量子系统的拓扑和几何 (Geometric Phases for the observable)

陈泽乾

中国科学院武汉物理与数学研究所

哈尔滨工业大学, 2018年01月06日

Contents

Dirac-von Neumann formulation of quantum mechanics

Mathematical formulation of quantum mechanics

- (P_1) A quantum system Q is mathematically associated with a Hilbert space $\mathbb H$ and is completely described by a unit vector ψ in $\mathbb H$, which is called a (vector) state; and every observable for Q is represented by a self-adjoint operator A on $\mathbb H$.
- (P_2) The system Q as described by vector states is changed with time according to Schrödinger equation

$$i\frac{d\psi}{dt} = H\psi, \tag{1.1}$$

where H is a Hermitian operator on \mathbb{H} , and $i = \sqrt{-1}$.

 (P_3) At the state $\psi,$ by the observation of a quantity described by a self-adjoint operator A with eigenstates $\psi_1,\psi_2,\ldots,$ the state ψ will be changed to the state ψ_j with probability $|\langle \psi,\psi_j\rangle|^2,$ whose expectation equals to $\langle \psi,A\psi\rangle.$

The geometric phase for the quantum state

At a (pure) state $\psi \in \mathbb{H}$, the expectation of any observable A,

$$\langle A \rangle_{\psi} = \langle \psi, A\psi \rangle = \langle \tilde{\psi}, A\tilde{\psi} \rangle, \quad \tilde{\psi} = e^{i\theta}\psi, \theta \in [0, 2\pi),$$

 $e^{\mathrm{i}\theta}$ is called a phase factor and θ is a phase.

Berry's Phase

Berry showed that when H undergoes adiabatic evolution along a closed curve Γ in the parameter space M, then a state that remains as an eigenstate of H(R) corresponding to a non-degenerate eigenvalue E(R) develops a geometrical phase γ which depends only on the geometry of Γ , as described by Simon.

[Berry] M. V. Berry, Quantal phase factors accompanying adiabatic changes, *Proceedings of the Royal Society of London, Series A* **392** (1984), 45-57.

[Simon] B. Simon, Holonomy, the quantum adiabatic theorem, and Berry's phase, *Physical Review Letters* **51** (1983), 2167-2170

The geometric phase for the quantum state

Given a cyclic evolution $C:[0,T]\ni t\to \psi(t)$ with $\psi(T)=e^{\mathrm{i}\phi}\psi(0),$ which satisfies the Schrödinger equation

$$i\frac{d\psi}{dt} = h(t)\psi,$$

where h(t) is a time-dependent Hamiltonian, the geometric phase of Aharonov and Anandan is defined to be

$$\beta = \phi + \int_0^T \langle \psi(s), h(s)\psi(s) \rangle ds$$

depends only on the closed curve $\mathcal{C}:t\to\varrho(t)=|\psi(t)\rangle\langle\psi(t)|$ in the state space satisfying the Liouville-von Neumann equation

$$i\frac{d\varrho(t)}{dt} = [h(t), \varrho(t)].$$

[AA] Y. Aharonov, J. Anandan, Phase change during a cyclic quantum evolution, *Physical Review Letters* **58** (1987), 1593-1596.

The fiber bundle over the state space

The principal fiber bundle:

- (a) The total space is the unit sphere of \mathbb{H} , $\mathbf{S}(\mathbb{H}) = \{\psi : \|\psi\| = 1, \psi \in \mathbb{H}\}.$
- (b) The base space is the state space, $\mathcal{S}(\mathbb{H}) = \{|\psi\rangle\langle\psi| : \psi \in \mathbf{S}(\mathbb{H})\} \cong \mathcal{P}(\mathbb{H}) = \{[\psi] : \psi \in \mathbf{S}(\mathbb{H})\}$ with $[\psi] = \{e^{\mathrm{i}\theta}\psi : \theta \in [0,2\pi)\}.$
- (c) $\eta = (\mathbf{S}(\mathbb{H}), \mathcal{P}(\mathbb{H}), \pi, \mathcal{U}(1))$ with the structure group $\mathcal{U}(1)$.
- (d) The canonical connection $\mathcal{A} = \langle \psi, d\psi \rangle$.

Expression for the geometric phase on the state space

The curve

$$\tilde{C}: [0,T] \ni t \mapsto \tilde{\psi}(t) = e^{i \int_0^t \langle \psi(s), h(s)\psi(s) \rangle ds} \psi(t)$$

is the horizontal lift of $\mathcal{C}: t \to \varrho(t) = |\psi(t)\rangle\langle\psi(t)|$ in $\mathcal{S}(\mathbb{H})$, i.e.

$$\langle \tilde{\psi}(t), \frac{d}{dt} \tilde{\psi}(t) \rangle = 0,$$

such that

$$\tilde{\psi}(T) = e^{i\beta} |\psi(0).$$

Moreover,

$$\beta = \int_0^T \langle \bar{\psi}(t), \frac{d}{dt} \bar{\psi}(t) \rangle dt = \oint_{\bar{C}} \langle \bar{\psi}, d\bar{\psi} \rangle$$

for any closed curve $\bar{C}:[0,T]\ni t\to \bar{\psi}(t)$ with $\bar{\psi}(0)=\bar{\psi}(T)$ such that $\pi(\bar{\psi})=|\psi\rangle\langle\psi|.$

New formulation of quantum mechanics

- (Q_1) A quantum system Q associated with a Hilbert space $\mathbb H$ is described by an orthonormal basis W, which is called a prototype; and every observable W is represented by a self-adjoint operator A on $\mathbb H$.
- (Q_2) The system Q as described by prototypes is changed with time according to the equation for the associated bases $W_t = (\psi_n(t))_{n \geq 1}$ in \mathbb{H} ,

$$i\frac{d\psi_n(t)}{dt} = -H\psi_n(t), \quad \forall n \ge 1,$$

where H is a Hermitian operator on \mathbb{H} .

 (Q_3) For a given prototype W, a quantum state is defined as a valuation for the complete family of obeservables which is diagonal under the corresponding basis W, which is characterized by either a vector or singular state.

Cyclic evolution for the observable

• Consider $C:[0,T]\ni t\mapsto W_t=(|\psi_n(t)\rangle)_{n\geq 1}$ satisfying the skew Schrödinger equation

$$i\frac{d\psi_n(t)}{dt} = -h(t)\psi_n(t), \quad \forall n \ge 1,$$

with $W_0 = (|\psi_n(0)\rangle)_{n\geq 1}$ being a basis of \mathbb{H} .

• Given any fixed family of distinct real numbers $(\lambda_n)_{n\geq 1}$, $X(t) = \sum_{n\geq 1} \lambda_n |\psi_n(t)\rangle \langle \psi_n(t)|$ satisfies the Heisenberg equation

$$i\frac{dX(t)}{dt} = [X(t), h(t)]$$

in the observable space.

• $\mathcal{C}:[0,T]\ni t\mapsto X(t)$ is cyclic in the quantal observable space if X(0)=X(T).

Geometric phases for the cyclic evolution of observable

- 1) $C:[0,T]\ni t\mapsto W_t=(|\psi_n(t)\rangle)_{n\geq 1}$ with $|\psi_n(T)\rangle=e^{\mathrm{i}\phi_n}|\psi_n(0)\rangle$ with $\phi_n\in[0,2\pi)$ for $n\geq 1$.
- 2) The geometric phases over the $\mathcal C$ are defined as

$$\beta_n = \phi_n - \int_0^T \langle \psi_n(t), h(t)\psi_n(t) \rangle dt.$$

3)
$$\tilde{C}:[0,T]\ni t\mapsto \tilde{W}(t)=(\tilde{\psi}_n(t))_{n\geq 1},$$
 where

$$\tilde{\psi}_n(t) = e^{-i\int_0^t \langle \psi_n(s), h(s)\psi_n(s)\rangle ds} \psi_n(t)$$

such that
$$\tilde{\psi}_n(T) = e^{\mathrm{i}\beta_n} |\psi_n(0)|$$
 and

$$\langle \tilde{\psi}_n(t), \frac{d}{dt} \tilde{\psi}_n(t) \rangle = 0, \forall n \ge 1.$$

The observable space

- $\mathcal{B}(\mathbb{H})$ is the algebra of all bounded operators on \mathbb{H} ,
- $\mathcal{O}(\mathbb{H})$ is the set of all self-adjoint operators on \mathbb{H} and, $\mathcal{O}_d(\mathbb{H})$ denotes the subset of $\mathcal{O}(\mathbb{H})$ consisting of those self-adjoint operators with discrete spectrum,
- $\mathcal{U}(\mathbb{H})$ is the group of all unitary operators on \mathbb{H} . I always denotes the identity operator on \mathbb{H} .
- A complete orthonormal decomposition of the identity operator I in \mathbb{H} , is $O=\{|n\rangle\langle n|:n\geq 1\}$ with $\sum_n|n\rangle\langle n|=I$ and $\langle n|m\rangle=0$ whenever $n\neq m$.

Denote by $\mathcal{W}(\mathbb{H})$ the set of all complete orthonormal decompositions in \mathbb{H} . The distance $D_{\mathcal{W}}$ on $\mathcal{W}(\mathbb{H})$ is defined as: For $O,O'\in\mathcal{W}(\mathbb{H}),$

$$D_{\mathcal{W}}(O, O') = \inf\{\|I - U\| : U^{-1}O'U = O, U \in \mathcal{U}(\mathbb{H})\}.$$

 $(\mathcal{W}(\mathbb{H}), D_{\mathcal{W}})$ is called the observable space.

The topology for the observable space

 $\mathcal{G}(\mathbb{N})$ denotes the automorphism group of \mathbb{N} . For an arbitrary fixed basis $(|n\rangle)_{n\geq 1}$ of \mathbb{H} , $\mathcal{U}(1)^{\mathbb{N}}$ and $\mathcal{G}(\mathbb{N})\times\mathcal{U}(1)^{\mathbb{N}}$ are represented as

$$\mathcal{U}(1)^{\mathbb{N}} = \big\{ \sum_{n \geq 1} e^{\mathrm{i}\theta_n} |n\rangle \langle n| : \ \forall \theta_n \in [0, 2\pi) \big\},\,$$

$$\mathcal{G}(\mathbb{N}) \times \mathcal{U}(1)^{\mathbb{N}} = \Big\{ \sum_{n \geq 1} e^{\mathrm{i}\theta_n} |\sigma(n)\rangle \langle n|: \ \forall \sigma \in \mathcal{G}(\mathbb{N}), \forall \theta_n \in [0,2\pi) \Big\}.$$

Topological space for a quantum system

Given an arbitrary fixed basis $(|n\rangle)_{n\geq 1}$ of \mathbb{H} ,

$$\mathcal{W}(\mathbb{H})\cong rac{\mathcal{U}(\mathbb{H})}{\mathcal{G}(\mathbb{N}) imes \mathcal{U}(1)^{\mathbb{N}}}.$$

 $\mathcal{W}(\mathbb{C}^d)$ is topologically non-trivial as its fundamental group is isomorphic to $\Pi(d)$, the permutation group of d objects.

The principal fiber bundle

Fix a point $O_0 = \{|n\rangle\langle n| : n \geq 1\} \in \mathcal{W}(\mathbb{H}).$

• For any $O \in \mathcal{W}(\mathbb{H})$, we write

$$\mathcal{F}_O = \{ U \in \mathcal{U}(\mathbb{H}) : \ U^{\dagger}OU = O_0 \}.$$

• Define $\mathcal{G}_{O_0} = \{\sum_{n \geq 1} e^{\mathrm{i}\theta_n} |\sigma(n)\rangle \langle n| : \forall \sigma \in \mathcal{G}(\mathbb{N}), \forall \theta_n \in [0, 2\pi)\},$ and the action of \mathcal{G}_{O_0} on $\mathcal{F}_O : (G, U) \mapsto UG$ for any $G \in \mathcal{G}_{O_0}$ and for all \mathcal{F}_O . Clearly, \mathcal{G}_{O_0} is the structure group of \mathcal{F}_O .

Since

$$\mathcal{U}(\mathbb{H}) = \bigcup_{O \in \mathcal{W}(\mathbb{H})} \mathcal{F}_O,$$

the principal fiber bundle over the quantal observable space is the follows:

$$P_{O_0} = (\mathcal{U}(\mathbb{H}), \mathcal{W}(\mathbb{H}), \Pi, \mathcal{G}_{O_0}),$$

where $\Pi^{-1}(O) = \mathcal{F}_O$ for $O \in \mathcal{W}(\mathbb{H})$.

Tangent space for the structure group

Denote by $\mathcal{Q}(\mathbb{H})$ the set of all densely defined operators in \mathbb{H} . Fix $O_0 = \{|n\rangle\langle n|: n \geq 1\} \in \mathcal{W}(\mathbb{H})$, and let $\mathcal{D}(O_0) = \operatorname{span}\{|n\rangle: n \geq 1\}$, which is a densely subspace of \mathbb{H} .

Tangent vectors for the structure group \mathcal{G}_{O_0}

Fix $O_0 \in \mathcal{W}(\mathbb{H})$. For a given $U \in \mathcal{G}_{O_0}$, an operator $Q \in \mathcal{Q}(\mathbb{H})$ is called a tangent vector at U for \mathcal{G}_{O_0} , if $\mathcal{D}(O_0) \subset \mathrm{Dom}(Q)$ and there is a strongly continuous curve $\chi: (-\varepsilon, \varepsilon) \ni t \mapsto U(t) \in \mathcal{G}_{O_0}$ with $\chi(0) = U$ such that for every $h \in \mathrm{Dom}(Q)$, the limit

$$\lim_{t \to 0} \frac{U(t)(h) - U(h)}{t} = Q(h)$$

in \mathbb{H} . In this case, we denote by $Q=\frac{d\chi(t)}{dt}\big|_{t=0}$. The set of all tangent vectors at U is denoted by $T_U\mathcal{G}_{O_0}$, and $T\mathcal{G}_{O_0}=\bigcup_{U\in\mathcal{G}_{O_0}}T_U\mathcal{G}_{O_0}$.

Tangent space for the base space

1) Fix $O_0 \in \mathcal{W}(\mathbb{H})$. For a continuous curve $\chi: (a,b) \ni t \mapsto O(t) \in \mathcal{W}(\mathbb{H})$, a subset \mathcal{A} of $\mathcal{Q}(\mathbb{H})$ is called a tangent vector of χ at a fixed $t_0 \in (a,b)$ relative to O_0 , if for any $Q \in \mathcal{A}$, $\mathcal{D}(O_0) \subset \mathrm{Dom}(Q)$ and there is a strongly continuous curve $\gamma: (a,b) \ni t \mapsto U_t \in \mathcal{F}_{O(t)}$ such that for every $h \in \mathrm{Dom}(Q)$, the limit

$$\lim_{t \to t_0} \frac{U_t(h) - U_{t_0}(h)}{t - t_0} = Q(h)$$

in \mathbb{H} . In this case, we denote by $\mathcal{A}=\frac{dO(t)}{dt}\big|_{t=t_0}=\frac{d\chi(t)}{dt}\big|_{t=t_0}$

2) Fix $O_0 \in \mathcal{W}(\mathbb{H})$. Given $O \in \mathcal{W}(\mathbb{H})$, a tangent vector of $\mathcal{W}(\mathbb{H})$ at O relative to O_0 is define to be a subset \mathcal{A} of $\mathcal{Q}(\mathbb{H})$, provided \mathcal{A} is a tangent vector of some continuous curve χ at t=0, where $\chi: (-\varepsilon,\varepsilon)\ni t\mapsto O(t)\in \mathcal{W}(\mathbb{H})$ with $\chi(0)=O$, i.e., $\mathcal{A}=\frac{dO(t)}{dt}\big|_{t=0}$. We denote by $T_O\mathcal{W}(\mathbb{H})$ the set of all tangent vectors at O, and write $T\mathcal{W}(\mathbb{H})=\bigcup_{O\in\mathcal{W}(\mathbb{H})}T_O\mathcal{W}(\mathbb{H})$.

Tangent space for the total space

1) Fix $O_0 \in \mathcal{W}(\mathbb{H})$. For a given $P \in \mathcal{U}(\mathbb{H})$, an operator $Q \in \mathcal{Q}(\mathbb{H})$ is called a tangent vector of P_{O_0} at P relative to O_0 , if $\mathcal{D}(O_0) \subset \mathrm{Dom}(Q)$ and there exists a strongly continuous curve $\gamma: (-\varepsilon, \varepsilon) \ni t \mapsto P_t \in \mathcal{U}(\mathbb{H})$ with $\gamma(0) = P$, such that for any $h \in \mathrm{Dom}(Q)$,

$$\lim_{t \to 0} \frac{P_t(h) - P(h)}{t} = Q(h)$$

in \mathbb{H} . In this case, we write $Q=\frac{dP_t}{dt}\big|_{t=0}=\frac{d\gamma(t)}{dt}\big|_{t=0}$. Denote by $T_PP_{O_0}(\mathbb{H})$ the set of all tangent vectors of P_{O_0} at P relative to O_0 , and write $TP_{O_0}(\mathbb{H})=\bigcup_{P\in P_{O_0}(\mathbb{H})}T_PP_{O_0}(\mathbb{H})$.

2) Given $P \in P_{O_0}(\mathbb{H})$, a tangent vector $Q \in T_P P_{O_0}(\mathbb{H})$ is said to be vertical, if there is a strongly continuous curve $\Gamma: (-\varepsilon, \varepsilon) \ni t \mapsto P_t \in F_{\Pi(P)}$ with $\Gamma(0) = P$ such that $Q = \frac{d\Gamma(t)}{dt}\big|_{t=0}$. We denote by $V_P P_{O_0}(\mathbb{H})$ the set of all vertical tangent vectors at P.

Connection over the bundle

A connection on the principal fiber bundle P_{O_0} is a family of linear functionals $\Omega = \{\Omega_P : P \in P_{O_0}(\mathbb{H})\}$, where for each $P \in P_{O_0}(\mathbb{H})$, Ω_P is a linear functional in $T_P P_{O_0}(\mathbb{H})$ with values in $T \mathcal{G}_{O_0}$, satisfying the following conditions:

- (1) For any $P \in \mathcal{U}(\mathbb{H})$, every vertical tangent vector $Q \in V_P P_{O_0}(\mathbb{H})$ satisfies the equation $\Omega_P(Q) = P^{\dagger}Q$.
- (2) Ω_P depends continuously on P in a certain topology.
- (3) Under the right action of \mathcal{G}_{O_0} on $P_{O_0}(\mathbb{H}), \Omega$ transforms according to

$$\Omega_{R_G(P)}[(R_G)_*(Q)] = G^{-1}\Omega_P(Q)G$$

for
$$G \in \mathcal{G}_{O_0}, P \in P_{O_0}(\mathbb{H})$$
, and $Q \in T_P P_{O_0}(\mathbb{H})$.

Such a connection is simply called an O_0 -connection.

The canonical connection

Given a fixed $O_0 \in \mathcal{W}(\mathbb{H})$, we define $\check{\Omega} = \{\check{\Omega}_P : P \in \mathcal{U}(\mathbb{H})\}$ as follows: For each $P \in \mathcal{U}(\mathbb{H})$, $\check{\Omega}_P : T_P P_{O_0}(\mathbb{H}) \mapsto T\mathcal{G}_{O_0}$ is defined by

$$\check{\Omega}_P(Q) = P^{\dagger} \star Q$$

for any $Q \in T_P P_{O_0}(\mathbb{H})$, where

$$P^{\dagger} \star Q = \sum_{n \geq 1} \langle n | P^{\dagger} Q | n \rangle | n \rangle \langle n |.$$

This is clearly an O_0 -connection on P_{O_0} . In this case, we write $\check{\Omega}_P = P^\dagger \star dP$ for any $P \in \mathcal{U}(\mathbb{H})$.

Quantum lifts

The evolution of an exact cyclic observable is defined to be a closed loop

$$C_W: [0,T] \ni t \longmapsto O(t) \in \mathcal{W}(\mathbb{H}), \quad O(0) = O(T),$$

in the base space $\mathcal{W}(\mathbb{H})$.

Quantum lifts

Fix a point $O_0=\{|n\rangle\langle n|:n\geq 1\}\in\mathcal{W}(\mathbb{H}).$ For a continuous curve $C_W:[0,T]\ni t\longmapsto O(t)\in\mathcal{W}(\mathbb{H}),$ a lift of C_W with respect to O_0 is defined to be a continuous curve

$$C_P: [0,T] \ni t \longmapsto U(t) \in \mathcal{U}(\mathbb{H})$$

such that $U(t) \in \mathcal{F}_{O(t)}$ for any $t \in [0,T]$, that is, $\{U(t)|n\rangle: n \geq 1\} \in Ba(O(t))$ for every $t \in [0,T]$.

Quantum parallel transport

Horizontal lift for C_W

Fix $O_0\in\mathcal{W}(\mathbb{H})$ and let Ω be an O_0 -connection on $P_{O_0}(\mathbb{H})$. Let $C_W:[0,T]\ni t\longmapsto O(t)\in\mathcal{W}(\mathbb{H})$ be a continuous curve. A horizontal lift of C_W with respect to O_0 is defined to be a O_0 -lift of $C_W,\,C_P:[0,T]\ni t\longmapsto \tilde{U}(t)$ such that

$$\Omega_{\tilde{U}(t)} \left[\frac{d\tilde{U}(t)}{dt} \right] = 0$$

for every $t \in [0, T]$.

In this case, the curve $t\mapsto \tilde{U}(t)$ is called the parallel transportation along C_W associated with the connection Ω on $P_{O_0}(\mathbb{H})$.

Canonical parallel transportation

Fix $O_0=\{|n\rangle\langle n|:n\geq 1\}\in \mathcal{W}(\mathbb{H}).$ Let $(|\psi_n(t)\rangle)_{n\geq 1}$ be a family of bases such that for each $n\geq 1,\ \psi_n(t)$ is continuously differential \mathbb{H} -valued function in [0,T]. Then

$$C_W: [0,T] \ni t \to O(t) = \{ |\psi_n(t)\rangle \langle \psi_n(t)| : n \ge 1 \} \in \mathcal{W}(\mathbb{H})$$

is a continuous curve in $\mathcal{W}(\mathbb{H})$. For $0 \leq t \leq T$, define

$$\tilde{U}(t) = \sum_{n \ge 1} |\tilde{\psi}_n(t)\rangle\langle n|, \quad |\tilde{\psi}_n(t)\rangle = e^{-\int_0^t \langle \psi_n(s), \frac{d}{ds} \psi_n(s)\rangle ds} |\psi_n(t)\rangle.$$

Then $\tilde{C}_P: [0,T] \ni t \longmapsto \tilde{U}(t) \in \mathcal{F}_{O(t)}$ is a lift of C_W associated with O_0 such that

$$\check{\Omega}_{\tilde{U}(t)} \left[\frac{d\tilde{U}(t)}{dt} \right] = 0$$

for all $t\in[0,T]$, where $\check{\Omega}$ is the canonical connection defined above. Therefore, \check{C}_P is the *horizontal* lift of C_W in the principal bundle P_{O_0} associated with the canonical connection $\check{\Omega}$.

Local section

Section

Let $\mathcal O$ be an open subset of $\mathcal W(\mathbb H)$. A mapping $s:\mathcal O\subset\mathcal W(\mathbb H)\mapsto\mathcal U(\mathbb H)$ is called a (local) section for $P_{O_0}(\mathbb H),$ if s is continuous and $s(O)\in\mathcal F_O$ for any $O\in\mathcal O.$ If $\mathcal O=\mathcal W(\mathbb H),$ such a section is said to be global.

Let Ω be an O_0 -connection on $P_{O_0}(\mathbb{H})$. Let $s: \mathcal{O} \subset \mathcal{W}(\mathbb{H}) \mapsto \mathcal{U}(\mathbb{H})$ be a local section $P_{O_0}(\mathbb{H})$ and $\omega_{\mathcal{O}}^s = \{\omega_O^s: O \in \mathcal{O}\}$ be a family of linear functionals on $\bigcup_{O \in \mathcal{O}} T_O \mathcal{W}(\mathbb{H})$ such that for $O \in \mathcal{O}$,

$$\omega_{\mathcal{O}}^{s}(\mathcal{A}) = \Omega_{s(\mathcal{O})}[s_{*}(\mathcal{A})],$$

for any $\mathcal{A} \in T_{\mathcal{O}}\mathcal{W}(\mathbb{H})$, where s_* is the pull-forward map of s defined in the usual way. We call $\omega_{\mathcal{O}}^s$ the local connection on \mathcal{O} associated with Ω .

Locally parallel transportation

If
$$s'(O)=s(O)\cdot G(O), \quad \forall O\in\mathcal{O},$$
 we have
$$\omega_O^{s'}(\mathcal{A})=G(O)^{-1}\omega_O^s(\mathcal{A})G(O)+G(O)^{-1}dG(O).$$

Locally parallel transportation

Fix $O_0\in\mathcal{W}(\mathbb{H})$ and let Ω be an O_0 -connection on $P_{O_0}(\mathbb{H})$. Let $C_W:[0,T]\ni t\longmapsto O(t)\in\mathcal{W}(\mathbb{H})$ be a continuous curve. A lift C_P of C_W is a horizontal lift of C_W with respect to O_0 , if and only if

$$C_P(t) = s(C_W(t)) \cdot G_s(t),$$

where s is a local section on some $\mathcal O$ containing a segment of $C_W,$ and $G_s(t)\in\mathcal G_{O_0}$ is the solution of

$$\begin{cases} \frac{dG_s(t)}{dt} = -\omega_{O(t)}^s \left(\frac{dO(t)}{dt}\right) \cdot G_s(t), \\ G_s(0) = I. \end{cases}$$

Expression for the geometric phases of the observable

Fix $O_0 = \{|n\rangle\langle n| : n \geq 1\} \in \mathcal{W}(\mathbb{H})$. For $0 \leq t \leq T$, define

$$\tilde{U}(t) = \sum_{n \geq 1} |\tilde{\psi}_n(t)\rangle\langle n| \in \mathcal{U}(\mathbb{H}),$$

where $|\tilde{\psi}_n(t)\rangle=e^{-\mathrm{i}\int_0^t\langle\psi_n(s),h(s)\psi_n(s)\rangle ds}|\psi_n(t)\rangle$. Then

$$\tilde{C}_P: [0,T] \ni t \longmapsto \tilde{U}(t) \in P_{O_0}$$

is the horizontal lift of $C_W: t \to \{|\psi_n(t)\rangle \langle \psi_n(t)|: n \geq 1\}$ associated with P_{O_0} and the canonical connection $\check{\Omega}$, such that

$$\tilde{U}(T) = \sum_{n \ge 1} e^{\mathrm{i}\beta_n} |n\rangle\langle n|$$

is the holonomy element associated with the canonical connection Ω in P_{O_0} .

Expression for the geometric phases of the observable

Expression for the geometric phases

Fix $O_0=\{|n\rangle\langle n|:n\geq 1\}\in \mathcal{W}(\mathbb{H}).$ For any closed lift $\bar{C}_P:[0,T]\ni t\longmapsto \bar{U}(t)\in P_{O_0}$ of C_W associated with O_0 , i.e., $\bar{U}(T)=\bar{U}(0),$ we have

$$\beta_n = \langle n | i \int_0^T \bar{U}^{\dagger}(t) \frac{d}{dt} \bar{U}(t) dt | n \rangle = \langle n | i \oint_{\bar{C}_P} \bar{U}^{\dagger} \star d\bar{U} | n \rangle$$

for every $n \ge 1$.

 β_n 's are the geometric phases associated with C_W , and independent of the choice of the point O_0 .

Remarks

- Application: Geometric quantum computing, Integer quantum Hall effect.
- ② 量子场的 Wightman 公理体系, Feynman 积分的数学理论.
- 3 量子电动力学的数学基础.

Thank you for your attention!