (M) is the first (non-zero)

eigenvalue of the Laplacian of the metric ds?.
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Theorem (Li-Yau,1982) Let ¢ : M — S™ be a branched conformal
immersion from a closed Riemann surface. Then
@ The n—conformal area satisfies
1
Ac(n, M) > §A1(M)A(M). (2.1)

Here A(M) is the area of M and A\ (M) is the first (non-zero)
eigenvalue of the Laplacian of the metric ds?.

@ “="7 < 3 a minimal immersion 1 : M — S™ immersed by the first
eigenfunctions, & Ac(M) = Ac(n, M) = A(y).
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Theorem (Li-Yau,1982) Let ¢ : M — S™ be a branched conformal

immersion from a closed Riemann surface. Then
@ The n—conformal area satisfies

Ac(n, M) > %Al(M)A(M). (2.1)

Here A(M) is the area of M and A\ (M) is the first (non-zero)

eigenvalue of the Laplacian of the metric ds?.

@ “="7 < 3 a minimal immersion 1 : M — S™ immersed by the first
eigenfunctions, & Ac(M) = Ac(n, M) = A(y).
© The Willmore energy of ¢

W(p) = /M(H2 +1)dM > Ac(n, M) > Ac(M). (2.2)

“=7" & ¢ is conformally congruent to a minimal immersion in S™.
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e Theorem (Montiel & Ros, 1986; Hirsch & Mader-Baumdicker,
2017): Let ¢ : M — S™ be a minimal surface such that
Ac(n, M) = A(¢). If there exists another conformal minimal
immersion (ZB : M — S™ which is immersed by the first eigenfunctions.
Then ¢ is isometric to gZS In particular, ¢ is also immersed by the first

eigenfunctions.
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|dea of proof-1

e Theorem (Choe & Soret, 2009): Let ¢ : M — S3 be one of the
embedded minimal surfaces constructed by Lawson and by
Karcher—Pinkall-Sterling. Then \i(¢) = 2.
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|dea of proof-1

e Theorem (Choe & Soret, 2009): Let ¢ : M — S3 be one of the
embedded minimal surfaces constructed by Lawson and by
Karcher—Pinkall-Sterling. Then \i(¢) = 2.

o Theorem (Kusner-W, 2018): Let ¢ : M — S be one of the
embedded minimal surfaces constructed by Lawson and by

Karcher-Pinkall-Sterling. Then dim Ey, (4) = 4.
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|dea of proof-2

o Let GG be the finite group generated by reflections of ¢ among the

symmetric hyper-spheres ;.
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|dea of proof-2

o Let GG be the finite group generated by reflections of ¢ among the

symmetric hyper-spheres ;.

o If f is the first eigenfunction of ¢, then f is G—symmetric, i.e.

viof =1
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|dea of proof-2

o Let GG be the finite group generated by reflections of ¢ among the
symmetric hyper-spheres ;.

o If f is the first eigenfunction of ¢, then f is G—symmetric, i.e.
viof=1/

o If fis G—symmetric and orthogonal to the coordinate functions ¢,

then f =0.
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The tori case

e Theorem (Montiel-Ros, 1986). Let ¢ : T2(a,b) — S™, n > 5, be a
branched conformal immersion with (a — )%+ (b — 1)% < 1. Then
W(¢) > 2r2.
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e Theorem (Montiel-Ros, 1986). Let ¢ : T2(a,b) — S™, n > 5, be a

branched conformal immersion with (a — )%+ (b — 1)% < 1. Then
W(¢) > 2r2.
o Theorem (Bryant, 2015). If (a — )2 +b% < 2, then
472
Ac(T*(a,b) = ———.
o(T"(a,b)) b2+a2—a+1
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e Theorem (Montiel-Ros, 1986). Let ¢ : T2(a,b) — S™, n > 5, be a
branched conformal immersion with (a — )%+ (b — 1)% < 1. Then
W (¢) = 2r2.

o Theorem (Bryant, 2015). If (a — )2 +b% < 2, then

472
Ac(T*(a,b) = ———.
o(T"(a,b)) b2+a2—a+1

e Theorem (Kusner-W, 2018). In the above case, W(¢) = 272 if

and only if ¢ is conformally equivalent to the Clifford torus in S2.
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Let T2 = C/A with A generated by 1 and 7 = a + 4b, with 0 < a < 1/2,
b>+v1—a? Then

fr(u,v) = ( rlei%Tv, roei2m(U="F)  pgei2m(u ) ) (3.1)

: _ b2+a2—a _ 1—a _ a
with 7y = B2iaZ—atl’ 27 \/ 2+a2—a+1’ T3 = \/PPraz—at1-
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@ Brendle, S. Minimal surfaces in S®: a survey of recent results. Bull. Math. Sci. 3,
no. 1 (2013) 133-171.
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@ Marques, F. & Neves, A. Min-Max theory and the Willmore conjecture. Ann. of
Math. 179, no. 2 (2014) 683-782.
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Thank you for your attention!
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