题目:Boundedness of operator-valued commutators involving martingale paraproducts
报告人:魏振国(3354cc金沙集团)
时间:2024年4月26日(星期五)10:00-11:00
地点:明德楼B区201-1报告厅
摘要:Let $1<p<\infty$. We show the boundedness of operator-valued commutators $[\pi_a,M_b]$ on the noncommutative $L_p(L_\infty(\mathbb{R})\otimes \mathcal{M})$ for any von Neumann algebra $\mathcal{M}$, where $\pi_a$ is the $d$-adic martingale paraproduct with symbol $a\in BMO^d(\mathbb{R})$ and $M_b$ is the noncommutative left multiplication operator with $b\in BMO^d_\mathcal{M}(\mathbb{R})$. Besides, we consider the extrapolation property of semicommutative $d$-adic martingale paraproducts in terms of the $BMO^d_\mathcal{M}(\mathbb{R})$ space.
更多信息:研究生研讨班