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In known cases: Cp g = max(Ap.q, Bp.q)
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o Cpo = Apo for p > 2 (Whittle '60, Steckin '61, Haagerup '82)

@ There exists gy ~ 1.847 (given by equation A ; = B> 4) such
that

24 Arg P0<q<2

(Szarek '78, Haagerup '82)

o Cpq=Apq if p,q are even integers

(Czerwinski '08, N.-Oleszkiewicz '12)
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Assume >°7_; a? = 1. The goal is to prove that
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E|S|P <E[G]P,  (EIS]P)/P < (E|GP)2

(E[S*)M?
Let S’ be an independent copy of S. Then

S+ & 5,—1—5 9
- aX, EX?=1.
SRR I S

We want to apply the following scheme:
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Fact

If p >3 andif Xi,...,X, are symmetric random variables
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In fact we want to exchange X; — ¢; one by one:
E|aX + b|P > E|as + b|P,  EX?=1.

The function
f(t) = E.|asVt + b|P

is convex. In fact we can assume a = b =1 and then
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Thus, since X ~ ¢|X]|
ElaX + b|P = E|ac|X| + b|P = E|lae VX2 + b|P = Ef(X?)

> f(EX?) = f(1) = E|ac + b|P.

1| P
Question: is it true that E ‘%‘ > E|S|P for p € (2,3)7?
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Walsh system

Take Q, = {—1,1}" with uniform measure and define

Lo(@n, ).

Ef =27"%" co, f(x)

Scalar product (f, g) = Efg.

Walsh functions: for S C [n] take ws(x) = [];cs Xi-

We have Ews = 65—

Note that wswt = wsa1 and thus (ws, wr) = ds—7
Therefore ws form an orthonormal basis.

Any function can be written as f = ) s asws

If f=> sasws, g =) s bsws then (f,g) =) casbs.
Var(f) = Ef? — (Ef)? = Y g a2 — a5 = D540 a2
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Poincaré inequality

(LFA)(x) =5 D (Fy)—f(x),  Lws=—[S|ws

For any f : Q, — R we have

Var(f) < E(—Lf)f, Var(f) < ZE(—Lf)f [f — even]

N| =

Proof. We have Var(f) =3 5> a% and

E(—Lf)f = <Zas\S\W5,ZaSW5> =3 1|32
S
f even = as = 0 when |S] =1, since a;jy = Ef(x)x; =0,

E(—Lf)f = > |S|a%

IS[=2
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Co1 = /2 (proof of Latata and Oleszkiewicz )

Define f : Q, — R via
Z Vi X
i=1

We want to prove the inequality (Ef2)z < v/2Ef or equivalently
Ef? < 2(Ef)2.  We claim that it is enough to show that
(—Lf) < f. Indeed, we then have

f(X) = vi e V.

)

1
E(—Lf)f < 5Ef2

N =

Ef? — (Ef)? = Var(f) <
It suffices to observe that

(~ L) = 2 A6~ F) = 276~ 23

n

> viyi

2y~x y~x|li=1
n 1||< n n—2 ||—
gif(x)fi Zv;Zy; —Ef(x)— 5 ZVIXI = f(x)
i=1  y~x i=1
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For real numbers ¢y, ¢, ..., we define
n
S SR | CRREED S €
SC[n],|S|=k i€S SCN,|S|=k i€S

Newton inequalities:

(¥) () (M

A sequence (by) is called log-concave if b7 > by 1bk—1, k > 1.
The sequences

SM\? G
< k > > kil H), (klo)? > ((k+1)loki1)-((k—1)lok_1)

(n)
b(”) _ Ok

k _W’

bk = klok

are log-concave.
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Newton inequality - proof

Take the real rooted polynomial

n

P(x)=(14+acax)...(1+ cpx) = ZGI((H)Xk
k=0

Operations P(x) — PU)(x) and P(x) — x"P(x~1) preserve
real-rootedness.

Z (”) Kk &t Kk kfj+1 X" (x7L)
Ko k J+ 1)
3 ol k! -k o o\ Ki(n — k)~
_ 1 - T I
Sy (k=i +1)! e T (k—j+ DI —k+1)!
(n)
1 . _ o
257]—1+77X+ 57'J‘+1X2, TJ:UJ( )_/'(n—_/)lz (Jn) . nl
J

A>0 = 77> 71741
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For S = Z,’-’Zl aje; we want to show

1
®lsiy> < LI (g 5ja);
(E|G|9)a
Equivalently
1 1
(EI[SIP)r _ (E[S|9)9
T = 1
(E|G[P)r (E|G[9)a
In other words
1/k _ E|S]* log by
b/™ by = E|G[?*’ k pY

It is enough to prove

log by+1 ‘; log b1 < log by, bi > byy1bi—1.
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_ 2kxk - 2k xk  ES2 xk
:Z(2k—1)!!2’<k!E5 :ZF'EG% :Zb"ﬂ
k>0 k>0 k>0
On the other hand

FEeV2xS — EHe 2xajej ﬁEe\/ﬂa"Ef = f[cosh ( 2xa,-)
i=1 i=1



= (E|G|P)/?/(E|G|9)9  (proof of N. and Tkocz)

_ 2k xk ) ok xk  ES% x*
=2 S 2 wen 2P
k>0 k>0 k>0
On the other hand
FeV2XS — EHG 2xaje; HEG@B’E" — HCOSh ( 2X8,')
i—1 i=1

Crucially

cosh(z) = [ | (1 + 7r2(24lzi1)2>
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- ok ok ; o xk RS2k xk
=2 Gr DRSS = T wew = 2 b
k>0 k>0 k>0
On the other hand
FeV2XS — EHG 2xaje; HEG@B’E" — HCOSh ( 2X8,')
i=1 i=1
Crucially
472
h(z) = 1+ 57—
cosh(z) H( + 2020 = 1)2>

This gives

EoVERS _ /Hl< 2:1)2 >_H(1+cix).

i=1



— (E|G|P)Y/
(E|G|P)YP/(E|G|9)/9  (proof of N. and Tkocz)

k
S b X _geV2xS _
kk! e —H1+C, ZO’kX

k>0
k>0



= (E|G|P)/?/(E|G|9)9  (proof of N. and Tkocz)

Zbk):;:Ee@SZH 1—|-C, ZO’kX

k>0 k>0

Therefore

br = kloy is log-concave (by Newton)



Thank youl!



