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Dirac-von Neumann formulation of quantum mechanics

Mathematical formulation of quantum mechanics

(P1)

A quantum system () is mathematically associated with a
Hilbert space H and is completely described by a unit vector
¥ in H, which is called a (vector) state; and every observable
for () is represented by a self-adjoint operator A on H.

The system @ as described by vector states is changed with
time according to Schrodinger equation

i

I = Hq, (1.1)

where H is a Hermitian operator on H, and i = v/—1.

At the state ¢, by the observation of a quantity described by
a self-adjoint operator A with eigenstates 11, 19, . .., the
state ¢ will be changed to the state v); with probability

|(1,1;)|?, whose expectation equals to (1, Az)).
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The geometric phase for the quantum state

At a (pure) state ¢ € H, the expectation of any observable A,
(Ayy = (¥, Ap) = (¢, Adp), ¢ =€, 0 €[0,27),
i0

e' is called a phase factor and 6 is a phase.

Berry's Phase

Berry showed that when H undergoes adiabatic evolution along a
closed curve T' in the parameter space M, then a state that
remains as an eigenstate of H(R) corresponding to a
non-degenerate eigenvalue E(R) develops a geometrical phase
which depends only on the geometry of I, as described by Simon.

[Berry] M. V. Berry, Quantal phase factors accompanying

adiabatic changes, Proceedings of the Royal Society of

London, Series A 392 (1984), 45-57.

[Simon] B. Simon, Holonomy, the quantum adiabatic theorem,

and Berry's phase, Physical Review Letters 51 (1983),
A7-2170)
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The geometric phase for the quantum state

Given a cyclic evolution C': [0,T] 5 t — (t) with
Y(T) = €'%9(0), which satisfies the Schrodinger equation

A
i = h(t)o,

where h(t) is a time-dependent Hamiltonian, the geometric phase
of Aharonov and Anandan is defined to be

T
ﬁ—¢+A<M$W@W@Wﬁ

depends only on the closed curve C : t — o(t) = [1(t))(¢(t)| in the
state space satisfying the Liouville-von Neumann equation
2 _ fr), o).
[AA] Y. Aharonov, J. Anandan, Phase change during a cyclic
quantum evolution, Physical Review Letters 58 (1987),
1593-1596.
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The fiber bundle over the state space

The principal fiber bundle:

(a) The total space is the unit sphere of H,
S(H) ={¢ : || =1,¢ € H}.

(b) The base space is the state space,
S(H) = {|¥)(¢] : ¢ € S(H)} = P(H) = {[¢] : ¥ € S(H)}
with [¢] = {el%y : 0 € [0,27)}.

(¢) n= (S(H),P(H), m,U(1)) with the structure group U(1).
(d) The canonical connection A = (1, dv).
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Expression for the geometric phase on the state space

The curve
C 2 [0,T] 5 t s (t) = e Jo WAV sy 4
is the horizontal lift of C : t — o(t) = |¢(¢))((¢)] in S(H), i.e.

(1), S(0) =

such that

O(T) = P[(0).

it = § (5.ab)

Moreover,

&‘&

= [ e

for any closed curve C': [0, T] > t — (t) with ¥(0) = ¥(T) such
that () = [¢) (.




New formulation of quantum mechanics

(Q1) A quantum system () associated with a Hilbert space H is
described by an orthonormal basis W, which is called a
prototype; and every observable W is represented by a
self-adjoint operator A on H.

(Q2) The system @ as described by prototypes is changed with
time according to the equation for the associated bases

Wi = (¥n(t))n>1 in H,

b (1)
dt

=—Hip(t), VYn>1,

where H is a Hermitian operator on H.

(Q3) For a given prototype W, a quantum state is defined as a
valuation for the complete family of obeservables which is
diagonal under the corresponding basis W, which is
characterized by either a vector or singular state.
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Cyclic evolution for the observable

e Consider C': [0,T] >t — Wi = (|¢hn(t)))n>1 satisfying the
skew Schrodinger equation

dpn(t)
dt = _h(t)wn(t)’ Vn > 1,

i

with Wy = (|¢n(0)))n>1 being a basis of H.

@ Given any fixed family of distinct real numbers (A;)n>1,
X(t) = >,51 Anltn(t)) (¥n(t)] satisfies the the Heisenberg
equation

dX(t)

)

in the observable space.

e C:[0,T] >t~ X(t)is cyclic in the quantal observable space
if X(0) = X(T).
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Geometric phases for the cyclic evolution of observable

1) C:[0,T] >t Wy = (|¢hn(t)))n>1 with
[ (T)) = €i¢"|¢n(0)> with ¢, € [0,27) for n > 1.

2) The geometric phases over the C are defined as

T
Bn = én — / (thn(t), h(t) 1) (t))dt.
0
3) C:[0,T] 3t~ W(t) = (n(t))n>1, where
Dn(t) = e Jo Wn () h(Un()dsy, (1)

such that ¢, (T) = €[4, (0) and

<7;Z)n(t)7 %J}n(t» - O,Vn Z 1.
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The observable space

e B(H) is the algebra of all bounded operators on H,

e O(H) is the set of all self-adjoint operators on H and, O4(H)
denotes the subset of O(H) consisting of those self-adjoint
operators with discrete spectrum,

e U(H) is the group of all unitary operators on H. I always
denotes the identity operator on H.

e A complete orthonormal decomposition of the identity operator
I'inH, is O ={|n)(n|:n > 1} with ) [n)(n| =1 and
(n|m) = 0 whenever n # m.

Denote by W(H) the set of all complete orthonormal
decompositions in H. The distance Dyy on W(H) is defined as:
For O,0" €e W(H),

Dw(0,0") =inf{||I -U| : U'O'U =0, U € U(H)}.
(W(H), Dyy) is called the observable space.
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The topology for the observable space

G(N) denotes the automorphism group of N. For an arbitrary fixed
basis (|n))n>1 of H, U(1)N and G(N) x U(1)N are represented as

ULN = {D e n)(n| : Vo, € [0,27)},

n>1

G(N) x U = { 3" lo(n))in| : Vo € G(N), Y0, € [0, 27r)}.

n>1

Topological space for a quantum system

Given an arbitrary fixed basis (|n)),>1 of H,

U (H)

M= g <

W(C?) is topologically non-trivial as its fundamental group is
isomorphic to I1(d), the permutation group of d objects.
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The principal fiber bundle

Fix a point Op = {|n)(n| : n > 1} € W(H).
e For any O € W(H), we write

Fo={U eU(H): UOU = Oy}.

o Define Go, = {>_,>1 el o (n))(n| : Vo € G(N),V6, € [0,27)},
and the action of G, on Fp : (G,U) — UG for any G € G,
and for all Fp. Clearly, Go, is the structure group of Fo.

Since

the principal fiber bundle over the quantal observable space is the

follows:
PO() = (Z/{(H)a W(H)7 H7 g00)7

where II71(0) = Fp for O € W(H).
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Tangent space for the structure group

Denote by Q(H) the set of all densely defined operators in H. Fix
O ={|n){n|: n>1} € W(H), and let
D(0p) = span{|n) : n > 1}, which is a densely subspace of H.

Tangent vectors for the structure group Go,

Fix Op € W(H). For a given U € Gp,, an operator Q € Q(H) is
called a tangent vector at U for Gp,, if D(Op) C Dom(Q) and
there is a strongly continuous curve x : (—£,¢) >t — U(t) € Go,
with x(0) = U such that for every h € Dom(Q), the limit

t—0 t

in H. In this case, we denote by Q) = d’é—g)‘tzo. The set of all
tangent vectors at U is denoted by T1;Go,, and

TgOO = UUEQOO TUgOO.
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Tangent space for the base space

1) Fix Op € W(H). For a continuous curve
X : (a,b) 3t~ O(t) € W(H), a subset A of Q(H) is called a
tangent vector of x at a fixed ¢y € (a,b) relative to Oy, if for
any Q € A, D(Op) C Dom(Q) and there is a strongly
continuous curve 7 : (a,b) 3 t = U € Fo(y) such that for every
h € Dom(Q), the limit

Ui(h) — U, (h)

li =Q(h
T e
) . Oo(t) dx(t
in H. In this case, we denote by A = dt |t t = ‘t to°

2) Fix Op € W(H). Given O € W(H), a tangent vector of W(H)
at O relative to Oy is define to be a subset A of Q(H),
provided A is a tangent vector of some continuous curve x at
t =0, where x : (—¢g,¢) 3t — O(t) € W(H) with x(0) = O,
e, A= do(t ‘t o- We denote by ToWW(H) the set of all
tangent vectors at O, and write TW(H) = Upew @ ToW(H).
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Tangent space for the total space

1) Fix Op € W(H). For a given P € U(H), an operator @ € Q(H)
is called a tangent vector of Py, at P relative to Oy, if
D(0p) € Dom(Q) and there exists a strongly continuous curve
v:(—¢,e) 2t P, € U(H) with v(0) = P, such that for any
h € Dom(Q),
. Py (h) — P(h)
e )

in H. In this case, we write Q) = dP‘ ‘t 0= dt ‘t:O' Denote by

TpPo,(H) the set of all tangent vectors of Pp, at P relative to
Oy, and write TPy, (H) = UPePoo(H) TpPo,(H).

2) Given P € Pp,(H), a tangent vector Q € TpPp,(H) is said to
be vertical, if there is a strongly continuous curve
[':(—¢,e) >t P € Fyyp) with I'(0) = P such that
Q= dr(t) ‘t o- We denote by VpPo,(H) the set of all vertical
tangent vectors at P.
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Connection over the bundle

A connection on the principal fiber bundle Pp, is a family of linear
functionals Q2 = {Qp: P € Po,(H)}, where for each P € Pp,(H),
Qp is a linear functional in TpPp,(H) with values in TGo,,
satisfying the following conditions:

(1) For any P € U(H), every vertical tangent vector
Q € VpPp,(H) satisfies the equation Qp(Q) = PQ.

(2) Qp depends continuously on P in a certain topology.

(3) Under the right action of Go, on Pp,(H), € transforms
according to

Qre)[(Re)-(Q)] = GT'Qp(Q)G

for G € Go,, P € Pp,(H), and Q € TpPo,(H).

Such a connection is simply called an Og-connection.

3237 quantum mechanics



The canonical connection

Given a fixed Og € W(H), we define Q = {Qp : P € U(H)} as
follows: For each P € U(H), Qp : TpPo,(H) — TGo, is defined
by

Qp(Q) =P+ Q

for any Q € TpPp,(H), where

P'xQ =Y (n|PTQIn)[n)(nl.

n>1

This is clearly an Og-connection on Fp, . In this case, we write
Qp = PTxdP for any P € U(H).
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Quantum lifts

The evolution of an exact cyclic observable is defined to be a
closed loop

Cw: [0,T] 5t O(t) e W(H), 0O(0)=0(T),
in the base space W(H).

Quantum lifts

Fix a point Oy = {|n)(n| : n > 1} € W(H). For a continuous
curve Cyy : [0,T] 5 t — O(t) € W(H), a lift of Cyy with respect
to Og is defined to be a continuous curve

Cp:[0,T] 3t —s U(t) € U(H)

such that U(t) € Fo for any t € [0, 7], that is,
{U(t)|n) : n>1} € Ba(O(t)) for every t € [0,T].
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Quantum parallel transport

Horizontal lift for Cyy

Fix Op € W(H) and let © be an Op-connection on Py, (H). Let
Cw :10,T] 3t +— O(t) € W(H) be a continuous curve. A
horizontal lift of Cy with respect to Oy is defined to be a Op-lift
of Cy, Cp : [0,T] >t — U(t) such that

Q

for every t € [0,T].

In this case, the curve t — U(t) is called the parallel transportation
along Cyy associated with the connection €2 on Pp, (H).
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Canonical parallel transportation

Fix Og = {|n)(n| : n > 1} € W(H). Let (|1,(£)))n>1 be a family
of bases such that for each n > 1, ,,(t) is continuously differential
H-valued function in [0,T]. Then

Cw :[0,T] 5t = Ot) = {[Yn(t))(¥n(t)] : n > 1} € W(H)

is a continuous curve in W(H). For 0 < ¢ < T, define

Ut) = 19a®))(nl, |dn(t)) = e Jo@nldn(Ndsy, (4)).

n>1

Then Cp: [0,T] 3t U(t) € Fo(r) is a lift of Cy associated
with Og such that

O dU(t)} _0

Uﬁf){ dt

for all t € [0, T], where () is the canonical connection defined
above. Therefore, Cp is the horizontal lift of Cyy in the principal
bundle Py, associated with the canonical connection 2.
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Local section

Let O be an open subset of W(H). A mapping

s: O CW(H)— UH) is called a (local) section for Pp,(H), if s
is continuous and s(O) € Fp for any O € O. If O = W(H), such
a section is said to be global.

Let © be an Op-connection on Pp,(H). Let

s: O CW(H) — U(H) be a local section Pp,(H) and
wi = {wd : O € O} be a family of linear functionals on
Uoco ToW(H) such that for O € O,

wo(A) = Qg0 [5+(A)],

for any A € ToW(H), where s, is the pull-forward map of s
defined in the usual way. We call w¢, the local connection on O
associated with .
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Locally parallel transportation

If $'(O) =s(0)-G(O), VO € O, we have

/

wiH(A) = G(0) 1wd (A)G(0) + G(0)HdG(0).

Locally parallel transportation

Fix Op € W(H) and let 2 be an Op-connection on P, (H). Let
Cw :10,T] 3t O(t) € W(H) be a continuous curve. A lift Cp
of Cyy is a horizontal lift of Cyy with respect to Oy, if and only if

Cp(t) = s(Cw (1)) - Gs(t),

where s is a local section on some O containing a segment of Cyy,
and G,(t) € Go, is the solution of

{ dGs(t) _ _wso(t)<ﬂ(t)> - G4(8),

dt




Expression for the geometric phases of the observable

Fix Og = {|n)(n| : n > 1} € W(H). For 0 <t < T, define

U(t) =Y 1on(t){nl € UH),

n>1
where [, (t)) = e~ Jo (¥n()h()¥n()ds |y (1)) Then
Cp: 0,T]3>t+— U(t) € Po,

is the horizontal lift of Cyy : ¢ — {|¢n(£)) (¥n(t)] : m > 1}
associated with Pp, and the canonical connection €2, such that

0(T) =3 e n)(n|

n>1

is the holonomy element associated with the canonical connection
Qin Po,.
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Expression for the geometric phases of the observable

Expression for the geometric phases

Fix Op = {|n)(n| : n > 1} € W(H). For any closed lift
Cp:[0,T] > t+— U(t) € Po, of Cy associated with O, i.e.,
U(T) = U(0), we have

T
Br = <n\1/0 UT(t)%U(t)dﬂn) = <n\17§cp Ut % dU|n)

for every n > 1.

Br's are the geometric phases associated with Cyy, and
independent of the choice of the point Oy.
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@ Application: Geometric quantum computing, Integer quantum
Hall effect.

Q =T Wightman AFAK R, Feynman F7 A2 L.
Q E THFIF I A A

Thank you for your
attention !
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