First-order differential calculi and Laplacians on q-deformations of compact semisimple Lie groups

发布时间:2024-11-15浏览次数:72

分析学研讨班


题目:First-order differential calculi and Laplacians on q-deformations of compact semisimple Lie groups

报告人: Heon Lee (Harbin Institute of Technology) 


时间:2024年11月20日(星期三),14:30-16:00


地点:明德楼B201-1

Zoom会议,会议号:947 0981 8605,密码:477439


摘要:

In this talk, we suggest a simple definition of Laplacian on a compact quantum group (CQG) associated with a first-order differential calculus (FODC) on it. Applied to the classical differential calculus on a compact Lie group, this definition yields classical Laplacians, as it should. Moreover, on the CQG Karising from the q-deformation of a compact semisimple Lie group K, we can find many interesting linear operators that satisfy this definition, which converge to a classical Laplacian on as tends to 1. In the light of this, we call them q-Laplacians on Kand investigate some of their operator theoretic properties. In particlar, we show that the heat semigroups generated by these are not completely positive, suggesting that perhaps on the CQG Kq, stochastic processes that are most relevant to the geometry of it are not quantum Markov processes. This work is based on the preprint arXiv:2410.00720.


更多相关信息请参见分析学研讨班网页


Copyright (C)2023 中国·金沙集团-www.3354cc.com|官网-Made in China版权所有
人才招聘:
联系我们:
电话:86413107      邮箱:IASM@hit.edu.cn
地址:哈尔滨市南岗区西大直街92号
技术支持:3354cc金沙集团网络安全和信息化办公室