The Haar state of \mathcal{O}(SL_q(3)) on a monomial basis

发布时间:2024-11-25浏览次数:15

分析学研讨班


题目:The Haar state of \mathcal{O}(SL_q(3))on a monomial basis

报告人:Ting Lu (芦汀) 


时间:2024年11月27日(星期三),14:30-16:00


地点:明德楼B区201-1

Zoom会议,会议号:947 0981 8605,密码:477439


摘要:

The quantum group \mathcal{O}(SL_q(n)) is a non-(co)commutative Hopf algebra dual to the Jimbo-Drinfeld quantum group $\mathcal{U}_q(sl(n))$. It is known that O(SLq(3)) becomes a pre-Hilbert space with the Haar state as the inner product. The matrix coefficients of the Peter-Weyl decomposition of \mathcal{O}(SL_q(n)) are orthogonal with respect to the inner product. However, there is no orthonormal basis on this pre-Hilbert space due to a lack of efficient methods to evaluate the Haar state values of monomials on $\mathcal{O}(SL_q(n)). In this talk, we investigate the Haar state on \mathcal{O}(SL_q(3)). We will define a monomial basis that spans the linear subspace consisting of elements with non-zero Haar state values. Then, we give the Haar state values of those monomials in the basis as rational polynomials in variable q. We will also discuss the method to achieve an orthonormal basis which is proposed by Noumi, Yamada, and Mimachi.

更多相关信息请参见分析学研讨班网页


Copyright (C)2023 中国·金沙集团-www.3354cc.com|官网-Made in China版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:3354cc金沙集团网络安全和信息化办公室