Self-similar solutions and umbilic hypersurfaces
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Mean curvature flow and Gauss curvature flow

m Xo: M* — R"! a smooth hypersurface in R*1
m F-Curvature Flow: a family of smooth immersions

X: M" x [0, T) — R™™ satisfying

%X(m, t) = —F(z, t)yv(z, t),

X(L 0) = XO(I)v

where F'is a smooth function of the principal curvatures of

M, = X(M, t) and v is the outward unit normal of M;.

m If = H, then X is called the mean curvature flow.

m If F= K, then X is called the Gauss curvature flow.



al results on Mean Curvature Flow and Gauss Curvature Flow

Theorem (Huisken, 1984)

If Xy is a closed strictly convex hypersurface, then the MCF with X, has a
smooth solution X(-,¢) on a maximal finite time interval [0, T) and X(, ¢)
converges to a single point as ¢t — T. Moreover, the hypersurface X(, t)

converges to a round sphere after appropriate rescaling.




al results on Mean Curvature Flow and Gauss Curvature Flow

Theorem (Huisken, 1984)

If Xy is a closed strictly convex hypersurface, then the MCF with X, has a
smooth solution X(-,¢) on a maximal finite time interval [0, T) and X(, ¢)
converges to a single point as ¢t — T. Moreover, the hypersurface X(, t)

converges to a round sphere after appropriate rescaling.

m Tso (1985): Any closed convex hypersurfaces evolving by the Gauss
curvature flow converges to a single point.
= Chow (1985): same for F = K* (a > 0); Moreover, for v = £, X(-, t)

converges to a round sphere after appropriate rescaling.



op-curvature

m kK = (K1, K2, ..., kn) principal curvature of M

m 0 the k-th elementary symmetric functions of x, i.e.,

ox(k) = Z Kiy Kig * * * K-

1<iy <idg---<ip<n

m H=o01(k), K= on(k).



op-curvature flows

m Under certain convexity condition or pinching condition of the
principal curvatures, a closed hypersurface evolving by the following
F-curvature flows converges to a round point.

m =0} (Chow 1987)

1
s F=o0} (Andrews 1994, 2007)
m F= 0§ (Schulze 2005, 2006)

(
m F = 0§ (Alessandroni-Sinestrari 2010), ...

We call F = o} curvature flow o} ’-curvature flow.



Self-similar solutions of the of-curvature flow

Let X : M — R"™! be a smooth embedding of a closed, orientable

hypersurface satisfying
(%) o = (X,v).

Then it is called a self-similar solution of the o -curvature flow.

m If X is a solution of (**), then
X(a,0) = (ko +1)(T - ) 5= X(a)

becomes a solution of the o} -curvature flow up to a tangential
diffeomorphism. So we call the solutions of (**) self-similar solutions of

the oj-curvature flow.



Type-I Finite Time Singularities in MCF and self-similar solutions

m p € R"™ s called a singularity of MCF as t — T < oo, if 3z € M s.t.
X(z,t) — p and |A*(z,t) = 00 as t — T.
m We define a Finite Time Singularity in MCF to be
= type I singularity:  sup |A(-, &)|(T — £)/2 < oo,
)

Mx [0,
m type II singularity: otherwise.

Huisken’s monotonicity formulae implies

Theorem (Huisken 1990)
The solutions of MCF forming a type-I singularity can be homothetically

rescaled such that any resulting limiting hypersurface is a self-similar

solution.




Variational characterization of self-similar solutions of MCF

Define

_la—agl?

T to (M) 1= (4m0)*%/ T

Theorem (Colding-Minicozzi, 2012)

M is a critical point of Fy, 4, iff

o X-wv)
2t




Closed self-similar solutions of MCF

Theorem (Huisken,1990)

If M is a closed hypersurface in R™!, with H > 0 and satisfies
H=(X,v),

then M must be a round sphere.




Asymptotic behavior of a-Gauss curvature flow

For F = K%, we call the F-curvature flow a-Gauss curvature flow.

When a =1 and n = 2,

(Firey conjecture, proved by Andrews 1999)

Any closed strictly convex surface in R? evolving the Gauss curvature flow

converges to a round point.

Andrews (1996): When o = ﬁ, the rescaled solution converges to an

ellipsoid.



Asymptotic to a self-similar solution

The a-Gauss curvature flow converges to a self-similar solution after
normalization in the following cases

n ﬁ <a< 711, Andrews (2000)
m a =1, Guan-Ni (2013)

" a> ﬁ, Andrews-Guan-Ni (2016)

m Then the characterization of asymptotic behavior of a-Gauss curvature

flow is reduced to the study on self-similar solutions.



Self-similar solutions of a-Gauss curvature flow

» Choi-Daskalopoulos (2016): when a € (£,1+ 1), the closed strictly
convex self-similar solution of the a-Gauss curvature flow is a round

sphere.

Theorem (Brendle-Choi-Daskalopoulos, 2017)

Let M be a closed, strictly convex hypersurface in R""! satisfying

K* = (X, v).

1

L then M must be a round sphere; If o = = then M is an

g
ellipsoid.

If a >

m Combining with Andrews-Guan-Ni’s result, this gives asymptotic

behavior of a-Gauss curvature flow.



Question

From these theorems, the following natural question arises:

Question

Let M be a closed, strictly convex hypersurface in R"! satisfying
or = (X, v),

where 1 <k<n-—1, a> % Can we conclude that M must be a round

sphere?




Affirmative answer-Main Results I

Theorem 2.1 (Gao-Li-M. 2018).

Let M be a closed, strictly convex hypersurface in R™™ satisfying
or =(X,v),

where 1 < k<n—1, a > % Then M must be a round sphere.

In fact, we prove similar results for more general speed function F.



More general F'

Condition (*)

Suppose F'is a symmetric function defined on the positive cone
Iy ={k €R"k1 >0,62 >0, ,ky, >0}, and

i) F>0and § >0for1<i<n.

i) F(t\) = P F(\), YVt € Ry

i) Vi#j, . .
i 1V T By Y 0
Ki—kj

iv) Y(y1,-.., yn) € R",




Remark on Condition (x)

m Both H* and K* satisfy i)—iii) in Condition (x).
m Cauchy-Schwarz inequality = iv) holds for F = H*.
m iv) holds for F'= K% trivially.

m Easy to check i) —iii) for o} and iv) is equivalent to

n n

Ok—1;i 2 Ok—2;ij Ok—1;i 2
> Py > L 5 o U

i=1 itj i=1

which also plays an important role in Guan-Ma’s work (2003) on the
Christoffel-Minkowski problem.

= Condition () also holds for Si(k) = >0 | K}

m In fact, any multiplication combination of such functions, such as o203
satisfies Condition ().

m iii) and iv) are equivalent to the convexity of the function
F*(A) = log F(e") defined on real n X n symmetric matrices.

m Andrews studied convex and inverse convex functions, i.e., both F and
F*(A) = —F(A™") convex, which do not include oy.



Main result II

For such general F, we prove

Theorem 2.2 (Gao-Li-M. 2018).

Let M be a closed, strictly convex hypersurface in R™™ satisfying

(X,v)=F-C,

with constant C. For B> 1 and C > 0, if F satisfies Condition (%), then M
must be a round sphere.




Self-similar solutions in a warped product space

m Self-similar solutions of the MCF were introduced in warped product
manifolds (Futaki-Hattori-Yamamoto 2014, Wu 2017, Alias-Lira-Rigoli
2017).

m Let N=10,7) x S" be a warped product manifold with metric
g=dr* + \*()gs,

where ) is a non-negetive function of r and gs is the standard metric of
S".

m If a hypersurface X : M" — N"*! in a warped product N satisfies

9 (A(r(2))0r(2), v(2)) = F(k(z)),
then it is called a self-similar solution of the curvature flow

X = —F(r)r.

SRS



Self-similar solutions in the hemisphere

For a warped product N, when the warping factor A(r) = r, sinr, or
sinh r, N is the Euclidean space R""!, the sphere S"*! or the hyperbolic

space H"™ with constant sectional curvature ¢ = 0, 1 or —1 respectively.

Theorem 2.3 (Gao-M.,2019).

Let M be a closed, strictly convex hypersurface in the hemisphere STl
satisfying
9g(\Or,v) = F— C.

For 8> 1 and C > 0, if F satisfies Condition (%), then M is a slice
{ro} x S™ in STH.




Self-similar solutions in the hemisphere

In S’fjl, the self-similar solution of a-Gauss curvature flow is umbilic

even for o = I3

Corollary 2.4 (Gao-M., 2019).

Let M be a closed, strictly convex hypersurface in the hemisphere Sf'l
satisfying
900, v) = o5 (k) — C.

If a > %H and C >0, then M is a slice {ro} x S™ in ST‘l.




Self-similar solutions in hyperbolic space

For self-similar solutions to a relevant curvature flow in H®, we obtain

Theorem 2.5 (Gao-M., 2019).

Let M be a closed, strictly convex surface in H® satisfying
9(A\Or,v) = K— C. (2.1)

If C> 1, then M is a slice {ro} x S* in H®.




Fundamental formulas of self-similar solutions

m Define the operator £ by

oF
L= 87}11] VNj.

= Denote ® = [ A(s)ds

From the equation
9(AOr,v) = F— C,

we get

oF
L= g()\aT, VF) + ,B)\,F— aThdhjl(F @ + — ,,]lzg()\ar, 61)

8h

LD = )\Zah — BF(F— C).



Test function

Let (b7) denote the inverse of (hy). Set

Z = Ftrb— M@.

B
OF g. itrb 4+ g(Adr, V(Ftrb)) + (8 — F‘trb—fz
Bhy * I AATT ah“
OF wpah O°F
2= hahatrb — BnF) + Fb* b iiohis
+C(ahijhlh]ltrb BnF) + Fb**p ahijahsthjphtq
+ 2Fb™ Pt b gf stihpgj + (trb gf - — FV"6") Ryinmjg( A0y, €m)
ij

oF
= FHTb oo (Ruipiig + Bupais + honi Ronpas + hym Binicg).
ij



When N is a real space form

If the sectional curvature of N is constant €, then Ry»[jk =0 and

Ry = €0y — Sadjr).

Thus
oF _ , n oOF
LZ ohy (Ar, V(Ftrb))+(8 — 1)\ (Ftrb — 3 Z ahii)
OF 9°F
+C(Whizhjztrb — BnF) + Fprrpe* DO hijphstq

+ 2Fbksb”tbkq§TF hstihpgi+eF(BFtr(b?) — trb Z

ahzz



N-term, C-term and e-term

We pick the M'-term, C-term and e-term in £Z as follows:

Lemma 3.1.

X0 0]
(B — V)N (Ftrb — — 3 Z Bh“ 5 —1) Z ( P 8—2/@)(/@ — Kj),

Kiki OKg
i>j g

C’(aTijhilhjltrb—,BnF) = C’Z ( Ki — 7&-)(1'%—%]‘)7

i i
Kiki \OFKq OK;
i>j v 7

OF 1 OF OF
eF(BFtr(b*) — trbz 8h~) = EFZ 5. (an- K3 — 87 K3) (ki — ;).
i v i>j ¢

m Under our assumption, these three terms are all non-negative;

m And each “=” holds iff k1 = - -+ = Kkp.



Estimate of Z at a umbilic point if 8 > 1

For any function F' satisfying Condition (x),

LZ+ R(VZ) > X-term + C-term + e-term + Qi(k)(ViF)?,

where
' alogF -1 2n _1810gF (n+1)B—n+1 _o
Q'L(K/) - a“il ( tr b) /8 aﬁi + /8 K; -
If at 7, k1 = -+ = Kpn», then
Qizwﬁf2>o7 if 8> 1.

/B [



Introduce an auxiliary test function W

Define W by

Since

and “=" holds iff

K1 = K2 =" "= Rn.



Analysis at a maximum point of W

At a maximum point of W, LW <0 and VW =0.

Any maximum point T of W is a umbilic point of M and VF(z) = 0,
m forB>1and C>0 orB>1 and C> 0, when N=R""*;

m for f>1 and C> 0, when N:Sfrl.




Maximum points of W and Z

Z:Fufb—m F_B-1

i W= - —9.
/3 ’ Kmin ﬂ
7 < nW everywhere and Z = nW at umbilic points.
m If W attains its maximum at Z, then x1(Z) = - -+ = kn(Z).

m This implies Vz € M, Z(z) = nW(z) > nW(z) > Z(z), i.e.,z is also a
maximum point of Z.

m By the analysis of £Z at a umbilic point, there exists a neighborhood
Uof zst. LZ+ R(VZ) > 0. Since Z(T) = Zmax, by the strong

maximum principle, Z is constant in U.

m Since Z(z) > nW > Z(z), W is also constant in U. Hence, the set of

maximal points of W is an open set.

Due to the connectedness of M, W is a constant on M.



M is umbilic

Since W is constant, by the argument of W at its maximum point, M is
totally umbilic.

From
0= VF = kig(\o, e)e;,

we see Oy is a normal direction of M and M is a slice in the warped product.



N =R"! and « small

For F=oy},if 2 < k< nand <oz<1 then

m
LZ+ R(VZ) > 0.
By the strong maximum principle, we know Z is a constant, this
implies the \'-term = 0.
m When 2 < k< n—1, N-term = 0 = M is totally umbilic.
m When k=n, N-term = 0. If 15 <o < I, then VF =0, thus M is a

n+2 = 2>

round sphere centered at the origin; if a = T+27

1
Cijk = §K_n+2 hljk+ h]kv K_n+2 + = hk}’LV K_n+2 + = huka— "+2 =0.

In R™" !, by Berwald-Pick Theorem, M is an ellipsoid.



Jellet-Liebmann theorem

m Jellet-Liebmann theorem: Any closed star-shaped (or convex)
immersed hypersurface in Euclidean space with constant mean
curvature is a round sphere.

m Montiel (1999): generalized to a class of warped products. The key
tool is the Minkowski type integral formulae.

m Alias-Impera-Rigoli (2013), Brendle-Eichmair (2014), Wu-Xia (2014):
hypersurfaces with constant higher order mean curvature or

Weingarten hypersurfaces in warped products



Alexandrov theorem

= Alexandrov theorem: Any closed embedded hypersurface of constant
mean curvature in Euclidean space is a round sphere.

m Brendle (2013): generalized to a class of warped product manifolds.
The key steps are the Minkowski type formula and a Heintze-Karcher
type inequality.

m Brendle-Eichmair (2014), Wu-Xia(2014): This also works for
Weingarten hypersurfaces.

m Kwong-Lee-Pyo proved Alexandrov type results for closed embedded
hypersurfaces with radially symmetric higher order mean curvature in

a class of warped products.

Theorem (Brendle-Eichmair 2014)

Let M be a closed, embedded hypersurface in the deSitter-Schwarzschild
manifold that is star-shaped and convex. Moreover, suppose that

o = constant. Then M is a slice.




An integral formula

Suppose z(M) is a closed hypersurface of M. The following equality holds

/M{ — (n=k){(Vor, \or) + ((n— k)oror — n(k+ 1)oks1)u

— nRupjp(AOr, €)0k_1,5p} dp = 0.

Proof. .
b=z (/ A(s)ds), u:= (A0, V).
0

To calculate V (ko VP — ng%i’; Vju) and use the divergence theorem.



Jellet-Liebmann type theorem-I

Theorem 4.1 (Gao-M. 2019).

Suppose that (M™ = [0,7) x\ P", g = dr* + X*(r)g") (0 <7< 00) is a

warped product manifold satisfying
Ric" > (n—1)(\? = A\\")g",

and z: M — M is an immersion of a closed orientable hypersurface M™ in
M. If 2(M) is star-shaped and satisfies

(VH,8,) <0, (4.1)

then (M) must be totally umbilic.

Remark. If M has constant mean curvature, Theorem 4.1 reduces to
the Jellett-Liebmann type theorem proved by Montiel (1999).



Jellet-Liebmann type theorem-1I

Corollary (Gao-M. 2019).
Under the same assumption of Theorem 4.1, if ©(M) is star-shaped and
satisfies
H=¢(r),
where ¢(r) = 2*(P(r)) and ®(r) is a positive non-increasing function of r,

then z(M) must be totally umbilic.

Corollary (Gao-M. 2019).

Under the same assumption of Theorem 4.1, if o(M) is strictly convex and

| A\

satisfies
H % = (\o,v),

where o > 0 is a constant, then ©(M) is a slice {ro} x P for some ro € (0,7).

<




Jellet-Liebmann type theorem-I11

Theorem 4.2 (Gao-M. 2019).

Suppose that Mt = [0,7) x P" is a warped product manifold, where
(P, g") is a closed Riemannian manifold with constant sectional curvature e
and
()" o E= (r)"?
A(r) A(r)2
Let 2: M — M be an immersion of a closed orientable hypersurface M™ in
M. For any fized k with 2 < k< n— 1, if a(M) is k-convexz, star-shaped and

satisfies

(4.2)

<VHI€7 ar) < 07

then z(M) must be totally umbilic.




Jellet-Liebmann type theorem-IV

Corollary (Gao-M. 2019).

Suppose that M™™ = [0,7) x» P" is a warped product manifold, where
(P, g") is a closed Riemannian manifold with constant sectional curvature e

and
() e— ()7

A(7) A(r)?
Let z: M — M be an immersion of a closed orientable hypersurface M™ in
M. For any fized k with 2 < k< n— 1, if z(M) is k-convez, star-shaped and
Hj, = constant, then z(M) is a slice {ro} x P for some 1o € (0,7).

> 0. (4.3)

This implies that the embeddedness condition in Brendle-Eichmair’s result

is not necessary.




Jellet-Liebmann type theorem-V

Corollary (Gao-M. 2019).
Under the same assumption of Theorem 4.2, if for any fixed k with
2<k<n-—1, (M) is k-convez, star-shaped and satisfies

where ¢(r) = *(P(r)) and ®(r) is a positive non-increasing function of r,

then z(M) must be totally umbilic.

| A\

Corollary (Gao-M. 2019).
Under the same assumption of Theorem 4.2, if for any fixed k with
2<k<n-—1, (M) is strictly conver and satisfies

H;a = <A8T7y>7

where o > 0 is a constant, then ©(M) is a slice {ro} x P for some ro € (0,7).

v




Alexandrov type theorem

Theorem (Gao-M. 2019

Suppose that (M, g) is a warped product manifold satisfying conditions
(C1)-(C4). Let z: M — M be an immersion of a connected closed
embedded orientable hypersurface M™ in M. If Hy > 0 and z(M) satisfies

Hy X = (30, 1), (4.4)

for any fixed k with 1 < k< mnand a > %, then z(M) is a slice {ro} x P for

some 19 € (0, 7).




Further questions

@ What is the asymptotic behavior of the o -curvature flow?More

explicitly, does it asymptotic to a o} self-similar solution?

@ Does oy-self-similar solution have a variational characterization

description?

@ Does the result hold if strictly convezity is changed to k-convexity?

@ Existence of non-compact complete (k-)convex graph solution to

oy -flow?




Thanks for your attention!
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